• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
https://doi.org/10.11606/D.3.2019.tde-30012019-141410
Documento
Autor
Nombre completo
Pedro Forastieri de Almeida Prado
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2018
Director
Tribunal
Espinosa, Denise Crocce Romano (Presidente)
Moraes, Viviane Tavares de
Zilles, Roberto
Título en portugués
Reciclagem de painéis fotovoltaicos e recuperação de metais.
Palabras clave en portugués
Hidrometalurgia
Metais (Recuperação)
Paineis (Reciclagem)
Resumen en portugués
Com a expansão do emprego de módulos fotovoltaicos para geração energética, surge o desafio do descarte adequado desse resíduo de equipamento eletroeletrônico. Através da elaboração de um processo multietapas, esse desafio torna-se possível de ser abordado. O presente estudo possui o objetivo de recuperar os materiais presentes nos módulos fotovoltaicos de silício cristalino e de silício amorfo. Diversas técnicas de caracterização física e química foram empregadas para determinar-se composição dos módulos fotovoltaicos e consequentemente o fluxo de processos necessários para recuperação dos materiais identificados. Foi identificado que o módulo de silício cristalino possuía no semicondutor alguns metais como prata (na concentração de 0,063% em massa do módulo) e silício, e na fase polimérica polidimetilsiloxano como encapsulante e PET como backsheet. A separação e recuperação dos polímeros foi realizada através do uso da teoria de dissolução de solventes de Hildebrand, abordando aspectos termodinâmicos e cinéticos. A separação ocorreu em 24h a 860rpm mergulhando-se os módulos em isopropanol, podendo ocorrer separação em até 6h a 860rpm utilizando-se tetrahidrofurano. A lixiviação da prata a partir do semicondutor foi possível com ácido sulfúrico 4mol.L-1, 95°C, sob adição de 6mL de peróxido de hidrogênio a cada 15min, alcançando-se 100% de lixiviação em 2h. Alterando-se a temperatura para 30°C a lixiviação foi completa apenas em 6h de experimento Precipitou-se a prata em solução na forma de cloreto de prata com adição de cloreto de sódio. O módulo de silício amorfo continha EVA na fração polimérica e silício, germânio, prata, estanho e índio (concentração 0,34g/m2 do módulo) na fração metálica, observados tanto por micrografias quanto por análise química quantitativa. A calcinação a 400°C permitiu a remoção do EVA e liberação dos contatos de prata. A lixiviação de índio foi de 100% para uma solução 1mol.L-1 de ácido fosfórico a 75°C, sob 800rpm de agitação e relação sólido-líquido 1g.10mL-1 em 1h.
Título en inglés
Recycling of photovoltaic modules and metals recovery.
Palabras clave en inglés
Hydrometallurgy
Photovoltaic modules
Polymeric dissolution
Recycling
Resumen en inglés
As the photovoltaic module market grows, an increasingly challenging scenario arises for solar modules end of life management. Such a scenario can be tackled through a process comprising multiple steps. This study has the objective to recover materials present in photovoltaic modules of crystalline silicon and amorphous silicon. Several characterization techniques (physical and chemical) were employed to determine the composition of the modules and thus the process flow needed to recover the identified materials. Along the process, it was noticed that the crystalline silicon module had in its semiconductor metals such as silver (in concentration of at least 0,063% in weight of module) and silicon. Also polydimethylsiloxane was identified as encapsulant and polyethylene therephtalate as backsheet. A separation and recovery of these materials was possible using the theory of solvent dissolution of Hildebrand, comprising thermodynamics and kinetics. The separation occurred in 24h at 860rpm, rising the modules in isopropyl alcohol and potentially reaching 6h at 860rpm when rising them in tetrahydrofuran. The silver leaching from the semiconductor phase was possible in sulphuric acid 4 mol.L-1, 95°C, under addition of 6mL of hydrogen peroxide every 15min, reaching 100% silver leached in 2h. Shifting the temperature to 30°C, the leaching would occur completely only after 6h of experiment. The silver was precipitated as a chloride from the solution by addition of sodium chloride. The amorphous silicon module showed that EVA was present in the polymeric phase and silicon, germanium, silver, tin and indium (the last one at concentration of 0,34g/m2 in area of the module) in the metallic phase, observed on the micrographies and chemical analyses. Calcination was performed at 400°C, removing the EVA and freeing the silver contacts. Indium was 100% leached with a 1mol.L-1 phosphoric acid solution at 75°C, under 800rpm and solid-liquid ratio of 1g.10mL-1 in 1h.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2019-02-01
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2024. Todos los derechos reservados.