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Resumo

O alinhamento entre pares de nuvens de pontos é uma tarefa importante na con-
strução de mapas de ambientes em 3D. A combinação de caracteŕısticas locais 2D com
informação de profundidade fornecida por câmeras RGB-D são frequentemente utilizadas
para melhorar tais alinhamentos. No entanto, em ambientes interno com baixa iluminação
ou pouca textura visual o método usando somente caracteŕısticas locais 2D não é particu-
larmente robusto. Nessas condições, as caracteŕısticas 2D são dif́ıceis de serem detectadas,
conduzindo a um desalinhamento entre pares de quadros consecutivos. A utilização de
caracteŕısticas 3D locais pode ser uma solução para se extrair tais caracteŕısticas dire-
tamente de pontos 3D. Como as condições de variações em cenas reais em ambientes
internos são inevitáveis, essa tese apresenta um novo sistema desenvolvido com o objetivo
de melhorar o alinhamento entre pares de quadros usando uma combinação adaptativa de
caracteŕısticas 2D e 3D. Tal combinação esta baseada nos ńıveis de estrutura geométrica e
de textura visual contidos em cada cena. Esse sistema foi testado com conjuntos de dados
RGB-D, incluindo v́ıdeos com movimentos irrestritos da câmera e mudanças naturais na
iluminação. Os resultados experimentais mostram que a nossa proposta supera aqueles
métodos usando caracteŕısticas 2D e 3D separadamente. Como resultado, foi posśıvel
obter um sistema que melhora a precisão nos alinhamento das cenas.

Palavras-Chave – Reconstrução 3D, Registro de imagens, Descritores locais, Detec-
tores de saliências, sensor RGB-D.



Abstract

Pairwise alignment between point clouds is an important task in building 3D maps of
indoor environments with partial information. The combination of 2D local features with
depth information provided by RGB-D cameras are often used to improve such alignment.
However, under varying lighting or low visual texture, indoor pairwise frame registration
with sparse 2D local features is not a particularly robust method. In these conditions,
features are hard to detect, thus leading to misalignment between consecutive pairs of
frames. The use of 3D local features can be a solution as such features come from the
3D points themselves and are resistant to variations in visual texture and illumination.
Because varying conditions in real indoor scenes are unavoidable, we propose a new frame-
work to improve the pairwise frame alignment using an adaptive combination of sparse 2D
and 3D features based on both the levels of geometric structure and visual texture con-
tained in each scene. Experiments with datasets including unrestricted RGB-D camera
motion and natural changes in illumination show that the proposed framework convinc-
ingly outperforms methods using 2D or 3D features separately, as reflected in better level
of alignment accuracy.

Keywords – 3D reconstruction, Image registration, Local descriptors, Keypoint de-
tectors, RGB-D sensor.
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Chapter 1
Introduction

This thesis is made in the context of methodologies applied to the mobile robotic

problem known as Simultaneous Localization and Mapping (SLAM). More specifically,

in problems presented in the method known as pairwise registration which is applied to

build 3D maps linking partial information extracted by sensors that capture depth and

visual information from the surrounding environment.

In order to understand the crucial role played by the pairwise registration in the SLAM

problem, section 1.1 presents an overview of this problem and the techniques to resolve it

when using visual information (Visual SLAM); the section continues with the commonly

used steps to build 3D maps, and ends with a brief explanation of pairwise registration

and its associated issues. Section 1.2 provides a brief overview of the framework developed

in this thesis and the contributions achieved. Finally, Section 1.4 presents an outline of

the organization for the rest of this document.

1.1 Simultaneous Localization and Mapping (SLAM)

SLAM is the problem facing a mobile robot when neither its motion nor the structure

of the surrounding environment is known in advance and the goal is to estimate both

simultaneously. SLAM builds a representation of the state (pose) of the robot and an

environment map, which evolves in response to motion and new robot sensor measure-

ments. This problem appears to be the chicken-and-egg problem, since the localization

needs a map to infer the robot location and the mapping concurrently needs the robot

location to infer a map.

There are many algorithms used to solve this problem in two dimensions (ELIAZAR;
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PARR, 2003),(DURRANT-WHYTE; BAILEY, 2006),(BAILEY; DURRANT-WHYTE,

2006). However, 3D maps provide more and better information to different applications

such as robot navigation, manipulation, semantic mapping, and telepresence. Depth

and color information provided by Lidar sensors and digital cameras, respectively, were

integrated in order to increase 3D maps accuracy; however, the costs rise too. A recent

development of low-cost sensors RGB-D providing less accurate color for a small field

of view (in a range of approximately 60◦ of visual angle) and depth information (in a

range varying from about 3cm to 3m depth), has renewed the interest of researchers in

finding new methods to solve the SLAM problem (ENDRES et al., 2012),(HENRY et al.,

2012),(RUSU et al., 2008), (SCHERER et al., 2012),(PRAKHYA; QAYYUM, 2015).

In the past the problem of estimating the robot’s pose was resolved using techniques

such as the Extended Kalman Filter (EKF ) and the Particle Filter (GRISETTI et al.,

2007),(THRUN et al., 2005),(ELIAZAR; PARR, 2003); recently, the graph models are

considered a good alternative for pose estimation (KUMMERLE et al., 2011),(BOR-

RMANN et al., 2008).

A graph model combining both graph and probabilistic theories describing the SLAM

problem is known as Graph-based SLAM (see Figure 1), and was firstly proposed by Lu

and Milios in 1997 (LU; MILIOS, 1997). In this graph every node represents a pose of

the robot during mapping which is labelled with their position xk; meanwhile, the edges

represents spatial constraints Ωij that result from odometer measurements uk or from

relative pose observations zk relating the poses between two nodes i and j.

Figure 1. Pose-Graph describing the SLAM problem, where each node has the pose of the
sensor and each edge has the constraints between connected nodes.

Source: Reproduced from (GRISETTI et al., 2010).

A typical Graph-based SLAM system is illustrated in Figure 2 and consists of two
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blocks, i.e.,the front-end that builds the graph, and the back-end that optimizes the graph

poses given the edges constraints.

Figure 2. General representation of the Graph Based SLAM system containing two blocks:
the front-end block used to build the graph poses and the back-end block used to optimize the
graph poses.

Source: Author.

The goal of Graph-based SLAM is to find the configuration of a set of poses x1, ..., xn

that minimizes error e introduced by a set of given relative pose observations z. The

optimization of the graph consists in finding the optimal configuration of nodes to respect

all the given constraints.

The transformation T maximizing the overlap between two consecutive frames is

known as the expected relative pose ẑij. In particular, in the case of 3D points, this trans-

formation is a perspective projection composed of a rotation matrix R and a translation

vector t in 3 dimensions. The idea is to transformthe points of a frame and to calculate

the average error regarding the point of the ohter frame.

This method presents a problem related with the initial belief that one image is a

perfect rotation and translation of another image. This assumption is not possible since

the uncertainty due to inherent noisy measurements of the sensor and the correspondences

by itself. Therefore, since the correct correspondences are not known, it is generally im-

posible to determine the optimal transformation in one step. Then, an iterative method

to estimate the parameters R and t of the rigid transformation must be used. An al-

gorithm called Iterative Closest Point (ICP) (ZHANG, 1994) is commonly used to solve

this problem as follows: Firstly a possible correspondence between the points in the two

frames is calculated, then a transformation T necessary to align them is found. Conse-

quently, this transformation applies to align the two frames and to calculate de function

error E(R, t). If E(R, t) is less than a threshold value given, the alignment is considered

achieved. Otherwise, the steps are repeated until a correct alignment is reached.

The convergence of this algorithm is only guaranteed if the starting misalignment
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between the two sets of points is quite small, since it might reach a local minimum if the

two sets of points analyzed are not closer from each other. Furthermore, the basic ICP

has a high computational cost, since in the first step it uses all points in both sets to

calculate correspondences. Moreover, ICP is sensitive to outliers (bad correspondences).

One technique vastly used to decrease the number of correspondences for ICP is

known as Feature-based Sampling (THRUN et al., 2005), which consists in detecting a

subset of sparse interest points from within the whole set of points enabling an accurate

alignment between frames, thereby increasing the efficiency of the ICP . On the other

hand, to guarantee a good starting position for ICP, an algorithm called Random Sample

Consensus (RANSAC) (FISCHLER; BOLLES, 1981) is used. RANSAC is quite resistant

to outliers and can provide a good initial transformation for ICP.

In order to minimize the error, graph optimization relies on constraints between the

nodes. With more constraints, the cumulated error of the graph can be reduced. These

new constraints appear when the robot visits places previously visited, which is known as

loop closure detection. By keeping the history of the past frames, it is possible to check

if the current frame matches some of the previous ones. If two frames are similar enough,

a transformation can be computed between these frames and a new constraint can be

inserted from it, as shown in Figure 3. Once the graph has been optimized, the nodes

are corrected and the new estimations of the camera poses can be finally extracted.

Figure 3. Loop closure detection (a) shows the nodes linked by edges that represents transfor-
mations between them, (b) shows a observation that was seen in the past and can be useful to
add a new link between nodes visited previously.

Source: (HÖGMAN, 2012).

Global optimization could be more beneficial in cases of large loop closures; revisiting

known places on the map generates loop closing edges that reduce the accumulated error.

Therefore, a good global optimization needs to obtain some loop closures to guarantee a

globally consistent trajectory. However, the idea of revisiting places can be translated in

the pose graph as the task of comparing the actual node against all the others. This task
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is computationally costly and is currently considered a bottleneck.

1.1.1 Steps to build a full RGB-D Map

The previous section presented a brief introduction to the SLAM problem and an

intuitive technique to address this problem via the so-called graph-based formulation. In

brief, the frames captured with the help of sensors, such as RGB-D cameras, provide

information on the environment. Each frame has a set of point clouds associated, which

is useful to build partial models of the environment that are brought together to obtain a

full model, known as global map. Ideally, a full model is reduced to achieve the matching

points between two consecutive frames, which could be much easier if the match was

perfect . In fact, a perfect match is almost impossible, considering that the quality of

the information acquired is drastically reduced by the inherent noise associated with the

sensors. For this reason, it is necessary to apply some steps to obtain a full map of the

environment surrounding the robot. This idea is depicted in Figure 4. In the first step, an

algorithm to obtain sparse interest points and their respective features, is applied on each

frame and then these feature points are matched on two consecutive frames in the second

step. The information acquired is the input in the third step to the RANSAC algorithm

that calculates an initial transformation T0 between two frames; then, an algorithm for

refinement, e.g., the ICP algorithm is applied to the fourth step to refine T0; in the last

step, all the transformations and pose information are placed on a pose graph which can

be optimized by using a framework to compute a globally consistent map.

It is not difficult to guess that a good initial transformation, T0, plays a crucial role

in avoiding wrong alignment in step three (ICP) and in decreasing the computational

cost in step four (Global Optimization). This initial transformation can be achieved by

computing the alignment between pairs of consecutive frames, which is known as pairwise

registration .

1.1.2 Pairwise registration

Pairwise registration of multiple scenes in indoor environments is a fundamental prob-

lem not only in SLAM, but also in other areas such as semantic segmentation (RUS-

SELL et al., 2009; GUPTA et al., 2015; SHAO et al., 2012), object reconstruction

(GEIGER; WANG, 2015; FIRMAN et al., 2013), and robust tracking (BYLOW et al.,

2013; TYKKÄLÄ et al., 2014). In general, this type of registration requires attaching a

set of consecutive frames taken from different views to a single coordinate system, which
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Figure 4. Block diagram showing all the necessary steps to build a full RGB-D Map.

Source: Author.

is a difficult, yet extensively studied problem.

The advent of affordable consumer RGB-D cameras, which provide both RGB color

and depth information, has renewed the interest in improving or creating new registration

algorithms for indoor environments. Most of these algorithms have focused on the RGB

color information (ENDRES et al., 2012; HENRY et al., 2012), whereas those focused

on 3D point cloud information alone (HOLZ et al., 2015; PRAKHYA; QAYYUM, 2015)

emerged more recently. Regardless of the type of information available for the registration

task, algorithms that use sparse data, i.e., that select a reduced set of interest points are

more efficient and require less memory than those using dense methods that use all the

RGB-D information available (LOWE, 2004; HENRY et al., 2012).

The feature-based pairwise registration process is usually performed in the following

way. Each feature in a frame is compared with features of the other frame to detect

correspondences between their keypoints, and the best match is selected. Usually the

Approximate Nearest Neighbor (ANN) algorithm (MUJA; LOWE, 2014) is used to reduce

the search space for matches. However, despite the fast results, the resulting matches may

contain many outliers. Then, to remove such outliers and to find an adequate initial spatial

transformation that matches the two frames, the RANSAC algorithm is used.

Algorithms based on RGB color image detect 2D local features from a set of interest

points for each pair of consecutive frames. These features are subsequently matched

and then projected to 3D using the depth information. The most significant weakness

associated with this type of algorithms is that sparse 2D features can become undetectable

in areas of low visual texture or insufficient illumination, a situation in which it is not

possible to find a transformation between frames, consequently leading to accuracy loss in

the registration task. This weakness can be adequately addressed using 3D local features

obtained directly from 3D point clouds that give us depth information. These features
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describe geometrical information around each interest point and are immune to variations

in illumination. Hence, they are expected to have a better performance in structured

environments containing little or no visual texture. However, in scenes with low structure

level, it is difficult to find good 3D features.

2D and 3D features have been separately used in different algorithms so far, but,

as noted above, each of these types of feature may become undetectable, according to

the visual texture and scene structure present in the environment surrounding the robot.

Thus, techniques that combine RGB color with depth information, according to the visual

texture and scene structure of the data, appear very promising.

1.2 Objective

This thesis presents a proposal and further development of a framework combining 2D

and 3D features to improve the estimation of the initial transformation between pairs of

frames. Furthermore, since definitions and criteria on how to combine 2D and 3D features

continued to be an open issue, the framework proposed also provides an innovative system

to calculate a parameter (α) based on the structure and visual texture information. This

parameter allows combining 2D and 3D features in an automatic way. Figure 5 briefly

describes the operation of the framework proposed.

Figure 5. Overview of the framework proposed.

Source: Author.

We start by acquiring the RGB and depth images for each frame. Then, RGB image

pairs are used to obtain 2D features. Then, these features are matched. Since each

match has an associated distance-based error metric, all 2D matches are sorted in an
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ascending order of distance. All sorted 2D matches are then projected into 3D using the

corresponding depth information

A similar procedure is used to obtain 3D features directly from the depth images and

then to match them; here, the projection step is no longer needed.

Then, matches from RGB and depth are selected and merged using the α parameter,

aiming to create an unified vector of 3D matches. The α parameter indicates the pro-

portion of the use of each type of information. If the scene has little structure and a lot

of texture, the ratio of RGB matches used in the unified vector of 3D matches is greater

than depth matches; if the scene has plenty of structure and little texture, depth matches

are used in greater proportion.

Finally, the RANSAC algorithm is used to find the initial transformation between

frames.

In summary, the thesis main goal is to present a new framework for pairwise regis-

tration automatically combining 2D and 3D features based on the current texture and

structure level of the scene. From this goal, a secondary objective emerges, which is to

carry out a comprehensive study and a further selection of both 2D and 3D detectors and

descriptors used in the proposed framework.

1.3 Contributions

Previous researches have used 2D or 3D features in the pairwise alignment technique

to align consecutive pairs of frames. We here propose a new framework to improve the

initial transformation in the pairwise alignment for indoor scenes using the combination

of 2D and 3D features and, including scenes in which low or no level of structure or visual

texture exists. Throughout the thesis we carefully explain the selection of each algorithm

or method used in our proposal, presenting a detailed discussion about selecting the best

2D keypoint detector and descriptor combination, as well as the selection of the best

3D detector. We also propose a full methodology for defining the parameter value that

automatically balances the combination of the 2D and 3D features.

Part of the contributions of the thesis are 4 publications in international conference

and symposiums, and once article submitted to a journal. These publications are:

• Simulation platform for cooperative vehicle systems, published in 17th In-

ternational IEEE Conference on Intelligent Transportation Systems (ITSC 2014).
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• Adaptive Selection of Color Images or Depth to Align RGB-D Point

Clouds, published in the Joint Conference on Robotics and Intelligent Systems

(JCRIS 2014).

• A Simulation Framework for Multi-Vehicle Communication, and Aligning

RGB-D Point Clouds through Adaptive Integration of Color and Depth

Cues, published in XII LARS Latin American Robotics Symposium (LARS 2015).

• Pairwise Registration in Indoor Environments using Adaptive Combina-

tion of 2D and 3D Cues, submitted to the journal Image and Vision Compting.

Finally, we make available the software code used herein.

1.4 Outline

The remainder of this thesis is organized as follows. Chapter 2 presents the funda-

mental concepts and theories of the elements involved in the registration technique, which

are applied to the later chapters. Chapter 3 presents previous work in the related litera-

ture and studies by other researchers in registration techniques. Chapter 4 describes our

proposal in detail. Chapter 5 presents the evaluation criteria used to characterize the per-

formance level of the different components of our framework, as well as the experiments

carried out. Chapter 6 concludes this thesis with a critical analysis of our framework and

a discussion of possible future work.
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Chapter 2
Theoretical Background

This chapter provides a technical introduction to the topics more relevant to this

thesis.

2.1 RGB-D Sensor

A RGB-D camera is a sensor that provides color image information as well as an

estimated depth for each pixel. Despite the fact that this type of sensors already existed

a long time ago, it was until the existence of the consumer RGB-D sensors, e.g. Microsoft

Kinect and Axus Xtion Pro, that these have been considered by several researchers ad-

dressing well-known problems in computer vision such as SLAM, 3D mapping, object

recognition, interactive 3D modeling, autonomous flight, etc.

RGB-D sensors captures depth and color images simultaneously at a frame rate about

30 Hz. For the measurement depth the sensor uses an infrared camera and an infrared

laser emitter (See fig. 7).

//

The laser source emits a single beam which is split in multiple beams creating a

pattern of speckles projected onto the scene. The infrared camera captures the reflected

pattern which is correlated with a reference pattern. Each speckle projected on an object

whose distance to the sensor is larger or smaller than the distance between the sensor and

the reference plane generates a shift between the laser projector and the infrared camera.

Each shift is measured by a simple correlation of triangles producing the depth-disparity

image as shown in fig. 6.
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Figure 6. Infrared image with the pattern of speakles projected on the object (Left), and the
resulting depth image (Right)

.
Source: Reproduced from (KHOSHELHAM, 2012).

Figure 7. Microsoft Kinect sensor with the cover taken off, showing the infrared laser emitter,
the RGB camera, and, the infrared camera.

Source: Reproduced from ROS 1

An example for computing the disparity is shown in fig 8. This example assumes that

the object is located in the reference plane at a distance Zo to the sensor and a speckle

k on the object is captured on the image plane. Since the speckle is shifted closer to the

sensor, the speckle location will be displaced on the image plane. The distance of the

speckle Zk in object space is computed as,

Zk =
Zo

1 + Zo

fb
d
, (2.1)

where f is the focal length of the infrared camera, b is the base length, and, d is the

1〈http://wiki.ros.org/kinect calibration/technical〉, [Accessed: Aug. 7, 2016].

http://wiki.ros.org/kinect_calibration/technical
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observed disparity in image space, which can be obtained from the similarity of triangles,

D

b
=
Zo − Zk
Zo

, (2.2)

d

f
=
D

Zk
, (2.3)

where D is the displacement of the speckle k in object space.

Figure 8. Example for computing the depth of a speckle by using similarity between triangles

.
Source: Reproduced from (KHOSHELHAM, 2012).

2.2 Detectors and descriptors

Visual perception is the dominant sense in humans. This sense enables humans to

understand and to learn about the world around them. Computer vision tries to imitate

this behavior in the best possible way by the use of sensors that capture images of the real

world. However, the analysis of images is a complex task due to the different appearances

that can represent a same object in different images depending on illumination, shadows

and occlusions, among others. Since redundant information presented by the image pixels

and the high computational cost achieved if the whole image is used, computer vision

presents a technique using a minimal set of local features of the image that allows to

efficiently represent it and encode it. These features can refer to specific locations in the
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image which are known as interest points or keypoints.

Then, the feature detectors are methods used to locate interest points from images,

whereas, the feature descriptors are a set of local measurements capturing essential and

no redundant information about the pixels surrounding interest points.

A brief explanation about the functioning of the detectors and descriptors used in this

research is provided as follows.

2.2.1 2D local detectors and descriptors

Five different approaches to extract features from 2D images are described below.

2.2.1.1 SIFT (LOWE, 1999)

Scale-Invariant Feature Transform (SIFT) is one of the best known 2D local detector

and descriptor algorithm which is not only invariant to scale but also invariant to rotation,

illumination and small point of view shifts.

Algorithm 1 SIFT Algorithm

Require:
u: 2D image

Ensure: feat vect: Feature descriptor vector
1: Initialize:

keypoint list← 0
feat vect← 0

2: v ← Compute the Gaussian scale-space with n scales and m octaves
3: for all Octaves do
4: for all Scales do
5: DoG← Compute the Difference of Gaussians
6: kp← Detect interest points (position and scale)
7: keypoint list← Add kp to list
8: end for
9: end for

10: keypoint list← Filter unstable keypoints
11: for every kp in keypoint list do
12: kp← Assign a reference orientation
13: kp← Build the keypoints descriptor
14: feat vect← Add feature keypoint to feature descriptor vector
15: end for

return feat vect

The algorithm is described in 1 and starts constructing a Gaussian scale space rep-

resentation of the original image to ensure the invariance to scale. This scale space is
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a set of images obtained by progressively blurring (scale) and resizing (octave) the orig-

inal image. Then, the original image is considered the first octave; the second octave

is achieved by resizing the original image to half size and so on. In the original article

of SIFT, Lowe (1999) suggests using 4 octave levels. On the other hand, each octave is

blurred through the convolution of a Gaussian operator and an image (See Eq. 2.4). The

blur levels suggested by Lowe are 5.

L(x, y, σ) = G(x, y, σ) ∗ I(x, y), (2.4)

where L is the blurred image, I is the image being blurred and G(.) is a variable-scale

Gaussian,

G(x, y, σ) =
1

2πσ2
e−(x2+y2)/2σ2

(2.5)

To locate stable edges and corners, the second-order derivatives are calculated on

blur images. However, this operation is computationally costly; therefore, an efficient

approximation by convolving the Difference-of-Gaussian (DoG) function, D(x, y, σ) with

the image can be used (See Eq. 2.6).

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y), (2.6)

where k is a multiplicative factor separating two nearby scales.

Figure 9 shows the process to convert Gaussians in DoG images by subtracting adja-

cent image scales.

The second step in the SIFT algorithm lies in finding the maxima and the minima of

D(x, y, σ) for each sampled point comparing to its eight neighbors in the current image and

nine neighbors in the scale above and below as shown in Fig. 10, where the sampled point

”X” is considered a keypoint if this is the greatest or smallest of all its 26 neighbors.

Because maximal and minima rarely lie exactly on a pixel, a mathematical subpixel

location can be found by using the Taylor expansion of the DoG image closer to a different

sample point,

D(x) = D +
∂DT

∂x
x +

1

2
xT
∂2D

∂x2
x, (2.7)

where D and its derivatives are evaluated at the sample point and x = (x, y, σ)T is

the offset from this point.
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Figure 9. Adjacent Gaussian images on the left are substracted to produce the DoG images
on the right.

Source: Reproduced from (LOWE, 2004).

Keypoints that lie along edges or flat regions, or have low contrast are removed in the

third step. To define whether a subpixel (maxima or minima) must be removed, Eq. 2.7

is again used. If the intensity magnitude is less than a threshold value previously defined,

the keypoint is removed. On the other hand, to remove keypoints along edges or flat

regions, the Hessian matrix, H, is computed at the location and scale of the keypoint,

H =

[
Dxx Dxy

Dxy Dyy

]
(2.8)

Eigenvalues λ1 and λ2 of H are proportional to the principal curvatures of D. As

shown in Fig. 11, there are three different relations between the eigenvalues which de-

termine the type of region for each keypoint: if λ1 and λ2 are small, then this is a flat

region. When λ1 � λ2 or λ2 � λ1, this is an edege region, and if λ1 ≈ λ2 � 0, this is

a corner region. Then, keypoints that lie in the flat or edge regions are removed, leaving

only keypoints that lie in corner regions as good keypoints.

In the fourth step, the keypoints are fully described by a geometric frame of four

parameters: the keypoint center coordinates x and y, its scale and its orientation (see

Fig. 12). To calculate the orientation, the magnitude and orientation for a small region
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Figure 10. Each point in DoG is compared with its 8 neighbors in the current scale and 18 more
in the superior and inferior scale. If this point is the greatest or least of all its neighborhood,
then, it is considered a keypoint.

Source: Reproduced from (LOWE, 2004).

of radio R around the keypoint are calculated using Eq. 2.9 and Eq. 2.10. The magnitudes

associated with the orientations for each 10 degrees are accumulated to form the bins for

a 36-bin histogram ranging between 0 to 360 degrees. Then the peak in this histogram is

used to normalize the other bins. Any peaks above 80% are converted into a new keypoint

with the same location but with the orientation given by the bin.

m(x, y) =
√

(L(x+ 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2 (2.9)

θ(x, y) = tan−1((L(x, y + 1)− L(x, y − 1))/(L(x+ 1, y)− L(x− 1, y))) (2.10)

Finally, in the fifth step, a 128-dimensional feature vector describing any keypoint is

found. To obtain this feature vector for each keypoint, first, a 16×16 window subdivided

into sixteen 4 × 4 windows is selected around the keypoint as shown in Fig. 13. Within

each 4× 4 window, gradient magnitudes and orientations are calculated and put into an

8-bin histogram. To lend more weight to windows closest to the keypoint a Gaussian

function is multiplied to each 8 bin histograms. Once all orientation histogram entries

have been completed, 4× 4× 8 = 128 numbers are obtained and normalized to form the

feature vector.

2.2.1.2 SURF

Speeded-Up Robust Feature (SURF) is a detector/descriptor proposed by Bay et al.

(2006) as an efficient alternative to SIFT. The first change in this algorithm is the method
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Figure 11. Different types of regions for a keypoint subject to eignevalues λ1 and λ2 of the
Hessian matrix.

Source: Adapted from (HARRIS; STEPHENS, 1988).

Figure 12. Each keypoint is fully described by its scale, orientation and location in a 2D plane.

Source: Author.

used to approximate the Laplacian-of-Gaussian (LoG) with Dog.

They use 2D box filters (Haar wavelet) as an approximation of the second-order

Gaussian derivatives as shown in Fig. 14.

In the convolution process with these box filters, an integral image is used, which is

more efficient that creating octaves in the original image; in other words, whereas with

SIFT the scale space is analyzed by iteratively reducing the image size, SURF up-scales

the box filter size (See Fig. 15).

To describe each keypoint, SURF uses a squared region centered around the keypoint

and split it into smaller 4× 4 regions. Instead of using gradient orientation histograms as

SIFT, SURF computes wavelet responses in the horizontal dx and the vertical dy direction
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Figure 13. Left figure shows the divisions of the region surrounding a keypoint and the right
figure shows the gradient magnitudes and orientations within each 4×4 window, which are used
to form the 128-feature descriptor.

Source: Reproduced from (LOWE, 2004).

Figure 14. Examples of second order Gaussian derivatives (Lyy and Lxy), and their aproxi-
mations using 2D box filters (Dyy and Dxy).

Source: Reproduced from (BAY et al., 2006).

for each region, summed up over each region and extract a four-dimensional descriptor

vector v = (
∑
dx,
∑
dy,
∑
|dx|,

∑
|dy|). Once all these vectors have been completed,

4× 4× 4 = 64 numbers are obtained and normalized to form the feature vector.

2.2.1.3 ORB (RUBLEE et al., 2011)

Oriented FAST and Rotated BRIEF (ORB) uses an improved FAST as detector and

BRIEF as descriptor. Features from Accelerated Segment Test (FAST) detector algorithm

(ROSTEN et al., 2010) was developed as an computational efficient alternative for those

using LoG, e.g. SIFT, and SURF. FAST creates a circle of sixteen pixels around each

corner candidate and calculates the intensity difference between them. The candidate is

considered a corner if a set of n contiguous pixels in the circle are all brighter or all darker

(See Fig. ??).

Since FAST produces neither a measure of corneness nor multi-scale features, ORB

improves it by using a Harris corner measure and a scale pyramid of the image, respec-

tively. Furthermore, FAST does not include an orientation operator; ORB uses the vector
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Figure 15. This figure shows how instead of iteratively reducing the image size (SIFT), the
use of integral images allows the up-scaling of the filter at constant cost (SURF).

Source: Reproduced from (BAY et al., 2006).

Figure 16. The left figure shows an image with a possible candidate corner. The right figure
shows a magnified image of the region surrounding the pixel p tha is the centre of the candidate
corner. In this example, sixteen pixels around p are highlighted and the dashed line passing
through n = 9 contiguous pixels which are brighter than p indicate that the candidate indeed is
a corner.

Source: Reproduced from (ROSTEN et al., 2010).

from the corner center O to the centroid C, ~OC, and calculates the orientation Θ of the

patch (See Fig. ??). Let the moments of a patch can be calculated as,

mpq =
∑
x,y

xpyqI(x, y), (2.11)

and centroid C,

C = (
m10

m00

,
m01

m00

), (2.12)

The orientation patch is simply:

Θ = atan2(m01,m10). (2.13)
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Figure 17. The corner orientation is calculated by using the orientation of the line segment
formed by the center corner O and its centroid C.

Source: Author.

In order to describe these keypoints, ORB uses the Binary Robust Independent Ele-

mentary Features (BRIEF) descriptor (CALONDER et al., 2012), by building a vector of

256 binary intensity comparisons between sample points selected randomly from a patch

image previously smoothed and centered at the keypoint location. Finally, BRIEF is

steered according to orientation Θ of the keypoint.

2.2.1.4 LBP (OJALA et al., 1994)

Local binary Pattern (LBP) is a visual descriptor that captures and encodes the local

texture of an image by subtracting the value of each pixel from the value of its neighbors.

In the example in Fig. 18-left, the highlighted pixel is encoded using LBP and, therefore,

its value is subtracted from each neighbor value. When this difference is negative, the

neighbor is encoded with 0, otherwise it is encoded with 1. This binary representation of

the neighborhood is used to obtain an 8-digit binary code by concatenating each neighbor,

starting from the upper left neighbor. For convenience, this binary number is converted

into decimal number from 0 to 255 (see Fig. 18-right). This procedure is repeated for

each pixel in the image.

Finally, a histogram is defined with all the codes of an image, generating a 256-

dimensional vector representing the level of texture of the image.

2.2.1.5 CLBP

Curvature Local Binary Pattern (CLBP) is an extension of LBP proposed by Chun et

al. (2013). The CLBP algorithm is the same as that for creating the texture vector, the

only change is that it uses the curvature of the depth map instead of the pixel intensity.

Curvature (k) is the magnitude of the second derivative of the curve at a given point:
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Figure 18. Example of LBP. Left: LBP for a pixel (red) and its neighborhood. Right: The
generated LBP code.

Source: Author.

k =

∣∣∣∣d2y

dx2

∣∣∣∣, (2.14)

where (x, y) is the location in the map pixel space.

Finally, a histogram is defined with all the codes of the depth map, generating a

256-dimensional vector representing the level of structure of the image.

2.2.2 3D local detectors and descriptors

In this, Normal Aligned Radial Feature(NARF), Intrinsic Shape signatures 3D (ISS3D)

and HARRIS3D are presented as interesting approaches to detect 3D keypoints in point

cloud; a Fast Point Feature Histogram (FPFH) is presented as an excellent 3D feature

descriptor.

2.2.2.1 NARF (STEDER; KONOLIGE, 2010)

A Normal Aligned Radial Feature (NARF) detector, begins with the transformation

of the point cloud into a range image used to find borders; then, for each point p, all the

neighbor points that lie in the square patch of size s around p are sorted in increasing

order by their 3D distances to p. Point p is marked as a probable border if any score

computed in its four directions (right, bottom, left, top) with the Eq. 2.15 is greater than

a specified threshold.

si = max

(
0, 1− dM

di

)
, (2.15)
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where di is the average distance from p and its next neighbors in direction i ∈ {right, bottom, left, top},
and dM is the mean distance for the set of points into the square of size s and computed

as dM = (0.5.(s+ 1))2.

Any probable border is considered an interest point if it can be robustly detected in the

same place even if observed from different perspectives. Therefore, the probable border p

and all its neighboring points n0, ..., nk within a radius σ, which do not have a border in

between, are used to compute an interest score I(p) using the following equations,

I(p) = I1(p).I2(p) (2.16)

I1(p) = min
i

(
1− wni max

(
1− 10.‖p− ni‖

σ
, 0

))
(2.17)

I2(p) = max
i,j

(
f(ni).f(nj)

(
1− | cos

(
αni − αnj

)
|
))

(2.18)

f(n) =

√
wn

(
1−

∣∣2.‖p− ni‖
σ

− 0.5
∣∣), (2.19)

where α is the orientation of both p and all its neighboring points that do not have a

border; and wn is a weight that is 1 for every border point and 1− (1−λ)3 for every other

point. λ represents the magnitude of the curvature associated with every non-border

point.

Therefore, a probable border p with an interest score I(p) value higher than a user

specified threshold is marked as a keypoint of the point cloud.

2.2.2.2 ISS3D (YU, 2009)

Intrinsic Shape Signature for 3D (ISS3D) is a method that obtains a set of salient

basis points through the use of the analysis of the eigenvalues of a 3×3 covariance matrix,

which are computed for each point and its neighbors within a spherical region with radius

rdensity. Here, a point pi has associated three eigenvalues λ1, λ2, λ3, that are used to

evaluate on whether or not pi is considered a salient point. Then, pi must fulfil the next

two ratios between the eigenvalues:
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λ2/λ1 < τ21, (2.20)

λ3/λ2 < τ32, (2.21)

where τ21 and τ32 are threshold values. The final result is a reduced point cloud whose

points are used as keypoints.

2.2.2.3 HARRIS3D (RUSU et al., 2008)

HARRIS3D is based on the HARRIS 2D detector, a method that uses the gradient

of the image in the vertical and horizontal directions to detect corners. Since corners

represent a change of intensity for a shift [u, v], this change is computed as:

E(u, v) =
∑
x,y

w(x, y)[I(x+ u, y + v)− I(x, y)]2, (2.22)

where w(x, y) is usually a window Gaussian function at position x, y) and I is the intensity.

Since this computation at every pixel is slow, E(u, v) can be approximate using the

Taylor series:

E(u, v) ≈ [u, v]M

[
u

v

]
, (2.23)

where M is a 2× 2 matrix computed from the image derivatives,

M =
∑
x,y

w(x, y)

[
I2
x IxIy

IxIy I2
y

]
=
∑[

Ix

Iy

] [
Ix Iy

]
=
∑
∇I(∇I)T , (2.24)

The measure of corner response R is:

R = detM− k(traceM)2, (2.25)

where detM = λ1λ2 and traceM = λ1 + λ2, and k is an empirical constant.

Since a corner should have a large intensity change in all directions, R should be

greater than certain threshold.

For the 3D case, Gedikli replaces the gradients in Harris matrix by surface normals

NI and uses the same responses R extending it for 3D.

M =
∑

NI(NI)
T , (2.26)
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2.2.2.4 FPFH (RUSU et al., 2009)

Fast Point Feature Histograms (FPFH) is a 3D descriptor, and is a variant that reduces

the computational time used by Point Feature Histograms (PFH). For each keypoint pq,

PFH draws a sphere with radius r containing k neighbors, which are fully interconnected

as shown in Fig. 19, where the keypoint and its k = 5 neighbors are highlighted in the

area enclosed by the circumference.

Figure 19. PFH Diagram

Source: Reproduced from (RUSU et al., 2008).

To find the descriptor for each pair of points ps and pt in this sphere, first a fixed

coordinate frame uvw (see Fig. 20),is defined as:

u = ns, (2.27)

v = u× pt − ps
‖pt − ps‖2

, (2.28)

w = u× v, (2.29)

where ns is the normal associated with point Ps and ‖pt − ps‖2 is the Euclidean distance

d, between ps and pt.

Figure 20. PFH Coordinates

Source: Reproduced from (RUSU et al., 2008).
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Then, a quadruplet formed by three angular features and the Euclidean distance,

〈α, φ, θ, d〉, between the two points is computed as:

α = v.nt, (2.30)

where nt is the normal associated with the point Pt

φ = u.
pt − ps
d

, (2.31)

θ = arctan(w.nt,u.nt). (2.32)

These quadruplets are normalized and binned into a histogram to form the descriptor

for a given keypoint. However the computational complexity of PFH is O(nk2) for n

keypoints with k neighbors, is reduced to O(nk) using FPFH.

FPFH does not include the Euclidean distance d, and the tuple 〈α, φ, θ〉 is computed

only for the keypoint, pq, and its neighbors in a process called Simplified Point Feature

Histogram (SPFH) as shown in fig. 21.

Figure 21. FPFH Diagram

Source: Reproduced from (RUSU et al., 2009).

To counteract the loss of accuracy, for each k neighbor of pq, the SPFH is also com-

puted and its values are used to weight the final histogram:

FPFH(pq) = SPFH(pq) +
1

k

k∑
i=1

1

wk
.SPFH(pk), (2.33)

where weight wk represents a distance between pq and its neighbor pk.

Finally, one histogram using 11 binning divisions is used for each angular feature and
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then concatenated to form a 33-dimensional feature vector.

2.3 Matching

Once the features have been computed on the whole image, the goal is to track them

while the camera moves. This tacking can be done by associating the features between a

couple of consecutive frames (pairwise).

Due to the movement of the camera and to the sensor noise, the descriptors are not

exactly the same between two different frames; the best thus consists in finding the correct

associations with a good belief.

Most of the algorithms work with different steps, first from a sparse level where the

hypothesis is wide, to eliminate the most obvious mismatches at lower computational cost.

The matches that fit the model are called the inliers, and the matches being discarded

are called the outliers.

Matching can be found using a nearest neighbor search based on one distance metric,

e.g. Euclidean distance computed on the descriptors of the features. There are several

algorithms to implement this search; the most intuitive algorithm is Naive Nearest Neigh-

bor, which scans all the features in the second frame (searching region) trying to find the

lower distance of each of the features in the first frame. One computationally efficient

alternative for such searching is the K-nearest neighbor (KNN) algorithm, which uses a

binary tree that splits the searching region with hyperplanes that allow a faster search.

2.3.1 KNN

KNN is an algorithm used for classification and regression, which is non-parametric,

i.e., that it does not make any assumptions about the data distribution, which is an

important characteristic since most of the data derived from the real world does not obey

assumptions, e.g., Gaussian distributions, linearly separable,etc.

The input for KNN consists of the object to be classified and a predefined number

k of training samples closest in distance to the object. The k number of neighbors is a

value defined by the user, as well as the distance that can be any metric measure defined

in the feature space of the object. The KNN output is the object classification assigned

to the most common class among its k nearest neighbors.



36

2.3.2 K-Dimensional tree

The nearest neighbor search with the use of the naive neighbor search algorithm in-

volves the brute-force computation of distances between all the pairs of points in a dataset.

This computation can be very efficient in small datasets. However, this exhaustive search

computing distances is inefficient when the number of samples grows, since this algorithm

has time complexity O(N), where N is the size of the dataset. This issue can be addressed

by using tree-based data structures.

A K-Dimensional tree (K-D tree) is a geometrical data structure constructed to store

points in D- dimensional space. A K-D tree is a binary tree where every non-leaf node

divides the space into two parts called half-spaces. Points in the right half are represented

with the right subtree and points in the left half are represented with the left subtree. Each

subtree can be divided into two news subtrees and so on. A simple example illustrating

how a two dimensional dataset S = {(2, 5), (3, 8), (6, 3), (8, 9)} is represented using a K-D

tree (See fig. 22), where, for instance, Root node in (2, 5) splits the plane in the y-axis

forming two subspaces, whereas Node 1 in (3, 8) splits the top plane in the x-axis forming

two new subspaces.

Figure 22. A simple 2-dimensional K-D tree

Source: Author.

This arrangement enables the improvement of the KNN search by discarding a sub-

plane whenever a node is visited as shown in fig. 23. Let us suppose that the query point

is Node 3. We begin in the root of this K-D tree and we consider whether the y-coordinate

of Node 3 is less than or greater than the y-coordinate of Root node 0. Thus, we can

ignore the bottom half-space, since Node 3 happens to be in the top half-space. Now we
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repeat this procedure by comparing the x-coordinates of Node 1 and Node 3, and we can

ignore the left half-space and look in the rigth.

Figure 23. Example about searching a query point in K-D tree. The grayed-out regions
correspond to parts of the plane being discarded by the K-D tree searching process.

Source: Author.

2.4 RANSAC

Randon Sample Consensus (RANSAC) is a method proposed by Fischler and Bolles

(1981), which is used to estimate parameters of a model M from a set of observed data.

The basic approach of this method is composed of two steps that are iteratively repeated.

In the first step, a subset of data points S1 is randomly selected from a set of data points

P . This subset is composed for the minimum number of points required to instantiate

the model M∗ and the corresponding model parameters. The instantiated model M∗ is

used in the second step to determine the subset S1∗ of points in P that are within some

error tolerance of M∗, where each point in S1∗ is known as an inlier and the whole set of

these inliers is called consensus set. If S1∗ is less than some threshold th, a new subset S2

is randomly selected from P and the process is repeated again a fixed number of times.

A simple example is fitting of a line in two dimensions, as shown in Fig. 24. In the

fig(a) is depicted a set of points observed. In fig (b) two points are randomly selected and

a model is estimated. In fig (c) all other points are tested against this model, and, those

points fitting the model according some error threshold represented here as dotted lines,

are considered as part of the consensus set. , The major strength of RANSAC over other

estimators lies in the fact that RANSAC works satisfactorily even with data contamined

by large number of outliers, which are usually present in the matching process by using

local feature detectors, because these detectors often make mistakes i.e., to identify a bad

portion of an image as a feature.
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Figure 24. A simple example is fitting of a line in two dimensions. Figure (a) shows the whole
data set of points observed. Figure (B) shows the subset S1 composed by two points in this
case and the estimated model (solid line). Figure (C) shows the model and the consensus set of
points fitting the model with a threshold represented for the dotted lines.

(a) Set of data points ob-
served P (b) Estimated model M∗ (c) consensus set (inliers)

Source: Reproduced from (KHOSHELHAM, 2012).
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Chapter 3
Related work

Related works focus not only on the proposed frameworks for pairwise registration, but

also on the detectors and descriptors that determine the initial correspondence between

the pair of frames.

3.1 Frameworks using RGB-D data

Some architectures are built on the 2D features provided by the RGB images, then

project the keypoints found for the three-dimensional space using the depth of information

given by the RGB-D cameras (ENDRES et al., 2012; HENRY et al., 2012) . Other

architectures such as Holz et al. (2015) propose to build on the 3D points and attach

them at the end of the process, the RGB information of interest.

The approaches presented in Endres et al. (2012) and Henry et al. (2012) are the

first ones to show the advantages of using consumer RGB-D cameras. They focused on

visual Simultaneous Localization And Mapping (SLAM) for mobile robots and showed

the advantages of exploiting depth information to improve the accuracy of the registration

task.

Henry et al. (2012) match pairs of 2D local features extracted from two consecutive

RGB frames, and then project them into 3D using depth information. After that, the

RANSAC algorithm is used to determine a transformation that aligns the frames. With

this transformation applied to the whole set of matched features, outliers are detected

and discarded, and only the best matches are kept. The set of matches, the initial

transformation given by RANSAC, and the two original point clouds are then used by

ICP to refine the initial alignment by minimizing the transformation error.
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Figure 25. SLAM framework proposed by Henry et al. (2012)

Source: Adapted from (HENRY et al., 2012).

Endres et al. (2012) use a similar procedure in their registration module. However,

they do not use ICP and prefer to use only RANSAC exhaustively. They start by finding

and matching 2D features between each new frame and the previous frame. They propose

to find a first approximate matching using Fast Library Approximate Nearest Neighbor

(FLANN), since it reduces the time required for frame-to-frame registration by a factor

of two. From this set of matches they randomly select three matches and find a trans-

formation that is applied to the full set, using the Euclidean distance error to determine

the number of inliers and outliers. Then, the inliers are used to compute a refined trans-

formation. These steps are iterated until the transformation with most inliers is found.

Since they are not doing a local refinement of the initial transformation, the RANSAC

process is repeated for matches between the new frame and the nineteen previous frames,

trying to find new nodes (frames) and edges (transformation between frames) which are

added to a pose graph used in a later step of the global refining.

In 2011, Rusu and Cousins (2011) present the Point Cloud Library (PCL), an open

source library of algorithms for 2D and 3D image processing.

Holz et al. (2015) present a framework for 3D registration suggesting different methods

incorporated into the PCL library. They propose using registration algorithms based on

3D features (instead of 2D features as in Endres et al. (2012) and Henry et al. (2012)) to

calculate the initial alignment in cases in which the point clouds are not roughly aligned

previously. They claim that the advantage in this case lies primarily in improving the 3D

correspondences computed, and that this improvement will be reflected in the robustness

of the 3D registration scheme. In the matching process, they propose the use of K-D trees

as data structure for rapid searches using the FLANN library. The authors propose four

methods to reject invalid matches: rejection based on the distance, rejection based on the

median distance, rejection of pairs with duplicate target matches, and rejection based on

RANSAC. The latter method is the most interesting, since it allows obtaining an initial
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Figure 26. SLAM framework proposed by Endres et al. (2012)

Source: Adapted from (ENDRES et al., 2012).

transformation while eliminating outlier matches. In the refining process, they use ICP

with two metrics as alternatives: point-to-point error and point-to-plan error.

3.2 2D detectors and 2D descriptors

Different detectors and descriptors were used in these works. Henry et al. (2012) used

SIFT as a 2D descriptor and 2D detector in a previous work, and then they used FAST

(ROSTEN et al., 2010) detector along with the Calonder descriptor (CALONDER et al.,

2008). They claim that this combination of detector and descriptor, FAST and Calonder,

is not only faster than SIFT, but also provides more reliable visual keypoints. However,

this claim is not supported by any explicit assessment in this work.

Endres et al. (2012) showed the influence of the chosen detector on the SLAM accuracy

when using RGB-D cameras. They evaluated three different detectors, ORB, SURF, and

SIFT, in nine different sequences. They found that the SURF and the SIFT detectors

obtained similar results in accuracy, whereas ORB showed a significantly lower accuracy.

However, experiments were only performed in sequences with a high level of visual texture

and this could have affected the evaluation of the detectors. Thus, there is still a lack of

a better assessment of 2D descriptors and 2D detectors in realistic scenes with low visual

texture and variation in brightness.
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Figure 27. SLAM framework proposed by Holz et al. (2015)

Source: Adapted from (HOLZ et al., 2015).

3.3 3D detectors and 3D descriptors

Similarly, Holz et al. (2015) suggest using some 3D descriptors and 3D detectors

without conducting any assessment in this regard. However, there are two comprehensive

studies (FILIPE; ALEXANDRE, 2014; PRAKHYA; QAYYUM, 2015) on the selection of

the best 3D local detector.

Filipe and Alexandre (2014) compare eight different 3D local detectors: HARRIS3D

(HARRIS; STEPHENS, 1988), Kanade-Lucas-Tomasi (KLT) (TOMASI, 1991), 3D Scale

Invariant Feature Transform (SIFT3D) (FLINT et al., 2007), Smallest Univalue Seg-

ment Assimilating Nucleus (SUSAN) (SMITH; BRADY, 1997), ISS3D, Surface Curvature

(DESBRUN et al., 1999), and two variants of HARRIS3D called Lowe and Noble (RUSU;

COUSINS, 2011). They conclude that SIFT3D and ISS3D achieve the best results in

terms of repeatability, and ISS3D is more robust with respect to small transformations

in the model, such as scaling, translation, and rotation. However, the parameter settings

used in each experiment are not entirely clear. In the specific case of ISS3D, two pa-

rameters (r21 and r32) define the saliency threshold (YU, 2009); however, they produce a

number of keypoints in planar regions that do not seem to be good salient keypoints, and

can lead to poor data associations, as can be seen in Fig. 28. In addition, this number of

points can unnecessarily increase the time to find descriptors for each keypoint.

Prakhya and Qayyum (2015) propose a completely different method to evaluate the

performance of 3D keypoint detectors. They show that the repeatability-based meth-
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Figure 28. ISS3D local detector: comparison of the quality and quantity of key points obtained
with different saliency thresholds.

(a) ISS3D with r21 = r32 = 0.9 (b) ISS3D with r21 = r32 = 0.6

Source: Author.

ods use individual object models (i.e., objects completely separate from other objects

and scene background), unlike the problem of estimating the pose between two subse-

quent frames for indoor scenes where the detectors must be assessed, taking into account

the background and the other objects in the scene. They claim that a good keypoint

must have neighborhood with high variance (to ensure a discriminant feature) and must

represent the scene comprehensively. They propose two tests to quantify these proper-

ties: the neighborhood variance test, and the neighborhood structure test that classifies

the keypoints according to the structure of their neighborhoods, which can have planar

or spherical shape. Comparing five different 3D detectors: HARRIS3D, ISS3D, NARF,

SIFT3D, and Surface Entropy (SURE) (FIOLKA et al., 2012), they find that a combi-

nation of SURE and NARF detectors represents the scene more comprehensively than

either of them alone. However, in individual evaluations of each detector, without the

possibility of combinations, NARF and ISS3D offered a better performance than SURE

in the neighborhood structure test.

In both studies, Filipe and Alexandre (2014) and Prakhya and Qayyum (2015), HAR-

RIS3D achieved similar results under certain specific conditions. In Filipe and Alexandre

(2014), HARRIS3D achieves good repeatability if the rotations between scenes compared

are less than 15 degrees. In Prakhya and Qayyum (2015), HARRIS3D obtains good key-

points in places that have higher variance when applied to sequences that have scenes

with smooth changes in the rotation.

Regarding the selection of the best 3D descriptor, there are two recent and compre-

hensive studies (HÄNSCH et al., 2014; GUO et al., 2016). Hänsch et al. (HÄNSCH et al.,
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2014) present a discussion about the pros and cons of using 3D keypoints for registering

point clouds. For this purpose, they use different combinations of two 3D local detec-

tors, NARF and SIFT3D, and two 3D local descriptors, FPFH and Unique Signature

of Histograms (SHOT). They show that the best results are obtained by applying the

descriptors directly on point clouds, but this is not feasible due to its excessive computa-

tional cost. In the evaluation of the best descriptor, they conclude that FPFH is faster to

compute and more robust against different viewpoints than the SHOT descriptor. In their

assessment of the best detector, they claim that NARF is faster than SIFT3D, although

NARF presents poor results in scenes with few objects when used along with the SHOT

descriptor; Thus, they concluded that using FPFH in combination with NARF can yield

better results.

There are other interesting studies. Guo et al. (2016) present a fairly detailed eval-

uation of 3D local descriptors used directly on point clouds. They compare ten different

descriptors and show that, in applications in which time is crucial and that have a small

number of points, FPFH outperforms SHOT. Holz et al. (2015) and Rusu et al. (2009)

note that FPFH has a poor runtime performance when used in dense clouds of 3D points,

which could be substantially improved by using reduced resolution in point clouds, and

by limiting the keypoint search area.

3.4 Final remarks

Our proposal is based on the three articles mentioned above, (HENRY et al., 2012),

(ENDRES et al., 2012) and (HOLZ et al., 2015), which show that the matches set used

to generate the initial transformation is of paramount importance to ensure a significant

improvement in the refining process. However, none of them took into account scenes

with little or no structure, or low visual texture level.

In a preliminary study (VILLOTA; COSTA, 2015), we took this into consideration by

combining 2D and 3D features. We used SURF as 2D detector and descriptor, HARRIS3D

as 3D detector and FPFH as 3D descriptor. However, we used a small dataset that lacked

groundtruth. The sum of squared distances was used in pairs of aligned point clouds as

a distance error metric to validate the transformation. This metric is not sufficient to

determine significant misalignment; for instance, in cases in which all features are placed

on a straight line, the use of visual inspection was necessary, resulting in a less reliable

evaluation.
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With respect to selecting the 2D detector-descriptor combination, SIFT and SURF

detectors and their respective descriptors appear to be the best options. In turn, while

Endres et al. (2012) states that ORB shows the worst performance compared to SIFT and

SURF, Henry et al. (2012) states that the FAST detector produces more reliable keypoints

than SIFT. However, the ORB detector is an improved version of the FAST detector, and

Rublee et al. (2011) demonstrated that Oriented FAST (oFAST) was better than the

FAST detector. Rublee et al. (2011) also showed that oFAST combined with an improved

version of the BRIEF descriptor (CALONDER et al., 2012) offers similar performance to

that of SIFT and SURF, and was more robust to orientation changes. Because of this

lack of consensus, we extend the assessment made by Endres et al., including assessments

in scenes in which there is little or no level of structure or visual texture (see Section 5.1).

With respect to 3D descriptor selection, the studies presented by Hänsch et al. (2014)

and Guo et al. (2016) reached similar conclusions that FPFH is the best choice for 3D

descriptors because it is robust, computationally efficient and lightweight. Therefore, we

adopt FPFH as the 3D descriptor to be used. Regarding the choice of 3D detector, there

is no consensus in the literature. Based on the studies presented by Filipe and Alexandre

(2014) and Prakhya and Qayyum (2015), we decided to make our own assessment using

the best 3D detectors found in each study: NARF and ISS3D. The HARRIS3D detector

was also included in our assessment because of its robustness and efficiency established

in studies by Hänsch et al. (2014) and Guo et al. (2016) (see Section 5.2).
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Chapter 4
Pairwise registration using adaptive

combination of 2D and 3D cues
“If you always do what you always did, you will

always get what you always got.”

-- H. Ford

In this chapter we present a new framework for pairwise registration of 3D indoor

scene. We call this framework: Registration by Adaptive Combination of Cues (ReACC).

Figure 29 is a detailed block diagram of ReACC. The input to this framework is a 3D

point cloud data set that is simultaneously used by stages 1 and 2 to find and to combine

features respectively from a pair of frames. The output of ReACC is a rigid transformation

matrix representing the rotation and translation, which must be applied on one frame so

it is properly aligned with the other frame. The ReACC framework consists of four stages

which are explained in greater detail below.

4.1 Stage 1

The first stage of our framework consists in obtaining 2D and 3D local features that

allow efficiently matching two RGB images and two depth point clouds, respectively. In

general, features need to meet two main conditions: On the one hand, it should be possible

to track them under varying conditions such as illumination and view point changes. On

the other hand, these features should be invariant to scale changes. Keypoints local

detectors fulfill the first condition, while local descriptors meet the second one.

The selection of the best combination of 2D local detector and descriptor in our

proposal is based on the experiments carried out by Endres et al. (2012) in which SIFT,

SURF, and ORB were compared. However, Endres et al. (2012) only used video sequences
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Figure 29. ReACC, a framework that uses adaptive combination of 2D and 3D cues for pairwise
registration

Source: Author.

that had high visual texture level. Since we want to select the best 2D detector for all

types of scenes, with or without visual texture, we compare the accuracy of these detectors

using the same platform and parameters used by Endres et al. (2012) in a dataset with

low visual texture level. Our experiments are described in Section 5.1. The resulting

selection is SIFT as the 2D detector and also as the 2D descriptor.

The process of selecting the 3D local detector and descriptor was different. The

3D descriptor was selected without carrying out new experiments because most of the

reviewed literature (HÄNSCH et al., 2014; GUO et al., 2016; VILLOTA; COSTA, 2015)

agree that FPFH is the best option. However, there is no consensus about the best 3D

detector. Therefore, we evaluated three different keypoint detectors: HARRIS (RUSU;

COUSINS, 2011), ISS3D (YU, 2009), and NARF (STEDER; KONOLIGE, 2010), all them

using FPFH (RUSU et al., 2009) as the fixed descriptor. These experiments are described

in Section 5.2. The resulting selection is NARF as the 3D detector, and FPFH as the 3D

descriptor.

The 2D features in each consecutive pair of images can be matched using a K-D tree

with k-nearest neighbor search (KNN) algorithm. Let Fm = {fm1, fm2, ..., fmn} be a

set of n features in metric space X with dimensionality δ in the first frame (let us call this

frame: model), and Fs = {fs1, fs2, ..., fsm} be a set of m features in the same metric

space X in the second frame (let us call this frame: scene). We can build a K-D tree with
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the model features in a canonical way by splitting them either horizontally or vertically

across the median element, forming new subsets (leaf nodes). Then, subsets can be

partitioned over and over again until obtaining either log m levels with each feature in its

own leaf or a predetermined number of features in each branch of the tree. The k-searching

process for each feature fs ∈ Fs is finding the k neighbors KNN(fs, x),∀x ∈ Fm that

are the closest to fs with respect to a distance metric d : X ×X → R. We use Euclidean

distance. Figure 30 is an example depicting a tree for two-dimensional features δ = 2,

and k = 1 representing a search for the closest neighbor. The block decomposition is

shown in Fig. 30a and the tree representation is shown in Fig. 30b. In this example, the

space for Fm is decomposed in ten levels from l1 to l10, and the feature being searched

fs is marked with an “X” in the block model. In this case, with dimensionality equal to

two, the use of KNN proves to be efficient, because it generates a circle search with fewer

nodes to be visited.

Figure 30. K-D tree to features with dimensionality δ = 2 and k-search equal to one, where
(a) is the block decomposition and (b) the tree representation of the space formed by Fm.
The space is vertically split first and this process continues alternating horizontal and vertical
divisions. The node with the feature fs, is marked with “X” in the block model and highlighted
in the tree representation.

Source: Author.

However, in cases with more dimensions for instance, the SIFT descriptor, whose

dimensionality is δ = 128, or the SURF descriptor, whose dimensionality is δ = 64, the

circle search is converted into a hypersphere involving more leaves and, therefore, the

search for the closest neighbors can be inefficient. The library FLANN uses an ANN

search to improve the search speed of the classical K-D tree algorithm. ANN introduces a

parameter ε ∈ (0, 1], such that any fm within distance at most ε times is an ε-approximate
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nearest neighbor of fs, which, in practice, is faster than finding the exact nearest neighbor.

In Muja and Lowe (2014), they found that the best performance to find a good ANN

is achieved using either the hierarchical k-means tree or multiple randomized K-D trees.

We here use the randomized K-D trees which are built by choosing the split dimension

randomly from the first D dimensions on the data with the greatest variance. For instance,

consider a K-D tree for SIFT features where δ = 128. If we select D = 20, during a search

for a fs in the tree, no more than 20 of the 128 entries of the vector are considered. We

also use k = 1 to select only the closest neighbor and dColor as distance metric:

dColor =

√√√√ 128∑
i=1

(fsi − fmi)2. (4.1)

Finally, the 2D feature matches are sorted by the Euclidean distance and the 2D

points associated with them are projected to 3D using the depth information, forming

the MColor. The procedure to match 3D features is the same. However, since the FPFH

descriptor is a 33-dimensional vector, the distance metric is calculated as:

dDepth =

√√√√ 33∑
i=1

(fsi − fmi)2, (4.2)

and the 3D matched keypoints are ordered by dDepth, forming the MDepth set.

In Fig. 29, this stage has a subdivision represented by a horizontal dotted line, which

means that the 2D process may run in parallel with the 3D process.

4.2 Stage 2

The α parameter value is an essential factor in our framework. It automatically allows

a better balance of the matches from the RGB and depth images based on the existing

levels of visual texture and structure in the scene frame.

We use the intensity image and its Local Binary Patterns (see Chapter 2 for details),

to extract a feature vector representing the level of visual texture in each RGB frame.

On the other hand, we use the depth image and the CLBP to extract a 256-dimensional

vector representing the level of structure in each frame.

Finally, we concatenate both vectors to form a 512-dimensional feature vector. In

Fig. 31 we show the LBP and CLBP representations for images with different levels of
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2D visual texture and 3D structure.

The resulting feature vector is then placed as input to a classifier that provides as

output the value of the combination parameter α of the two types of information: the

resulting RGB matches MColor, and the resulting depth matches MDepth.

Figure 31. Histograms of LBP and CLBP of images with different levels of 3D structure and
2D visual texture.

Source: Author.

Training and assessing the SVM Classifier. Stage 2 of our proposal requires a

previously trained classifier, which is able to predict the optimal α value by observing the

LBP and CLBP values of the model frame. We adopted the SVM classifier to execute

that task.

Before being able to predict α values, a data set of feature values (extracted from

images) with the correct α values must be provided to SVM. Then, the classifier builds

a model of the classification task and is able to fulfill its role in our proposal without

requiring further training. Thus, this Section describes how we built the data set, trained

the classifier, and evaluated its performance, in order to assess if an automated classifier

would be precise enough to be used in our framework.

The training set was built following this process: First, a set of point cloud pairs

< scene − model > are obtained from a dataset with groundtruth. From the scene’

point cloud, we extract the gray and depth images and proceed to obtain a feature vector

representing the different levels of visual texture and structure. The feature vector is then

labeled with the α value that produces a better balance of 2D and 3D features for the
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alignment task. Evidently, the correct α is not known in advance by only observing the

image set; we thus use the point cloud pair < scene−model > at stage 1 of our framework

to find the 3D matches (MColor and MDepth), and combine them using five fixed α values:

0.1, 0.25, 0.5, 0.75, and 0.9. For each α value, we obtain a pose Pi+∆ of the model (stage

4), and with Eq. 5.4 (see Section 5.1.1), we calculate the respective translational error in

the alignment using the groundtruth poses Qi, and Qi+∆, assuming that Pi = Qi. Finally,

we select the α value associated with the smallest translational error as the correct label of

the feature vector. In possession of this set of labeled feature vectors, a standard classifier

training is performed and the SVM is ready to perform its task in our framework.

However, we firstly assess the SVM performance before further proceeding in our

experimental evaluations. This assessment is carried out by the evaluation of the confusion

matrix obtained in a preliminary experiment in which SVM tries to predict unlabeled

image pairs. In this matrix, each row represents a label of a class and each column

represents a prediction. Each cell < i, j > indicates the number of times label i was

predicted as label j. Therefore, the diagonal cells < i, i > indicates the classes correctly

predicted.

From the confusion matrix, we calculate four measurements: accuracy (ACC), preci-

sion (PREC), recall (REC) and F1 score (F1) as evaluation metrics (RUSSELL; NORVIG,

2003). Assuming that MC is the c × c confusion matrix for c classes with columns as

predictions and rows as the labels,

ACC =

∑
MCii
n

, (4.3)

where MCii represents the elements of the main diagonal in MC, and n is the number of

instances. In the same way, we define:

PRECi =
MCii∑c
j=1 MCji

, (4.4)

RECi =
MCii∑c
j=1MCij

, (4.5)

F1i =
2 ∗ PRECi ∗RECi
PRECi +RECi

. (4.6)

The data sets used for training were: fr3 struct notexture, fr1 desk2, fr3 nostruc texture,

and fr3 struct texture . The SVM was trained with a linear kernel, the complexity con-

stant C equal to 1, and 10-fold cross-validation experiments were run for evaluation. We

obtain the confusion matrix depicted in Table 1.
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Table 1. Confusion Matrix

Predictions
Labels α0.1 α0.25 α0.5 α0.75 α0.9

α0.1 106 57 0 0 0
α0.25 70 117 41 24 0
α0.5 0 50 33 30 2
α0.75 0 28 33 99 77
α0.9 0 0 0 75 58

Source: Author.

Note that, in our case, small mistakes in the classification do not make a great dif-

ference (e.g., if an image labeled as α0.1 is predicted as α0.25, the error is minute when

compared with the case in which this image was predicted as α0.9). Thus, the standard

ACC metric is not adequate to evaluate the classifier, and we evaluate the classifier by

changing equations (4.4), (4.5), and (4.6), so as to calculate the diagonal values taking

into account small classification mistakes in the confusion matrix MCii as:

MCii = 0.5 ∗MCi,j−1 +MCii + 0.5 ∗MCi,j+1. (4.7)

For instance, in the specific case of α0.25, the original MCii = 117 is modified as

MCii = 0.5 ∗ 70 + 117 + 0.5 ∗ 41 and this value change the scores of PREC, REC and

F1, as shown in Table 2. In the experiments of the next Section, the SVM showed to be

an adequate classifier.

Table 2. SVM Scores

Labels PREC REC F1

α0.1 0.80 0.83 0.81
α0.25 0.74 0.68 0.71
α0.5 0.65 0.63 0.64
α0.75 0.55 0.65 0.60
α0.9 0.70 0.72 0.71

Source: Author.

4.3 Stage 3

The α parameter can take values between 0 and 1. α = 0 indicates a structured envi-

ronment without any visual texture, while α = 1 indicates a visual textured environment

without any structure. Hence, when the environment presents a high degree of visual
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texture and a low degree of structure, better results are achieved using MColor matches in

a greater proportion. Otherwise, a greater proportion of MDepth matches is better suited.

Such contribution can be calculated as,

|Mtotal| = dα|MColor|e+ b(1− α)|MDepth|c, (4.8)

where d.e and b.c indicate the ceiling and the floor functions, respectively, and |.| represents

the set cardinality. The matched points of each data set, MColor and MDepth, are selected

in order, according to the value calculated by Eq. 4.8.

4.4 Stage 4

The matches found by FLANN (Section 4.1) are in fact noisy, and if we use them

directly to find the transformation matrix aligning pairs of point clouds, we could obtain

extremely imprecise estimations. To overcome this problem we use RANSAC, which is

considered one of the most powerful algorithms to refine the match set. In an iterative

process described in Algorithm 2, RANSAC starts by randomly selecting a minimal subset

of points composed of psc min points extracted from the framei+1 (scene). This data subset

(drand) is used in the next step to compute the homography transformation (T ) relating

the model (framei) with the scene (framei+1). Let us call this transformation Th, since

this transformation is not necessarily the optimal transformation. In step 5, the model

is transformed using Th and overlapped with the scene. A distance error is computed

between each point in the scene and the respective nearest point in the transformed model.

If this error is less than or equal to a threshold distance (dth), the point is considered an

inlier. Then, if the number of inliers is equal or greater than a threshold (Pinliers), Th

is considered a reasonably good homography transformation and an error between the

model and the inliers (Emodel) is calculated. Finally, Th and Emodel are saved as T and

errormax, respectively. These steps are repeated until either the maximum number of

iterations (Itermax) is executed or errormax is below a threshold (eth). At the end of

the execution of the RANSAC algorithm, we have transformation T that makes the best

registration of the current frame with the previous frame.
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Algorithm 2 Finding the transformation matrix using RANSAC

Require:
model: points matched in frame i
scene: points matched in frame i+ 1
psc min: minimum number of points from scene required to fit the model
Itmax: maximum number of iterations allowed
dth: distance for determining if a point from scene fits a model
pinliers: Number of points from scene to assert that the transformation matrix is
reasonably good
eth: Maximum error to assert an optimal transformation T

Ensure: T : Transformation matrix between frames i and i+ 1
1: Initialize:

h← 0
T ← null
errormax ←∞

2: while h ≤ Itmax Or errormax ≤ eth do
3: drand ← select randomly psc min points from scene
4: Th ← Compute the hypothesis of T using drand points
5: Pmodel ← Use Th to find the model transformed
6: inliers← ∅
7: for every point in scene do
8: if point fits Pmodel with error ≤ dth then
9: Add point to inliers

10: end if
11: end for
12: if inliers ≥ pinliers then
13: Emodel . Compute a distance error between model and inliers
14: if Emodel ≤ errormax then
15: T ← Th
16: errormax ← Emodel
17: end if
18: end if
19: h← h+ 1
20: end while
21: return T

4.5 Final remarks

In this chapter we describe ReACC, a new framework that we propose to improve

the alignment of two RGB-D frames, taking into account both 2D and 3D data, whose

combination is a function of the characteristics of the current scene. If the scene has little

geometric structure and good visual texture, more RGB data are used. On the other

hand, if the scene has little visual texture and a lot o geometric structure, depth data is

used with greater emphasis.
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The automatic adjustment of the use of the data depending on the scene observed is

a new and effective contribution. Our experiments described in the next chapter demon-

strate the efectiveness of our proposal.
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Chapter 5
Experiments

“Science, my lad, has been built upon many
errors; but they are errors which it was good to

fall into, for they led to the truth.”

-- Jules Verne, Journey to the Center of the

Earth

This chapter shows the experiments carried out to select the most appropriate methods

to be used in each stage of ReACC, and, additionally, to show the improvements achieved

in the initial alignment, when our framework combining 2D and 3D features is used.

We evaluate each stage of our framework by comparing it either with other works

presenting similar results or using different combinations of methods. While in section

5.1, we compare our results with Endres et al. (2012) for evaluating 2D local detectors

and descriptors, in section 5.2 we compare three different 3D detectors combining them

with a fixed 3D descriptor for evaluating 3D local detectors. Finally, in section 5.3 the

whole framework using the best 2D and 3D combinations is evaluated by comparing it

with two cases: one case using only 2D local features (ENDRES et al., 2012; HENRY et

al., 2012), and the other case using only 3D local features (HOLZ et al., 2015).

In these experiments, we use the datasets provided by the Computer Vision Group

of Technische Universiät München1 to evaluate our proposal. We selected datasets with

large variations among them, aiming to perform a comprehensive experimental evaluation.

These datasets come with an associated groundtruth camera pose and include cases with

variation in illumination, visual texture, scene structure, and with an unrestricted camera

motion speed (resulting in frames with blurred images). We did not use synthetic datasets

so as to gain a better insight into real indoor environment problems.

Table 3 shows the datasets used with their main specifications and a brief description.

1〈http://vision.in.tum.de/data/datasets〉

http://vision.in.tum.de/data/datasets
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Table 3. Main specifications of datasets used.

Name Video Average Average Description
Duration Transl. Angular

(s ) Velocity Velocity
(m/s ) (deg/s )

fr1 360

28.69 0.210 41.600 This sequence contains a 360 degree
turn in a typical office environment.

fr1 desk2

24.86 0.426 29.308 This sequence contains several
sweeps over four desks in a typical
environment office

fr3 large cabinet

33.98 0.362 8.747 The RGBD camera was moved in
a circle around a large office cabi-
net. The cabinet has little texture
and structure, but has mostly pla-
nar surfaces and right angles.

fr3 teddy

80.79 0.248 20.410 The RGBD camera was moved
around a teddy bear in two rounds
at different heights. The teddy bear
has a soft fur and wears a yellow,
smooth shirt.

fr3 struct notexture

27.28 0.166 4.000 The RGBD camera was moved in
one meter height along a zig-zag
structure built from wooden pan-
els. The object is fully wrapped in
a white plastic foil with little to no
texture.

fr3 nostruc texture

15.53 0.299 2.890 The RGBD camera has been moved
in two meters height along a tex-
tured, planar surface. The texture
is highly discriminative as it consists
of several conference posters.

fr3 struct texture

31.55 0.193 4.323 The RGBD camera was moved in
one meter height along a zig-zag
structure built from wooden panels.
The object is fully wrapped in a col-
orful plastic foil with strong texture.
The floor in front of the object has
been covered with several posters
which have also a strong texture.

* The data was recorded at full frame rate (30Hz) and sensor resolution (640× 480)

Source: Author.
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We also use available detectors and descriptors, namely, SIFT, SURF, and ORB,

included in OpenCV2. While, we use NARF, ISS3D, HARRIS3D and FPFH, included in

PCL3. Furthermore, we use RGBDSLAM4 to evaluate 2D detectors and descriptors, and

LibSVM5 to train the SVM classifier.

5.1 2D detector/descriptor selection

To select the most suitable 2D detector/descriptor pair in our main experiment, we

complement the Endres’ evaluation (ENDRES et al., 2012) including a dataset with low

texture level, which enables us to have a better indicator. We select the dataset called

fr3 struct notexture and evaluate it using the RGBDSLAM system and 5 possible com-

binations of 2D local descriptors and detectors.

5.1.1 Metric used to assess 2D local detector and descriptor

We use the evaluation metric proposed by Sturm et al. (STURM et al., 2012), called

Relative Pose Error (RPE) to evaluate the 2D detector/descriptor selection and also to

evaluate ReACC.

RPE measures the local accuracy of the trajectory over a fixed time interval ∆. Special

Euclidean group, SE(3), is the group of affine rigid motions formed by the rotation TR

and translation TT of the transformation matrix T ,

T =


TR TT

0 0 0 1

 . (5.1)

Assuming that Q1, Q2, ...Qi ∈ SE(3) is the sequence of groundtruth poses on a full

trajectory, and P = P1, P2, ...Pi ∈ SE(3) is the estimated poses in the same sequence, a

relative pose error (Ei) between each pair < i, i+ ∆ > is calculated as,

Ei = (Q−1
i Qi+∆)−1(P−1

i Pi+∆), (5.2)

2〈http://opencv.org/.〉
3〈http://pointclouds.org/.〉
4〈http://felixendres.github.io/rgbdslam v2/〉
5〈https://www.csie.ntu.edu.tw/∼cjlin/libsvm/.〉

http://opencv.org/.
http://pointclouds.org/.
http://felixendres.github.io/rgbdslam_v2/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/.
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where ∆ = 1.

We assume that P1 = Q1 and each next pose Pj, j = i + 1, is calculated using this

equation,

Tij = Q−1
i Pj, (5.3)

where Tij is the relative transformation between the frames fi and fj, previously

calculated using our framework.

Then, the Root Mean Squared Error (RMSE) is computed over all time n in the

translational component:

RMSE(E1:n,∆) =

(
1

m

m∑
i=1

‖ET i‖2

) 1
2

, (5.4)

where m = n−∆ and ET i is the translational component of the ith relative pose error. In

this equation only the translational component is used, because in (STURM et al., 2012),

they found that the comparison by translational error is sufficient since the rotational

error appears as a translational error when the camera is moved.

5.1.2 Results to 2D local detector and descriptor selection

Table 4 presents the translational and rotational errors obtained for each combination,

showing similar results to those in Endres et al. (2012). Furthermore, the ORB detector is

observed to greatly improve if used in combination with the SIFT descriptor. However, the

best possible combination arises when a SIFT detector is used together with its descriptor.

A visualization of the cumulative relative pose error throughout the entire sequence

for each of these combinations is given in Fig. 32.

Table 4. Evaluation of the accuracy with respect to 2D detector/descriptor combination

Detector/Descriptor Transl. RMSE Rot. RMSE
Avg Avg

ORB/ORB 0.0201 m 0.0313◦

SURF/SURF 0.0100 m 0.0081◦

SIFT/SIFT 0.0081 m 0.0064◦

ORB/SIFT 0.0123 m 0.0086◦

SURF/SIFT 0.0086 m 0.0071◦

Source: Author.
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Figure 32. Cumulative relative pose error for each 2D detector/descriptor combinations.
SIFT/SIFT combination is slightly better than SURF/SURF and SURF/SIFT.

Source: Author.

5.2 3D detector/descriptor selection

We selected 3 different keypoint detectors: HARRIS, ISS3D and NARF with FPFH as

fixed descriptor. Table 5 depicts the parameters used in our experiments that guarantee

a similar average of keypoints for each detector.

5.2.1 Metric used for 3D local detectors

In order to select 3D detectors, we chose four different datasets with an associated

groundtruth camera pose, and proceed as follows: first, for each two consecutive frames fi

and fj in a sequence, j = i+ 1, we extract the keypoints and their respective descriptors,

match them and lastly we estimate the rigid-body transformation Tijbetween the two

frames.

We use Tij to align the two frames and calculate the Euclidean distance between

aligned matches as the error metric. Let M be a set of n matches, M = {m1,m2, ...,mn},
where eachmk corresponds to each keypoint in frame i and its respective keypoint matched
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Table 5. Parameter values for the 3D detectors.

Detector Parameters

NARF angularResolution 0.3◦

maxAngleWidth 360◦

maxAngleHeight 180◦

support size 0.1

ISS3D setSalientRadius 5*resolution
setNonMaxRadius 3*resolution
setNormalRadius 5*resolution
setBorderRaidus 2*resolution
setMinNeighbors 20
setThreshold21 0.6
setThreshold32 0.6

HARRIS setRadius 0.07
setRadiusSearch 0.07
setNonMaxSupression true

Source: Author.

in frame j. We calculate the Euclidean distance di for each matched pair and calculate

the averaged distance error AV G(Em):

AV G(Em) =
1

n

n∑
i=1

di, (5.5)

where di is the Euclidean distance between pairs of matched points, and n is the cardinality

of the set M .

5.2.2 Results of the 3D local detector selection

A visualization of the performance of each detector is shown in Fig. 33. NARF

presents a better and more stable performance to the sequences fr1 desk2 and fr3 teddy.

In the fr1 360 sequence, all the descriptors present similar performance, while for the

fr3 large cabinet sequence, NARF presents an unstable behavior. It is clear that with

sequences in which the camera presents greater movement causing blurred objects bound-

aries, NARF has the worst performance. This assessment is in line with the works pre-

sented by Hänsch et al. (2014) and Guo et al. (2016). However, we selected NARF taking

into account the best global performance as shown in Table 6.
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Figure 33. Distance error frame by frame for each sequence comparing three different local
descriptors: NARF, ISS3D and HARRIS3D

(a) fr1 360 (b) fr1 desk2

(c) fr3 large cabinet (d) fr3 teddy

Source: Author.

5.3 Evaluation of our proposal

Based on the previous experiments, we selected the best combinations of detectors

and descriptors and included them in our framework. We compare our proposal with

the cases in which only either 2D or 3D detectors/descriptors are used, by evaluating

the initial alignment achieved. We use the RMSE of the relative pose error (See section

5.2.1) in four datasets: fr1 360, fr1 desk2, fr3 large cabinet and fr3 teddy, of which

only fr1 desk2 was previously used in the SVM training. Table 7 and Fig. 34 summarize

the results.

In table 7, we can see that our proposal combining 2D and 3D matches always outper-

forms those proposals using only either 2D matches or 3D matches. Since this table shows

only the average error in the whole sequence, we include a more detailed visual comparison
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Figure 34. Relative pose error. Each row contains the figures foreach dataset which are in
order : fr1 360, fr1 desk2, fr3 large cabinet and fr3 teddy respectively. Figures (a), (c),(e)
and (g) show the relative pose error between pair of frames. Figures (b),(d),(f) and (h) show
the acummulate error through all sequence

.
(a) (b)

(c) (d)

(e) (f)

(g) (h)

Source: Author.
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Table 6. Evaluation of the 3D detectors accuracy, using FPFH as descriptor.

Dataset NARF ISS3D HARRIS3D
Avg(EM)±Std. Dev Avg(EM)±Std. Dev Avg(EM)±Std. Dev

fr1 360 0.58 m±0.27 m 0.62 m±0.18 m 0.54 m±0.16 m
fr1 desk2 0.33 m±0.08 m 0.41 m±0.09 m 0.41 m±0.15 m
fr3 cabinet 1.07 m±0.40 m 0.74 m±0.10 m 0.84 m±0.31 m
fr3 teddy 0.53 m±0.15 m 0.78 m±0.16 m 1.08 m±0.26 m∑

Avg 2.5098 m 2.5562 m 2.8787 m
Source: Author.

Table 7. RMSE of the relative pose error for each sequence

Dataset
Average Error

α = 0 α = 1 αadaptative
fr1 360 0.265 m 0.057 m 0.049 m
fr1 desk2 0.042 m 0.054 m 0.039 m
fr3 large cabinet 0.755 m 0.052 m 0.045 m
fr3 teddy 0.066 m 0.066 m 0.048 m

Source: Author.

in Fig. 34. In this figure items (a),(c),(e) and (g), show the translational error for each

pair of frames in the whole sequence for each dataset. We can see that the great trans-

lational errors using 2D or 3D matches separately, can be significantly decreased using

the combination proposed. Items (b),(d),(f) and (h), show the cumulative error reached

throughout the trajectory for each dataset. Similar behaviors for all sequences can be

achieved if error values above 0.1m are removed. However, the number of times this value

exceeds 0.1m is important, as verified in Table 8, where these are placed in brackets for

each dataset. This table clearly shows that our proposal remains for most of the time

within a more reasonable range (00.1m) which should allow refinement algorithms, such

as ICP, a faster convergence also avoiding convergence to a local minimum.

Table 8. RMSE of the relative pose error for each sequence removing errors above 0.1m

Dataset Average Error [m] / number of
exceeding 0.1m error

α = 0 α = 1 αadaptative
fr1 360 0.034/(280) 0.042/(56) 0.042/(40)
fr1 desk2 0.040/(14) 0.039/(22) 0.038/(3)
fr3 large cabinet 0.022/(561) 0.043/(57) 0.041/(31)
fr3 teddy 0.041/(269) 0.036/(115) 0.037/(99)

Source: Author.

Finally, Fig. 35 shows in detail the number of times each case has translational errors

between 0.1m and 0.2m and translational errors above 0.2m, since the latter would cause

poor performance for refinement algorithms such as ICP. We can see that, in datasets
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Figure 35. Number of times at which the relative pose error is greater than 0.1m. In addition,
this number of errors is subdivided into two groups: 0.1m < E ≤ 0.2m and E > 0.2m.

Source: Author.

fr3 large cabinet and fr3 teddy, our proposal rarely exceeds 0.2m, showing a more stable

behavior in all cases.
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Chapter 6
Conclusions

We presented a new framework for pairwise registration, which improves the initial

alignment between pairs of frames in a sequence for indoor environments. Our contribu-

tion is threefold in the area of pairwise alignment using sparse features.

Firstly, we presented a method for combining 2D and 3D matches that always produces

a better alignment regardless of whether the environment has little or no texture and/or

structure degree. This is a substantial improvement in the earlier works that used only

one type of feature, in which the lack of features between a pair of frames was poorly

settled using the same transformation aligning the previous pair of frames.

Secondly, we compared several possible combinations of detectors and descriptors us-

ing datasets in real indoor environments, presenting significant light and motion variation,

which allowed us to select a robust detector/descriptor pair.

Finally, we also presented a novel method using a SVM classifier to adaptively cal-

culate the parameter that controls the appropriate amount of 2D and 3D features to be

combined in the matching process. Our experiments demonstrated that our adaptive pa-

rameter produces a better combination of 2D and 3D features, as reflected in the excellent

results for alignment between pairs of frames. Experiments also showed a significant re-

duction in the translational error range throughout the whole sequence for all the datasets

used.

Future works include extending our adaptive parameter not only to select the best

combination between 2D and 3D features, but also to select the most appropriate detector

as a function of the scene; for instance, HARRIS3D and ISS3D showed better performance

than NARF in some frames in our evaluations; hence, switching detectors according to
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the current frame pair could be an improvement to our framework. Conversely, a parallel

implementation of ReACC shall be made, since in this thesis we showed a high degree

of reliability and robustness in the alignment, but the cost of computation was no taken

into account. The parallel ReACC may be used in a full visual SLAM scheme for testing

performance improvements over other works presented in the current literature.

Finally, we would like to point out that the modularity of ReACC enables users to

easily combine different types of 2D and 3D detectors and descriptors. ReACC can also

be easily adapted to 3D object reconstruction tasks, in which, there are similar problems

in matching image intensities of the same objects in different views. These problems

can be better solved without some of the currently used (incorrect) assumptions, such as

the brightness constancy assumption, which does not hold when the object changes its

orientation.
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