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ABSTRACT 

 

Monitoring of emulsion properties is important in many applications, like in 

foods and pharmaceutical products, or in emulsion polymerization processes, since 

aged and ‘broken’ emulsions perform worse and may affect product quality. In 

machining processes, special types of emulsions called metalworking fluids (MWF) 

are widely used, because of its combined characteristics of cooling and lubrication, 

increasing the productivity, enabling the use of higher cutting speeds, decreasing the 

amount of power consumed and increasing tool life. Even though emulsion quality 

monitoring is a key issue in manufacturing processes, traditional methods are far 

from accurate and generally fail in providing the tools for determining the optimal 

useful life of these emulsions, with high impact in costs. 

The present study is dedicated to the application of a spectroscopic sensor to 

monitor MWF emulsion destabilization, which is related to changes in its droplet size 

distribution. Rapeseed oil emulsions, artificially aged MWF and MWF in machining 

application were evaluated, using optical measurements and multivariate calibration 

by neural networks, for developing a new method for emulsion destabilization 

monitoring. The technique has shown good accuracy in rebuilding the droplet size 

distribution of emulsions for monomodal and bimodal distributions and different 

proportions of each droplet population, from the spectroscopic measurements, 

indicating the viability of this method for monitoring such emulsions. 

This study is part of a joint project between the University of São Paulo and 

the University of Bremen, within the BRAGECRIM program (Brazilian German 

Cooperative Research Initiative in Manufacturing) and is financially supported by 

FAPESP, CAPES, FINEP and CNPq (Brazil), and DFG (Germany). 

 

Keywords: Emulsion. Spectroscopic sensor. Droplet size distribution. Metalworking 

fluids. Neural Networks. 
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1. BACKGROUND AND MOTIVATION 

Emulsions are utilized in industrial and medical applications for a variety of 

reasons, such as encapsulation and delivery of active components; modification of 

rheological properties; alteration of optical properties; lubrication; modification of 

organoleptic attributes. Traditionally, conventional emulsions consist of small 

spherical droplets of one liquid dispersed in another immiscible liquid, where the two 

immiscible liquids are typically an oil phase and an aqueous phase, although other 

immiscible liquids can sometimes be used. 

In machining processes, special types of emulsions called metalworking fluids 

(MWFs) are widely used, because of their combined characteristics of cooling and 

lubrication. Although some fluids are composed of oil and additives, only, most of 

them are oil-in-water emulsions, with complex formulations that can change 

according to the application. Their use increases the productivity and reduces costs 

by enabling the use of higher cutting speeds, higher feed rates and deeper cuts. 

Effective application of cutting fluids can also increase tool life, decrease surface 

roughness and decrease the amount of power consumed (EL BARADIE, 1996). 

The consumption of cutting fluids in a typical metal working facility is around 

33 t/year (OLIVEIRA; ALVES, 2007). The worldwide annual usage is estimated to 

exceed 2x109 L and the waste could be more than ten times the usage, as MWFs 

have to be diluted prior to use (CHENG; PHIPPS; ALKHADDAR, 2005). From 7 to 

17% of the total costs of machining processes are due to the metalworking fluids, 

while only 2 to 4% are due to the costs of tools (KLOCKE; EISENBLÄTTER, 1997). 

One of the main problems observed in these emulsions consists of 

degradation by contamination with substances from the manufacturing process and 

losses in its stability. This degradation promotes coalescence of the dispersed 

droplets, increasing the mean droplet size of the dispersed fluid. Although the 

complete separation of emulsion due to coalescence should not be a problem to be 

found in real metalworking processes, since the fluid is replaced before reaching 

such condition, the increase in droplet size affects the attributes of the MWFs and its 

performance in machining processes. At this point, the fluid is considered “old” or 

“aged”, and traditional practice has been to dispose the used MWF, as well as the 
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fluids with high contaminant levels. However, due to their nature as stable oil-in-water 

mixtures, MWFs create both monetary and environmental problems in their treatment 

and disposal. It is estimated that for each dollar of MWF concentrate purchased, 

eleven dollars are spent in mixing, managing, treating and disposing spent 

emulsions. This is an important aspect in a sector that has traditionally focused on 

tool costs. MWFs are also a major source of oily wastewater in the effluents of 

industries in the metal products and machinery sector. About 10 years ago, it was 

estimated that 3.8 to 7.6 millions m3 of oily wastewater resulted annually from the use 

of MWFs (GREELEY; RAJAGOPALAN, 2004). 

Due to that, new technologies are been developed to improve MWFs quality, 

maximize its useful life or minimize its environmental impact. Machado and Wallbank 

(1997), for example, studied the effect of the use of extremely low lubricant volumes 

in machining processes, reducing therefore the volume of old fluid to be disposed. 

Benito et al. (2010) carried out experiments to obtain optimal formulations for MWFs, 

and proposed the disposal of spent O/W emulsions using techniques such as 

coagulation, centrifugation, ultrafiltration, and vacuum evaporation. Zimmerman et al. 

(2003) designed a mixed anionic/nonionic emulsifier system for petroleum and bio-

based MWFs that improve the useful life by providing emulsion stability under hard 

water conditions, a common cause of emulsion destabilization leading to MWF 

disposal. Vargas et al. (2014) studied the use of an ecofriendly emulsifier for the 

production of oil-in-water emulsions for industrial consumption. Doll and Sharma 

(2011) investigated the application of chemically modified vegetable oils to substitute 

conventional oils in lubricant use. Guimarães et al. (2010) focused his work on the 

destabilization and recoverability of oil used in the formulation of cutting fluids. 

Greeley and Rajagopalan (2004) carried out an analysis on the impact of 

environmental contaminants on machining properties of metalworking fluids and the 

possibility of extended use of aged fluids. Several experiments were performed to 

evaluate the lubricating, cooling, corrosion inhibition, and surface finishing 

functionalities of MWFs in presence of natural contaminants. Their conclusion was 

that, as long as stability is maintained, natural contaminants have little or no impact in 

the performance of the MWF. However, when there is some level of destabilization of 

the fluid, there are also losses in lubrication and cooling. Hence, the monitoring of 
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emulsion destabilization could possibly be used as an indicator of potential loss of 

lubrication and cooling properties. In this way, it could be helpful in determining the 

optimal useful life of MWFs. 

The monitoring of MWF consists conventionally of periodic measurements of 

oil concentration, pH, viscosity and contamination. In this way, changes in fluid 

characteristics are detected only when the destabilization of the emulsion is already 

significant, leading to problems in machining processes, decreasing tool life, among 

others. In other occasions, fluids with no loss of performance are discarded because 

one or more of the measured items has reached the stipulated limit. In both 

situations, it has a significant impact on costs for this industry sector. Therefore, there 

is a growing market estimated in 1.2 Million t/a emulsions for new stability or 

destabilization detection methods (GROSCHE, 2014 apud Kissler, 2012). One 

possible method is based on the droplet size distribution (DSD), which is directly 

linked to the quality and physical stability of an emulsion because of its influence on 

the free interactive surface (GROSCHE, 2014), i.e., changes in DSD are an indicator 

of destabilization of the emulsion. 

In this context the objective of this study is to evaluate changes in the droplet 

size distribution of emulsions, with focus on MWFs, using optical measurements and 

multivariate calibration by neural networks, in order to developing a new method for 

emulsion destabilization monitoring. 

The present document shows results of experiments carried out to measure 

absorbance spectra of rapeseed oil emulsions (taken as simple oil-in-water 

emulsions) and commercially available MWFs with a spectroscopic sensor. The data 

obtained from the spectroscopic measurements were used treated in different ways, 

in order to select an efficient criterion to identify the condition of a given MWF 

emulsion, based on estimates of the DSD. 

Commercially available MWF emulsions were evaluated in terms of their 

artificial destabilization with addition of calcium salts, thus increasing the coalescence 

rate. The destabilization process was monitored by means of droplet size distribution 

measurements as well as by on-line measurement of the absorbance spectra. The 
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data were used to evaluate the destabilization of emulsions based on existing criteria 

like the wavelength exponent and to estimate the DSD using neural network models. 

In addition, several commercially available MWFs were evaluated during use 

in a machining facility in order to obtain data as near as possible of a real case 

scenario. The destabilization process was monitored by means of droplet size 

distribution measurements as well as by on-line measurement of the absorbance 

spectra.  

This study is part of the project entitled “Emulsion Process Monitor”, within the 

scope of the BRAGECRIM program – “Brazilian German Collaborative Research 

Initiative in Manufacturing”, a partnership of CAPES, FINEP and CNPq (Brazil), and 

DFG (Deutsche Forschungsgemeinschaft) (Germany), coordinated by Prof. Roberto 

Guardani (USP) and Prof. Udo Fritsching (University of Bremen). The main objective 

of the project is the development of an optical sensor for monitoring metalworking 

fluid characteristics, and to study emulsion stability and flow characteristics. 

In this project, different aspects related to MWF monitoring, and the 

destabilization process have been investigated. Thus, experiments under different 

conditions and with different arrangements of the optical sensor have been carried 

out by the Brazilian and German teams, coupled with simulations of the interaction 

between the MWF and the sensor based on computational fluid dynamic techniques 

(GROSCHE, 2014). Coalescence models have also been compared in simulations 

aimed at studying the effect of the flow conditions on the coalescence rate and 

droplet size distribution (VARGAS, 2014). An intensive study has also been 

dedicated to the behavior of MWF emulsions with respect to optical properties and 

the treatment of spectroscopic data to evaluate the emulsion in different conditions, 

mainly based on inversion methods; the results evidenced the limitation of these 

methods in retrieving droplet size information of real MWF from spectroscopic data. 

The inversion methods produced satisfactory results only for a specific subset of 

simulated data and monodisperse polystyrene particle suspensions  (GLASSE, 

2015).  

The present thesis is based on the results of the previous studies mentioned, 

and is dedicated to the application of the spectroscopic sensor to monitor MWF 
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emulsion destabilization. Based on the results of the application of different criteria to 

evaluate the MWF emulsions, a new method is proposed, based on the fitting of 

neural networks to estimate droplet size distribution from process operational data. 
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2. OBJECTIVE 

The main objective of the present study is to evaluate the application of a 

spectroscopic sensor to monitor metalworking fluid emulsion destabilization during 

aging, thus proposing a new method for the monitoring of such emulsions and 

providing an innovative tool to optimize the useful life of metalworking fluids in 

industries. In order to achieve this overall objective, the following specific objectives 

are stated: 

• To establish a methodology for estimating the droplet size distribution in 

emulsions based on spectroscopic data. 

• To apply the methodology, i.e., the spectroscopic sensor and the data 

treatment procedure, to monitor emulsion destabilization based on changes in 

the droplet size distribution, with focus on metalworking fluids (MWF). 
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3. LITERATURE REVIEW 

 

3.1. Emulsions 

Emulsions are dispersions of at least two immiscible liquids and appear most 

commonly as two types: water droplets dispersed in an organic liquid (an “oil”), 

designated W/O, and organic droplets dispersed in water, designated O/W. In this 

study, only oil-in-water emulsions (O/W) are considered. Emulsions are generally 

stabilized by a third component, an emulsifier, which is often a surfactant. Other 

examples of emulsifiers include polymers, proteins, and finely divided solids, each 

one influencing the final physical-chemical properties of the emulsion. Emulsions do 

not form spontaneously but rather require an input of energy, contrary to the 

thermodynamically stable microemulsions. Therefore, the term “emulsion stability” 

refers to the ability of an emulsion to keep its characteristics unchanged over a 

certain period of time and, as a consequence, emulsions are only kinetically 

stabilized, with destabilization occurring over time with a time constant varying from 

seconds to years (EGGER; MCGRATH, 2006). The more slowly the characteristics 

change, the more stable the emulsion is. 

Microbiological contamination and external influences such as UV light, 

changes in temperature or reactions between individual components can also result 

in losses in stability or even "breaking" of an emulsion, by increasing the droplet size 

due to the coalescence of drops of the dispersed phase. Coalescence is defined as a 

process where two or more droplets of the dispersed phase merge together forming 

a larger droplet. Its rate depends on the number of collisions, on the energy or 

efficiency of those collisions and on the properties of the adsorption layers The final 

stage of the coalescence consists of the complete separation of the phases. In 

addition to droplet coalescence, other processes, including aggregation or 

flocculation, Ostwald ripening, sedimentation and creaming can take place (MOLLET; 

GRUBENMANN, 2001), as illustrated in Figure 1. In the flocculation process, the 

dispersed droplets form aggregates in which the individual droplets can still be 

recognized, and such aggregation is often reversible by means of mechanical forces 

caused by stirring of shaking. Flocculation may occur under conditions when the van 
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der Waals attractive energy exceeds the repulsive energy and can be weak or 

strong, depending on the strength of inter-drop forces. It can cause local 

concentration differences within the emulsion due to the change of the droplet size 

distribution and often results in coalescence. While aggregation is a reversible 

process, coalescence is irreversible. Ostwald ripening refers to the mass diffusion of 

several small droplets that ceases to exist and their mass is added to a few larger 

drops. Creaming is an upward migration phenomenon due to the density difference 

between disperse and continuous phases (HARUSAWA; MITSUI, 1975). Different 

processes can occur simultaneously. 

In this study, since the droplets of the evaluated emulsions are typically small 

and they can not be considered as highly concentrated systems, the ripening 

phenomenon is not significant (CHISTYAKOV, 2001; VARGAS, 2014). Besides, 

some exploratory evaluations of commercial MWFs artificially aged with CaCl2, using 

an optical scanning turbidimeter, Turbiscan Lab Expert® (from Formulaction), have 

shown profiles typical of particle size variation, like coalescence process, as 

illustrated in Figure 2. Thus, in this study, only the coalescence is considered as a 

cause of emulsion destabilization. 

 

 
Figure 1: Illustration of the emulsion destabilization processes (MOLLET; 

GRUBENMANN, 2001). 
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Figure 2: Illustration of the obtained profile of a commercial MWF during artificial 

aging with CaCl2, using an optical scanning turbidimeter. 
 

The stability of an emulsion depends on several factors, some of which are 

size distribution of the dispersed phase, the volume fraction of the dispersed phase 

and the type and quantity of the surfactant that, depending on the mechanism 

involved, promotes steric stabilization of the system or affect the repulsion forces 

between droplets of the dispersed phase. For this this factor, its dependency is 

explained by the DLVO Theory, proposed by Derjaguin and Landau and by Verwey 

and Overbeek (HIEMENZ; RAJAGOPALAN, 1997), by which it is possible to estimate 

the total interaction energy and the energy gap for coalescence or coagulation to 

occur. Otherwise, when the stabilization is steric, which is most likely the stabilization 

mechanism in the MWFs of this study, there are a formation of an adsorbed layer in 

the surface of the droplets, causing steric repulsion, which prevent the close 

approach of dispersed phase droplets (WILDE, 2000). 

The size distribution of the dispersed phase affects the emulsion stability 

because it is related to the free-energy change in the coalescence of two droplets, 

which can be calculated by the product of the surface tension by the variation of the 

surface area, at constant volume, temperature, composition and surface tension.  

The area decreases as droplets coalesce, hence the change in the free-energy of the 

system is negative and the coalescence is therefore spontaneous. The larger the 

droplets, the larger is the surface area reduction, and more spontaneous is the 

coalescence process, and, therefore, less stable is the emulsion (MORRISON; 

ROSS, 2002). So, an increase in the droplet size of an emulsion is an indicator of its 

partial destabilization. 
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3.2. Metalworking Fluid Emulsions 

 

Metalworking fluids are also known as “cutting and grinding fluids”, 

“metalforming fluids” or simply as “coolants”, but their function goes far beyond 

cooling: they transport the chips generated in the process away from the cutting 

zone, help to prevent rewelding and corrosion, reduce the power required to machine 

a given material, extend tool life, increase productivity, help to generate chips with 

specific properties, and are responsible for the cooling and lubrication (BYERS, 

2006). They are not only used for machining metals, but can also be used for 

machining plastics, ceramics, glass and other materials. 

These fluids can be classified as pure oils, soluble oils, semisynthetics and 

synthetics. Soluble oils are in fact O/W emulsions made from mineral or synthetic oils 

and constitute the largest amount of fluid used in metalworking – they are also the 

focus of this study. Usually they are sold as concentrated emulsions to be diluted in 

factory facilities, before filling up the machines. Typical dilution ratios for general 

machining and grinding are 1%-20% in water, with 5% being the most common 

dilution level (BYERS, 2006). 

The major component of soluble oils is either a naphthenic or a paraffinic oil in 

usual concentrations of 40%-85%. Naphthenic oils have been predominantly used 

because of their historically lower cost and ease of emulsification. Vegetable based 

oils may also be used to prepare a water-dilutable emulsion for metalworking, but 

they have higher costs, larger tendency to undergo oxidation and hydrolysis 

reactions, and microbial growth issues. One favorable aspect related to the use of 

vegetable oils is that they are biodegradable, resulting in less environmental 

problems involved in waste destination. 

Besides the oil and the water, there are several other components in MWF 

emulsions. The formulations are usually complex in order to ensure that the fluid has 

all the properties needed for machining, as well as chemical and microbiological 

stability. Several additives are added to fulfill the purpose of emulsification, corrosion 

inhibition, lubrication, microbial control, pH buffering, coupling, defoaming, dispersing 
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and wetting. While more than 300 different components can take part in the 

formulation of MWF emulsions, a single mixture may contain up to 60 different 

components (BRINKSMEIER et al., 2009; GLASSE et al., 2012). All additives are 

chosen according to the process and material type, so there is an infinite number of 

possible formulations. 

In the so-called soluble oils, i.e., MWF emulsions, emulsion stability is the 

most critical attribute (BYERS, 2006), because losses in stability would affect all 

other fluid characteristics, like lubricating and cooling. Changes in droplet size, even 

in its first stages, can decrease the performance of the MWF and thereby cause 

several problems in machining processes, such as reduction of tool life, corrosion, 

foam formation and others (EL BARADIE, 1996). Consequently, emulsifiers and 

other additives are chosen carefully to guarantee the stability of the fluid for as long 

as possible. As previously mentioned, the droplet size is an important property, 

because it has large influence on stability (ABISMAÏL et al., 1999; CHANAMAI; 

MCCLEMENTS, 2000; DICKINSON, 1992). The size of the emulsion particles also 

determines its appearance: normal “milky” emulsions have particle sizes of 

approximately 2.0 to 50 μm in mean diameter and micro-like emulsions are 

translucent solutions and have particle sizes of 0.1 to 2.0 μm 1(BYERS, 2006). 

However, the droplet size range of an emulsion changes over time. 

In machining processes there is a high rate of heat generation and it is 

estimated that about 10% of the heat produced is removed by the fluid, 80% by the 

chips, and 10% is dissipated over the tool. With time, this thermal stress can lead to 

partial degradation of emulsifiers and other additives, favoring microbiological 

contamination, which also contributes to degradation of emulsion components and its 

stability reduction, changing the droplet size profile over time (BRINKSMEIER et al., 

2009; BYERS, 2006). The increase in droplet size over time is defined as the “aging” 

of an emulsion. At a certain stage of this destabilization process, the fluid is 

considered “old” or “aged” and is disposed. 

Zimmerman et al. (2003) have found that a particle size shift from 20 to 2000 

nm in a commercial MWF resulted in a 440% increase in microbial load during a 48-h 

                                                 
1 The presented nomenclature for emulsion classification is typical of MWFs. Therefore, other types of emulsions may receive a 
different classification for different particle size range. 
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inoculation, leading to the release of acids, lowering pH, and further increasing 

particle size. As this process continues, it can ultimately lead to oil-water phase 

separation.  

Even though emulsion stability is critical in manufacturing processes and, 

consequently, monitoring is a key issue, for MWF it is normally carried out only by 

what is required in local legislations, like periodic measurements of oil concentration 

(since fluid concentration changes over time due to water evaporation), pH, viscosity 

and contamination. In this way, changes in fluid characteristics usually are detected 

only when the destabilization of the emulsion is already significant, leading to 

problems in machining processes, decreasing tool life, among others. In other 

occasions, fluids with no loss of performance are disposed because some of these 

measurements have reached the stipulated limit. In both situations, it has a 

significant impact on costs for this industry sector. This is why Greeley and 

Rajagopalan (2004) suggest that the evaluation of emulsion destabilization could be 

possibly used as a better indicator for monitoring the quality of MWF. 

Concerning the droplet size distribution (DSD), Figure 3 shows typical DSD 

curves of a fresh metalworking fluid, a metalworking fluid in use and an aged 

metalworking fluid. Due to this change in the distribution pattern, real-time monitoring 

of the DSD can be used as a more suitable and sensitive method than conventional 

techniques to detect changes in characteristics of these emulsions. This can be 

done, for example, by light scattering techniques, as discussed in later chapters. 

In this study two types of oil-in-water emulsions were evaluated: rapeseed oil 

emulsions and commercial metalworking fluids. Rapeseed oil is one of the oils used 

in some MWF formulations. An emulsion prepared with this oil, emulsifier and water 

constitutes a relatively simple system to evaluate the proposed technique before 

applying it in more complex commercial fluids. 
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Figure 3: Illustration of changes in droplet size distribution of a typical MWF due to 

emulsion aging. 
 

3.3. Methods for the Monitoring of Emulsion Destabi lization Process 

 

3.3.1. Conventional Methods 

 

An indication of the thermodynamic work involved in creating an emulsion is 

provided by the area of interface produced. As the emulsion ages, the area of 

interface decreases (MORRISON; ROSS, 2002), and this decrease means that the 

size of droplets in the emulsion increase. Thus, emulsion stability (or emulsion 

destabilization) can be monitored by measuring the change in droplet size. 

A direct way to estimate the average droplet size consists of examining the 

emulsion in a microscope. This involves placing a sample in the viewing area of a 

microscope, where an image can be captured and image analysis software can be 

used to extract a size-frequency distribution. The system studied needs to be 

transparent to light, which may require dilution of the emulsion. In addition, this 

technique produces a 2D image of the emulsion, which may affect the accuracy of 

the results. The number of droplets sampled is also small, unless a large number of 

repeated measurements are made. Confocal microscopy can be used to produce 3D 

images of emulsion droplets. However, in the absence of refractive index matching of 
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the continuous and discontinuous phases, this measurement is limited to the top 

layer of droplets (CHESTNUT, 1997). 

Another method used for measuring droplet size is by means of ionic 

conductivity. The electrical conductivity of an emulsion depends on the concentration 

of the dispersed oil phase. An unstable emulsion can have a variation in the 

concentration of the dispersed oil droplets from bottom to top. Therefore, the stability 

of an emulsion can be checked by comparing the electrical conductivity at the top 

and the bottom of the container. In a different method, the conductivity 

measurements can be based on the effect of caused by a droplet passing through a 

small orifice, on either side of which is an electrical contact. For the case of an O/W 

emulsion, when the oil droplet passes through the orifice, there is a dip in the 

conductivity of the material that can be related to the droplet size. These methods 

can not always be applied to concentrated emulsions and often require an electrolyte 

to be added to the aqueous phase in order to enhance conductivity contrast, which 

may affect emulsion stability. In addition, the high shear in the orifice can cause 

further emulsion droplet break-up (JOHNS; HOLLINGSWORTH, 2007). 

Acoustic methods are based on the fact that the speed of sound in an 

emulsion depends on the concentration of the dispersed oil phase. This speed is 

measured by transmitting a short pulse of sound and measuring the time required for 

the pulse to reach a detector opposite to the source. The advantage of determining 

emulsion stability by this method is that the sample can be measured without dilution, 

even for relatively concentrated emulsions, typically up to 30% (volume basis), and 

the container and the sample can be optically opaque. However, large errors can be 

caused by the presence of tiny gas bubbles. A large number of thermo-physical 

properties of both the continuous and discontinuous phases are required for the 

experimental data inversion procedure (COUPLAND; JULIAN MCCLEMENTS, 2001; 

MCCLEMENTS; COUPLAND, 1996). 

Nuclear Magnetic Resonance (NMR) techniques can be used to measure 

droplet sizes in the range between 50 nm and 20 mm in concentrated emulsions 

which are opaque and contaminated with other materials (e.g. gas bubbles and 

suspended solids). NMR is generally able to measure an emulsion DSD via the 

application of magnetic field gradients; such gradients are also able to image 



31 
 

emulsion macroscopic structure as well as the velocity field of flowing emulsions. 

They are non-invasive techniques that have the advantage of requiring little sample 

preparation, but that are not yet established as a standard technique for o/w 

emulsions despite the fact that the principle of the measurement is not new. This is 

caused by technical limitations, mainly with respect to the size range of droplets that 

can be accurately sized, and by the fact that it often requires expensive equipments, 

making the technique unavailable for routine measurements in a practical sense 

(HOLLINGSWORTH et al., 2004; JOHNS; HOLLINGSWORTH, 2007; KIOKIAS; 

RESZKA; BOT, 2004). 

Fiber-based Photon Density Wave (PDW) spectroscopy is a new method for 

the precise measurement of the optical properties of systems where conventional 

optical analysis is strongly hindered by multiple light scattering resulting from cells, 

particles or droplets. These properties are usually obtained without any dilution or 

calibration and are expressed as absorption and reduced scattering coefficients, 

which are linked to the chemical composition and physical properties of the sample. 

PDW spectroscopy is based on transport theory for photon propagation in multiple 

light scattering materials. A PDW is generated if intensity-modulated light is inserted 

in a strongly light scattering and weakly absorbing material. The amplitude and phase 

of the wave are characteristically influenced by the absorption and scattering 

properties of the investigated material. Thus, by quantifying shifts in the properties of 

the waves as a function of emitter/detector distance and modulation frequency 

enable the independent determination of absorption and reduced scattering 

coefficients. The scattering coefficients can be linked to the size of spherical particles 

by Mie theory and theories for dependent light scattering, with good results obtained 

in the equivalent diameter range of approximately  50 nm to 500 µm (HASS et al., 

2015). 

Light scattering is currently the most widely used method to size emulsion 

droplets and rely on the scattering of light by the droplets, which have a different 

refractive index from that of the continuous phase. The scattering patterns produced 

are related to the droplet size. The disadvantage of this technique is that relatively 

dilute systems are required, typically significantly less than 1% (volume basis) of the 

dispersed phase, as multiple scattering events may result in inaccurate estimations 
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of droplet size. The method also requires that the sample be reasonably transparent. 

The technique is flexible in that it can measure a wide range of droplet sizes, typically 

between 20nm and 2000 μm (COUPLAND; JULIAN MCCLEMENTS, 2001; JOHNS; 

HOLLINGSWORTH, 2007; NOVALES et al., 2003). 

Although there are many available methods for emulsion stability evaluation, 

hardly any one of them is used for evaluation of MWF in machining processes. Some 

of them require expensive equipment; while others are difficult to be implemented 

under machining process conditions. New fluids have their stability evaluated only by 

standard methods (ASTM D3707 and ASTM D3709), which involve storage under 

special conditions for a certain period of time and, after that, phase separation is 

visually evaluated. In some cases, droplet size is also measured by light scattering 

methods, but only for new fluids. When in use, the controls are much simpler: only 

what is required in local legislation and visual changes, including visual phase 

separation. 

 

3.3.2. Application of UV/VIS Spectroscopy and Optic al Models 

 

When a beam of light incides on a particle, the electrons of the particle are 

excited into oscillatory motion. The excited electric charges re-emit energy in all 

directions (scattering) and may convert a part of the incident radiation into thermal 

energy (absorption). The sum of both, scattering and absorption is called extinction. 

Depending on the chemical species, and on the energy of the incident light, 

scattering can be elastic or inelastic (like Raman scattering). 

Extinction by an individual particle depends on its size, refractive index and 

shape, and the wavelength of the incident light. For a typical DSD in emulsions, the 

most suitable optical models for treatment of spectroscopic data are based on the 

Mie theory (MIE, 1908). This model enables to estimate the light scattering patterns 

for light sources with given properties interacting with spherical particles of known 

size and optical properties dispersed in a medium with known optical properties. 
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Detailed descriptions of the Mie model can be found, for example, in Bohren and 

Huffman (1983). 

Thus, when a suspension of spherical particles of known refractive index is 

illuminated with light of different wavelengths, the resulting optical spectral extinction 

contains information that, in principle, can be used to estimate the particle size 

distribution of the suspended particles. 

A number of papers have been published in recent years, showing the 

application of UV/Vis spectroscopy to obtain information on the DSD and stability of 

emulsions (e.g. ASSENHAIMER et al., 2014; CELIS; GARCIA-RUBIO, 2002, 2008; 

DELUHERY; RAJAGOPALAN, 2005; ELICABE; GARCIA-RUBIO, 1990; GLASSE et 

al., 2013, 2014).  

Song et al. (2000) used spectroscopic measurements in a method called 

Turbidity Ratio for comparing stabilities of different emulsions. Deluhery and 

Rajagopalan (2005) proposed a method for rapid evaluation of MWF stability, by 

modifying the Turbidity Ratio method and establishing a stability coefficient called 

Wavelength Exponent (z). This coefficient was also based on the work of Reddy and 

Fogler (1981) and on the Mie Theory (MIE, 1908), and can be used to estimate 

stability of emulsions with nearly mono-disperse population of non-absorbing spheres 

by evaluating time-changes in the measured spectra. 

Equation 1 relates the measured turbidity τ(λ) via spectrometry with the optical 

path length L, the emitted light intensity, I0, and the received light intensity I, for light 

with wavelength λ. The term ln(I0/I) is referred to the absorbance or extinction. 
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From the Mie Theory, the turbidity, τ(λ), can be related to the particle size2 (x) 

by means of Equation 2, where f(x) is the DSD density function, Np is the total particle 

number per unit volume of the system, and Qext is the extinction efficiency, obtained 

from the Mie model. 

 

���� = �� �
� � ������, ����������∞�               (2) 

 

The extinction of light by emulsions is the result of light absorption by the 

continuous and dispersed phases plus scattering. For a nonabsorbing system, the 

turbidity can be directly related to scattering by the suspended droplets. The 

extinction efficiency Qext depends on the particle size parameter and the refractive 

index of both phases, evaluated at λ. For dilute dispersions consisting of 

monodisperse spherical nonabsorbing particles significantly smaller than the 

wavelength of the incident light, scattering is described by the Rayleigh scattering 

regime (BOHREN, C.F., HUFFMAN, 1983). Under this regime, and if it is assumed 

that the refractive index ratio does not depend significantly on the wavelength, which 

usually is a good approximation for such systems,  Qext can be expressed in a 

simplified form (REDDY; FOGLER, 1981), as shown in Equation 3, where the 

parameter k” is the size-independent component that incorporates the properties 

contained in the expression for the scattering coefficient under the Rayleigh 

scattering regime, λ is the wavelength and z is the exponent of the wavelength, λ, 

dependent on particle size and refractive index. 
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2 The size parameter x can be defined as the particle diameter, but some authors prefer to define it as the particle radius, 

making the proper adjustments in the corresponding equations. 
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 For this same dispersion of monodisperse spherical nonabsorbing particles, 

Equation 2 can be simplified and rewritten as Equation 4. 
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                (4) 

 

Under Rayleigh regime, the exponent z is equal to 4 (BOHREN, C.F., 

HUFFMAN, 1983) and decreases as the particle size increases. Note that the only 

variables in this equation are the size parameter x, the exponent z, the turbidity τ(λ) 

and the wavelength λ. Thus, for a given particle diameter, i.e., if x is constant, the 

wavelength exponent z can be expressed as the slope of ln(τ) versus ln(1/λ), as 

indicated in Equation 5. 
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Therefore, under the mentioned assumptions, the wavelength exponent for a 

given emulsion can be determined from turbidity measurements at different values of 

λ by fitting Equation 5 to the data. 

The same concept can also be applied to other particle systems, e.g. aerosols. 

However, in the study of the particle size of aerosols, the exponent of the wavelength 

is called Angstrom Exponent (å) and some additional restrictions are imposed in its 

definition, like the assumption of a homogeneous atmospheric layer, where the 

aerosol is distributed uniformly over the ranges of altitudes (ANGSTRÖM, 1930; 

JUNG; KIM, 2010; SEINFELD; PANDIS, 2006). 

Because of its dependency on particle size, Deluhery and Rajagopalan (2005) 

used the wavelength exponent z as an indicator of emulsion stability. In their paper, 
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the decrease in the exponent over time is related to the destabilization of emulsions 

by associating this process with the increase in droplet size by coalescence. 

This author and the team of researchers in the BRAGECRIM project 

generalized the application of this method, showing that, although the wavelength 

exponent is in its definition valid for monodisperse systems only, it can also be used 

for evaluation of stability of polydisperse systems, with monomodal and even bimodal 

distributions (GLASSE et al., 2013). In addition to that, we have also shown that 

there is no need to exclusively evaluate time-changes in the spectra, as proposed by 

Deluhery and Rajagopalan (2005), since the emulsion stability can also be evaluated 

by performing instantaneous measurement of turbidity and evaluating the quality of 

the fitting of the corresponding correlations. Although the use of the wavelength 

exponent for emulsion stability (or destabilization) evaluation is easy to be 

implemented, it performs not so well when applied to droplet populations with high 

polydispersity or above a certain range of droplet diameter. Figure 4 exemplifies the 

simulated behavior of the wavelength exponent with the increase of droplet diameter 

for a monodisperse distribution; there is a decrease in z values with the increase of 

the diameter. However, between 1 μm and 10 μm it increases again, with oscillatory 

behavior.  Therefore, it was not chosen in this study as the method of MWF quality 

evaluation, but it was used as an auxiliary method, with other techniques, for 

comparison. 

 

 
Figure 4: Illustration of the simulated behavior of the wavelength exponent z versus 

the droplet size of a monodispersed distribution (GLASSE, 2015). 
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In a different approach Celis and Garcia-Rubio (2002, 2008, 2004) and Celis 

et al. (2008) used spectroscopic data treated by optical models and inversion 

methods using regularization to obtain information on the DSD of a dispersed system 

in which the time variation of the extinction pattern can be correlated with properties 

of the emulsion. Most of these models were also based on the Mie Theory. 

Eliçabe and Garcia-Rubio (1990) used an algorithm based on optical models 

to estimate the DSD in emulsions and dispersions based on the optical properties of 

its components and on spectroscopic measurements and inversion methods. The 

method enables the acquisition of real-time data, enabling in-line monitoring of DSD 

in emulsions. In the model proposed by the authors, by defining the function K as 

 

.��, �� ≡ �
� ������, ����,                    (6) 

 

then Equation 2 can be identified as a Fredholm integral equation of the first kind, in 

which K(λ,x) is the corresponding Kernel and the numerical solution can be found by 

using an appropriate discrete model. If the integrand in this equation is discretized 

into (n-1) intervals, the integral can be approximated at a given wavelength λi with a 

sum, 

 

�0 = ∑ 203 	�3'34�                  (7) 

 

where: 
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The details of the discretization procedure are given in the referenced paper. 

The Kernels can be calculated by the Mie theory with the corresponding equations 

presented, for instance, in Bohren and Huffman (1983). 

If the extinction is evaluated at m wavelengths, λi, i=1, 2, …m, then Equation 7 

can be written in matrix form as 

 

�̅ = >̿� ̅              (13) 

 

where 
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If quadrature and measurement errors are considered, Equation 13 can be 

rewritten as the following equation. 
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�̅ = >̿�̅ + 	F               (14) 

 

Direct inversion of Equation 14 to obtain the DSD density function f is not 

possible due to the highly correlated elements, making this matrix singular and, 

consequently, not invertible. So, for solving this problem, it is necessary to apply 

some adequate inversion technique. 

Eliçabe and Garcia-Rubio (1990) used an inversion algorithm combining 

regularization techniques and generalized cross-validation for obtaining the DSD 

from the spectroscopic measurements – further details can be found in the 

referenced paper. Exploratory studies were carried out using the model proposed by 

the mentioned authors, but with poor results. These results are presented in the 

Appendix. Since the implementation of inversion algorithms usually does not provide 

accurate results for multimodal droplet populations, as the ones that can be found in 

aged emulsions (Figure 3), and generally the established optical models are not 

suitable for emulsions with high droplet concentration due to multiple scattering 

effects, no further investigations were carried out in this topic. Furthermore, Glasse 

(2015) has intensively studied the application of several inversion methods for 

retrieving DSD from the spectroscopic measurements and poor results were obtained 

for real emulsions like rapeseed oil emulsion and MWF; only a specific subset of 

simulated data produced acceptable results. 

In view of the difficulties associated with the application of inversion methods, 

an alternative approach was adopted in this thesis, applied to emulsions under high 

droplet concentration, based on pattern recognition techniques. In this case, the data 

measured by a spectroscopic sensor was associated with the corresponding DSD by 

means of a previously calibrated multivariate model. More specifically, light extinction 

spectra as the one illustrated in Figure 5 obtained for oil-in-water emulsions by 

spectroscopic measurements can be associated with the DSD density function by 

means of multivariate empirical models. 
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Figure 5: Example of a light extinction spectrum. 

 

Among different techniques that can be applied, non-linear models such as 

neural networks have been successfully applied in place of light scattering models to 

estimate particle size distributions in concentrated solid-liquid suspensions 

(GUARDANI; NASCIMENTO; ONIMARU, 2002; NASCIMENTO; GUARDANI; 

GIULETTI, 1997) and to predict the stability of suspensions (VIÉ; JOHANNET; 

AZÉMA, 2014). Thus, neural networks model were adopted in this thesis to associate 

light extinction spectra with the DSD. 
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4. MATERIALS AND METHODS 

 

4.1. Materials 

 

The experiments reported in this text were carried out at the University of 

Bremen by this author with the support of the German team of the BRAGECRIM joint 

project. In this study rapeseed oil emulsions as well as commercial metalworking 

fluids were evaluated. Rapeseed oil is one of the possible oils used in metalworking 

fluids. An emulsion prepared with this oil, emulsifier and water constitutes a simple 

system to evaluate the technique before applying it to more complex commercial 

fluids. Rapeseed oil emulsions were prepared in laboratory, with different droplet 

sizes, thus simulating both new and aged emulsions. For the MWF, aging was 

simulated in the laboratory by adding CaCl2 to the system in order to disturb the 

interface layer and thus enable droplet coalescence. For evaluation of MWF aging in 

machining application, thus simulating a real-case scenario, no further treatment was 

carried out besides dilution for achieving the recommended concentration. 

 

4.1.1. Rapeseed Oil Emulsions 

 

For the preparation of oil-in-water emulsions a commercial rapeseed oil was 

used (from the German company Edeka, density 0,92 g/mL, refraction index 1.47). 

The volume of the samples was 30 mL and the mass fraction of oil in the emulsions 

ranged from 0.06% to 1.59%. Other substances used in the experiments were an 

emulsifier, Polysorbate 80 (Tween 80, HLB 15, from Alfa Aesar, 0.07% to 0.42%), 

and deionized water.  

In the emulsification, an ultrasound equipment by Bandelin (Sonopuls HD 200, 

with deep probe Sonopuls Kegelspitze KE76) was used. The intensity was set at 

50% of the maximum for 1 to 5 minutes. The temperature variation was monitored 
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and used to estimate the dissipated energy in ultrasound emulsification by means of 

Equation 15, where ρ is the density of the dispersed or continuous phases, φ is the 

volumetric fraction of the dispersed phase, cp is the specific heat capacity and ∆T is 

the measured temperature difference of the fluid before and after the sonication. The 

initial temperatures of the samples was 20±1°C and typical ∆T of the emulsions were 

in the range of 10°C to 50ºC, varying according to the sonication time. A total of 105 

formulations were prepared by this method. 

 

GH = IJKLLMN = %O. P$ . Q�,$ + �1 − O�. PS . Q�,S). ∆T.                       (15) 

 

4.1.2. Metalworking Fluids 

 

4.1.2.1. Artificial Aging 

 

Commercial metalworking fluid, Kompakt YV Neu (oil concentration of 

approximately 40 wt.%, density 0,96 g/mL, refraction index 1.25), was obtained from 

Jokisch GmbH and prepared by dilution with deionized water to reach the MWF 

desired concentrations (3.5 - 5.2 wt.%). Artificial aging, i.e., partial chemical 

destabilization, was promoted by adding to the emulsions 0 - 0.3 wt.% of CaCl2 

(CaCl2 .2H2O, purity of 99.5%), from Grüssing GmbH. This salt was chosen because 

its presence is common in hard water used in machining facilities in Germany, where 

the tests were conducted, and poses as a problem precisely for accelerating the 

aging of the MWF diluted with this water. A total of 104 formulations were prepared 

by this method. 
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Figure 6: Chromatogram of MWF Kompakt YV Neu obtained by Gas 

Chromatography–Mass Spectrometry analysis in a GCMS-QP2010 chromatograph. 
 

Although it was not possible to have access to fluid formulation, GC-MS (Gas 

Chromatography–Mass Spectrometry) analysis was performed in a GCMS-QP2010 

chromatograph, from Shimadzu, for characterization purposes only. The resulting 

chromatogram is presented in Figure 6, where is shown over 60 substances used in 

the formulation of this fluid. The chemistry of metalworking fluids is as diverse as its 
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applications. Each formulating chemist develops his own fluid formula to meet the 

performance criteria of the metalworking operation; however additives with function 

of surfactants, biocides, emulsifiers and waxes are always present in the formulation. 

Analyzing the main peaks of the chromatogram, it is possible to identify some of 

these substances and its function in the MWF formulation: 2-phenoxiethanol 

(biocidal); 3-octadecyloxy-1-propanol, 3-octadecyloxy-1-propanol and cis-9-

tetradecen-1-ol (emulsifiers); 1-dodecanol and 2-dodecyloxy-ethanol (surfactants); E-

9-eicosene (lubricant); 1-octadecene (dispersant); heneicosane (paraffin wax). 

For the experiments aimed at applying the spectroscopic sensor and the 

neural network model to the monitoring of MWF aging, 0.3 wt.% of CaCl2 was added 

to metalworking fluid emulsions with concentration of 4 wt.% and the aging was 

monitored over time. 

 

4.1.2.2. Machining Application 

 

In the last stage of the experiments, a campaign was carried out aimed at 

obtaining data as near as possible of a real case scenario. In this campaign, a total of 

7 different commercial metalworking fluids (Acmosit 65-66, from Acmos Chemie KG; 

Grindex 10, from Blaser Swisslube; Unimet 230 BF, from Oemeta; Rhenus r.meta TS 

42, Rhenus XY 121 HM and Rhenus R-Flex, from Rhenus Lub; Zubora 10 M Extra, 

from Zeller-Gmelin) were monitored for a period of 13 months while they were used 

in 3 different machines in a machining facility at the University of Bremen (a vertical 

turning machine, Index C200-4D, a precision milling machine, Sauer 20 Linear, and a 

cylindrical grinding machine, Overbeck 600 R-CNC). All these MWF samples are oil-

in-water emulsions, made from synthetic oils and several additives to fulfill the 

purpose of emulsification, corrosion inhibition, microbial control, among others. Each 

emulsion was previously diluted to the recommended concentration for each 

corresponding application. Once the fluid loses water due to evaporation during the 

process, some adjustments in concentration where carried out over time. 
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4.2. Measurements 

 
4.2.1. Spectroscopic Measurements 

 
Light extinction spectra measurements were performed in all samples with a 

UV-Vis-NIR spectrometer, model HR2000+ES, from OceanOptics, with light source 

DH 2000-BAL, spectral resolution of 0.5 nm, and a dip probe with 6.35 mm diameter, 

127 mm of length and optical length of 2 mm, which enables in-line and real-time 

monitoring (Figure 7). The dark noise and the reference signal were recorded prior to 

measurement and subtracted from the measurement signal. Prior to the 

measurements, the light source was warmed up for 30 min to reach full intensity. 

Absorbance was measured for light wavelength in the range 200–1000 nm by probe 

immersion in the samples. 

 

 
Figure 7: Spectrometer with deep probe for in-line monitoring. Images at the 

right: detail of deep probe. 
 

4.2.2. Reference Measurements: Droplet Size Distrib ution 

 

The evaluation of the droplet size distribution for neural network calibration 

was based on measurements with a Malvern Mastersizer 2000 laser diffractometer, 

with particle size detection range from 0.02 to 2000 µm. The measurements of the 

emulsion samples were performed using the universal model for spherical particles in 

the measurement suite and the corresponding refractive index of each phase of the 
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emulsion. For each sample the mean values of the DSD from three consecutive runs 

carried out over 35s were recorded. 

Particle size analysis with Malvern Mastersizer is a well-established technique, 

but the samples need to be diluted prior to the analysis in order to prevent multiple 

scattering. Emulsion stability can be affected by dilution, although MWF formulations 

should not be affected by that, especially considering that the manufacture 

recommendation is for diluting it, within a certain range of concentration, before use. 

However, in order to confirm that the dilution of the samples for analyzing the DSD 

does not affect the result and can be trusted, a sample of the MWF Kompakt YV Neu 

was left in the Malvern Mastersizer for 1h and the DSD was recorded in 1 min 

intervals. Since no change in droplet size was observed during 1h (Figure 8), it is 

safe to say that the dilution in the Malvern Mastersizer does not affect the stability of 

the sample and this technique can be used for analyzing the DSD of MWF. 

 

 
Figure 8: Evolution of particle size with time for MWF Kompakt YV Neu. 

 

 

4.2.3. Wavelength Exponent 

 

As previously mentioned, the extinction of light by emulsions is the result of 

light absorption by the continuous and dispersed phases plus scattering. For a 

nonabsorbing system, the turbidity can be directly related to scattering by the 

suspended droplets and, therefore, can be directly related to the measured 

absorbance of the emulsion. So, the exponent z can be found by measuring the 
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absorbance (Abs) of the emulsion at different wavelengths and determining the slope 

of the ln(Abs) versus ln(1/λ) curves in a selected wavelength range (Figure 9). 

 

 
Figure 9: Illustration of wavelength exponent calculation. 

 

However, in order to use the wavelength exponent, it is necessary to assume 

that there is no absorption in the selected wavelength range and that all the 

measured absorbance is due to scattering. So, in order to choose the best range for 

these evaluations, it was obtained from the supplier of this MWF the absorbance 

spectrum of its main components, in different concentrations (Figure 10 and Figure 

11). Not much information was provided about these measurements, but it was 

possible to see the range of absorption of the main chemical species of the fluid prior 

to emulsification, i.e., without interference of droplets scattering in absorbance 

measurements. Based on this information, it is a good approximation to defined that 

the best range to assume absence of absorption by the emulsion is from 400-700 

nm. Thus, for the calculation of exponent z, it was chosen a 100nm interval in this 

range, from 500 to 600nm, and all the fittings were carried out for this wavelength 

range. 

In the evaluation of MWF in machining application, the linear coefficient of the 

fittings was also included in the collected data set. Although this coefficient itself does 

not have a physical meaning, it is related to the concentration and optical properties 

of the analyzed samples. Since it was not possible to have access to the optical 

properties of the MWF in this part of the study, the linear coefficient of the fittings was 
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used in this evaluation to compensate this lack of information and to help differentiate 

the data for different fluids. 

 

 
Figure 10: Absorbance spectrum of main components of MWF Kompakt YV Neu, in 

different concentrations (for components “A” to “F”). 
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Figure 11: Absorbance spectrum of main components of MWF Kompakt YV Neu, in 

different concentrations (for components “G” to “J”). 

 

4.2.4. Application to Long Term Monitoring of MWF D estabilization 

 

For the evaluation of MWF in machining applications, periodic physical-

chemistry and microbiological analysis of the fluid (pH, oil concentration, nitrite 

content and microbiological contamination by ATP method, according to German 

regulation requirements in norm VDI 3397) were performed over time as a routine of 

the facility’s employers, with supervision of the project team. Samples were collected 

weekly during 13 months and the measurements were performed by the machining 

operators in the laboratory facility. MWF also receive a classification in each analysis 

according to the machine operator perception concerning the performance of the 

MWF at the time when the samples were collected for analysis. The MWF samples 

were thus classified according to their “status” in three classes: 1, or green (no signs 

of deterioration), 2, or yellow (initial signs of deterioration), and 3, or red (high degree 

of deterioration). Although the machine operator perception of quality not always 

receives this qualitative classification in the facilities, generally it is one of the 

determinant factors for deciding when a MWF can be considered aged and has to be 
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disposed and replaced. Spectroscopic measurements and analysis of DSD of all 

collected samples were performed by the German team of the project, as previously 

described. 

 

4.3. Characterization Methods 

 

4.3.1. Pattern Recognition Techniques: Artificial N eural Networks 

 

An Artificial Neural Network (ANN) is a non-linear computational model based 

on the structure and function of biological Neural Networks. Like human brain but in a 

simpler level, ANN has the ability to recognize patterns and behaviors hidden in a 

data set organized as inputs and outputs and to generalize it for similar observations. 

Because of that it is said that these networks have the ability to “learn” about the 

behavior of a given system and then simulate it. 

The basic unit of an ANN is the neuron, an information-processing unit that is 

fundamental to its operation. The manner in which these neurons are structured is 

intimately linked with the learning algorithm used to train the network. In general 

there are three different classes of network architecture: Single Layer Feedforward 

Networks, Multilayer Feedforward Networks and Recurrent Networks (HAYKIN, 

1999). In the first class, all the neurons are organized in the form of a layer and there 

is an input layer of source nodes that projects onto an output layer of neurons, but 

not vice-versa. The second type distinguishes itself from the first by the presence of 

one or more hidden layers, whose computation nodes are correspondingly called 

hidden neurons. By adding one or more hidden layers, the network is able to extract 

higher order statistics. The last class of networks architecture distinguishes itself from 

Feedforward Neural Networks in that it has at least one feedback loop. In this study, 

only Multilayer Feedforward Networks were used. More specifically, a three layer 

feedforward network was fit to the experimental data. 
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Neural networks have been applied to several systems of high complexity in 

different fields where phenomenological modeling is not suitable or is difficult to be 

implemented. In the field of this study, some examples of previous applications of the 

method to retrieve particle size distribution from optical measurement methods 

include the study by Guardani et al. (2002), who used ANN models to replace the 

optical model and to obtain particle size distribution of three different suspensions 

from forward light scattering measurements. The advantage is the possibility of 

analysis of suspensions with higher concentrations, which cannot be accurately 

measured by optical models due to multiple scattering phenomena.  

 Berdnik and Loiko (2006) and Berdnik et al. (2006) used ANN for retrieving 

size and refractive index of spherical particles by angular dependence of scattered 

light in scanning flow cytometry as an easier way for obtaining this information than 

with the application of other methods involving the calculation of complex integrals or 

trial-and-error methods. 

In this thesis, multivariate models based on neural networks are used as an 

alternative to optical models to associate spectroscopic measurements with DSD. 

Thus, with the calibration of multivariate models, an association is established 

between the extinction pattern and the DSD of a given emulsion system. This 

approach provides a way to estimate the DSD in systems with high droplet 

concentration, in which multiple scattering does not enable the application of optical 

light scattering models. 

Figure 12 shows an illustration of a three-layer feedforward neural network, 

like the ones used in this study. To neuron i (i=1,2,...,q), located in layer j (j=1,2,3) of 

a network, the received information Sj is a weighted sum of the inputs Xi by the 

weights Wi,j (Equation 16). The last input, with value equal to 1, is a bias, which has 

the effect of increasing or lowering the net input of the activation function, depending 

on whether it is positive or negative, respectively. In this way, bias neurons may help 

the neural network to learn patterns, by allowing it to output a value of zero even 

when the input is near one. 
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U3 = ∑ V0,3W0 9 VXY�,3
X
04�                          (16) 

 

The output from neuron j is a response function Z3 � �%U3), in which f(Sj) can 

consist of different mathematical forms. In most cases a sigmoidal function is used 

(Equation 17). 

 

�%U3) � �
�[�7\6                        (17) 

 

 
Figure 12: Illustration of a feed-forward neural network (ASSENHAIMER et al., 2014). 

 

The fitting of a neural network consists of two steps: training, consisting of the 

adjustment of the parameters, or weights, for a given neural network structure, and 

validation. In the first part, known values of inputs and outputs are presented to the 

network and the set of weights is selected so that a minimum squared error E 

between calculated and observed values of the outputs is achieved. The squared 

error E is defined in Equation 18, where yk is the experimental (observed) value and 

Ok is the calculated value of output k. In this thesis the fitting was based on the 

backpropagation algorithm (RUMMELHART, D., MCCLELLAND, 1986). 
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G = ∑ ∑ 
]̂�B� − Z�̂B�
��̂4�_B4�                    (18) 

 

The second part of the fitting consists of the validation of the model. The 

calculated outputs are compared with experimental values of another set of 

observations, which have not been used in the training step, in order to check if the 

model is able to predict the desired results adequately. 

The computational programs used in this work for neural network model fitting, 

validation and simulations were developed in the Chemical Engineering Department, 

Escola Politécnica, Universidade de São Paulo (USP). 

 

4.3.1.1. Architecture of the ANN 

 

The architecture of the network is very important to define its capacity of 

convergence and generalization. The choice of a suitable architecture, with an 

adequate number of parameters, is the main factor for the success of the data 

training. 

The number of neurons in the input and output layers is determined by the 

problem structure. The difficulty is to find the ideal number of neurons in the hidden 

layer. This number, sometimes, may be determined by rules as in Loesch and Sari 

(TÁPIA, 2000, apud LOESCH and SARI, 1996), where “the number of neurons in the 

hidden layer should be equal to the geometric mean of the number of inputs and 

outputs”, or by the rule in Eberhart (TÁPIA, 2000, apud EBERHART, 1999), where 

“the number of neurons in the hidden layer should be equal to the square root of the 

sum of inputs and outputs”. Although these and other rules are sometimes suitable 

for solving specific problems, they have not been proven to be reliable in all 

applications. Thus, in most cases these rules can be adopted as a first estimation of 

the number of neurons in the intermediary layer of a feed-forward neural network, but 
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the most adequate number must be based on fittings carried out for different values 

of this parameter. 

The higher is the number of neurons in the hidden layers, more complex will 

be the network and large networks normally require large amounts of training data, 

which may not be available. An analysis of the degree of freedom of an ANN 

suggests that the number of observations available for training the network should be 

higher than the number of parameters in the network, otherwise, significant overfitting 

and poor generalization will be evident, which means that the error on the training set 

is driven to a very small value, but when new data are presented to the network the 

error is large; the network was successfully fitted to the data set, but it is unable to 

generalize the fitted model for new data. 

However, this is not necessarily true. Larger networks often result in lower 

generalization error, even with a training set smaller that may be expected 

(LAWRENCE; GILES; TSOI, 1997). The rule that states that “the number of 

parameters in the network should be (significantly) less than the number of 

examples” aim to prevent overfitting, but is unreliable as the optimal number of 

parameters is likely to depend on other factors, e.g. the quality of the solution found, 

the distribution of the data points, the amount of noise, and the nature of the function 

being approximated. Specific rules, such as the above, are not commonly accurate. 

In fact, larger networks may generalize well and better generalization is often 

possible because they have less difficulty to find with local minima (LAWRENCE; 

GILES; TSOI, 1997). This is also supported by the work of Bartlett (LAWRENCE; 

GILES; TSOI, 1997, apud BARTLETT, 1996), who also found that neural networks 

often perform successfully with training sets that are considerably smaller than the 

number of network parameters, because it may be difficult to approximate the 

training data with smaller networks.  Nevertheless, some precautions may be taken 

to confirm the absence of overfitting, like the removal of 20% to 30% of the data, 

which is not used in the training step of the network, to validate the fitting of the 

model. This step may be incorporated in the algorithm used for the fitting of the ANN 

in order to minimize simultaneously the error of the testing set and the validation set. 

If good results are found in the validation set, the hypothesis of overfitting can be 

discarded. 
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In this study, the most adequate number of neurons in the hidden layer was 

determined based on fittings carried out for different values of this parameter and 

30% of all data were used exclusively for the validation of the model, as explained in 

Chapter 4.3.1. 

 

4.3.1.2. Holdback Input Randomization Method (HIPR method) 

 

As shown in Figure 12, the structure of ANN models is characterized by the 

fact that the information provided by each input is distributed in a weighed among all 

neurons of successive layers. Thus, no model parameter is individually connected to 

a specific input variable, which hinders the evaluation of the relative importance of 

the ANN input variables. In view of this characteristic of ANN models, Kemp, Zaradic 

and Hansen (2007) proposed a method based on a sequential randomized 

perturbances in the input variables to determine the relative proportion to which each 

input variable contributes to the predictive ability of the ANN model in the evaluated 

range. This method was named by the authors Holdback Input Randomization 

Method, or HIPR method. 

In the HIPR method, the data are divided into a learning set, a validation set 

and a test set following the ratio 3:1:1. The ANN is adjusted with data from the 

learning set in the conventional way, and afterwards the error in relation to the 

validation set is computed. The test set is used to calculate the error of the model 

and thus to estimate the overall training success of the net. After the model is 

adjusted and the error of the model is evaluated, then, according to the HIPR 

method, each individual input variable is randomly varied within its range of validity 

and sequentially, and the mean squared error (MSE) is computed for all random 

values of each individual input variable. The contribution of each input variable to the 

predictive ability of the ANN model can be estimated based on how much it affects 

the MSE, compared to the minimum MSE value obtained in the model fitting step. 

The procedure can be repeated a number of times in order to increase the 

representativity of the test. The evaluation of the relative importance of each input 
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variable is thus based on the effect of the random perturbations on the MSE. If a 

given input variable does not significantly contribute to the fitted model of the ANN, 

then the MSE of the randomized data set will be close to the MSE relative to the 

original data set. If a parameter contributes strongly to the fitted model of the ANN, 

then the MSE of the data set in which this parameter is randomized will be larger 

than the MSE relative to the original data set. This is a robust, simple, general 

procedure for interpreting complex systems based on model performance, and the 

results can be obtained without making any assumptions regarding the architecture 

of the ANN model used. 

An executable version of the algorithm developed by the author of this 

method, using the C++ programming language, is available at 

http://www.bio.upenn.edu/faculty/dunham/hipr/PennNN.zip. The evaluation of the 

ANN models fitted in this study by the HIPR method was based on a computer 

program in FORTRAN developed at the Department of Chemical Engineering, 

Escola Politécnica, USP. More details about this method can be found in Kemp, 

Zaradic and Hansen (2007). 

 

4.3.2. Classification Techniques: Discriminant Anal ysis 

 

Discrimination is a multivariate technique where distinct sets of observations 

are separated and allocated in previously defined groups. As a separative procedure, 

it is often employed in order to investigate observed differences when correlations 

between observations from the data set are not well understood (JOHNSON; 

WICHERN, 2007). The goal of this technique is to find “discriminants”, which consist 

of quantitative criteria whose numerical values are used to separate variables or 

observations as much as possible and, sometimes, to establish a rule that can be 

used to optimally assign new observations to the labeled classes or groups. This 

“discrimination” can be carried out by several different techniques, like the Test of 

Hypothesis, the Linear Discriminant, the Quadratic Discriminant, the Fisher 
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Discriminant, among others. In this study, only linear and quadratic discriminant were 

evaluated. 

Considering two populations of observations xi, i =1,...n, with a priori 

probabilities of occurrence p1 and p2, where `� + `� = 1, and considering that the 

probability density functions f1(x) e f2(x) are as illustrated in Figure 13, then the 

probability of a given observation x0, belonging to a group m, be designated to a 

given group g, P(g|m), is expressed as Equation 19. 

 

 a�b|d� = a%�� ∈ fg|hB) = � �B�����	ij          (19) 

 

 
Figure 13:  Illustration of the distribution of observations between the groups 

(GUARDANI; NASCIMENTO, 2007). 
 

Thus, the probability of designating x0 to the wrong group is given by 

 

a�2|1� = a��� ∈ f�|h�� = � �������	i;          (20) 

a�1|2� = a��� ∈ f�|h�� = � �������	i+          (21) 

 

and the probability of designating x0 to the correct group is 
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a�1|1� = a��� ∈ f�|h�� = � �������	i+          (22) 

a�2|2� = a��� ∈ f�|h�� = � �������	i;          (23) 

 

Therefore, these probabilities can be expressed as 

 

a��� ∈ f�|h�� = a�1|1�. `�1�          (24) 

a��� ∈ f�|h�� = a�2|2�. `�2�          (25) 

 

when the observations are allocated in the correct group, and 

 

a��� ∈ f�|h�� = a�2|1�. `�1�          (26) 

a��� ∈ f�|h�� = a�1|2�. `�2�          (27) 

 

when the observations are allocated in the wrong group. 

“Costs” or “weights” may be assigned for misclassification, as shown in Table 

1, and the Expected Cost of Misclassification, ECM, is defined as shown in Equation 

28. 

 

Table 1: Cost table for misclassification of the observations (GUARDANI; 
NASCIMENTO, 2007). 

 Classification  
Group  G1 G2 

G1 0 C(2|1) 
G2 C(1|2) 0 
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Glm = l�2|1�. a�2|1�. `1 9 l�1|2�. a�1|2�. `2        (28) 

 

The algorithms for classification are based on the minimization of this function, 

which may be rewritten as Equation 29, 

 

Glm � l�2|1�. `1 � �������	
i;

9 l�1|2�. `2 � �������	
i+

       (29) 

 

where 

 

� �������	
i+

9 � �������	
i;

� � �������	
i+Yi;

� 1        (30) 

 

Thus, 

 

Glm � l�2|1�. `� n1 − � �������	
i+

o 9 l�1|2�. `� � �������	
i+

      (31) 

 

or 

 

Glm � � pl�1|2�. `�. ����� − l�2|1�. `�. �����q��	
i+

9 l�2|1�. `�     (32) 
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The last term of the previous equation is constant and positive, so the function 

ECM only decreases in the region R1 if the integrand is negative. Therefore, it is 

possible to establish the following criterion of classification: to designate x0 to R1 if 

Equation 33 is true. 

 

r+����
r;���� ≥ t��|��

t��|�� . �;�+            (33) 

 

For R2 it is possible to make the same assumptions and to obtain the following 

criterion of classification: to designate x0 to R2 if Equation 34 is true. 

 

r+����
r;���� < t��|��

t��|�� . �;�+            (34) 

 

Now considering G groups of multivariate observations (with dimension p), the 

probability density function corresponding to a normal distribution of observations in a 

given group g is expressed by Equation 35, where g=1, 2, …G. 

 

�g��� = �
����v ;w |∑ 	|j

+ ;w x�` n− �
� %x − μg){ ∑ 	g [� %x − μg)o       (35) 

 

Considering that the covariance matrices of the groups are not the same, i.e., 

each group has its own covariance matrix, and that the cost of designating an 

observation to the correct group, C(g|g), is equal to zero; and the cost of 

misclassification, C(g|m), is equal to 1, then it is possible to define a criterion for 

allocation of observations similar to the previous criterion, based on the product 

pg.fg(x) for each group. For this purpose, the linearized form of the normal probability 
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density function is more conveniently used, so that Equation 35 can be rewritten as 

Equation 36, where g=1, 2, …G. 

 

�	|`g�g���} = �	%`g) − 
�
�
 �	�2~� − �

� �	�∑ 	g � − �
� %x − μg){ ∑ 	g [� %x − μg)     (36) 

 

Therefore, a given observation, x0, is allocated in a group that maximizes the 

value of this expression. Since the second term of the right side of the equation is the 

same for all groups, the comparison between groups is based on the remaining 

terms, and the so-called Quadratic Discriminant is thereby defined and expressed as 

Equation 37. 

 

���Q�. �g = �	%`g) − �
� �	�∑ 	g � − �

� %x − μg){ ∑ 	g [� %x − μg)      (37) 

 

According to this criterion, an observation x0 is allocated to the group g if 

discr.Qg is maximum for this group. The discriminant is denominated quadratic due to 

the quadratic statistical distance, present in the equation. A variation of the Quadratic 

Discriminant Analysis (QDA) is the Linear Discriminant Analysis (LDA). In LDA, the 

covariance matrices are assumed to be equal for all groups. Thereby, Equation 37 

can be rewritten for expressing the linear discriminant as shown in Equation 38, 

which includes only the terms that depend on each group. 

 

���Q�. ��	g = �	%`g) + µ�{
Σ

[�x − �
�µ�{

Σ
[�
µ�        (38) 
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More detailed information about discriminant analysis can be found in Johnson 

and Wichern (2007). 

In this study, LDA and QDA were applied to the data using the statistical 

software Minitab, for convenience. All evaluations were based on cross-validation, 

which is a technique based on the exclusion of one or more observations from the 

data set used to estimate the discriminant and then test the criterion with these 

excluded observations. In the present thesis the cross-validation routine consisted of 

omitting one observation at a time, recalculating the classification function using the 

remaining data, and then classifying the omitted observation. 
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5. RESULTS 

 

5.1. Treatment of the Spectral Results 

 

Spectroscopic measurements of the samples resulted in spectra like the one 

illustrated in Figure 5, showing absorbance as a function of the wavelength. Due to 

the large resolution of the spectrometer, a large number of wavelengths is present in 

the data base. Since the absorbance values for close wavelength values are highly 

correlated, a preliminary treatment was necessary in order to reduce the number of 

input variables in the model. This consisted of applying a principal component 

analysis (PCA) to the data. 

This analysis is able to identify implicit correlations among groups of variables, 

and enables to detect the most important variables that affect the variance of the 

experimental data. PCA consists of transforming the original variables of a 

multivariate system into non-correlated or independent new variables (components) 

that are linear combinations of the original variables. Thus, from a number of n 

original variables xj (j = 1,…,n) a smaller number of p non-correlated components ei (i 

= 1,…,p) can be obtained, which are linear combinations of the original variables with 

the general form: ninjijii xwxwxwe ......11 ++= , in which wij are the weights or loadings of 

variable xj on the component ei and are computed so that each component 

represents the maximum of the system variability in decreasing order. The technique 

is used to reduce the number of variables involved in an analysis, and to detect 

underlying relationships among groups of variables. Detailed descriptions of the 

method are presented in books on multivariate statistical analysis (e. g., JOHNSON; 

WICHERN, 2002). The weights correspond to the eigenvectors of the covariance 

matrix of the original variables. Components are ordered according to the decreasing 

value of variances, which correspond to the eigenvalues of the covariance matrix. In 

this thesis numerical differences among variables were eliminated by adopting 

standardized variables (zero mean, and scaled by the standard deviation). The 

interpretation of the results was based on the absolute value of the weights wij, 
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(JOLLIFFE, 1986) for each component, in decreasing order of contribution to the 

variance. 

Figures 14 and 15 show the result of the principal component analysis applied 

to rapeseed oil emulsions and artificially aged metalworking fluids, respectively. In 

both analyses, only three components represent 99% of the total variance of the 

system. Therefore, it was possible to reduce the set of input variables from the 

spectra to the corresponded measured absorbance to only three most important 

wavelengths, presented in Table 2. As expected the wavelengths selected for 

rapeseed oil emulsions are near the ones selected for the artificially aged MWF. The 

small differences between them are probably due to differences in the optical 

properties, since there is no significant light absorption in the selected wavelength 

range, as previously showed in chapter 4.2. 

 

 
Figure 14: Relative importance of the principal components in the PCA of the 

rapeseed oil. 
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Figure 15: Relative importance of the principal components in the PCA of the 

metalworking fluid. 
 

Table 2: Wavelengths selected by PCA for each type of emulsion. 
Emulsion  Selected Wavelengths  

Rapeseed Oil 452 nm 662 nm 943 nm 
Artificially Aged Metalworking Fluid 460 nm 695 nm 943 nm 

 

Although there are other variables that can be used to characterize the MWF 

emulsions, like variables related to the composition of the emulsions, they were not 

included in the PCA analysis, because this preliminary treatment was aimed 

specifically at reducing the dimension of the spectroscopic data. The importance of 

non-spectroscopic variables for the fitting of the models was determined through 

manual experimentation. 

 

5.2. Descriptive Statistic of the Collected Data Se ts 

 

As described in Chapter 4, two types of emulsions were evaluated, generating 

two data sets: one for rapeseed oil emulsions, which constitutes a simple system to 

evaluate the technique before applying it to more complex commercial fluids, and 

one for artificially aged MWF. All the samples were prepared according to the 
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procedure described in the previous chapter. Figure 16 shows the distribution of the 

measured volumetric mean diameter of all the samples of both data sets. 

The rapeseed oil emulsions, which were prepared in laboratory, have 

significantly higher droplet size than commercial MWF, even after artificial aging. 

MWF formulations contain a combination of emulsifiers and other ingredients to 

achieve the desired droplet size and stability. Since rapeseed oil emulsions were 

prepared with much simpler formulations, it was not possible to achieve the same 

range of mean diameters. Although the higher frequency is in the range of smaller 

mean diameters, as desired, the presence of rapeseed oil samples with larger mean 

diameters represents a limitation for the application of the method of the wavelength 

exponent in the evaluation of the emulsions. Thus, this method was applied only in 

the evaluation of artificially aged MWFs. 

 

  
Figure 16: Volumetric mean diameter distribution of rapeseed oil emulsions and 

artificially aged MWFs data sets. 

 

5.3. Study on the use of the Wavelength Exponent as  a Measure of Emulsion 

Stability 

 

The applicability of the wavelength exponent measurement was investigated 

by this author and the team of researchers in the BRAGECRIM project as an 

indication of the emulsion stability by monitoring both the turbidity spectra and the 
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DSD of emulsions over time, for MWF samples destabilized by adding calcium 

chloride, as well as by evaluating the time evolution of the wavelength exponent and 

the fitting quality of Equation 5 to the experimental data, presented before and 

repeated here.  

 

# = $%&'�(�)
$*&'
+,
-                        (5) 

 

After the addition of CaCl2 to the MWF, which has the purpose of promote the 

artificial aging of the emulsions, the samples, which were translucent solutions, 

became immediately cloudy. As illustrated in Figure 17, the absorbance measured by 

the spectrometer increased over the whole spectra. Changes in shape and an 

increase in the oscillations of the turbidity curves are also demonstrated in Figure 17, 

indicating that the turbidity spectra are very sensitive to the destabilization caused by 

adding the CaCl2 to the MWF. As shown in Chapter 4.2, it was observed that no 

constituent of the studied MWF has significant absorption of the light in the range 

from 400 to 700 nm. Thus, the observed changes in the spectra in this range over 

time are mainly due to changes in the droplet population, although some interference 

of the CaCl2 in the spectra is also possible. In this study, the results are based on the 

absorbance measured in the range from 500 to 600 nm, in order to avoid any 

oscillation in the spectra that could be related to light absorption effects. 

Figure 18 presents results obtained with an MWF sample at two different times 

after addition of CaCl2. The observed changes in the absorbance spectra (Figure 

18a) correspond to a significant decrease in the slope of the straight lines (Figure 

18b), i.e., the wavelength exponent z obtained by linear regression of the data based 

on Equation 5. Figure 18c indicates that this destabilized MWF contains two droplet 

populations. 
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Figure 17: Absorption spectra the MWF at different times after addition of CaCl2. 

 

  

 
Figure 18: Experimental results with an MWF sample at two different times after 

addition of 0.3% CaCl2. (a) Absorbance spectra; (b) ln(τ) versus ln(1/λ) (Equation 5); 
(c) DSD (GLASSE et al., 2013). 
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As illustrated in Figure 18, the addition of CaCl2 resulted in substantial 

changes in the DSD of the MWF, with the formation of a second droplet population 

with larger diameters. The droplet size distribution was monitored over time for the 

artificially destabilized MWF samples and the results are displayed in Figure 19a. The 

DSD changes gradually from monomodal to bimodal. The larger mode corresponds 

to the new population formed. This larger mode gradually shifts towards larger 

droplet sizes and the DSD curve becomes progressively broader. Figure 19b 

illustrates for comparison the change of the DSD for a real MWF during machine 

operation within a time of 25 weeks of operation in a vertical turning machine, 

showing a similar behavior of the DSD of the MWF over time. The concentration of 

the samples from the turning machine was approximately 5-7% (volumetric basis). 

 

 
Figure 19: DSD of the MWF samples at different times after addition of CaCl2 (a) and 
the weekly change of the DSD of a real MWF during machine operation in a vertical 

turning machine (b) (GLASSE et al., 2013). 
 

Figures 20 to 22 present results for the artificially destabilized MWF samples 

after CaCl2 addition. The volumetric mean droplet diameter, D4.3, increased over time 

from approximately 150 nm to 700-1700 nm. This behavior was expected, since the 

addition of calcium may cause complexation between Ca2+ and the layer of additives 

adsorbed in the surface of the droplets, bridging between droplets and therefore 

reducing the electrostatic repulsion between them due to ion binding, thus facilitating 

the coalescence process. However, the DSD apparently tends to stabilize after 1000 

min. The dispersion of the DSD curves also increases with time as a consequence of 

the formation of the bimodal distribution and tends to stabilize for longer times. The 
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corresponding values of the wavelength exponent, z, are indicated in Figure 22. 

These values were estimated by linear regression from turbidity wavelength data 

based on Equation 5, where z is obtained from the angular coefficient of the 

regression. The linear coefficient of the regression is related to the optical properties 

of the fluid and emulsion concentration, but it was not evaluated since it has no 

relevance for the purpose of this study. 

 

 
Figure 20: Time evolution of the volumetric mean droplet diameter D4,3 for MWF 

samples after addition of CaCl2. 
 

 
Figure 21: Time evolution of the standard deviation of the DSD for MWF samples 

after addition of CaCl2. 
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Figure 22: Time evolution of the wavelength exponent z for MWF samples after 

addition of CaCl2. 
 

The decrease of the z-values is in accordance with the predicted tendency 

from scattering equations (BOHREN, C.F., HUFFMAN, 1983) and also with the 

results reported by Deluhery and Rajagopalan (2005), who found that a rapidly 

decreasing wavelength exponent indicates a fast growth in droplet size while an 

unchanging or relatively constant wavelength exponent indicates a stable emulsion. 

However, the destabilization of the fluids leads to the formation of a bimodal DSD, 

resulting in a significant decrease in the quality of the fitting of Equation 5 to the data. 

This is illustrated in Figures 23 and 24 for the artificially destabilized samples. As 

expected, the wavelength exponent decreases gradually with the increase in D4.3, but 

there is a significant reduction in the quality of the fitting as expressed by the 

coefficient of determination, R2, when the volumetric mean diameter, D4.3, reaches 

approximately 1μm. 

The use of the wavelength exponent has been proposed under the 

assumption of a monomodal and monodisperse distribution (DELUHERY; 

RAJAGOPALAN, 2005), and the decrease in its value with time has been associated 

to the growth in droplet size by coalescence. Thus, according to Deluhery and 

Rajagopalan (2005), the stability of an emulsion can be evaluated by measuring the 

turbidity at different wavelengths over a certain time period and monitoring the time 

evolution of the wavelength exponent obtained by fitting Equation 5 to the data. 

However, based on the results in Figures 23 and 24, the fitting quality of Equation 5, 
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e.g., the coefficient of determination, and the resulting wavelength exponent are 

measured at specific instants of time, and then the condition of the MWF emulsion 

can be evaluated in real time. Nonetheless, the droplet size of the emulsion may be a 

limitation for the use of this method. In this evaluation, the quality of the fitting is 

reduced around 1 μm of the D4.3, reducing therefore the reliability in the value 

obtained for z and consequently, the reliability of this method for being applied in the 

evaluation of emulsion destabilization, which is the purpose of this study, where is 

common the presence of bigger droplets. 

Therefore, it is necessary to find another technique for the monitoring of MWF 

destabilization and it was decided to carry on the study with a multivariate calibration 

method using ANN. Nevertheless, since the wavelength exponent is an indicative of 

emulsion stability, it was used as one of the neural network inputs in the evaluations 

of MWFs. 

 

 
Figure 23: Wavelength exponent z of the artificially destabilized MWF samples as a 

function of D4.3. 
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Figure 24: Coefficient of determination R2 for the fitting of Equation 5 to data of the 

artificially destabilized MWF samples as a function of D4.3. 

 

5.4. Studies to Estimate the Droplet Size Distribut ion of Rapeseed Oil 

Emulsions Based on Neural Network Fitting 

 

As previously shown, the droplet size distribution of an emulsion changes with 

the destabilization. Therefore, the aging of an emulsion can be monitored by 

monitoring its DSD. For this purpose, it was evaluated the applicability of neural 

network models for obtaining DSD of emulsions using the data from the 

spectroscopic sensor described in Chapter 4. 

The experimental data of rapeseed oil emulsion described in the previous 

items were used in the fitting of models to estimate the DSD of these emulsions 

based on spectroscopic measurements and fitting of the data by neural networks. As 

previously described and illustrated in Figure 12, the experimental data were fitted by 

a three-layer feed-forward neural network. Based on preliminary fittings trials, the 

following 7 variables were selected as inputs to the model: the measured values of 

extinction at the PCA-selected wavelengths (values at 452nm, 662nm e 943nm), the 

ultrasound energy transferred to the emulsion during the emulsification process and 

the mass fraction of water, oil and emulsifier (i.e., emulsion formulation, previously 

described in Chapter 4.1). It was not possible to use only data from spectra to fit an 

accurate model for obtaining the DSD of rapeseed oil emulsions due to the high 
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variability of the data, so variables related to emulsion formulation were included as 

inputs of the network. All the prepared samples were analyzed after the same time of 

preparation (after 5 minutes for absorbance spectrum and after 10 minutes for DSD 

analysis); however, most of the samples had presented low emulsion stability, 

especially the ones formulated to simulate old emulsions, which caused the high 

variability of the measured data. For this reason, it was necessary to add more 

information to the network to help in the learning process of the model and the best 

result were found using the 7 inputs previously cited. Since in a real application some 

of these inputs may not be available, like the inputs related to emulsion formulation, it 

is expected that this additional information will not be necessary in the studies of 

more stable emulsions and real-case scenario applications. As previously mentioned, 

the wavelength exponent z was not included as an input of the ANN due to the 

volumetric mean droplet diameter of the samples, with are outside the range of 

applicability of this method. 

As outputs 20 size classes in the range of 0.03 μm to 20.3 μm were arbitrarily 

selected, as multiples of √2, aiming at reconstructing the DSD profile with an 

acceptable resolution. This number of size classes as well as its range can be 

changed according to the desired applications. In the present study 20 classes in the 

mentioned range were considered adequate, in order to compare the results and to 

evaluate the technique. 

Thus, since the number of inputs and outputs is defined by the specific 

characteristics of the system, then the only degree of freedom was the number of 

neurons in the hidden layer. In the fitting step, for each value of this number, the 

minimum value of the error (Equation 18) was recorded and the best fitting was 

obtained with 6 neurons in the hidden layer and 500000 presentations of the data 

set. 
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Figure 25: Neural network fitting results for corresponded spectra of rapeseed oil 

emulsions, with 7 inputs and 20 outputs (training set). 



76 
 

 
Figure 26: Neural network fitting results for corresponded spectra of rapeseed oil 

emulsions, with 7 inputs and 20 outputs (validation set). 
 

Figures 25 and 26 show some results obtained in the best fitting, which are 

representative of the whole set. The plots in the left represent the normalized light 

extinction spectrum of the emulsion, measured with the spectroscopic sensor. The 

graphs in the right represent the corresponding DSD (measured distribution and 

distribution calculated by the network), where smaller droplet sizes are representative 

of newer emulsions and larger droplet sizes are representative of older emulsions. 

Good agreement between calculated and experimental values was obtained for 

monomodal as well as for bimodal distributions, indicating the potential of these 

models for monitoring oil-in-water emulsions in similar conditions. It is also possible 
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to observe how the measured spectra change with the destabilization of the emulsion 

and the growth of the droplet size, proving that they are indeed correlated to each 

other. The results of the fitting were presented as DSD curves instead of the more 

common “experimental versus calculated” curves because visualization of the results 

is better in DSD curves, due to the high number of outputs. 

 

5.5. Studies to Estimate the Droplet Size Parameter s Mean Diameter and 

Distribution Variance of Artificially Aged MWF Base d on Neural Network 

Fitting 

 

After the evaluation of rapeseed oil emulsions have indicated that the chosen 

technique has potential for the monitoring of emulsions, the same method was 

applied to artificially aged MWF. 

A three-layer feed-forward neural network as illustrated in Figure 12 was fitted 

to the experimental data. In total, the following 8 variables were used as inputs: light 

extinction values selected by PCA (values at 460nm, 695nm and 943nm), 

wavelength exponent, concentration of oil, water and CaCl2, and the time interval 

between addition of salt to the emulsion and each measurement (aging time). Once 

again, it was not possible to use only data from spectra to fit an accurate model. The 

presence of CaCl2 in different concentrations in the emulsions affects the light 

absorbance in the measurements. For this reason, it was necessary to compensate 

this interference and to add more information to the network to help in the learning 

process of the model, being the best result found using the 8 inputs previously cited. 

In a real application some of these inputs will not exist (no chemicals are added to 

accelerate the emulsion destabilization in real application), so it is expected that this 

additional information will not be necessary in the studies of real-case scenario 

application.  

As outputs of the neural network were selected the volumetric mean diameter 

(D4,3) of the droplets (in μm) and variance of the droplet size distribution (in μm2). The 

choice of D4.3 as mean diameter was due to its higher sensitivity to the presence of 
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larger particles, which is related to the partial destabilization of the emulsion. 

However, it is possible that two populations with different distributions have the same 

mean diameter, so the variance of the droplet size distribution was also chosen as an 

input to provide information about the dispersivity of the distribution. The best fitting 

was obtained with 6 neurons in the hidden layer and 1 million presentations of the 

data set to the NN. 

Figure 27 shows the results obtained in the fitting for emulsions with different 

aging times and consequently different mean diameters and variances. As shown in 

the plots, a good agreement between calculated and experimental values was 

obtained. 

 

 
Figure 27: Neural network fitting results for a network with 6 neurons in the hidden 

(intermediary) layer. 
 

The evaluation of the relative importance of each input variable of the model 

was carried out based on the HIPR method (“Holdback Input Randomization 

Method”), proposed by KEMP; ZARADIC and HANSEN ( 2007). The results are 
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shown in Figure 28. According to this analysis, the least important variable is the 

wavelength exponent. Thus, this variable was excluded from the inputs and a new 

neural network fitting was carried out based on the seven remaining model inputs. As 

shown in Figure 29, again there is a good correlation between calculated and 

experimental values. Removal of this input has in fact slightly improved the validation 

results. No improvement was obtained by removing the other least important inputs, 

indicating that this is the best fitted model for this system. 

It is surprising that the evaluation of the relative importance of the neural 

network inputs has identified the wavelength exponent as the least important variable 

in the data set, since this has been a frequently adopted criterion in the literature 

associated with emulsion stability. However, since its value is estimated from the 

differentiation of spectral data in relation to the wavelength in log-log correlations, it is 

possible that, for this data set, the rather low accuracy of such estimation method, 

especially for the samples with longer aging times and, consequently, larger 

particles, causes too much noise in the data, and that the other variables from the 

spectral data (light extinction at 3 different wavelengths) provide similar information 

with less noise. This confirms previous findings that the particle size can indeed be a 

limitation for the application of the wavelength exponent method, since there are a 

significant number of samples in the data set with volumetric mean diameter larger 

than 1 μm, i.e., in the size range where it was previously shown to result in a poor 

fitting in the calculation of z. In Figure 28 it is also possible to see that the two main 

inputs of the model are the concentration of water and oil (MWF), justified by the fact 

that they have a direct impact on the droplet population and, consequently, on the 

spectroscopic measurements. 
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Figure 28: Relative contribution of each input to the predictive ability of the neural 

network model. 
 

 
Figure 29: Neural network fitting results for a network with 6 neurons in the hidden 

(intermediary) layer reducing the number of inputs. 
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5.6. Studies to Rebuild the Droplet Size Distributi on of Artificially Aged MWF 

Emulsions Based on Neural Network 

 

Although parameters such as mean diameter and distribution variance can be 

used to monitor the aging and stability of emulsions, the droplet size distribution can 

provide more complete information about the emulsion structure. Due to that, another 

neural network fitting was performed. In this case, 7 variables were used as inputs: 

light extinction values selected by PCA at 460nm, 695nm and 943nm, concentration 

of oil, water and CaCl2, and the time interval between addition of salt to the emulsion 

and each measurement (aging time). In this study the wavelength exponent was not 

used because the previous evaluation has shown that it is not so important to the 

model.  

As outputs of the neural network 17 sizes classes were selected, from 0.04 µm 

to 10 µm, as multiples of √2 , aiming at reconstructing the DSD profile with 

appropriate resolution. The best fitting was obtained with 6 neurons in the hidden 

layer and 500000 presentations of the data set.  

Figures 30 and 31 show some of the results obtained in the best fitting, which 

are representative of the whole set, for emulsions with different aging times and 

consequently different DSD. The plots on the left represent the normalized light 

extinction spectrum of the emulsion, measured with the spectroscopic sensor. Those 

on the right represent the corresponding DSD (measured distribution and distribution 

calculated by the network), where smaller droplet sizes are representative of newer 

emulsions and larger droplet sizes are representative of emulsions with higher aging 

times. Again the results of the fitting were presented as DSD curves instead of the 

more common “experimental versus calculated” curves because visualization of the 

results is better in DSD curves, due to the high number of outputs. 

A good agreement was obtained between calculated and experimental values, 

not only for monomodal but also for bimodal distributions, with different proportions 

between each droplet population. It is also possible to observe how the measured 

spectra change with the destabilization of the emulsion and the growth of the droplet 
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size, as expected. These results indicate the potential of these models for monitoring 

oil-in-water emulsions, although this fitted model is limited to evaluations with similar 

conditions and the same set of inputs. It would be interesting to find a model suitable 

for a more generic application, even if it is valid in the studied range only. This is 

discussed in other parts of this text, in the study of a real-case scenario. 

 

 
Figure 30: Neural network fitting results for artificially aged MWF, with 7 inputs and 

17 outputs (training set). 
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Figure 31: Neural network fitting results for artificially aged MWF, with 7 inputs and 

17 outputs (validation set). 
 

5.7. Application of the Neural Network Model to Mon itor MWF Emulsion 

Destabilization 

 

The previous model indicates that the combination of a UV/Vis 

spectrophotometric system with neural network models results in an optical sensor, 

which is capable of detecting changes in DSD during aging of MWF. In order to 

evaluate the potential use of this application, a monitoring experiment was carried out 

as follows. A commercial metalworking fluid emulsion with concentration of 4 wt.% 
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was artificially destabilized by adding 0.3 wt.% of calcium chloride and the aging was 

monitored over time with the optical sensor. These concentrations are within the 

range of fitting of the model, thus, of its validity. The spectroscopic data were fed to 

the adjusted model in order to estimate the droplet size distribution of the emulsion 

and evaluate its change over time. 

In Figure 32, the plots on the left represent the normalized light extinction 

spectrum of the emulsion, as measured with the spectroscopic sensor, and the plots 

on the right represent the corresponding DSD (measured distribution and distribution 

calculated by the model). As shown in the plots, the DSD calculated by the model is 

similar to the DSD obtained by measuring the samples with the laser diffractometer. 

The model was able to calculate the distribution with good accuracy as well as to 

detect the evolution of the destabilization of the emulsion, which is associated with 

the change in the DSD from monomodal to bimodal. It is also possible to observe the 

evolution of the measured spectra with the destabilization of the emulsion and the 

growth of the droplet size, so it is clear that both phenomena are correlated. 

Although the fitted model is suitable only for applications in similar systems, 

the results point out the potential of this technique for monitoring such emulsions, 

with the advantage that apparently the results are not affected by multiple scattering, 

suggesting that this approach may even be applied to more concentrated emulsions. 
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Figure 32a: Droplet size distribution calculated by the adjusted neural network model 

and measured by the laser diffractometer (Malvern Mastersizer) before CaCl2 
addition (A), and after 8 min (B), 20 min (C) and 30 min (D) after CaCl2 addition. 
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Figure 32b: Droplet size distribution calculated by the adjusted neural network model 
and measured by the laser diffractometer (Malvern Mastersizer) 80 min (E) and 1040 

min (F) after CaCl2 addition. 
 

5.8. Application of the Spectroscopic Sensor to the  Long-Term Monitoring of 

Metalworking Fluids Aging in a Machining Facility 

 

The previous results indicate the potential of this technique for monitoring 

emulsion destabilization. However the obtained models are limited to a set of inputs 

that may not be available in common applications, like information about emulsion 

formulation or addition of chemicals to accelerate the destabilization process. In 

order to check the applicability of the method, a long-term monitoring study of 

commercial MWFs in a machining facility was carried out. The objective of this 

campaign was to obtain information as near as possible of a real-case scenario on 

the performance of the spectroscopic probe plus neural network as a sensor for 

monitoring MWF destabilization. Data were collected from 7 different commercial 

metalworking fluids, during a period of 13 months, from 3 different machines, as 

described in Chapter 4.1.2. After cleaning of the raw data set, to eliminate wrong or 
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missing recordings, as well as outliers, the resulting data set contained a total of 88 

observations. 

The usual control of quality of MWFs consists of periodic analyses of some 

properties of the fluid only, and the judgment by the machine operation personnel. 

These periodic analyses are the basis for the judgment of the fluid quality by the 

machine operation personnel. In this thesis, these results are expressed in the form 

of a status classification of the fluid. Thus, in the specific machining facility used in 

this study, MWFs are classified as: status 1/green (no signs of deterioration), status 

2/yellow (initial signs of deterioration), and status 3/red (high degree of deterioration). 

Figure 33 shows the distribution of the collected data of the long-term 

monitoring study, grouped by the status in which each sample was classified by the 

machine operation personnel. The measured variables in this study, as described in 

Chapter 4, are listed below. 

• Variables commonly used in the monitoring of MWF quality in the studied 

machining facility, whose control is required by specific legislation applied to 

machining industry: 

• pH; 

• Concentration of the fluid, measured in wt.%; 

• Nitrite content in the MWF, measured in mg/L; 

• Microbiological contamination by ATP method, expressed as log(ATP) 

and measured in CFU/mL (colony forming unit per mL). 

• Variables from the spectroscopic sensor: 

• Wavelength exponent of the samples, z, calculated by the fitting of 

Equation 5, where z is the slope of the curve, calculated between 500-

600 nm; 

• Linear coefficient of the wavelength exponent fitting, i.e., of the fitting of 

Equation 5, which is related to optical properties of the fluid and 

emulsion concentration. 

• Reference measurements: 

• Volumetric mean diameter D4.3, calculated from the obtained DSD, 

measured in a Malvern Mastersizer diffractometer. 
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Although the previous studies showed the limitation of the application of the 

wavelength exponent method, this limitation is related to the reliability in the value 

obtained in the fitting, i.e., its accuracy. However, higher values of z for younger 

emulsions and lower values of z for older emulsions are obtained, so the trend is 

maintained. The mentioned inaccuracy may have high impact in simpler systems, like 

the one previously studied, where other variables were probably providing equivalent 

information, but these measurements may contribute to the evaluation of more 

complex systems, like in this long-term monitoring experiment, where the spectra are 

very noisy, as illustrated in Figure 34. As previously mentioned, the linear coefficient 

of the fittings was also used in this evaluation to compensate for the lack of 

information on the optical properties of the MWFs and to help differentiate the data 

for different fluids. 

By analyzing Figure 33, it was expected that some correlation between the 

measured variables and the status of the fluid would be apparent. However, this 

correlation is not clear. Samples classified as Status 1/green should belong to new 

fluids, i.e., fluids without signs of deterioration. As expected, these samples show 

higher values of pH. The pH of MWFs tends to decrease during its use, due to 

chemical degradation, caused by thermal stress. However, the broadness of the 

distribution of this variable for Status 1 is higher than for Status 2/yellow. Once 

lowering the pH favors microbiological contamination, usually chemicals are added to 

the MWF during operation when the pH shows a significant decrease, in order to 

increase it again to its original value, but the control is not much accurate, so a higher 

standard deviation in pH values was expected for samples of older fluids, i.e., for 

Status 2 and Status 3. In addition, the distribution of the concentration values of the 

MWF samples should be similar for all cases, since the value is periodically corrected 

by the addition of water, otherwise an increase in the concentration from Status 1 to 

Status 3 would be observed. However, these expected tendencies are not observed 

in Figure 33. 
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Figure 33:  Distribution of the variables of the collected data set, grouped by status. 
(Concentration was measured in %, nitrite in mg/L, microbiological contamination in 

CFU/mL and volumetric mean diameter in μm) 
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Figure 34:  Illustration of the obtained spectra of three randomly chosen samples in 

the long-term monitoring experiment. 
 

Water-mixed MWFs contain various nutrients for bacteria so that they are 

always contaminated with microorganisms. The microbiological contamination is 

measured by ATP method, expressed in Figure 33 as log(ATP), and for this variable 

some correlation with status is observed. As expected, the log(ATP) increases from 

Status 1 to Status 3, since the increase in microbiological contamination favors the 

degradation of the fluid. Anaerobic bacteria degrade nitrate or nitrite to ammonia and 

sulphate or sulphonate to hydrogen sulphide, causing unpleasant odors, so the 

monitoring of nitrite content in the MWFs is also required by specific legislation 

applied to machining industry. Fluids with higher nitrite content will present altered 

levels of odor, so it was indeed expected to find higher values for this variable in 

samples classified as Status 3/red, i.e. with higher signs of deterioration. However, 

the corresponding plot in Figure 33 shows no clear tendency regarding this variable. 

Although different distribution curves are observed, no clear tendency exists based 

on the value of this variable. The analysis of the distribution of the volumetric mean 

diameter in Figure 33, used as the reference measurement, does not show any 

visual correspondence between the D4.3 and the status, although it is known that the 

mean diameter should increase with the aging of the fluid and, consequently, from 

Status 1 to Status 3. These results indicate that the MWF monitoring evaluation 

adopted by the machine operation personnel is mostly determined by factors related 

to microbiological contamination of the fluid, while factors that may affect the 

performance of the MWF appear to have less importance. Nevertheless, it was 

decided to use of a statistical method to find out if there is a correlation between all 

the measured variables and the status classification given by machine operators, 

which supposedly should exist. 
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5.8.1. Discriminant Analysis for Evaluating the Sta tus Classification 

 

Assuming that the variables used in monitoring the quality of the MWF (pH, 

concentration, nitrite content and microbiological contamination by ATP method) are 

adequate for the characterization of the MWF status, these variables were included 

in a classification procedure based on the discriminant analysis technique. The 

objective in this part of the study is to compare the results obtained with this 

statistical technique and the judgment criteria used by the operation personnel in the 

machining facility in terms of the three groups: 1/green, 2/yellow and 3/red. The 

efficiency of the classification method was based on the fraction of correctly classified 

observations in the original groups. Here, the denomination “original group” or 

“original status” refers to each of the three groups resulting from the classification 

made by the machine operating personnel. Two types of discriminants were tested: 

linear and quadratic. Besides the mentioned variables, the wavelength exponent and 

the linear coefficient of the linearly adjusted spectra were also included as predictors 

in the discriminant analysis. The effect of using only the variables measured by the 

spectroscope plus concentration and pH as predictors was also evaluated in these 

tests. 

 Table 3 presents the results obtained with different groups of predictors tested 

and the efficiency of each discriminant, indicated as “quality of the fitting”. The 

maximum rate of success was 81% and the addition of the wavelength exponent and 

the linear coefficient to the group of predictors did not bring any significant 

improvement in the quality of the fitting. However, the exclusion of the nitrite content 

and microbiological contamination as predictors for the status decreased the quality 

of the classification significantly. Since the previous analysis suggests that status 

classification done by machine operation personnel may be mostly determined by 

factors related to microbiological contamination of the fluid, the effect of using the two 

variables related to microbiological contamination as predictors, i.e., nitrite content 

and microbiological contamination by ATP method, was evaluated. The maximum 

rate of success was 81% in this case, too. Thus, no improvement in the quality of the 

fitting was obtained. These results confirm the hypothesis that the variables pH and 

concentration do not have much influence on the status classification of the MWF, 
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and also suggest that the factors related to microbiological contamination of the fluid 

are not sufficient for determining its quality classification, here represented by the 

status. 

 

Table 3: Predictors used for status discrimination and quality of resulting fitting. 
 Fitting 1 Fitting 2 Fitting 3 Fitting 4 Fitting 5 Fitting 6 

Predictors 

pH pH pH pH pH - 
Concentration Concentration Concentration Concentration Concentration - 

Nitrite Nitrite Nitrite - - Nitrite 
Log(ATP) Log(ATP) Log(ATP) - - Log(ATP) 

- Wavelength 
Exponent 

Wavelength 
Exponent 

Wavelength 
Exponent 

Wavelength 
Exponent - 

- - 

Liner 
Coefficient of 
Wavelength 
Exponent 

Fitting 

- 

Liner 
Coefficient of 
Wavelength 
Exponent 

Fitting 

- 

Quality of 
Linear Fitting 80% 80% 81% 55% 53% 80% 

Quality of 
Quadratic 

Fitting 
80% 78% 81% 58% 62% 81% 

 

Figures 35 to 40 show the distribution of the data in all fittings. Discriminant 

analysis was based on the selected predictors for classifying each observation of the 

data set in one of the three groups of status, 1/green, 2/yellow or 3/red, and each 

group of this classification is presented in a separated panel of those figures. For 

each panel, i.e., each group of classification of the data, the distribution of the original 

status of the corresponding set of observations is presented, with the purpose of 

analyzing the accuracy of the fitting in each group. 

For fittings 1 to 3 (Figures 35 to 37), most of the observations classified as 

status 1 or 3, really belong to that group. However, the discriminant analysis was not 

able to correctly discriminate the observations that should originally belong to group 

2, and observations from all groups were classified in this group. Thus, the 

boundaries between these groups of data classification used in the current method of 

MWF monitoring are apparently diffuse. For fittings 4 and 5 (Figures 38 and 39) the 

results are even worse, with poor quality of fitting observed in all groups. In fitting 6 

(Figure 40) most of the observations classified as status 1 or 2, really belong to that 

group, so it was the only fitting to improve the results obtained for Status 2. However, 

a significant number of observations were misclassified as Status 3. 
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In conclusion, the results of the discriminant analysis show that there is much 

overposition of the three groups, which are hardly discriminated by statistical criteria. 

This confusion among resulting groups can be caused by one of the following 

hypotheses: 

• The data were not correctly classified by machine operators and actually 

should receive a different status classification. If this hypothesis is true, then a 

new method is needed for quality monitoring of MWF. 

• The data were correctly classified by machine operators. If this is true, then 

there may exist subjective or unmeasured variables besides the currently 

measured ones that may have affected the status classification. 

 

 
Figure 35: Comparison between status distribution of the data after discriminant 

analysis and original status in fitting 1. 
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Figure 36:  Comparison between status distribution of the data after discriminant 

analysis and original status in fitting 2. 
 

 
Figure 37:  Comparison between status distribution of the data after discriminant 

analysis and original status in fitting 3. 
 

21

40

30

20

10

0
321

12

9

6

3

0

32

20

15

10

5

0

Data classif ied as Status 1

Original Status of the Data

F
re

qu
e

nc
y

Data classif ied as Status 2

Data classif ied as Status 3

Distribution of the Data in Fitting 2
Linear Fitting

21

40

30

20

10

0
321

12

9

6

3

0

3

20

15

10

5

0

Data classif ied as Status 1

Original Status of the Data

F
re

qu
e

nc
y

Data classif ied as Status 2

Data classif ied as Status 3

Distribution of the Data in Fitting 3
Linear Fitting



95 
 

 
Figure 38:  Comparison between status distribution of the data after discriminant 

analysis and original status in fitting 4. 
 

 
Figure 39:  Comparison between status distribution of the data after discriminant 

analysis and original status in fitting 5. 
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Figure 40:  Comparison between status distribution of the data after discriminant 

analysis and original status in fitting 6. 
 

These results have motivated the study of an alternative criterion for 

classification of these MWF samples, based on the fitting of a neural network model 

as a pattern recognition technique, which should be capable of associating a given 
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the machine operators. The results are shown in the next item. 
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groups. For status 1/green, some of the models were able to calculate values in an 

acceptable range, but all results for status 2/yellow and 3/red resulted in poor fittings. 

Evaluating the distribution of the calculated data, it is shown that in the training 

set the mean of the distribution is close to the expected value for the corresponding 

status, although there is overposition between the groups. However, in the validation 

set of fittings 1 to 3, the mean values of the distribution of Status 2 are closer to the 

value of 3 than the expected value of 2. In fittings 4 and 5, the results are even worse 

and the mean values of the distribution of Status 2 are higher than the ones from 

Status 3, i.e., it seems to be an inversion between both groups. In fitting 6 it was not 

possible to achieve any acceptable result, since all the tested conditions have 

returned the value of 0 for all observations and all groups, showing that, in this fitting 

and this data set, there are not enough inputs to allow fitting of a model and the only 

possible result for the output is that it has the value of 0 in all observations. 

 

Table 4: Inputs used in the neural network fitting. 

 
Neural 

Network 
Fitting 1 

Neural 
Network 
Fitting 2 

Neural 
Network 
Fitting 3 

Neural 
Network 
Fitting 4 

Neural 
Network 
Fitting 5 

Neural 
Network 
Fitting 6 

Inputs 

pH pH pH pH pH - 
Concentration Concentration Concentration Concentration Concentration - 

Nitrite Nitrite Nitrite - - Nitrite 
Log(ATP) Log(ATP) Log(ATP) - - Log(ATP) 

- Wavelength 
Exponent 

Wavelength 
Exponent 

Wavelength 
Exponent 

Wavelength 
Exponent - 

- - 

Linear 
Coefficient of 
Wavelength 
Exponent 

Fitting 

- 

Linear 
Coefficient of 
Wavelength 
Exponent 

Fitting 

- 

       
Outputs Status Status Status Status Status Status 

       

Best Fitting 

6 neurons in 
the hidden 
layer and 
100,000 

presentations 
of the data set 

6 neurons in 
the hidden 
layer and 
100,000 

presentations 
of the data set 

6 neurons in 
the hidden 
layer and 
100,000 

presentations 
of the data set 

6 neurons in 
the hidden 
layer and 
500,000 

presentations 
of the data set 

8 neurons in 
the hidden 
layer and 
500,000 

presentations 
of the data set 

It was not 
possible to 
achieve any 
acceptable 

result 
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Figure 41:  Comparison between calculated status by the neural network model in 

fitting 1 and original status of the data. 
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Figure 42:  Comparison between calculated status by the neural network model in 

fitting 2 and original status of the data. 
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Figure 43:  Comparison between calculated status by the neural network model in 

fitting 3 and original status of the data. 
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Figure 44:  Comparison between calculated status by the neural network model in 

fitting 4 and original status of the data. 
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Figure 45:  Comparison between calculated status by the neural network model in 

fitting 5 and original status of the data. 
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The interpretation of these results lead to hypotheses that are similar to the 

ones stated in the previous item, which are: 

• The data were not correctly classified by machine operators and actually 

should have received a different status classification. If this hypothesis is true, 

then a new method is needed for quality monitoring of MWF. 

• The data were correctly classified by machine operators. If this is true, then 

there may exist subjective or unmeasured variables besides the currently 

measured ones that may have affected the status classification. 

Therefore, whatever the true hypothesis, the development of a new method for 

monitoring the aging of MWF seems necessary. 

 

5.8.3. Coupling of the Spectroscopic Sensor and a N eural Network Model 

for the Monitoring of MWF Emulsion Destabilization 

 

The present approach is based on the results obtained with a similar coupling, 

as described in item 5.7 of this thesis. Thus, the specific objective in this study is to 

use the ability of the neural network model to rebuild the droplet size distribution of 

the MWF emulsion from spectroscopic data, and then to adopt the presence of the 

population of coalesced droplets as an indicator of destabilization. The appearance 

of this second droplet population is shown in Figures 32a and 32b during the process 

of artificial destabilization of MWF emulsions. 

With this purpose, a three-layer feed-forward neural network like the one 

presented in Figure 12 was used to fit the experimental data. A total of 27 variables 

were used as inputs: 23 absorbance values selected from 402 nm to 690 nm, 

arbitrarily selected in 12 nm intervals – larger intervals did not provide good results, 

as well as variables selected by PCA analysis –, MWF concentration, pH, calculated 

value for the wavelength exponent and linear coefficient obtained in the linear fitting 

used in the calculation of the wavelength exponent. Although the linear coefficient 

does not appear to have a physical meaning, apparently it has helped to discriminate 
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the spectra from different fluids. In fact, the optical properties of the fluids would be a 

more suitable option, but it was not possible to have access to this information, 

especially because these fluids are formulated from a number of substances, and the 

formulation itself is not made available by the MWF producers. As previously 

mentioned, although the previous studies showed the limitation of the application of 

the wavelength exponent method, the decrease of its accuracy with the increase of 

droplet size may have high impact in simpler systems, like the one previously 

studied, where other variables were probably providing equivalent information, but 

these measurements may still contribute to the evaluation of more complex systems, 

like in this long-term monitoring experiment, where the spectra are very noisy. 

In the present study, data from all fluids and machines were used to fit one 

model, only. The outputs of the neural network consisted of 20 sizes classes, from 

0.04 µm to 26.7 µm, ordered as multiples of √2. As in the previous fitting (item 5.6), 

this number of size classes was arbitrarily adopted in order to reconstruct the DSD of 

the samples with an appropriate resolution. The best fitting was obtained with 10 

neurons in the hidden layer, after 50000 presentations of the data set to the neural 

network. 

Figures 46 and 47 show representative results obtained in the fitting and 

validation of the model, for samples with different DSD characteristics, which 

correspond to different aging times, or status. The graphs at the left show the light 

extinction spectra of the MWF emulsions, as measured with the spectroscopic 

sensor, and the graphs at the right show the corresponding DSD (measured values 

and calculated by the neural network model). These figures show that the differences 

in the measured spectra are not clearly observed by visually, possibly due to the 

presence of contaminants from the machining process, as well as due to differences 

in the optical properties of the different MWFs. However, still it is possible to observe 

some evolution of the measured spectra with the destabilization of the emulsion. 

In terms of the estimated DSD, good agreement between calculated and 

experimental values was obtained for 94% of the samples, for monomodal and 

bimodal distributions, and for different proportions of each droplet population. The 

rate of success of this fitting was calculated based on the number of observations for 
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which the relative squared error between calculated and observed values were under 

1%. 

 

 
Figure 46: Neural network fitting results for the long-term monitoring study of 

commercial MWFs in a machining facility, with 27 inputs and 20 outputs (training set). 
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Figure 47: Neural network fitting results for the long-term monitoring study of 

commercial MWFs in a machining facility, with 27 inputs and 20 outputs (validation 
set). 

 

Representative results for the 6% of the samples for which the model did not 

provide the expected result are shown in Figure 48. It is important to mention that in 

all the cases showing inaccurate results the model predicted the presence of a 

second population of coalesced droplets, which had not been detected in the 

measurements. Thus, in all these cases the model provided conservative results, i.e., 

the model associated the information with an aged MWF emulsion. 
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As mentioned in previous parts of this thesis, aging during real machining 

operation in a metalworking facility is complex and not easily detected. Besides 

microbiological contamination, fluids can be contaminated by solid particles and other 

oils in the process, and the MWF concentration can change due to water evaporation 

or new dilutions. An additional factor that can affect the results in this case is the 

possibly high variability of the collected data, because these data were collected by 

different machine operators in industrial scale facilities consisting of different 

metalworking equipments, as described. If these factors are taken into consideration, 

the resulting fraction of success obtained by the neural network model, i.e., 94% of 

the observations, can be considered as a satisfactory result for this system.  

As reported in this item of the thesis, the neural network model was able to 

predict the presence of the second population of coalesced droplets in the MWF 

emulsion samples with a high percentage of success, i.e., for 94% of the 

observations. Since the formation of a second population with coalesced droplets, 

i.e., consisting of larger droplets, is an indication of emulsion destabilization, it is of 

interest that the spectroscopic sensor be able to detect this status in its early steps. 

Thus, it is of interest that the sensor plus neural network coupling be as sensitive as 

possible to the formation of this second droplet population. A study aimed at this was 

carried out, as reported in the next item. 
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Figure 48: Neural network fitting results for the long-term monitoring study of 

commercial MWFs in a machining facility, with 27 inputs and 20 outputs (inaccurate 
fits). 

 

5.8.4. Neural Network Fitting for Rebuilding Drople t Size Distribution of 

the MWF Using an Alternative Fitting Criterion 

 

All the neural network models previously used in this study have been fitted to 

the data based on the conventionally adopted criterion, i.e., minimization of the 

squared error between calculated and measured values of each output variable, 

expressed in Equation 18, and repeated here: 

 

G = ∑ ∑ 
]̂�B� − Z�̂B�
��̂4�_B4�                    (18) 
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In order to increase the sensitivity of the neural network model, the criterion for 

model fitting was changed in order to increase the importance of the droplet 

population formed by coalesced droplets. The squared error in this case is expressed 

in the form of Equation 39, where n is the number of size classes used as outputs. 

 

GB�$ = ∑ %>S�&SK − >���K)�'[�04�                       (39) 

 

In this equation, Acalc is the area under the calculated DSD curve and Aexp is 

the area under the experimental DSD curve, expressed by Equations 40 and 41. 

 

>S�&SK = 
�K:+[�K� 
S�&S
� . ∆�0           (40) 

>���K = 
�K:+[�K� 
���
� . ∆�0           (41) 

 

In the present study the area under the DSD curve for the coalesced particles 

is much larger than the one for the smaller droplets because the size intervals 

increase as multiples of √2, and are thus larger for larger droplet sizes. This makes 

the squared error (Equation 39) much more sensitive to the formation of coalesced 

droplets. 

Using this modified network, it was possible to reduce the total number of 

inputs to 12 variables: 8 absorbance values arbitrarily selected in 40 nm intervals, in 

the range of 402 nm to 690 nm, MWF concentration, pH, calculated value for the 

wavelength exponent and linear coefficient obtained in the calculation of the 

wavelength exponent. Once more, although the linear coefficient does not have a 

physical meaning, apparently it has helped to discriminate data from different fluids 

due to the lack of information on the optical properties of the MWF fluids. Data from 
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all fluids and machines were used to fit one single neural network model. As outputs 

of the neural network, 20 sizes classes were selected, from 0.04 µm to 26.7 µm, as 

multiples of √2. As in previous items, this number of size classes was arbitrarily 

adopted in order to reconstruct the DSD of the samples with appropriate resolution. 

The best fitting was obtained with 10 neurons in the hidden layer, after 50000 

presentations of the data set to the neural network. 

Figures 49 and 50 show results obtained in the fitting and validation of the 

model, for samples with different DSD and consequently different aging times, which 

are representative of the whole set. The graphs in the left represent the light 

extinction spectrum of the emulsion, measured with the spectroscopic sensor, and 

the graphs in the right represent the corresponding DSD (measured distribution and 

distribution calculated by the model). The change of the measured spectra with the 

increase of droplet size may not be so easily seen due to the presence of 

contaminants from the machining process, as well as differences between optical 

properties of the different MWFs, but still it is possible to observe some evolution of 

the measured spectra with the destabilization of the emulsion. 

The modification of the ANN in the fitting criterion for the NN model from 

Equation 18 to Equation 39 resulted in improved agreement between calculated and 

experimental values of the DSD curves for all samples with monomodal and bimodal 

distributions and different proportions of each droplet population. Thus, the data from 

the 7 different MWF, collected from the described machining facility were 

successfully fitted by using a single ANN model. The data from the spectroscopic 

sensor, as well as all other inputs to the model can be easily obtained in any 

machining process. As a consequence of this configuration, a system consisting of 

the spectroscopic sensor coupled with a neural network model can be used to detect 

the emulsion destabilization in its early steps, by associating this with the presence of 

the second droplet population. Such a system can be adjusted for in-line and real-

time measurements. 
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Figure 49:  Neural network fitting results for the long-term monitoring study of 

commercial MWFs in a machining facility, using an alternative fitting criterion, with 12 
inputs and 20 outputs (training set). 
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Figure 50:  Neural network fitting results for the long-term monitoring study of 

commercial MWFs in a machining facility, using an alternative fitting criterion, with 12 
inputs and 20 outputs (validation set). 
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6. CONCLUSIONS 

 

Monitoring MWFs quality in machining process is critical for the control of 

process and product quality, and the conventional methods of quality control in 

machining facilities may not be the best alternative to provide the optimal useful life 

of these emulsions, with high impact in costs. 

Literature suggests that the monitoring of emulsion destabilization could 

possibly be used as a better indicator of potential losses in MWFs performance. One 

possible method deals with the droplet size distribution, which is directly linked to the 

quality and physical stability of an emulsion. Thus, changes in DSD can be used as 

an indicator of partial destabilization of an emulsion. 

Since changes in the DSD of an emulsion can cause changes in the light 

extinction spectra in spectroscopic measurements, one simple method of evaluating 

these changes is based on the so called wavelength exponent, z. The applicability of 

the wavelength exponent measurement as an indication of the emulsion stability was 

investigated in this thesis by monitoring both the turbidity spectra and the DSD of 

emulsions over time, for artificially aged MWF samples, as well as by evaluating the 

time evolution of the wavelength exponent and the quality of the fitting to the 

experimental data. 

The results have shown that the wavelength exponent decreases gradually 

with the increase in the volumetric mean diameter of the droplets, which is in 

agreement with information in the literature. However, the destabilization of the MWF 

leads to the formation of a bimodal DSD, resulting in a significant reduction in the 

quality of the fitting to the data, expressed by the coefficient of determination, R2, 

when the volumetric mean diameter, D4.3, reaches approximately 1µm. The use of 

the wavelength exponent has been proposed under the assumption of a monomodal 

and monodisperse distribution and the decrease in its value with time has been 

associated with the growth in droplet size by coalescence. Thus, the droplet size of 

the emulsion may be a limitation for the use of this method, since the reduction in the 
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fitting quality reduces the reliability of the value obtained for z and, consequently, the 

reliability of this method in the evaluation of emulsion destabilization. 

In this study, an alternative approach is proposed for the monitoring of MWF 

destabilization, based on neural network models for obtaining DSD of emulsions 

using the data from the spectroscopic sensor. This approach was tested with 

rapeseed oil emulsions and with artificially aged MWF. The results based on the 

fitting of neural network models showed that the combination of a UV/Vis 

spectroscopic system with a neural network results in an optical sensor, which is 

capable of detecting changes in the volumetric mean diameter, variance of droplet 

size distributions and DSD during aging of commercial MWF, as well as changes in 

DSD of rapeseed oil emulsions prepared in laboratory. However, the obtained 

models are limited to a set of inputs that may not be available in common 

applications; due to the high variability of the data in rapeseed oil emulsions and the 

addition of CaCl2 to promote artificial aging of MWF. Nevertheless, these results 

pointed out the potential of this technique for monitoring such emulsions, with the 

advantage that apparently the results are not affected by multiple scattering, 

suggesting that this approach may even be applied to more concentrated emulsions. 

In order to check the applicability of this method, a long-term monitoring study 

of commercial MWFs in a machining facility was carried out with the objective of 

obtaining information on the performance of the spectroscopic probe plus neural 

network as a sensor for monitoring MWF destabilization under long-term operation of 

machining equipment.  In this campaign, the condition of the MWF was classified in 

three different categories by operation personnel based on routine analyses and 

experience. This classification is the current method of monitoring aging of MWF in 

this machining facility; however, a statistical analysis of these data based on 

multivariate discriminant analysis indicated that there is much confusion in the 

classification results, possibly indicating some failures in the current method of MWF 

monitoring. These results have motivated the development of a new method for 

monitoring aging of MWF, based on the fitting of a neural network model as a pattern 

recognition technique, to rebuild the droplet size distribution of the MWF emulsions 

from spectroscopic data, and then to adopt the presence of the population of 

coalesced droplets as an indicator of destabilization. 
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The obtained results on the fitting of long-term monitoring data have shown 

good agreement between calculated and experimental values for 94% of the 

samples, with monomodal and bimodal distributions and different proportions of each 

droplet population. This resulting fraction of success obtained by the neural network 

model can be considered as a satisfactory result for this system, however, the 

formation of a second population with coalesced droplets, i.e., consisting of larger 

droplets, is an indication of emulsion destabilization, so it is of interest that the sensor 

plus neural network coupling be as sensitive as possible to the formation of this 

second droplet population.  

For this reason, the program for the fitting of ANN was modified for using a 

new criterion for the minimization of the error, considering the differences between 

experimental and calculated area under the DSD curve, which is a criterion more 

sensitive to the presence of bigger droplets, so it will be more accurate in evaluating 

emulsion destabilization. The obtained results on the fitting of long-term monitoring 

data with the modified fitting criterion of the ANN resulted in improved agreement 

between calculated and experimental values of the DSD curves for all samples with 

monomodal and bimodal distributions and different proportions of each droplet 

population. Thus, the data from the 7 different MWF, collected from the described 

machining facility were successfully fitted by using a single ANN model. The data 

from the spectroscopic sensor, as well as all other inputs to the model can be easily 

obtained in any machining process. As a consequence of this configuration, a system 

consisting of the spectroscopic sensor coupled with a neural network model can be 

used to detect the emulsion destabilization in its early steps, by associating this with 

the presence of the second droplet population. Such a system can be adjusted for in-

line and real-time measurements, providing a tool for enabling the optimization of 

MWF service life. This is a new method for monitoring such emulsions with possible 

applications in similar systems, such as pharmaceutical products, emulsion 

polymerization processes, crystallization processes, among others. 
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Canadian Journal of Chemical Engineering, v. 92, n. 2, p. 324-329, 2014. 

• Analysis of the stability of metal working fluid emulsion by turbidity spectra. 
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Engineering & Technology, v. 36, n. 7, p. 1202-1208, 2013. 
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• Use of a Spectroscopic Sensor to Monitor Droplet Size Distribution in 
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• Use of a Spectroscopic Sensor to Monitor Emulsion Stability Based on 
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• Avaliação do Tratamento de Efluentes Contendo Resíduos de Fluido de Corte 

por Processo UV-H2O2. ASSENHAIMER, C., Seto, L. N., Guardani, R.. XX 

Congresso Brasileiro de Engenharia Química – COBEQ 2014. Florianópolis 

(SC), October, 2014. 

• Estudo da Degradação Térmica de Emulsões de Fluidos de Corte. Postal, V., 
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Química – COBEQ 2014. Florianópolis (SC), October, 2014. 
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APPENDIX B – Exploratory Studies to Estimate the Dr oplet Size Distribution of 

Rapeseed Oil Emulsions Based on Optical Models and the Mie Theory 

 

An algorithm based on the model proposed by ELIÇABE and GARCIA-RUBIO 

(1990) for estimating droplet size distribution in emulsions, as described in Chapter 

3.3.2, was used to rebuild the DSD from spectroscopic measurements. The author 

based his model on the optical model (Equation 2, previously presented) and used 

regularization techniques and inversion algorithms in data treatment. Based on the 

referenced paper, an algorithm was written in Matlab® code and used in this study. 

The script was tested with an artificially estimated distribution and with real rapeseed 

oil emulsions. For the artificially estimated case, the expected spectra of a droplet 

population with normal distribution were calculated by the optical model (Equation 2, 

previously presented) and used in the script for evaluation of the rebuilt DSD. 

As shown in Figures B.1 and B.2, the calculated distributions do not 

correspond to the artificially estimated DSD. This difference may be due difficulties in 

implementation of the regularization technique and, for the real emulsion, also due to 

multiple scattering effects, not considered in the optical model. Besides, differences 

in the optical properties and even numerical limitations of the algorithm can be 

responsible for the poor agreement observed. 

Although further studies could be done in this approach in order to investigate 

the reason for the poor results and to improve them, a different methodology that was 

investigated at the same time, based on the association of light scattering spectra 

and DSD by multivariate calibration techniques, showed better results. Besides, 

Glasse (2015) have intensively studied the application of several inversion methods 

for retrieving DSD from the spectroscopic measurements and poor results were 

obtained for real emulsions like rapeseed oil emulsion and MWF; only synthetic data 

produced good results. In this way, it was decided to focus only in this second 

approach, using multivariate calibration techniques, such as neural networks models. 
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Figure B.1: Theoretical DSD of three emulsions and the corresponding DSD 
calculated by the algorithm proposed by Eliçabe and Garcia-Rubio (1990). 

 

 
Figure B.2: DSD of two rapeseed oil emulsion samples, measured by Malvern 

Mastersizer®, and DSD of these samples calculated by the algorithm proposed by 
Eliçabe and Garcia-Rubio (1990). 
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APPENDIX C – Algorithm Written in Matlab ® Code Based on the Model 

Proposed by Eliçabe and Garcia-Rubio 

 

The following scripts were used in APPENDIX B for droplet size distribution 

estimation and are based on the model proposed by Eliçabe and Garcia-Rubio 

(1990), described in Chapter 3.3.2. 

 

1. Script for Computation of Mie Efficiencies (used  in the described tests for 

estimation of droplet size distribution based on li ght scattering models and 

inversion techniques) 

 

function  result = Mie(m, x)  
 
if  x==0                  
    result=[0 0 0 0 0 1.5];  
elseif  x>0               
    nmax=round(2+x+4*x.^(1/3));  
    n1=nmax-1;  
    n=(1:nmax);cn=2*n+1; c1n=n.*(n+2)./(n+1); c2n=c n./n./(n+1);  
    x2=x.*x;  
    f=Mie_ab(m,x);  
    anp=(real(f(1,:))); anpp=(imag(f(1,:)));  
    bnp=(real(f(2,:))); bnpp=(imag(f(2,:)));  
    g1(1:4,nmax)=[0; 0; 0; 0];  
    g1(1,1:n1)=anp(2:nmax);     
    g1(2,1:n1)=anpp(2:nmax);  
    g1(3,1:n1)=bnp(2:nmax);  
    g1(4,1:n1)=bnpp(2:nmax);    
    dn=cn.*(anp+bnp);  
    q=sum(dn);  
    qext=2*q/x2;  
    en=cn.*(anp.*anp+anpp.*anpp+bnp.*bnp+bnpp.*bnpp );  
    q=sum(en);  
    qsca=2*q/x2;  
    qabs=qext-qsca;  
    fn=(f(1,:)-f(2,:)).*cn;  
    gn=(-1).^n;  
    f(3,:)=fn.*gn;  
    q=sum(f(3,:));  
    qb=q*q'/x2;  
    asy1=c1n.*(anp.*g1(1,:)+anpp.*g1(2,:)+bnp.*g1(3 ,:)+bnpp.*g1(4,:));  
    asy2=c2n.*(anp.*bnp+anpp.*bnpp);  
    asy=4/x2*sum(asy1+asy2)/qsca;  
    qratio=qb/qsca;  
    result=[qext qsca qabs qb asy qratio];  
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end ;  
 
 

2. Script for Computation of Mie Coefficients (used  in the last presented 

algorithm) 

 

function  result = Mie_ab(m,x)  
  
z=m.*x;  
nmax=round(2+x+4*x.^(1/3));  
nmx=round(max(nmax,abs(z))+16);  
n=(1:nmax); nu = (n+0.5);  
  
sx=sqrt(0.5*pi*x);  
px=sx.*besselj(nu,x);  
p1x=[sin(x), px(1:nmax-1)];  
chx=-sx.*bessely(nu,x);  
ch1x=[cos(x), chx(1:nmax-1)];  
gsx=px-i*chx; gs1x=p1x-i*ch1x;  
dnx(nmx)=0+0i;  
for  j=nmx:-1:2       
    dnx(j-1)=j./z-1/(dnx(j)+j./z);  
end ;  
dn=dnx(n);           
da=dn./m+n./x;  
db=m.*dn+n./x;  
  
an=(da.*px-p1x)./(da.*gsx-gs1x);  
bn=(db.*px-p1x)./(db.*gsx-gs1x);  
  
result=[an; bn];  

 

3. Script for rebuilding Droplet Size Distribution from Spectroscopic 

Measurements 

 

format long  
clear all  
clear global  
clf  
clc  
global  m turb X I1 I2  
Messung_import = xlsread ( 'messung' );   
  
tau= (Messung_import (:,1));  
turb=(Messung_import (:,2));  
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wv_up=950;  
wv_dn=350;  
  
tau_2=[];  
turb_2=[];  
for  i=1:(length(tau))  
    tau_i=tau(i);  
    turb_i=turb(i);  
    if  tau_i>wv_dn && tau_i<wv_up  
        tau_2=[tau_2 tau_i];  
        turb_2=[turb_2 turb_i];  
    end  
end  
tau=reshape(tau_2, length(tau_2),1);     
turb=reshape(turb_2, length(turb_2),1);  
     
if  tau(1,1) > tau((length(tau)),1)  
    tau =flipud (tau);  
    turb=flipud(turb);  
end  
  
M=length(tau);  
  
n_max=  51;  
D_min= 5e-9;  
D_max= 3000e-9;  
delta_D=(D_max-D_min)/(n_max-1);  
Vector_D=D_min:delta_D:D_max;  
Vector_D=transpose (Vector_D);  
  
A_ij_vector=[];  
  
  
for  i=1:M   
    tau_i=tau(i,1)*1e-9;  
    lambda=tau_i*1000;  
      
    im=0.0000001;  
    nm=(1.29+((0.47*(lambda)^2)/((lambda)^2-(0.119) ^2))-
((0.08*(lambda)^2)/(2.92^2-(lambda)^2)))^0.5; 
    np=1.45797+0.00598 * (lambda^-2) -0.00036*(lamb da^-4);  
    m=1.35/1.33;  
  
for  n1=1:1:n_max     
  
    if  n1==1  
     
        D_n1=(Vector_D(1,1));          
        D_n2=(Vector_D(2,1));  
        D_n3=0;  
                 
    elseif  n1==n_max  
        D_n1=(Vector_D((n_max-1),1));  
        D_n2=(Vector_D(n_max,1));      
        D_n3=0;  
                 
    else  
        D_n1=(Vector_D(n1,1));       
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        D_n2=(Vector_D((n1+1),1));   
        D_n3=(Vector_D((n1-1),1));           
    end  
  
     
    x_n1=((pi*nm*D_n1)/tau_i);  
    x_n2=((pi*nm*D_n2)/tau_i);  
    x_n3=((pi*nm*D_n3)/tau_i);  
     
    Mie_maetzler_n1=Mie(m,x_n1);  
    Mie_maetzler_n2=Mie(m,x_n2);  
    Mie_maetzler_n3=Mie(m,x_n3);  
     
    Q_ext_n1=Mie_maetzler_n1(:,1);  
    Q_ext_n2=Mie_maetzler_n2(:,1);  
    Q_ext_n3=Mie_maetzler_n3(:,1);  
  
    kernel_n1= pi/4*Q_ext_n1*D_n1^2;  
    kernel_n2= pi/4*Q_ext_n2*D_n2^2;  
    kernel_n3= pi/4*Q_ext_n3*D_n3^2;  
     
    A1=D_n2*kernel_n1-D_n1*kernel_n2+((kernel_n2-ke rnel_n1)/(2*(D_n2-
D_n1)))*((D_n2)^2-(D_n1)^2);  
    A2=0.5*kernel_n1*((D_n2)^2-(D_n1)^2)-(((kernel_ n2-
kernel_n1)*D_n1)/(2*(D_n2-D_n1)))*((D_n2)^2-(D_n1)^ 2)+(((kernel_n2-
kernel_n1)*((D_n2)^3-(D_n1)^3))/(3*(D_n2-D_n1)));  
     
    if  n1==1      
    a_ij=(D_n2/delta_D)*A1-(1/delta_D)*A2;         
    A_ij_vector=[A_ij_vector a_ij];      
     
    elseif  n1==n_max  
    a_ij=(1/delta_D)*A2-(D_n1/delta_D)*A1;  
    A_ij_vector=[A_ij_vector a_ij];      
     
    else   
    A3=D_n1*kernel_n3-D_n3*kernel_n1+((kernel_n1-ke rnel_n3)/(2*(D_n1-
D_n3)))*((D_n1)^2-(D_n3)^2);  
    A4=0.5*kernel_n3*((D_n1)^2-(D_n3)^2)-(((kernel_ n1-
kernel_n3)*D_n3)/(2*(D_n1-D_n3)))*((D_n1)^2-(D_n3)^ 2)+(((kernel_n1-
kernel_n3)*((D_n1)^3-(D_n3)^3))/(3*(D_n1-D_n3)));     
    a_ij=(1/delta_D)*A4-(D_n3/delta_D)*A3+(D_n2/del ta_D)*A1-(1/delta_D)*A2;  
    A_ij_vector=[A_ij_vector a_ij];      
     
    end      
end  
end  
  
A_ij_vector=reshape (A_ij_vector, n_max, M);  
A_ij_vector=A_ij_vector';  
 
A=A_ij_vector;  
beta=1000;   
n=n_max;     
m=M;         
  
clear n1 n2 A1 A2 A3 A4 D_n1 D_n2 D_n3 M im  np nm lambda  delta_D  a_ij    
clear Q_ext_n1  Q_ext_n2  Q_ext_n3  i  n_max x_n1  x_n2  x_n3  Mie_maetzler_n1  
Mie_maetzler_n2  Mie_maetzler_n3  kernel_n1  kernel_n2  kernel_n3   
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zero_rows = zeros(2,n);  
zero_matrix = zeros(n-2,2);  
unit_matrix = eye(n-2,n-2);  
    MATRIX1 = [zero_rows; [zero_matrix unit_matrix]  ];  
  
zero_row = zeros(1,n);  
zero_column = zeros(n-2,1);  
unit_matrix = eye(n-2,n-2);  
    MATRIX2 = [zero_row ; [zero_column unit_matrix zero_column] ; 
zero_row];  
  
zero_rows = zeros(2,n-2);  
zero_columns = zeros(n,2);  
    MATRIX3 = [[unit_matrix; zero_rows] zero_column s];  
  
MATRIX4 = toeplitz([[0 -2] zeros(1,n-2)]);  
MATRIX4(n,:)=zeros(1,n);  
    MATRIX4(:,n)=zeros(n,1);  
  
MATRIX5 = toeplitz([[0 -2] zeros(1,n-2)]);  
MATRIX5(1,:)=zeros(1,n);  
    MATRIX5(:,1)=zeros(n,1);  
  
    MATRIX6=toeplitz([0 0 1 zeros(1,n-3)]);  
  
H = MATRIX1 + 4*MATRIX2 + MATRIX3 + MATRIX4 + MATRI X5 + MATRIX6;  
  
BETA_MATRIX = [beta^2 zeros(1,n-1); zeros(n-2,n); z eros(1,n-1) beta^2];  
FINAL_MATRIX = BETA_MATRIX + H;  
  
[K,p]=chol(FINAL_MATRIX);  
X=A*K^(-1);  
 
clear zero_column  zero_columns  zero_matrix  zero_row  zero_rows  unit_matrix  
options  tau_i  p MATRIX1 MATRIX2 MATRIX3 MATRIX4 MATRIX5 MATRIX6  
  
  
gamma_amount=1000;  
gamma_min=-35;  
gamma_max=-5;  
gamma_chain=logspace(gamma_min,gamma_max,gamma_amou nt);  
  
  
V_gamma_vec=[];  
I1=eye(n);  
I2=eye(m);  
for  i=1:gamma_amount  
    gamma=gamma_chain (1,i);  
    V_gamma=(  m*(((norm((I2-((X*((transpose(X)*X +  gamma.*I1)^-
1)*transpose(X))))*turb))^2)/((trace(I2-((X*((trans pose(X)*X + gamma*I1)^-
1)*transpose(X)))))^2)));  
    V_gamma_vec=[V_gamma_vec V_gamma];    
end  
[V_gamma_value V_index]=min(V_gamma_vec);  
gamma_opt=gamma_chain(V_index);  
  



130 
 

 
f = ((transpose (A))*A+gamma_opt*FINAL_MATRIX)^-1*( transpose(A))*turb;  
 
Vector_D_plot=Vector_D*10^9;  
f_plot=f/sum(f);  
hold all  
xlabel( 'Droplet Size in nm' );  
ylabel( 'normalized f(D)' );  
semilogx(Vector_D_plot,f_plot);  
hold off  
 
 

 


