Capitulo 6 – Resultados Experimentais

Nos Capítulos anteriores, o foco principal foi de apresentar as contribuições da tese, demonstrando a validação matemática do modelo do trocador de calor, além de apresentar os projetos e simulações dos controladores para a RTC e para as resistências de aquecimento. O Capítulo 6 apresentará os resultados experimentais do controlador das resistências de aquecimento e também dos controladores LQR e H-infinito aplicados à RTC montada no Laboratório de Engenharia Química.

6.1. Controlador PI das resistências de aquecimento

A análise de desempenho dos controladores das resistências de aquecimento foi realizada na prática, contemplando duas mudanças de *setpoint* (50°C para 55°C e de 55°C para 50°C) nos instantes *t*=600s e *t*=1200s, além de duas rejeições de distúrbios, através da alteração da vazão da linha fria (0,156l.s⁻¹ para 0,05l.s⁻¹ e de 0,05l.s⁻¹ para 0,156l.s⁻¹ aproximadamente) nos instantes *t*=1800s, *t*=2400s, respectivamente, durante um experimento de duração igual a 3000s. A Figura 6.1 e a Figura 6.2 mostram o perfil da temperatura *TH*_{IN} e o esforço de controle, respectivamente, para o controlador da resistência R1 com a dinâmica do controlador de segunda ordem.

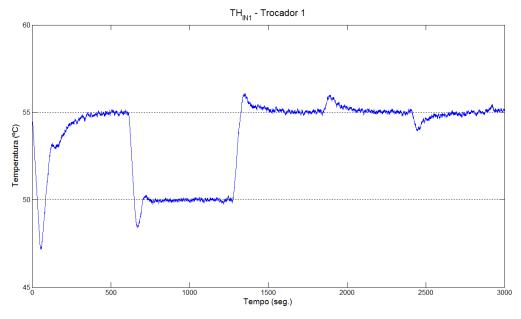


Figura 6.1 – Perfil de temperatura quente TH_{IN} para o Trocador 1.

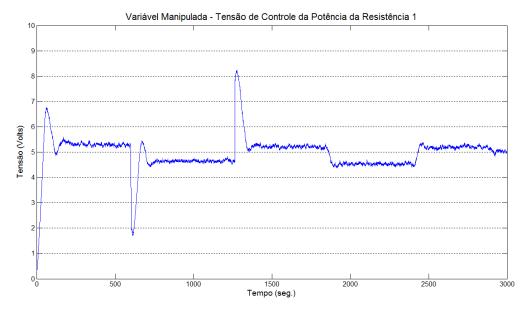


Figura 6.2 – Variável manipulada, potência dissipada na resistência R1.

Já as Figuras 6.3 e 6.4 mostram o perfil da temperatura TH_{IN} e o esforço de controle, respectivamente, para o controlador da resistência R2 com a dinâmica de segunda ordem do controlador, para as mesmas condições de ensaio apresentadas para a análise de R1.

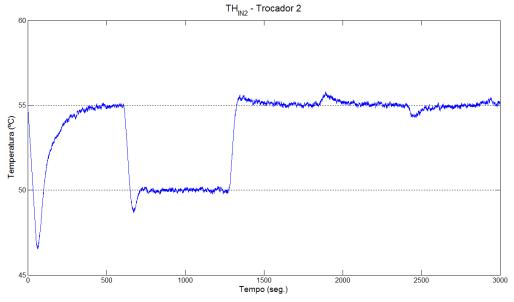


Figura 6.3 – Perfil de temperatura quente $TH_{\mathbb{N}}$ para o Trocador 2.

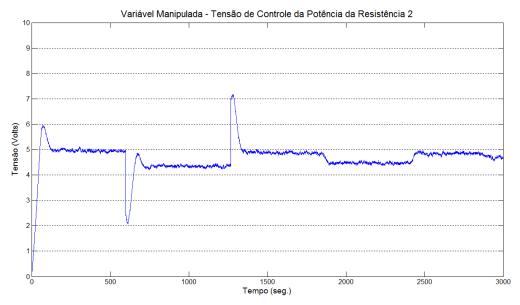


Figura 6.4 – Variável manipulada, potência dissipada na resistência R2.

As Figuras de 6.5 a 6.16 mostram o perfil de TH_{IN} e do esforço de controle, à mudança de *setpoint* e à rejeição a distúrbios, em aquisições individuais. A mudança de *setpoint* em TH_{IN} ocorreu no instante t=600s, com as mesmas variações aplicadas anteriormente. Da mesma forma, a rejeição de distúrbio na vazão da linha fria (de 0,156l.s⁻¹ para 0,05l.s⁻¹ e de 0,05l.s⁻¹ para 0,156l.s⁻¹), ocorreu nos instantes t=600s e t=1200s, respectivamente, em uma única aquisição de duração de 2000s.

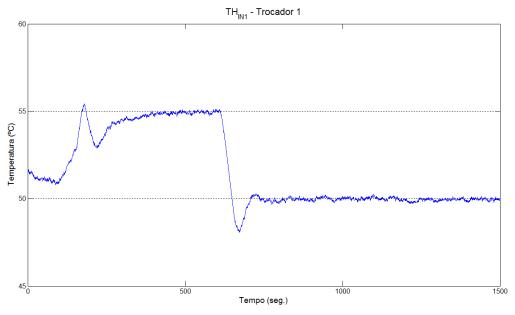


Figura 6.5 – Mudança de setpoint. 55°C para 50°C, TH_{IN 1}.

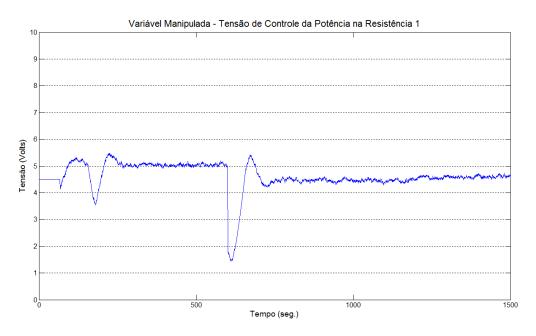


Figura 6.6 – Variável manipulada, potência dissipada na resistência R1, degrau 55°C para 50°C.

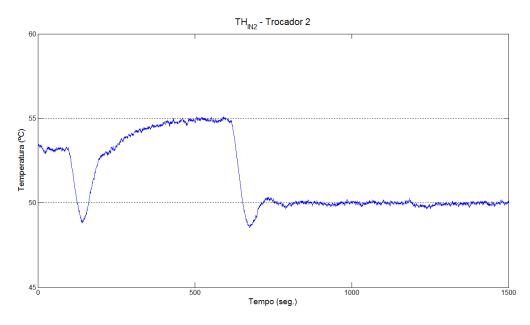


Figura 6.7 – Mudança de setpoint. 55°C para 50°C, TH_{IN2} .

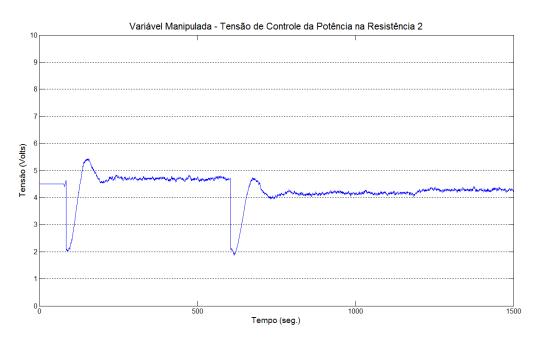


Figura 6.8 – Variável manipulada, potência dissipada na resistência R2, degrau 55°C para 50°C.

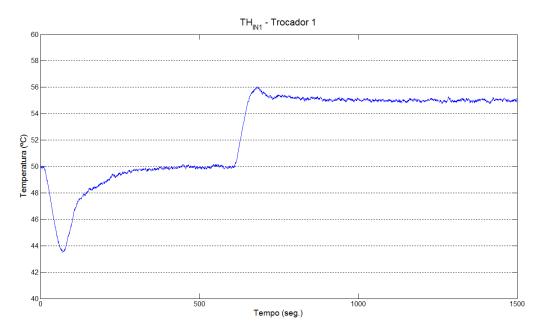


Figura 6.9 – Mudança de setpoint: 50°C para 55°C, $TH_{IN 1}$.

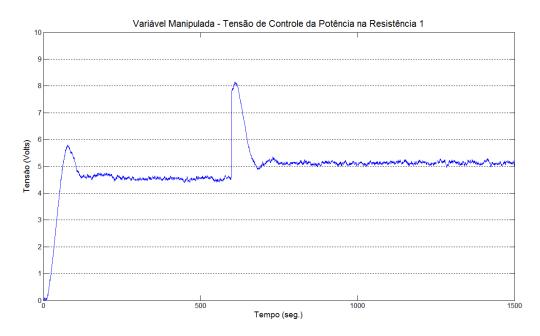


Figura 6.10 – Variável manipulada, potência dissipada na resistência R1, degrau 50°C para 55°C.

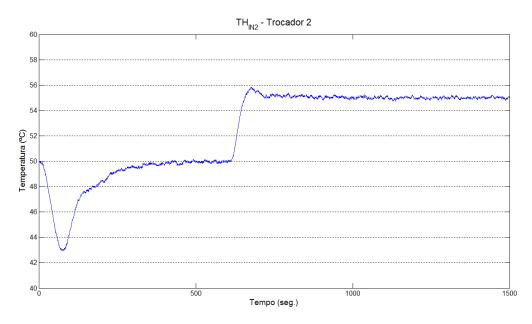


Figura 6.11 – Mudança de setpoint. 50°C para 55°C, TH_{IN 2}.

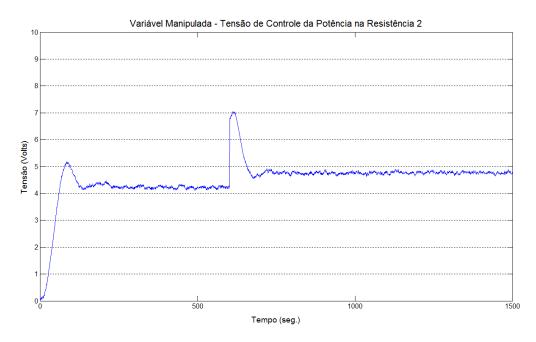


Figura 6.12 – Variável manipulada, potência dissipada na resistência R2, degrau 50°C para 55°C.

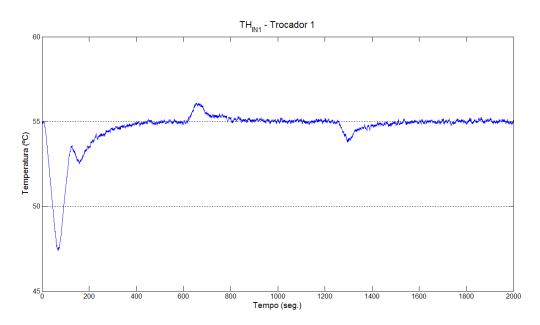


Figura 6.13 – Rejeição a distúrbio, $TH_{I\!N}$ 1.

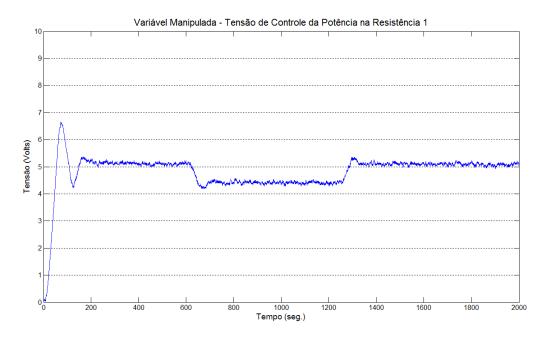


Figura 6.14 – Variável manipulada, potência dissipada na resistência R1, rejeição a distúrbio em m_C .

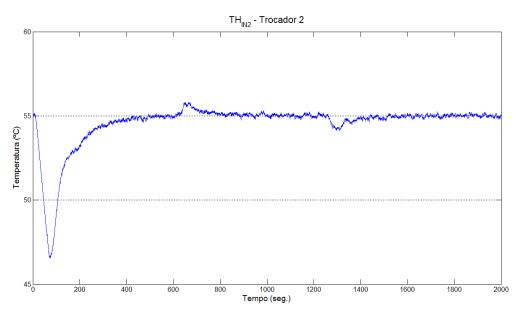


Figura 6.15 – Rejeição a distúrbio, *TH*_{IN 2}.

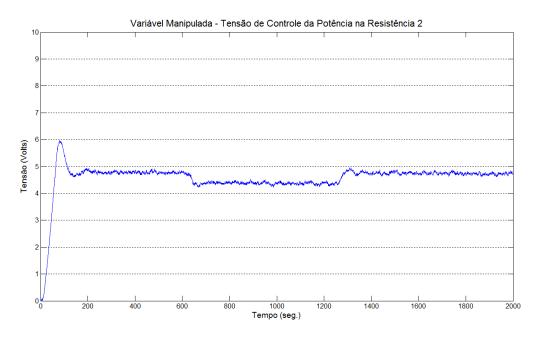


Figura 6.16 – Variável manipulada, potência dissipada na resistência R2, rejeição a distúrbio em m_C .

Apenas para efeitos de comparação de desempenho, as Figuras de 6.17 a 6.22 mostram o perfil de TH_{IN} e, também, o esforço de controle, sem a presença do controlador PI projetado. Utilizou-se a mesma sequência de análise: duas mudanças de *setpoint* e duas rejeições de distúrbios, através da alteração da vazão da linha fria, nos instantes t=600s, t=1200s, t=1800s, t=2400s, respectivamente, com um tempo de aquisição total de 3000s.

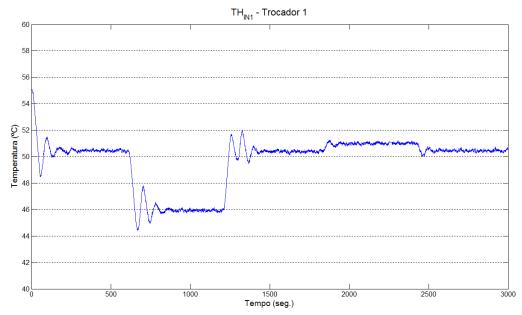


Figura 6.17 – Perfil de temperatura quente TH_{IN} para o Trocador 1, sem o controlador PI.

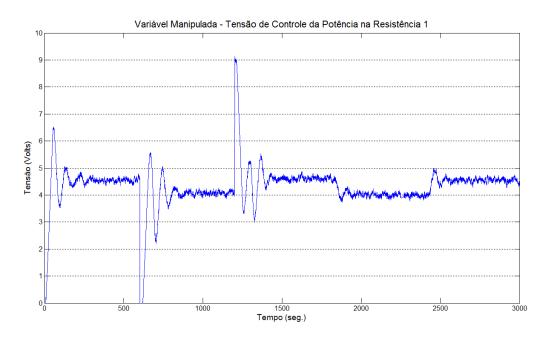


Figura 6.18 – Variável manipulada, potência dissipada na resistência R1, sem o controlador PI.

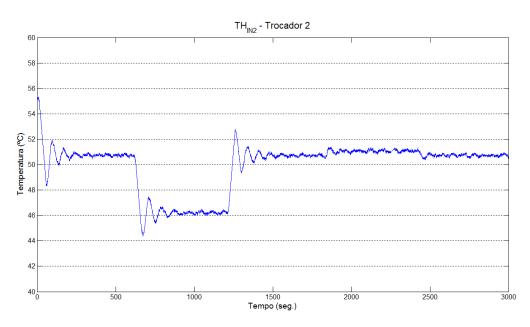


Figura 6.19 – Perfil de temperatura quente TH_{IN} para o Trocador 2, sem o controlador PI.

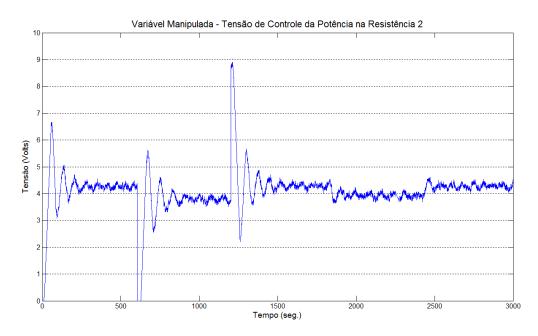


Figura 6.20 – Variável manipulada, potência dissipada na resistência R2, sem o controlador PI.

Analisando as repostas apresentadas pelas Figuras 6.1, 6.2, 6.3 e 6.4, nota-se que a presença do controlador PI proporcionou a eliminação do erro do valor do *setpoint* (5°C) além de apresentar uma resposta menos oscilatória e com um esforço de controle menor para as mesmas exigências de mudança de *setpoint* na temperatura quente e na rejeição de distúrbio na vazão fria.

Além disso, a análise das diversas respostas apresentadas (Figuras 6.5 a 6.16) mostram que o controlador PI foi capaz de estabilizar o valor de TH_{IN} em aproximadamente 130s, com um esforço de controle adequado, sem apresentar saturações dos atuadores.

6.2. Controlador LQR para a RTC do laboratório

A partir do projeto desenvolvido no Capítulo anterior, a seguir serão apresentados os resultados obtidos com o LQR realizando o controle na rede de trocadores montada. Os resultados serão apresentados divididos em duas seções: rejeição ao distúrbio para mudança na vazão do fluido frio e mudança nas temperaturas quentes de entrada dos trocadores. Para cada seção, serão apresentadas as condições de operação da rede de trocadores (temperaturas de entrada de cada corrente e vazão).

a) Desempenho a rejeição de distúrbio na vazão fria m_C

O primeiro ensaio verificou o desempenho do controlador para a rejeição de distúrbio, a partir do valor nominal, da vazão fria. As condições nominais são apresentadas pela Tabela 6.1.

Tabela 6.1 – Dados de entrada da RTC – Planta real, LQR, ensaio 1.

Condição Nominal das Variáveis de Entrad	a
Temperatura de Entrada Água Fria – Trocador 1 (<i>TC_{IN 1}</i>)	21,7°C
Temperatura de Entrada Água Fria – Trocador 2 (<i>TC_{IN 2}</i>)	26°C
Temperatura de Entrada Água Quente – Trocador 1 ($TH_{IN 1}$)	55°C
Temperatura de Entrada Água Quente – Trocador 2 (TH_{IN2})	55°C
Vazão Mássica de Água Fria ($m_{ m C}$)	0,165kg.s ⁻¹
Vazão Mássica de Água Quente (m_{H1}) – Corrente 1	0,154kg.s ⁻¹
Vazão Mássica de Água Quente (m_{H2}) – Corrente 2	0,154kg.s ⁻¹
Válvula 1 Bypass Fluido Quente (fhi ₁ ; fhi ₂) - Corrente 1 e 2	0
Válvula 2 Bypass Fluido Frio (fci₁; fci₂) – Corrente 1 e 2	0

O distúrbio ocorreu no instante t=1000s, reduzindo a vazão fria para m_C =0,135kg.s⁻¹, retornando ao valor nominal no instante t=2000s, com um tempo de aquisição igual a 3000s.

As Figuras de 6.21 até 6.26 mostram os perfis das temperaturas quentes, frias e os esforços de controle das válvulas de *bypass* e das resistências de aquecimento. Os *setpoints* de temperatura fria de saída são iguais a 30,5°C para o Trocador 1 e de 25,7°C para o Trocador 2.



Figura 6.21 – $TH_{\mathbb{N}^1}$ e $TH_{\mathbb{O}UT}$, Trocador 1: Rejeição de distúrbio em $m_{\mathbb{C}}(LQR)$.

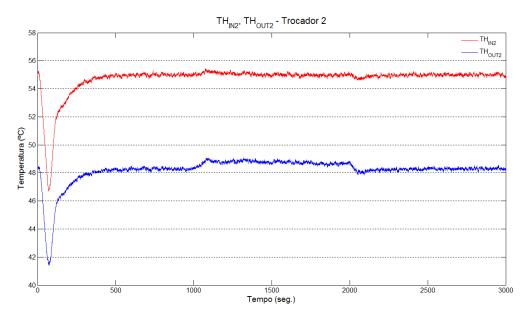


Figura 6.22 – $TH_{\mathbb{N}2}$ e $TH_{\mathbb{O}UT2}$, Trocador 2: Rejeição de distúrbio em $m_{\mathbb{C}}(\mathsf{LQR})$.

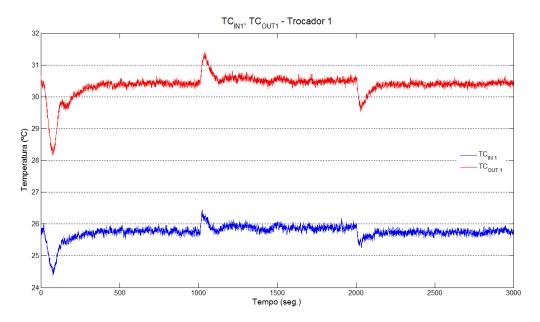


Figura 6.23 – TC_{IN1} e TC_{OUT1} , Trocador 1: Rejeição de distúrbio em $m_{\mathbb{C}}(LQR)$.

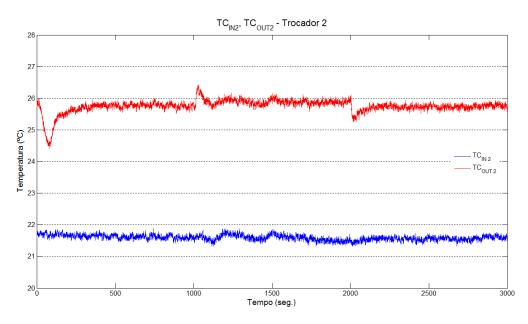


Figura 6.24 – TC_{IN2} e TC_{OUT2} , Trocador 2: Rejeição de distúrbio em $m_C(LQR)$.

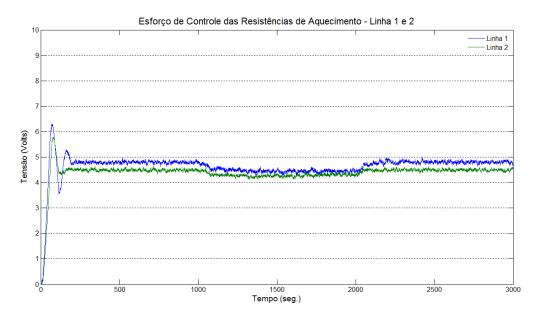


Figura 6.25 – Esforço de controle, resistências de aquecimento: Rejeição de distúrbio em $m_{\mathbb{C}}(LQR)$.

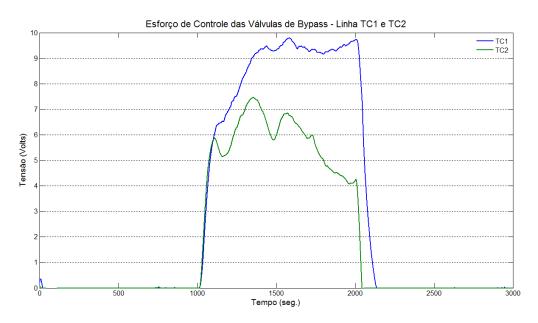


Figura 6.26 – Esforço de controle, *bypass fci*₁ e fci₂: Rejeição de distúrbio em m_C(LQR).

Analisando as Figuras 6.21 a 6.26, é possível chegar às seguintes conclusões sobre o desempenho da rede de trocadores com o controlador LQR:

- ✓ Ao colocar a rede em operação, nota-se que existe um intervalo de tempo até que as variáveis de processo estejam estabilizadas (aproximadamente 600s);
- ✓ Nota-se que, no instante em que o distúrbio foi aplicado na rede, os valores de TC_{OUT 1} e de TC_{OUT 2} permaneceram praticamente inalterados (Figuras 6.23 e 6.24), pois são eles os setpoints de temperatura fria para o controlador LQR;
- ✓ Para que os valores das temperaturas frias possam permanecer constantes, as válvulas de *bypass* abrem (Figura 6.26) desviando uma parcela maior de fluido frio para a saída do trocador, enquanto uma fração menor continua a passar internamente ao trocador;
- ✓ A potência dissipada nas resistências de aquecimento sofreu uma pequena redução do seu valor nominal (Figura 6.25), com o objetivo de manter constantes as temperaturas de entrada quente TH_{IN 1} e TH_{IN 2}.

b) Desempenho a rejeição de distúrbio na temperatura quente de entrada das linhas 1 e 2

O segundo ensaio verificou o desempenho do controlador para a rejeição de distúrbio, a partir do valor nominal, das temperaturas quentes das linhas 1 e 2. As condições nominais são apresentadas pela Tabela 6.2.

O distúrbio ocorreu no instante t=1000s para TH_{IN2} e no instante t=2000s para TH_{IN1} , modificando os seus valores para 57°C (+4% a partir do valor nominal). O tempo de aquisição foi igual a 3000s.

As Figuras de 6.27 até 6.32 mostram os perfis das temperaturas quentes, frias e os esforços de controle das válvulas de *bypass* e das resistências de aquecimento. Os *setpoints* de temperatura fria de saída são iguais a 32,5°C para o Trocador 1 e de 28°C para o Trocador 2.

Tabela 6.2 – Dados de entrada da RTC – Planta real, LQR, ensaio 2.

Condição Nominal das Variáveis de Entrada	_
Temperatura de Entrada Água Fria – Trocador 1 (<i>TC_{IN 1}</i>)	24°C
Temperatura de Entrada Água Fria – Trocador 2 (<i>TC_{IN 2}</i>)	28°C
Temperatura de Entrada Água Quente – Trocador 1 (<i>TH_{IN 1}</i>)	55°C
Temperatura de Entrada Água Quente – Trocador 2 (TH_{IN2})	55°C
Vazão Mássica de Água Fria ($m_{\mathcal{C}}$)	0,165kg.s ⁻¹
Vazão Mássica de Água Quente (<i>m</i> _{H 1}) − Corrente 1	0,154kg.s ⁻¹
Vazão Mássica de Água Quente (m _{H2}) - Corrente 2	0,154kg.s ⁻¹
Válvula 1 Bypass Fluido Quente (fhi ₁ ; fhi ₂) - Corrente 1 e 2	0
Válvula 2 Bypass Fluido Frio (fci₁; fci₂) – Corrente 1 e 2	0

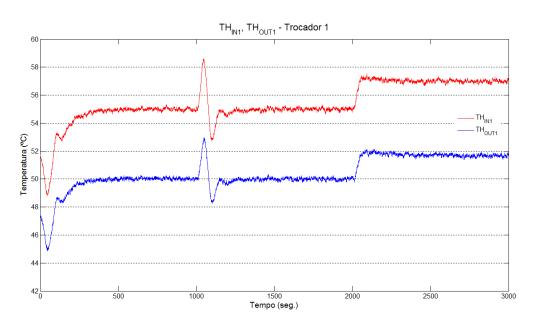


Figura 6.27 – $TH_{IN~1}$ e $TH_{OUT~1}$, Trocador 1: Rejeição de distúrbio em $TH_{IN~1,2}$ (LQR).

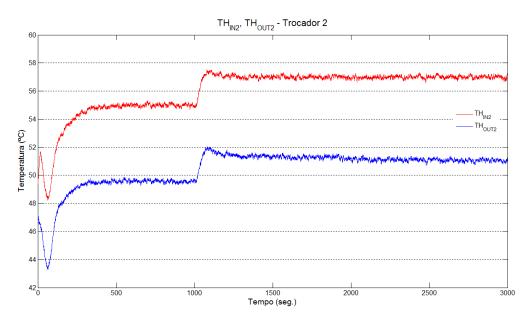


Figura 6.28 – TH_{IN2} e TH_{OUT2} , Trocador 2: Rejeição de distúrbio em $TH_{IN1,2}$ (LQR).

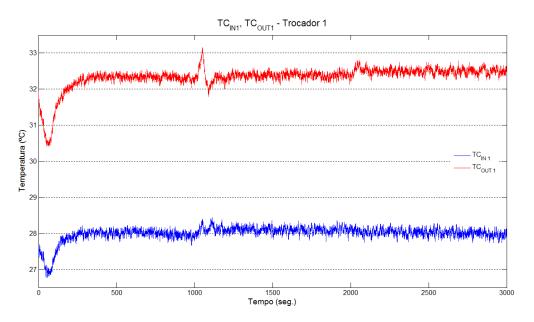


Figura 6.29 – $TC_{IN 1}$ e $TC_{OUT 1}$, Trocador 1: Rejeição de distúrbio em $TH_{IN 1,2}$ (LQR).

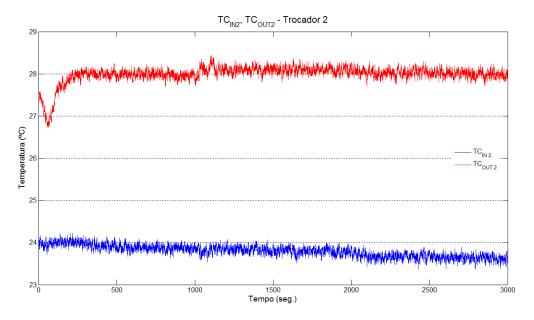


Figura 6.30 – TC_{IN2} e TC_{OUT2} , Trocador 2: Rejeição de distúrbio em $TH_{IN1,2}$ (LQR).

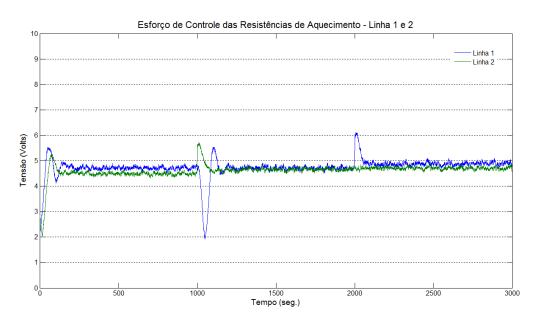


Figura 6.31 – Esforço de controle, resistências de aquecimento: Rejeição de distúrbio em $TH_{IN 1,2}$ (LQR).

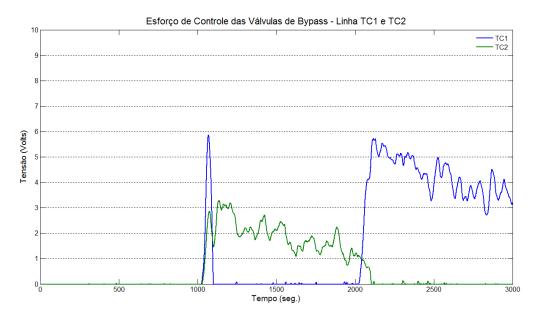


Figura 6.32 – Esforço de controle, *bypasses*: Rejeição de distúrbio em *TH*_{IN 1.2} (LQR).

Analisando as Figuras 6.27 a 6.32, é possível chegar às seguintes conclusões sobre o desempenho da rede de trocadores com o controlador LQR:

- ✓ Ao colocar a rede em operação, nota-se novamente um intervalo de tempo até que as variáveis de processo estejam estabilizadas (aproximadamente 600s);
- ✓ Os valores de TC_{OUT1} e de TC_{OUT2} permaneceram praticamente inalterados (Figuras 6.29 e 6.30) durante a aquisição, salvo nas vizinhanças dos instantes em que os distúrbios aconteceram na rede;
- ✓ A abertura das válvulas de *bypasses* proporcionou que as temperaturas frias permanecessem dentro do *setpoint* especificado, não apresentando saturação dos valores;
- ✓ Nota-se que a temperatura de entrada fria da rede teve o seu valor alterado em 0,5°C ao longo da aquisição, porém as temperaturas de saída fria permaneceram inalteradas, próximas dos seus valores de setpoint.

c) Desempenho a mudança de setpoint

O terceiro ensaio verificou o desempenho do controlador para a mudança de setpoint das temperaturas de saída frias. As condições nominais de operação da RTC são apresentadas pela Tabela 6.3 e as mudanças ocorreram no instante *t*=1000s para ambas as saídas frias, com um tempo de aquisição igual a 3000s. Os *setpoints* de temperatura fria de saída são iguais a 31,3°C para o Trocador 1 e de 26.8°C para o Trocador 2. As Figuras de 6.33 até 6.38 mostram os perfis das temperaturas quentes, frias e os esforços de controle das válvulas de *bypass* e das resistências de aquecimento, para uma diminuição de 0,5°C nos valores dos *setpoints* apresentados.

Tabela 6.3 – Dados de entrada da RTC – Planta real, LQR, ensaio 3.

Condição Nominal das Variáveis de Entrada	
Temperatura de Entrada Água Fria – Trocador 1 (<i>TC_{IN 1}</i>)	22,8°C
Temperatura de Entrada Água Fria – Trocador 2 (<i>TC_{IN 2}</i>)	26,8°C
Temperatura de Entrada Água Quente – Trocador 1 (<i>TH_{IN 1}</i>)	55°C
Temperatura de Entrada Água Quente – Trocador 2 (<i>TH_{IN 2}</i>)	55°C
Vazão Mássica de Água Fria ($m_{ m C}$)	0,165kg.s ⁻¹
Vazão Mássica de Água Quente (m _{H 1}) – Corrente 1	0,154kg.s ⁻¹
Vazão Mássica de Água Quente (m_{H2}) – Corrente 2	0,154kg.s ⁻¹
Válvula 1 Bypass Fluido Quente (fhi ₁ ; fhi ₂) - Corrente 1 e 2	0
Válvula 2 Bypass Fluido Frio (fci₁; fci₂) - Corrente 1 e 2	0

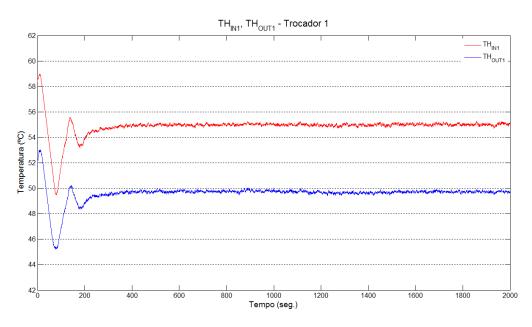


Figura 6.33 – $TH_{IN 1}$ e $TH_{OUT 1}$, Trocador 1: Mudança de setpoint (LQR).

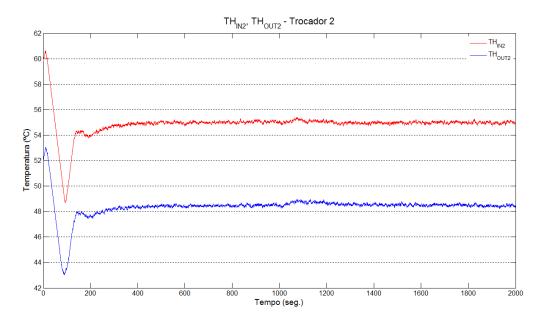


Figura 6.34 – TH_{IN2} e TH_{OUT2} , Trocador 2: Mudança de setpoint (LQR).

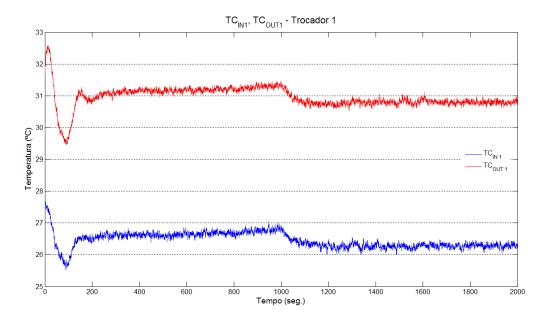


Figura 6.35 – $TC_{IN 1}$ e $TC_{OUT 1}$, Trocador 1: Mudança de setpoint (LQR).

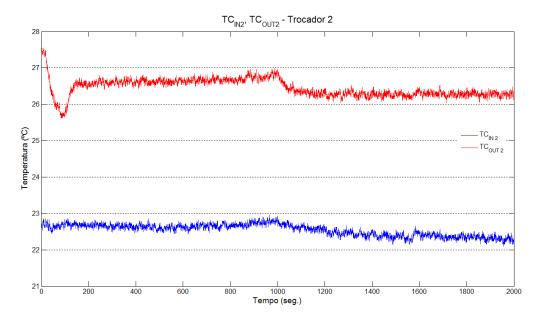


Figura 6.36 – TC_{IN2} e TC_{OUT2} , Trocador 2: Mudança de setpoint (LQR).

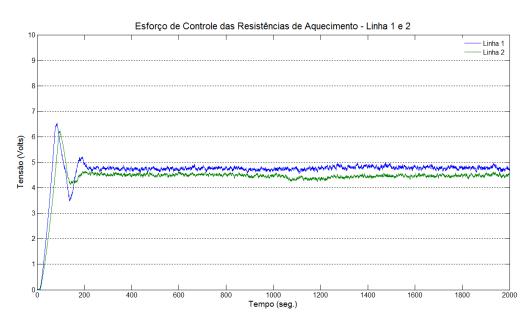


Figura 6.37 – Esforço de controle, resistências de aquecimento: Mudança de setpoint (LQR).

Figura 6.38 – Esforço de controle, *bypass fci*₁ e *fci*₂: Mudança de *setpoint* (LQR).

Analisando as Figuras 6.33 a 6.38, é possível chegar às seguintes conclusões sobre o desempenho da RTC com o controlador LQR à mudança de *setpoint*:

- ✓ Ao colocar a rede em operação, nota-se novamente um intervalo de tempo até que as variáveis de processo estejam estabilizadas (aproximadamente 600s);
- ✓ Os valores de TC_{OUT1} e de TC_{OUT2} atingiram os novos valores de setpoint desejados (Figuras 6.35 e 6.36) durante a aquisição;
- ✓ A abertura das válvulas de *bypasses* proporcionou que as temperaturas frias permanecessem dentro do *setpoint* especificado, não apresentando saturação dos valores;
- ✓ Nota-se que novamente uma variação na temperatura fria de entrada da rede ao logo da aquisição, porém as temperaturas de saída fria permaneceram dentro do seu valor de setpoint.

6.3. Controlador H-infinito para a RTC do laboratório

A partir das simulações realizadas com o modelo não linear e com o controlador H-infinito, a seguir serão apresentados os resultados obtidos com o H-infinito realizando o controle na rede de trocadores montada.

Os resultados serão apresentados divididos em três seções: rejeição ao distúrbio para mudança na vazão do fluido frio, rejeição à mudança nas temperaturas quentes de entrada dos trocadores e mudança de setpoint. Para cada seção, serão apresentadas as condições de operação da rede de trocadores (temperaturas de entrada de cada corrente e vazão).

a) Desempenho a rejeição de distúrbio na vazão fria m_C

O primeiro ensaio verificou o desempenho do controlador para a rejeição de distúrbio, a partir do valor nominal, da vazão fria. As condições nominais são apresentadas pela Tabela 6.4.

Tabela 6.4 – Dados de entrada da RTC – Planta real, H-infinito, ensaio 1.

Condição Nominal das Variáveis de Entrada		
Temperatura de Entrada Água Fria – Trocador 1 (<i>TC_{IN 1}</i>)	21,7°C	
Temperatura de Entrada Água Fria – Trocador 2 (<i>TC_{IN 2}</i>)	26°C	
Temperatura de Entrada Água Quente – Trocador 1 (<i>TH_{IN 1}</i>)	55°C	
Temperatura de Entrada Água Quente – Trocador 2 (<i>TH_{IN 2}</i>)	55°C	
Vazão Mássica de Água Fria ($m_{ m C}$)	0,165kg.s ⁻¹	
Vazão Mássica de Água Quente (<i>m</i> _{H 1}) − Corrente 1	0,154kg.s ⁻¹	
Vazão Mássica de Água Quente (m_{H2}) – Corrente 2	0,154kg.s ⁻¹	
Válvula 1 Bypass Fluido Quente (fhi ₁ ; fhi ₂) - Corrente 1 e 2	0	
Válvula 2 Bypass Fluido Frio (fci1; fci2) - Corrente 1 e 2	0	

O distúrbio ocorreu no instante t=1000 seg., modificando a vazão fria para m_C =0,135kg.s⁻¹, retornando ao valor nominal no instante t=2000s, com um tempo de aquisição igual a 3000s. As Figuras de 6.39 até 6.44 mostram os perfis das temperaturas quentes, frias e os esforços de controle das válvulas de bypass e das resistências de aquecimento. Os setpoints de temperatura fria de saída são iguais a 30,5°C para o Trocador 1 e de 25,8°C para o Trocador 2.

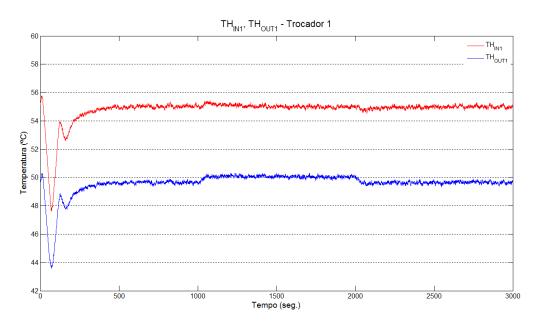


Figura 6.39 – TH_{IN1} e TH_{OUT1} , Trocador 1: Rejeição de distúrbio em m_C (H-infinito).

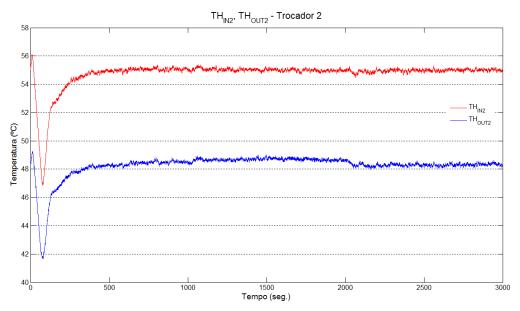


Figura 6.40 – TH_{IN2} e TH_{OUT2} , Trocador 2: Rejeição de distúrbio em m_C (H-infinito).

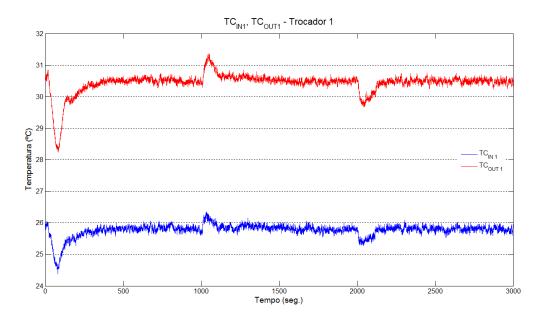


Figura 6.41 – TC_{IN1} e TC_{OUT1} , Trocador 1: Rejeição de distúrbio em m_C (H-infinito).

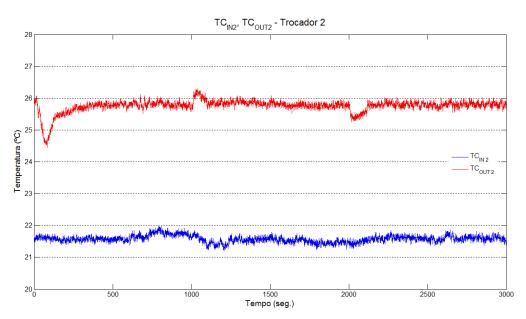


Figura 6.42 – $TC_{\mathbb{N}2}$ e $TC_{\mathbb{O}UT2}$, Trocador 2: Rejeição de distúrbio em $m_{\mathbb{C}}$ (H-infinito).

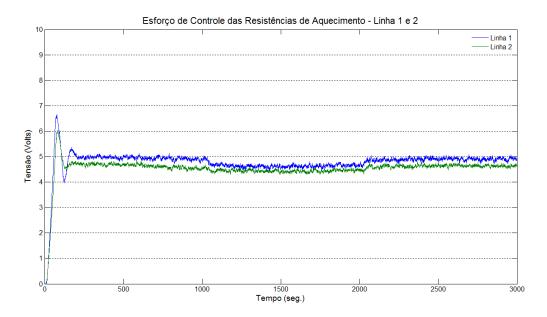


Figura 6.43 – Esforço de controle, resistências de aquecimento: Rejeição de distúrbio em m_C (H-infinito).

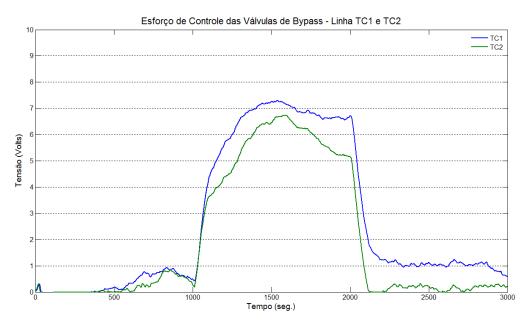


Figura 6.44 – Esforço de controle, *bypass fci* $_1$ e *fci* $_2$: Rejeição de distúrbio em $m_{\mathbb{C}}$ (H-infinito).

Analisando as Figuras 6.39 a 6.44, é possível chegar às seguintes conclusões sobre o desempenho da rede de trocadores com o controlador H-infinito:

- ✓ Ao colocar a rede em operação, nota-se que existe um intervalo de tempo até que as variáveis de processo estejam estabilizadas (aproximadamente 600s);
- ✓ Nota-se que no instante que o distúrbio foi aplicado na rede, os valores de TC_{OUT 1} e de TC_{OUT 2} permaneceram praticamente inalterados (Figuras 6.41 e 6.42);
- ✓ Para que os valores das temperaturas frias possam permanecer constantes, as válvulas de *bypass* abrem (Figura 6.44) desviando uma parcela maior de fluido frio para a saída do trocador, enquanto uma fração menor continua a passar internamente ao trocador;
- ✓ A potência dissipada nas resistências de aquecimento sofreu uma pequena redução do seu valor nominal (Figura 6.43), com o objetivo de manter constante as temperaturas de entrada quente *TH_{IN 1}* e *TH_{IN 2}*.

b) Desempenho a rejeição de distúrbio na temperatura quente de entrada das linhas 1 e 2

O segundo ensaio verificou o desempenho do controlador para a rejeição de distúrbio, a partir do valor nominal, das temperaturas quentes das linhas 1 e 2 vazão fria. As condições nominais são apresentadas pela Tabela 6.5.

O distúrbio ocorreu no instante t=1000s para TH_{IN2} e no instante t=2000s para TH_{IN1} , modificando os seus valores nominais para 57°C (+4% a partir do valor nominal). O tempo de aquisição foi igual a 3000s.

As Figuras de 6.45 até 6.50 mostram os perfis das temperaturas quentes, frias e os esforços de controle das válvulas de *bypass* e das resistências de aquecimento. Os *setpoints* de temperatura fria de saída são iguais a 30,5°C para o Trocador 1 e de 25,9°C para o Trocador 2.

Tabela 6.5 – Dados de entrada da RTC – Planta real, H-infinito, ensaio 2.

Condição Nominal das Variáveis de Entrada		
Temperatura de Entrada Água Fria – Trocador 1 (<i>TC_{IN 1}</i>)	21.8°C	
Temperatura de Entrada Água Fria – Trocador 2 (<i>TC_{IN 2}</i>)	25.9°C	
Temperatura de Entrada Água Quente – Trocador 1 (<i>TH_{IN 1}</i>)	55°C	
Temperatura de Entrada Água Quente – Trocador 2 (<i>TH_{IN 2}</i>)	55°C	
Vazão Mássica de Água Fria ($m_{\mathcal{C}}$)	0,165kg.s ⁻¹	
Vazão Mássica de Água Quente (m _{H 1}) - Corrente 1	0,154kg.s ⁻¹	
Vazão Mássica de Água Quente (m_{H2}) – Corrente 2	0,154kg.s ⁻¹	
Válvula 1 Bypass Fluido Quente (fhi ₁ ; fhi ₂) - Corrente 1 e 2	0	
Válvula 2 Bypass Fluido Frio (fci₁; fci₂) - Corrente 1 e 2	0	

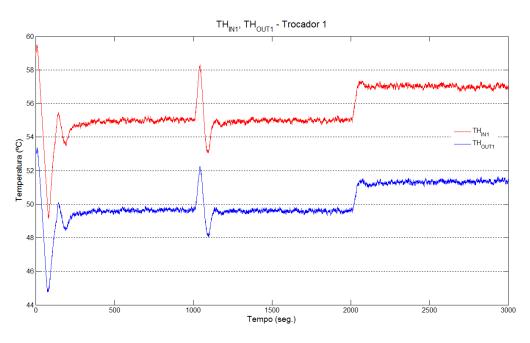


Figura 6.45 – TH_{IN1} e TH_{OUT1} , Trocador 1: Rejeição de distúrbio em $TH_{IN1,2}$ (H-infinito).

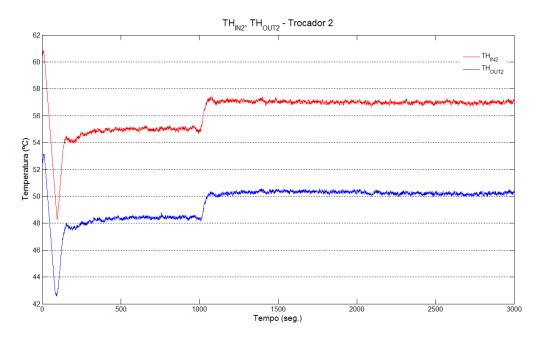


Figura 6.46 – TH_{IN2} e TH_{OUT2} , Trocador 2: Rejeição de distúrbio em $TH_{IN1,2}$ (H-infinito).

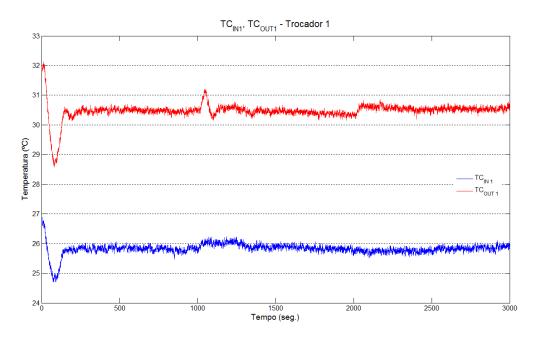


Figura 6.47 – TC_{IN1} e TC_{OUT1} , Trocador 1: Rejeição de distúrbio em $TH_{IN1,2}$ (H-infinito).

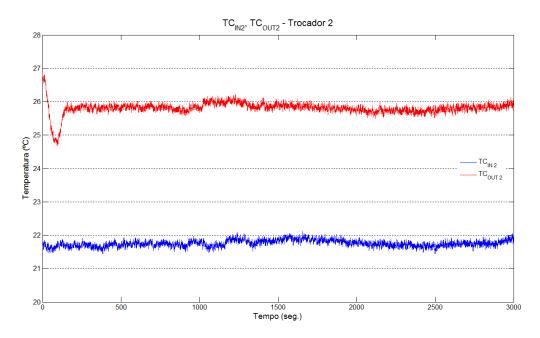


Figura 6.48 – TC_{IN2} e TC_{OUT2} , Trocador 2: Rejeição de distúrbio em $TH_{IN1,2}$ (H-infinito).

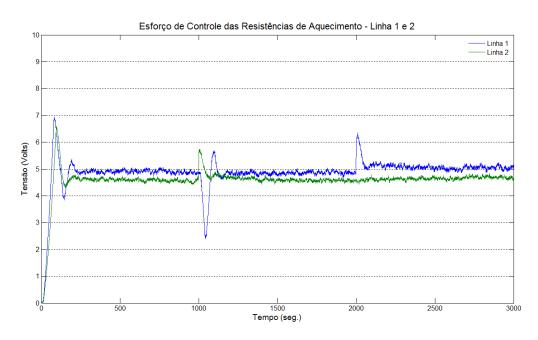


Figura 6.49 – Esforço de controle, resistências de aquecimento: Rejeição de distúrbio em $TH_{IN 1,2}$ (H-infinito).

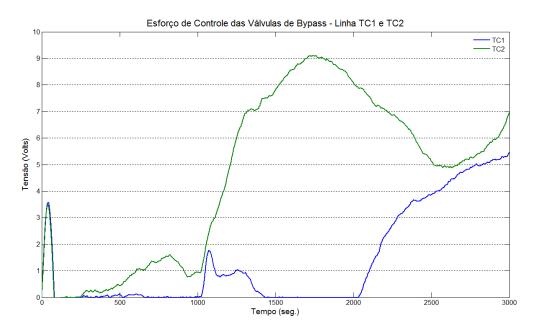


Figura 6.50 – Esforço de controle, *bypasses*: Rejeição de distúrbio em *TH*_{IN 1.2} (H-infinito).

Analisando as Figuras 6.45 a 6.50, é possível chegar às seguintes conclusões sobre o desempenho da rede de trocadores com o controlador H-infinito para a rejeição de distúrbio nas temperaturas quentes:

- ✓ Ao colocar a rede em operação, nota-se novamente um intervalo de tempo até que as variáveis de processo estejam estabilizadas (aproximadamente 600s);
- ✓ Os valores de TC_{OUT1} e de TC_{OUT2} permaneceram praticamente inalterados (Figuras 6.47 e 6.48) durante a aquisição, salvo nos instantes em que os distúrbios aconteceram na rede;
- ✓ A abertura das válvulas de bypasses proporcionou que as temperaturas frias permanecessem dentro do setpoint especificado, não apresentando saturação dos valores;

c) Desempenho a mudança de setpoint

O terceiro ensaio verificou o desempenho do controlador para a mudança de setpoint das temperaturas de saída frias. As condições nominais de operação da RTC são apresentadas pela Tabela 6.6 e as mudanças ocorreram no instante t=1000s para ambas as saídas frias, com um tempo de aquisição igual a 3000s.

Já os setpoints de temperatura fria de saída são iguais a 31,3°C para o Trocador 1 e de 26,8°C para o Trocador 2.

As Figuras de 6.33 até 6.38 mostram os perfis das temperaturas quentes, frias e os esforços de controle das válvulas de *bypass* e das resistências de aquecimento, para uma diminuição de 0,5°C nos valores dos *setpoints* apresentados.

Tabela 6.6 – Dados de entrada da RTC – Planta real, H-infinito, ensaio 3.

Condição Nominal das Variáveis de Entrada	
Temperatura de Entrada Água Fria – Trocador 1 (<i>TC_{IN 1}</i>)	22,8°C
Temperatura de Entrada Água Fria – Trocador 2 (<i>TC_{IN 2}</i>)	26,8°C
Temperatura de Entrada Água Quente – Trocador 1 (<i>TH_{IN 1}</i>)	55°C
Temperatura de Entrada Água Quente – Trocador 2 (<i>TH_{IN 2}</i>)	55°C
Vazão Mássica de Água Fria (<i>m</i> _C)	0,165kg.s ⁻¹
Vazão Mássica de Água Quente (<i>m</i> _{H 1}) − Corrente 1	0,154kg.s ⁻¹
Vazão Mássica de Água Quente (m_{H2}) – Corrente 2	0,154kg.s ⁻¹
Válvula 1 Bypass Fluido Quente (fhi ₁ ; fhi ₂) - Corrente 1 e 2	0
Válvula 2 Bypass Fluido Frio (fci1; fci2) - Corrente 1 e 2	0

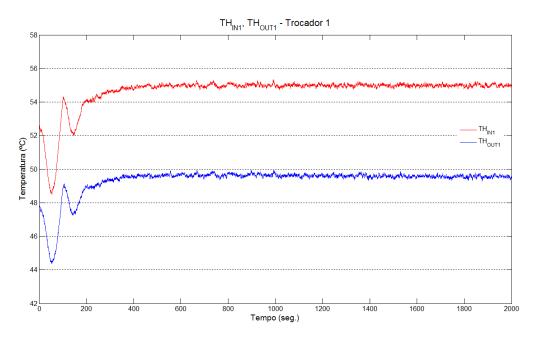


Figura 6.51 – TH_{IN1} e TH_{OUT1} , Trocador 1: Mudança de *setpoint* (H-infinito).

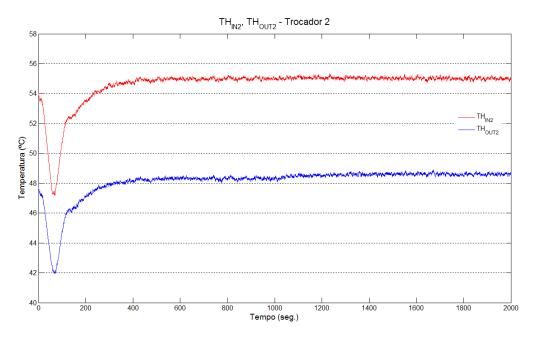


Figura $6.52 - TH_{IN2}$ e TH_{OUT2} , Trocador 2: Mudança de setpoint (H-infinito).

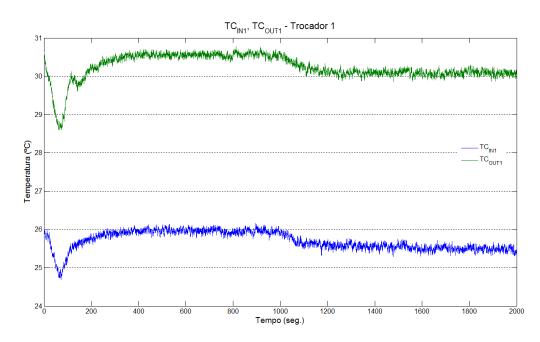


Figura $6.53 - TC_{IN1}$ e TC_{OUT1} , Trocador 1: Mudança de setpoint (H-infinito).

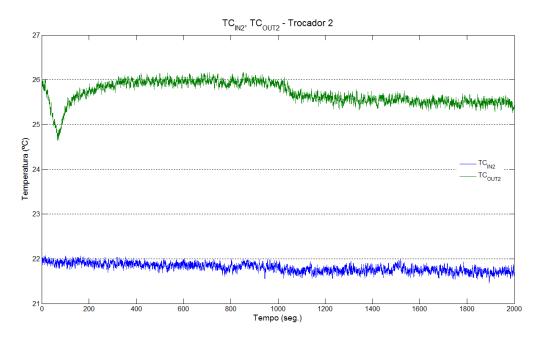


Figura $6.54 - TC_{IN2}$ e TC_{OUT2} , Trocador 2: Mudança de setpoint (H-infinito).

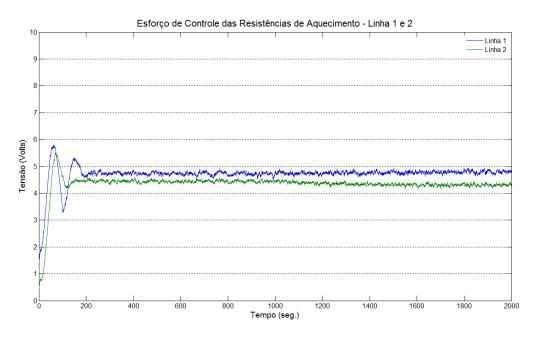


Figura 6.55 – Esforço de controle, resistências de aquecimento: Mudança de setpoint (H-infinito).

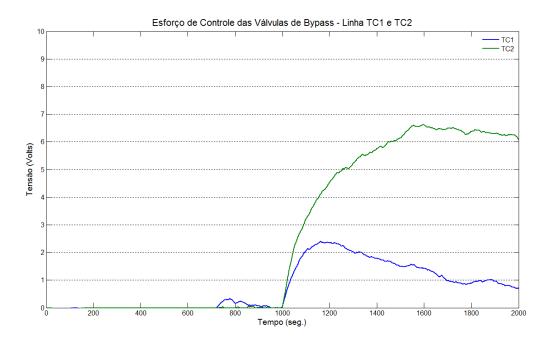


Figura 6.56 – Esforço de controle, *bypass fci*₁ e *fci*₂: Mudança de *setpoint* (H-infinito).

Analisando as Figuras 6.51 a 6.56, é possível chegar às seguintes conclusões sobre o desempenho da RTC com o controlador H-infinito à mudança de *setpoint*:

- ✓ Ao colocar a rede em operação, nota-se novamente um intervalo de tempo até que as variáveis de processo estejam estabilizadas (aproximadamente 600s);
- ✓ Os valores de TC_{OUT1} e de TC_{OUT2} atingiram os novos valores de setpoint desejados (Figuras 6.53 e 6.54) durante a aquisição;
- ✓ A abertura das válvulas de bypasses proporcionou que as temperaturas frias permanecessem dentro do setpoint especificado, não apresentando saturação dos valores;
- ✓ Nota-se que novamente uma variação na temperatura fria de entrada da rede ao logo da aquisição, porém as temperaturas de saída fria permaneceram dentro do seu valor de setpoint.