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ABSTRACT 
 

 
 
The success of Model Predictive Control (MPC) strategies in industrial and academic 

environments in the last decades has been remarkable. However, there are many 

open questions in the area, especially when the simplifying hypothesis of perfect 

model is dropped. The explicit consideration of uncertainties lead to important 

progresses in the area of robust control, but it still exhibits a few drawbacks: high 

computational load and over conservative behavior are issues that may have 

hindered the application of robust strategies in practice. 

The approach of Stochastic Model Predictive Control (SMPC) aims at the reduction 

of conservativeness due to the incorporation of statistical information about noise. 

Since processes in chemical industry are always subject to disturbances, resulting 

from model-plant mismatch or from unmeasured disturbances, this technique is an 

interesting alternative for future control algorithms. 

The main objective of this thesis is the development of SMPC algorithms that take 

into account some of the specificities of such processes, which have not been 

adequately handled in the literature so far. The most important contribution is the 

inclusion of integral action in the controller through a velocity description of the 

model. Besides, hard input constraints – associated with safety or physical limits – 

and probabilistic state constraints – usually derived from product specification - are 

also included in the formulation. Two approaches were followed in this work, the first 

is more direct and the second provides closed-loop stability guarantee at the price of 

increased conservativeness.  

Another interesting feature that is developed in this thesis is the zone control of 

systems subject to disturbances. This form of control is often present in industrial 

arrays due to the lack of degrees of freedom, and the proposed approach is the first 

to merge zone control and SMPC. Different simulations of all proposed controllers 

and comparison to literature benchmarks are provided to show the application 

potential of the developed techniques. 

 
 
Keywords: Process Control, Model Predictive Control, Stochastic processes  

 
 





 

 

   

RESUMO 
 

O sucesso de estratégias de controle preditivo baseado em modelo (MPC, na sigla 

em inglês) tanto em ambiente industrial quanto acadêmico tem sido marcante. No 

entanto, ainda há diversas questões em aberto na área, especialmente quando a 

hipótese simplificadora de modelo perfeito é abandonada. A consideração explícita 

de incertezas levou a importantes progressos na área de controle robusto, mas esta 

ainda apresenta alguns problemas: a alta demanda computacional e o excesso de 

conservadorismo são questões que podem ter prejudicado a aplicação de 

estratégias de controle robusto na prática. 

A abordagem de controle preditivo estocástico (SMPC, na sigla em inglês) busca a 

redução do conservadorismo através da incorporação de informação estatística dos 

ruídos. Como processos na indústria química sempre estão sujeito a distúrbios, seja 

devido a diferenças entre planta e modelo ou a distúrbios não medidos, está técnica 

surge como uma interessante alternativa para o futuro. 

O principal objetivo desta tese é o desenvolvimento de algoritmos de SMPC que 

levem em conta algumas das especificidades de tais processos, as quais não foram 

adequadamente tratadas na literatura até o presente. A contribuição mais importante 

é a inclusão de ação integral no controlador através de uma descrição do modelo em 

termos de velocidade. Além disso, restrições obrigatórias (hard) nas entradas – 

associadas a limites físicos ou de segurança – e restrições probabilísticas nos 

estados – normalmente advindas de especificações de produtos – também são 

consideradas na formulação. Duas abordagens foram seguidas neste trabalho, a 

primeira é mais direta enquanto a segunda fornece garantias de estabilidade em 

malha fechada, contudo aumenta o conservadorismo.  

Outro ponto interessante desenvolvido nesta tese é o controle por zonas de 

sistemas sujeitos a distúrbios. Essa forma de controle é comum na indústria devido à 

falta de graus de liberdade, sendo a abordagem proposta a primeira contribuição da 

literatura a unir controle por zonas e SMPC. Diversas simulações de todos os 

controladores propostos e comparações com modelos da literatura são exibidas para 

demonstrar o potencial de aplicação das técnicas desenvolvidas.  

 
Palavras-chave: Controle de processos, Controle preditivo baseado em modelo, 
processos estocásticos.  
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1. Introduction 

 

1.1. Motivation 

 

In the last 40 years, model predictive control (MPC) has evolved from an 

industrial heuristic approach to a mature, well-based theory. From a practical 

standpoint, its use nowadays is widespread in chemical industries, especially oil 

refining and petrochemicals. On the other hand, from a theoretical point of view, 

many important stability questions have been addressed and solved (Mayne et al., 

2000). Necessary and sufficient conditions for stability of nominal controllers are 

completely understood. 

One immediate consequence of this effort was the idea to extend the stability 

results to uncertain models, since there is always some degree of plant-model 

mismatch, which can seriously deteriorate the performance of the closed-loop 

system. The earliest attempts to improve robustness of MPC date back to the 1990s 

and usually considered that the parameters describing the plant belong to a bounded 

set. This hypothesis allows worst-case analyses, which have been used to guarantee 

stability and feasibility but may be over conservative in terms of performance.  

More recently, there is a trend to incorporate statistical knowledge about 

disturbances in MPC, reducing conservativeness without risking process safety. Most 

of the literature so far considers only the regulator problem, with the work in 

Couchman et al. (2006) being an exception, as they present an algorithm to track a 

set-point when the output is corrupted by noise but state evolution is deterministic. 

The referred work does not handle the more general problem of tracking when the 

state is a random variable, which is one of the main targets of the present work.  

In Hokayem et al. (2012), it is presented an algorithm to reject disturbances when 

the state is subject to additive Gaussian noise and there are hard bounds in the 

inputs. Korda et al. (2011) proposed a method to handle soft constraints with 

feasibility guarantees. 

This thesis is inspired by these two last proposals to address the case of output-

tracking through the use of an incremental (velocity) description of the system, 

including hard bounds in control moves and also dealing systematically with state 

constraints.  
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1.2. Objectives 

 

The main objective of the present thesis is to develop a predictive controller, 

suitable to the needs and reality of the chemical process industry. Some of the 

requirements of this controller are the following: 

 

 Track different set-points, corresponding to changing operating conditions; 

 On-line computation effort compatible with typical process sampling time 

(approximately 1 minute); 

 Stability guarantees in order to ensure safety to the process operation; 

 Good performance even when direct state measurement is not possible; 

 Relative robustness to model mismatch and to imprecisions in the 

characterization of noise. 

 

As it will become clear from the bibliographical review, the first point (extension of 

current algorithms to the output tracking problem) has not been addressed so far in 

the literature and could be a first major obstacle to the adoption of these techniques 

in the chemical industry. Associated with this new type of formulation is the question 

of stability, because it is unclear if known proofs are also valid on this more general 

framework.  

Once these more fundamental questions have been solved, it will be necessary 

to tackle the barriers that could prevent practical applications. Usually, new 

algorithms based on more complex mathematics than current MPC technology will 

not become useful in practice, if their general ideas cannot be mastered by 

application engineers. Therefore, the development of this work is guided by 

permanent consideration on what may be achieved in practice, both in terms of 

modeling precision and computational effort.  

 

1.3. Outline of the work 

 

This thesis is composed of seven chapters, including the present introduction. 

The structure of the remaining chapters is as follows:  
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In Chapter 2, we present an overview of the literature of stochastic model 

predictive control (SMPC).  

Chapter 3 contains the development of a SMPC algorithm for systems subject to 

bounded additive noise. The formulation includes hard constraints over the inputs 

and soft probabilistic constraint over the state. The main contribution of the 

formulation in this chapter when compared to the state of the art is the explicit 

consideration of the set-point tracking problem. 

The basic algorithm presented in the Chapter 3 is thoroughly tested via Monte 

Carlo simulations in Chapter 4. The simulated system is a linearized model 

representing a distillation column. Symmetric and asymmetric noise distributions are 

considered, as well as the influence of the probabilistic constraints.  

Chapter 5 extends the formulation of Chapter 3 towards a zone control strategy. 

The relaxation of a fixed set-point into a zone is a convenient strategy in the 

stochastic framework, since the state is not allowed to rest in any given point due to 

persistent disturbance. Simulations on the same system of Chapter 4 are also 

presented. 

Chapter 6 provides a theoretical refinement of the controller, indicating how the 

optimization problem has to be modified in order to guarantee recursive feasibility 

and stochastic stability. It is shown that under the control law defined by the 

controller, the system asymptotically converges to a set containing the set-point (or 

another equilibrium point, when the set-point is not reachable). The controller is 

applied to control a simulated plant given by the linearization of a CSTR. 

Finally, Chapter 7 summarizes the contributions of the thesis and proposes some 

directions for future works. 

 





  31
   

   

 

2. Literature review 

 

As stated before, Model Predictive Control is a mature technology, both in the 

nominal and robust cases. The performance of a practical implementation depends 

heavily on the accuracy of its model when compared to the dynamics of the real 

plant. It is evident that no model is able to completely represent it, therefore the 

control framework must be chosen properly to handle the inherent mismatch.   

Stochastic optimal control is another branch of theory that was developed long 

time ago (Åstrom, 2006). Its practical implementation, however, was limited to small 

systems, because the usual algorithm to solve the resulting optimization problem is 

dynamic programming, whose complexity grows exponentially with system’s size.  

More recently, there is a trend to look for a combination of these two techniques, 

model predictive control and stochastic optimal control, which would have practical 

advantages. Stochastic predictive control incorporates the information about noise 

distribution, trying to reduce the conservativeness intrinsic of robust control: large 

disturbances usually occur with little probability, and the consideration of this fact 

may lead to more aggressive controllers that rarely disrespect constraints 

(Couchman et al., 2006). 

Since the problem of finding the general optimal solution of stochastic control is 

intractable, a suboptimal strategy is to consider only certain parameterized inputs 

and calculate them in a receding horizon style. Most of the literature is concerned 

with linear parameterization, for the sake of simplicity. Some features make the 

distinction between the published works: the way disturbances affect the system 

(additive or multiplicative); noise probability distribution function and whether they are 

bounded or unbounded; type of feedback (measured or estimated state); presence of 

constraints in states or inputs and whether they are hard or soft; recursive feasibility 

and stability guarantees and finally the control objective (regulator, tracking or 

constraint satisfaction only).  

This Chapter highlights some of the most influential works in stochastic predictive 

control, mainly by identifying key modeling assumptions and compiling theoretical 

proved statements. After this analysis, it becomes clear that there is a gap 

concerning possible implementations in chemical industry since there are no 
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algorithms designed for the tracking problem and with guaranteed performance when 

subject to hard input bounds.  

One of the earliest contributions to stochastic model predictive control is in van 

Hessem et al. (2001), motivated by the trade-off between constraint violation and 

profitability that occurs in the selection of the operating point of a non-linear plant 

faced with random disturbances. The authors propose an algorithm to maximize 

profit while guaranteeing a bound in the probability that constraints are satisfied. 

Noise is modeled as additive and Gaussian and the probabilistic constraint is 

enforced through driving the state to a confidence ellipsoid. However, the required 

back-off between the operation point and the constraints is translated into a non-

linear matrix inequality, which is difficult to solve for large systems. Even if the 

optimization problem may be exactly solved, it is unclear if closed-loop stability is 

always achieved. 

In Couchman et al. (2006) there is another of the first contributions to 

accommodate probabilistic information within model predictive control. However, it 

admits that state evolution is completely deterministic but that matrix C, relating 

outputs and states, is drawn from a normal distribution. The control objective is to 

minimize the violation probability of a constraint that bounds the distance between a 

given output and its set-point. There is also a stochastic constraint regarding the 

other output, which is constrained to be close to its set-point within a given 

probability. As is usual in real applications, input constraints are hard, which means 

that they can never be violated. For this reason, a dual controller is employed, 

composed of a first mode of free control moves and a second mode, where a static 

feedback keeps the state around the set-point. Probabilistic constraints are translated 

in deterministic counterparts through the use of cumulative distribution functions. The 

main contribution of their work is the calculation of the invariant set Ω where the 

second control mode is active. The choice of this set is made in order to guarantee 

recursive feasibility. Stability proof comes from the terminal constraint, as in standard 

MPC, which is possible because state’s evolution is deterministic. 

A more general approach is taken in Cannon et al. (2009), where matrices A and 

B are assumed to be random (multiplicative uncertainty). However, only the 

regulation problem is considered. A dual controller is also implemented, but then 

terminal constraints cannot be straightforwardly applied, since it would be necessary 
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to propagate the effect of disturbances on the predictions and computational 

complexity would therefore become prohibitive. This issue is addressed by defining 

an augmented state composed of current state and future control moves. The 

evolution of the augmented state is autonomous by construction and its prediction in 

the next time instant is constrained to be in a confidence ellipsoid with probability p. 

Input constraints are merely imposed in probability, which is not suitable for a real 

implementation. The confidence ellipsoid constraint causes the problem to be 

formulated as a Linear Matrix Inequality (LMI). The objective function, corresponding 

to the expected value of the usual quadratic cost of MPC for the regulator problem, is 

shown to be a bounded supermartingale, therefore convergent, and this guarantees 

system stability. Another shortcoming of their approach is the assumption that the 

initial state belongs to the confidence ellipsoid. If this is not the case, the control 

algorithm is modified to bring the state to the desired region without losing the 

supermartingality property, but no proof is provided. 

 Kouvaritakis et al. (2010) present a significant result from a computational 

point of view, because the optimization problem that must be solved online is just a 

QP. This is achieved for a simpler situation than in previous works of the same group, 

in which additive, bounded disturbances are considered. Its main theoretical 

contribution is a separation between nominal (deterministic) evolution and random 

disturbance and the propagation of uncertainty is performed based on offline 

calculations. Only the regulator problem is considered and the objective function is 

also the expected quadratic cost. No input constraints are enforced and a dual mode 

controller is used. Since noise is bounded, invariant sets may be calculated as in 

traditional robust control approaches, providing recursive feasibility.  

Finally, Cannon et al. (2012) extend previous results to the output feedback case, 

incorporating a state estimator to the control loop. Disturbance modeling follows the 

same lines as in Kouvaritakis et al. (2010). Constraints are more general, including 

linear combinations of states and inputs – but without rate constraints in the inputs, 

bounding the difference between consecutive inputs. Nonetheless, all constraints are 

exclusively probabilistic. The authors claim that their approach is more general than 

the robust MPC precisely because of the softening of constraints.  Most of the 

controller setup is identical to Kouvaritakis et al. (2010), such as the dual mode, 

objective function and worst-case approach to the evaluation of the terminal set. The 
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stability proof is once again based on the feasibility of the problem at the initial time 

instant. The numerical example in the paper shows a case where the initial state is 

outside the confidence ellipsoid but very close to it; it is not clear how large is the 

attractive domain of this class of controllers.  

Another line of research is presented in Hokayem et al. (2009), being different 

from Couchman et al. (2006) and Cannon et al. (2012) specially in considering 

unbounded noise distributions. Also, the authors insisted that hard input bounds may 

not be neglected from a practical point of view. Their work addresses only systems 

with Schur-stable A matrix (all of its eigenvalues are in the interior of the unit circle), 

therefore mean square stability is not an issue. Their most important result is a proof 

that the state variance is bounded, which is not trivial when considering unbounded 

noise and hard input constraints. The innovative idea behind this result is a 

parameterization of inputs as a function of previous noise (and not previous states). 

Also, it is necessary to saturate noise before calculating the inputs in order to satisfy 

their constraints. The online optimization problem is greatly simplified thanks to the 

analytical calculation of terms related to future noise, in a similar way to Kouvaritakis 

et al. (2010) and Cannon et al. (2012), instead of using numerical Monte Carlo 

algorithms to calculate an approximation of the expected values.  

Later, in Ramponi et al. (2010), the above method is extended to the case where 

A is marginally stable (i.e., it may have some eigenvalues equal to 1). The authors 

explain that this is the most general result achievable with bounded inputs, according 

to Yang et al. (1995). Nonetheless, their work merely provides a fixed non-linear 

feedback law that renders state variance bounded; no optimization towards a goal is 

performed. Hokayem et al. (2012) introduce an input parameterization that may be 

optimized online to solve the regulator problem without losing the bounded variance 

result. In Chapter 3 of this thesis, the method is discussed with more details, since it 

provides one of the bases for our proposed tracking algorithm.  

Korda & Cigler (2012) also consider a non-linear feedback based on a saturation 

that is similar to Hokayem et al. (2012), but they consider the objective function to be 

the expected value of the p-norm of the states and inputs, with p between 1 and 

infinity. The authors claim that this generalization of the objective function allows 

users to follow more closely the economic criteria and also helps to achieve some 

balance between known properties of controllers based on norms 1 and 2. Since 
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noise is assumed to be Gaussian, the expected values of the objective function may 

be analytically calculated. Recursive feasibility of probabilistic constraint in states is 

proved assuming bounded noise. The authors claim that the results derived for 

Gaussian noise are useful to define suboptimality bounds, because in reality every 

noise realization is bounded and therefore not Gaussian. The argument for recursive 

feasibility relies on a dual controller paradigm, where constraints are strictly enforced 

in mode 1 and implicitly in mode 2. The strategy is also presented in Korda et al. 

(2011); this work also contains a constraint handling method based on invariant sets 

detailed in Chapter 3 of this thesis. 

Primbs & Sung (2009) also study the problem of stochastic control for a large 

class of systems, namely those with multiplicative uncertainty in matrices A and B 

and any distribution function for noise. They consider the regulation problem with 

perfect state information. Surprisingly, input and state constraints are enforced solely 

in mean value, which possibly leads to unrealistic solutions. There is a proof that the 

objective function behaves as a stochastic Lyapunov function (supermartingale), but 

this stability result depends on complicated assumptions that the authors do not 

check even for the small numerical example presented.  

An approach that follows a completely different kind of reasoning is presented in 

Bernardini & Bemporad (2009). They consider linear time-varying systems, where 

matrices A and B take values in a finite set, and they assume that the probability 

density function of these random variables is known. In fact, this function may evolve 

in time, as is the case of a Markov process. Due to the assumption that they assume 

values in a finite set, it is possible to build a tree of all possible realizations of 

disturbance through the prediction horizon. For computational efficiency, only some 

of its nodes are analyzed and the objective function is a weighted average of the 

standard quadratic cost evaluated at previously selected nodes. The algorithm for 

this selection is based on a maximum likelihood approach. Finally, stability is 

enforced through the use of a robust Lyapunov function, valid for all disturbance 

realizations.
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3. Stochastic control for systems with bounded noise 

 

3.1. System description and input parameterization 

 

Consider a linear time-invariant system subject to process noise: 

 

p p p p p

p p

x k A x k B u k F w k

y k C x k

   



( 1) ( ) ( ) ( )

( ) ( )
 

( ) , ( ) , ( ) , ( )nx nu ny nw

px k u k y k w k     

(3-1) 

 

where {w(k)} is a sequence of independent uniformly distributed random variables 

with bounded support. Noise mean and covariance are known and equal to w and 

w , respectively. Full-state measurement and stabilizability of the pair (Ap, Bp) are 

assumed.  

The main objective is to track a (possibly time-varying) set-point 
spy , while 

respecting hard constraints over input values (u) and control moves (u ) and soft 

constraints over the state. It is known (Maeder et al., 2009) that one way to achieve 

offset-free tracking is to use a velocity description of the system, which means that 

u replaces u as the input. Considering an augmented state defined as 
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T T

v px k x k y k , where    ( ) ( ) ( 1)p p px k x k x k , it is clear that (3-1) is 

equivalent to  
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Note that the proposed incremental form causes ( )w k and ( 1)w k   to be 

function of ( 1)w k  , therefore the process { ( )}w k  is not composed of independent 

random variables.   

Using this formulation, the problem that we would like to solve is  

 

Problem 1 

1
2 2

( )
( ), , ( 1)

1 0

min ( ) ( )
p m

k sp RQu k u k m
i i

y k i y u k i


   
 

 
     

 
 X  

(3-3) 

  

subject to  

    max( )u k i u ,  0, , 1i m  (3-4) 

    min max( ) , 0, , 1u u k i u i m  (3-5) 

T

j v j jg x k h j r      ( 1) 1 , 1, , ;  (3-6) 

 

Q and R are symmetric positive-definite tuning matrices, p is the prediction 

horizon, m is the control horizon, minu , maxu and  maxu are physical constraints of the 

inputs and control moves.  X( )k is the conditional expectation given X( )k , which is 

the set of state observations up to time k, 
v vk x x k( ) { (0), , ( )}X .  

 
is the 

probability, 
T

jg  and jh  are parameters that define r linear constraints over the state, 

which have to be satisfied at a confidence level of  j1 . 

Due to the presence of disturbances, an open-loop calculation of future control 

moves may cause the problem to be infeasible in the presence of state constraints 

(Scokaert & Mayne, 1998). Also, open-loop control could be excessively conservative 

when looking for inputs that stabilize the system for all possible disturbance 

realizations (Mayne et al., 2000). Therefore, it is advantageous to consider causal 

feedback policies, such as described in Goulart et al. (2006): 
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 (3-7) 

 

Problem 1 is generally intractable if the optimization is performed over the whole 

class of causal policies  . One possible approach to find a suboptimal solution is to 

parameterize the input as an affine function of the state. As shown in Goulart et al. 

(2006), this strategy is equivalent to use the parameterization (3-8) concerning the 

process disturbance. Moreover, the resulting optimization problem is convex and 

hence tractable, which Goulart et al. (2006) prove that is not the case when a state 

feedback parameterization is considered. 

 





      
1
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u k i d k i G k i k j w k j  (3-8) 

 

The decision variables of the optimization problem are the affine terms 

 ( ) nud k i  and the feedback gains 
  ( , ) nu nxG k i k j . A possible physical 

interpretation of this unconventional parameterization is that the first term drives the 

input mean value, whereas the feedback is responsible for the variance reduction. 

This concept may be adapted to the case of incremental input as follows 
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 (3-9) 

 

In section 3.2, the objective function is manipulated in order to achieve a 

computationally tractable expression.  

 

3.2. Objective function 

 

As it is standard in predictive control, the objective function is the sum of two 

contributions: the first term weights the distance between predicted outputs and the 

set-point, whereas the second penalizes the control moves. We consider that the 

prediction horizon is not necessarily equal to the control horizon, based on a dual 

controller framework, where the prediction of future inputs after the control horizon m 

is a simple feedback law: 

 

u k j K w k j m j p       ( ) ( 1),  (3-10) 

 

where   nu nxK is an off-line calculated matrix such that  p pA B K  is stable.  

Taking advantage of this choice of the second mode controller, it is possible to 

separate the forced and autonomous contributions to the evolution of the control 

objective, as follows: 
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(3-11) 

 

The term  O tar spV y y,  is an offset function, using the same strategy of 

Ferramosca et al. (2012) to penalize deviations between the real and artificial set-

points. 
tary is a new decision variable of the optimization problem, corresponding to 

an artificial reference that will be steered as close as possible to the true set-point. It 
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is advantageous to introduce an artificial set-point since the original one may not be 

reachable when constraints are present and also it could not correspond to a steady 

state. More details about the calculation of the target and the offset function are 

provided in Section 3.3. 

It is necessary to express the cost as an explicit function of the decision 

variables, instead of the expected value expressions presented so far. First, it is 

presented an analysis of the forced component of the cost and then of the 

autonomous one, which follows the same rationale. 

In order to simplify this procedure, it is convenient to collect the terms 

corresponding to future states, inputs and noise in the vectors ( )X k ,  ( )U k and 

W k ( ) , respectively, defined as 
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The dynamics of the extended state is given by 

 

vX k Ax k B U k F W k    ( ) ( ) ( ) ( )  (3-13) 

 

where 
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(3-14) 

 

Using this notation, the forced component of the objective function is calculated 

through 



42 
 

 

 

2 2

( )( ) ( ) ( )for k tar RQ
V k CX k Y U k    

  X
 (3-15) 

 

where the other matrices are defined as    diag( , , ) m ny m nyQ Q Q , 

diag( , , ) m nu m nuR R R     , 
( )diag( , , ) m ny m nx ny

v vC C C       and finally 

T
T T m ny

tar tar tarY y y     . 

Expanding the quadratic forms, we have 
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Each of the terms labeled, T1, T2 and T3, may be evaluated independently, as 

presented in Appendix A. The same kind of reasoning may be applied to the 

autonomous term. First, we define vectors ( )X k ,  ( )U k and W k ( ) , as follows: 
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As before, these extended vectors satisfy the dynamic equation  

 

     ( ) ( ) ( ) ( )X k Ax k m B U k F W k  (3-18) 

 

with 
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Therefore, the autonomous component of the objective function may be written 

as 
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where the other matrices are defined as     ( ) ( )diag( , , ) p m ny p m nyQ Q Q , 

( )
T

T T p m ny

tar tar tarY y y     ,      ( ) ( )( )diag( , , ) p m ny p m nx ny

v vC C C . 

The idea that allows the simplification of the objective function is to replace the 

predicted states by an expression that depends on the current state, future noise and 

control actions. The current state is known by hypothesis, which greatly simplifies the 

problem. All details of these calculations and definition of auxiliary matrices are 

provided in Appendix A. The expression of the cost could be further simplified by 

disregarding the constants, independent of the decision variables. For completeness, 

however, we provide its full expression but reinforce that the implementations were 

performed with the reduced form.   
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3.3. Target calculation 

 

When considering the general tracking problem, it is necessary to consider the 

possibility that the user-provided set-point is not achievable due to input constraints. 

This is particularly common in hierarchical control structures, since different models 

are usually employed for real-time optimization and control. It is desirable to replace 

any unreachable values by the closest feasible (on a least square sense) set-point.  

The chosen strategy to circumvent this problem was to incorporate the 

calculation of an artificial set-point, associated to an artificial state target xtar which is 

only required to be a steady state. It uses the positional formulation to calculate a 

steady-state, respecting input constraints as follows:  

 

min max

tar p tar p tar

tar p tar
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(3-22) 

 

In terms of objective function, we have included an offset function as presented 

in (3-11). There are many possibilities to choose this function, such as infinity norm or 

1-norm. In this work we have restrained ourselves to the former. The implementation 

of the offset function may be done in epigraph form, which preserves linearity. The 
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next lemma provides a conversion of the offset function to linear constraints for the 

case of zone control: 

 

Lemma (Ferramosca et al., 2009): The set  
sp

tar tar sp
y y y

y y y 
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1

1   (3-23) 

where 
ny1 is a column vector with ny unitary components.  

 

Our formulation exhibits three differences when compared to the one of 

Ferramosca et al. (2009), motivated by improvements of the numerical performance 

of the optimization problem. First, we have not considered a uniform value of   

but instead one particular value for each of the outputs, therefore defining a slack 

variable ny . Second, we have included a factor nyQ   for scaling purposes, 

which allows the objective function to weight better the trade-off between choosing 

an artificial set-point different from the real one and the other control costs. Finally, 

this chapter is not dedicated to the zone control strategy, so minimum and maximum 

output values are actually equal to the real set-point. A more detailed discussion of 

the zone approach is provided in Chapter 1. 

Therefore, the offset function considered in the simulations and the constraints 

associated with it are, respectively: 

 

  T

O tar spV y y Q ,   (3-24) 
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Notice that the distance from the artificial to the original set-point could be directly 

implemented as a weighted norm such as 
2



tar sp Q
y y . The epigraph form is 
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preferable since it is more readily generalizable to the zone control problem 

described in Chapter 4. 

 

3.4. Constraints 

 

Two kinds of constraints should be considered in this problem. First, (3-4)-(3-5) 

correspond to physical limits of the plant. Second, (3-6) represent soft constraints 

over linear combinations of the state, which may be used to model output limits. 

Moreover, as discussed in section 3.4.2, it is possible to include a kind of probabilistic 

zone control if (3-6) is modified in order to encompass linear functions of the set-

point.  

 

3.4.1. Physical limits 

 

Bounds on the maximum allowed control moves follow naturally from the chosen 

parameterization, in a similar spirit to Hokayem et al. (2012). Let wmax
, nww min

be 

respectively the maximum and minimum values of the noise, which are finite due to 

the bounded support assumption. Note that the absolute value of wmax
 and wmin

 may 

be different, since noise distribution is not necessarily symmetric and zero-mean. 

Therefore, a conservative version of (3-4) is given by  

 

 


     max min max, 1, ,i id G w w u i m nu  (3-26) 

 

where di is the i-th element of vector D k( )and Gi is the i-th row of matrix G k( ) . 

 Regarding (3-5), it suffices to notice that future input values and control moves 

are related through  
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Then, (3-5) is equivalent to  
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Considering the extreme values of noise realizations, (3-29) is assured if  
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where G k( )  and G k( )  are positive (element-wise) matrices such that 

G k G k G k  ( ) ( ) ( ) , 
max max max

   
T

T TW w w , min min min

   
T

T T m nwW w w . 

 

3.4.2. Probabilistic constraints based on invariant sets 

 

3.4.2.1. Theoretical background 

 

Invariant sets are an important tool to achieve stability results, both in disturbed 

and undisturbed situations (Blanchini, 1999). The intuitive definition of a positively 

invariant set is that, if the state is in the set for a given time, then it will remain in the 

same set for all future time. It is clear that this concept is close, but not equivalent, to 

stability. For example, if a system is positively invariant in a bounded set, this implies 

the existence of a uniform bound on its evolution, which guarantees Lyapunov 

marginally stability. On the other hand, the state may evolve in an unbounded 

invariant set and move arbitrarily far from the origin, in which case it would not 

correspond to a stable system. 
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Nominal model predictive control usually relies on invariant sets. On the simplest 

case, some algorithms force the state to reach the origin after a finite number of 

steps, because it will remain at this equilibrium point if the system is not disturbed. 

More generally, the dual controller strategy admits that the state is steered to a larger 

invariant set, where it would remain if subject to a linear feedback law.  

When disturbances are considered in the control formulation, it is necessary to 

modify the definition of invariant set, by considering that a state belongs to a robust 

invariant set if there is a feedback law (not necessarily linear) that keeps it in the set 

for all possible future disturbances. As control inputs are always bounded in practice, 

this definition is only meaningful if it is also assumed that the disturbance is bounded; 

otherwise, there would be a sufficiently large disturbance, able to remove the state 

from the set even if the control action was at its maximum value.  

This requirement of invariance when confronted with all possible disturbances is 

a source of conservativeness. If there is some information about their distributions, 

then it is possible to enforce invariance with a certain probability. This approach is 

investigated in Cannon et al. (2009) but it is not the main guideline of further 

reasoning in the current work. The inspiration comes from Korda et al. (2011), where 

the problem solved is to synthesize a strongly feasible MPC for linear time-invariant 

systems, subject to additive noise, hard input constraints and probabilistic constraints 

over states. The link between probabilistic constraints and invariant sets comes from 

the method named by the authors as “First-step constraint”.  

This first-step approach forces, at each sampling time, that the state in the next 

instant belongs to a “stochastic robust controlled invariant set”, which is a refinement 

of robust invariant set: besides being invariant when faced with all possible 

disturbances, in this set there is also a bound on the probability of satisfying the state 

constraint for future evolution.  

Definition 3-1 [(Korda et al., 2011)]: A set  nx

SRCIS  is stochastic robust 

controlled invariant for a system of the form    ( 1) ( ) ( ) ( )x k Ax k Bu k w k  subject to 

the soft constraint  

 

       
*( 1) 1 , 1, , ;T

j j jg x k h j r k  (3-31) 
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if there is a continuous feedback control law ( ) ( ( ))u k x k   such that ( )u k U , 

which assures that 
SRCIS  is positively invariant for the closed loop system, 

   ( ) ( ( )) SRCIAx k B x k w S , and the soft constraint remains feasible, 

 

           
*( ) ( ( )) 1 , 1, , ;T

j j jg Ax k B x k w h j r k  

 

As can be seen from above, this proposal of an invariant set is aimed only at 

achieving strong feasibility, i.e., “to guarantee that for every feasible initial state the 

closed-loop process remains feasible due to any admissible disturbance realization 

and any sequence of feasible control inputs generated in a receding horizon fashion” 

(Korda et al., 2011).  

In order to create a practical algorithm, (Korda et al., 2011) reformulate the 

probabilistic constraint through the use of the cumulative distribution  T
jg w

 and the 

left quantile function  1
T
jg w

  of the random variables 
T

jg w : 

 

  

   1

( 1) 1 , 1, , ;

( ) ( ) 1 , 1, , ;

( ) ( ) 1 , 1, , ;

T
j

T
j

T

j j j

T

j j jg w

T

j j jg w

g x k h j r

h g Ax k Bu k j r

g Ax k Bu k h j r







      



    



    

 (3-32) 

 
 

Since  1 1T
j

jg w
  can be calculated offline, for example by Monte Carlo 

methods, (3-32) is a regular, linear constraint on state and inputs.  Therefore, the 

calculation of the stochastic robust controlled invariant set may be performed with 

available standard algorithms. In particular, in this work we use the Matlab Invariant 

Set Toolbox  (Kerrigan, 2005).  

To achieve the largest possible domain of attraction, Korda et al. (2011) look for 

the maximum stochastic robust controlled invariant (MSRCI) set, denoted by *

SRCIS , 

which is the set containing all 
SRCIS . This set may be of any shape, but available 
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software provide a polyhedral approximation, with precision (and complexity) 

arbitrarily large, of the form   * |nx

SRCIS x Sx c .The so-called first-step 

constraint implies that only the first control move is considered for the problem 

constraints. Let ( ) ( )u k d k , then the necessary constraints are: 

 

 T T

j j j ws Ax k Bd k c s j r    
1

( ) ( ) , 1, , ;  (3-33) 

       1( ) ( ) 1 , 1, , ;T
j

T

j j jg w
g Ax k Bd k h F j r  (3-34) 

 

where
T

js  and jc are the rows of matrices  r nxS and rc . 
w is an upper bound 

of the norm-1 of w. Korda et al. (2011) remark that the MSRCI is a superset of the 

robust controlled invariant set associated with constraints imposed in hard form, i.e., 

( 1) T

j jg x k h . Additionally, even if the confidence parameter  j
is set to 0 for all j 

they do not coincide, because *

SRCIS is the set containing all points that can reach the 

robust controlled invariant set in one step.  

Since only the first move is constrained by this strategy, there are degrees of 

freedom corresponding to the future moves. Therefore, the first-step constraint may 

be perfectly accommodated with the affine parameterization (3-9), which is explicitly 

done in the next subsection.  

 

3.4.2.2. Tracking formulation 

 

There are three main difficulties that have to be tackled when applying the 

approach of stochastic invariant sets to the controller framework proposed in this 

chapter. First, we consider constraints over control moves and input values, whereas 

Korda et al. (2011) deal only with the latter. Second, the controller considers noise in 

incremental form, but its most natural description is in positional form. Finally, since 

the set-point varies, it would be more useful to consider soft constraints including 

linear combinations of states and the set-point.  

As an example of the last observation, soft constraints of the form (3-31) may be 

used to model probabilistic zone constraints, forcing the state to be close to the set-
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point within a certain probability level. A standard zone constraint could be expressed 

as 

 

tary k y h  ( 1)  (3-35) 

 

Besides, it is possible to soften (3-35) into probabilistic constraints, 

 

 

 

tar

tar

y k y h x k k

y y k h x k k





     

     

*

1

*

2

( 1) | ( ) 1 ;

( 1) | ( ) 1 ;
 (3-36) 

 

It is clear that the structure of (3-36) is close to the form (3-31), as the 

probabilistic constraints are imposed over linear combinations of the state and the 

artificial set-point. Therefore, it is advantageous to define an extend state comprised 

of the real state and the artificial set-point and express the probabilistic constraint 

over the augmented state.  

Additionally, in order to accommodate all three requirements defined in the 

beginning of this subsection, let   be an augmented state such that 

( ) ( ) ( ) ( 1)
T

T T T T

v tark x k u k w k y     . Notice that linear constraints over 

 include input limits and also soft constraints like (3-36). Moreover, the inclusion of 

previous noise realization w k ( 1)  enables one to recast the problem of calculating 

invariant sets in the traditional framework of positional noise.  

In order to use standard results on invariant sets, it is also necessary to define a 

dynamic evolution for this augmented state. By resuming to the notation of 

incremental state introduced in Section3.1, the dynamics is given by 

 

2*

0 0( 1) ( )

0 0 0( 1) ( ) 0
( ) ( )

0 0 0 0( ) ( 1) 0

0 0 0( 1) ( ) 0 0

( 1) ( ) ( ) ( )

v vv v v v

nu nu

nw

nytar tar

nx ny nu

A Fx k x k B F

Iu k u k I
u k w k

w k w k I

Iy k y k

k A k B u k F w k
  

 

         
                    
        
        

          

      

 nw

 (3-37) 
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Notice that ( )vx k  and ( )tary k  are related through constraints (3-36) but not 

through their time evolution, since ( )tary k  assumes a constant, independent value at 

each sample time. Moreover, since we are assuming measured state, the value of 

w k ( 1) is known at time k. General probabilistic constraints over linear combinations 

of  are given by 

 

*( 1) 1 , 1, , ;T

k j j jg k h j r k          (3-38) 

 

As previously, let 
w  be an upper bound of the 1-norm of w and consider the 

conservative approach taken by Korda et al. (2011), where constraints (3-38) are 

replaced with 

 

T

j j jg k h k j r k         
*( 1) | ( ) 1 , 1, , ;  (3-39) 

 

By partitioning 
T

jg as T T T T

j j j jg g g g  1, 2, 3, 4,
, where each component corresponds 

to the four distinct elements of  , it is clear that (3-36) is equivalent to (3-40) 

 

   

1, 2, 3, 4,

1, 2,

3, 4,

1,

( 1) | ( ) 1

( 1) ( ) ( ) ( ) | ( ) 1

( ) ( ) ( 1) ( ) ( 1) ( )
1

( ) ( ) | ( )

T

j j j

T T T T

j v j j j tar j j

T T

j v v v v v j

jT T

j j tar j

T

j v

g k h k

g x k g u k g w k g y k h k

g A x k B u k F w k F w k g u k u k

g w k g y k h k

g A x







       



         



         
  

     



   

   
1, 3,

2, 4,

1

( ) ( ) ( 1) ( 1) ( ) ( )

1T T
j v j

T T

v v v j j tar

j jg F g w

k B u k F w k g u k u k g y k

h 



        

  

 (3-40) 

 

It is now possible to look for the MSRCI of system (3-37), subject to constraints 

(3-40). The result may be a polyhedron or, if it is not the case, a polyhedral 

approximation of the real set. As previously discussed, it may be represented by 
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   * 2 |nx

SRCIS S c  and matrix S  may be decomposed as 

S S S S S 
 1 2 3 4

. Finally, since the first control move is not subject to feedback, 

the invariance constraint sufficient to guarantee that *( 1) SRCIk S   for all possible 

noise realization is 

 

   

 
1, 2, 4,

1, 3,

( ) ( ) ( 1) ( 1) ( ) ( )

, 1, , ;

T T T

j v v v v j j tar

T T

j j v j w

s A x k B u k F w k s u k u k s y k

c s F s j r
 

        

    
 (3-41) 

 

where
T

i js , are the rows of iS  (i = 1,…, 4), respectively.  

Notice that (3-41) is linear with respect to all decision variables, there are no 

concerns about convexity issues and indeed the resulting problem reduces to a QP. 

To summarize, the complete optimization corresponding to the stochastic controller 

for tracking with hard input bounds and soft state constraints is given in two forms: 

the first containing a generic description of the optimization problem defined by 

(3-42)-(3-47) and another with all constraints fully developed as necessary in a 

computational implementation, presented in (3-48)-(3-61): 

 

Generic definition: 

 
1

2 2

( )

1 0

min ( ) ( ) ,


 

 
      

 
 

p m

k tar O tar spQ R
i i

y k i y u k i V y yX  (3-42) 

subject to  

min max

tar p tar p tar

tar p tar

tar

x A x B u

y C x

u u u

 



 

 (3-43) 

    max( )u k i u ,  0, , 1i m  (3-44) 

    min max( ) , 0, , 1u u k i u i m  (3-45) 

T

j v j jg x k h j r      ( 1) 1 , 1, , ;  (3-46) 

*( 1) , ( )  v SRCIx k S w k  (3-47) 
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Detailed expression: 

 min ( ) ,O tar spV k V y y  (3-48) 

subject to  

 

  

  

   

  

 

2

2

( ) ( ) ( )

2 ( ) ( ) ( )

2 ( ) ( )

( ) ( ) ( )

2 ( ) ( ) ( )

T T

T T w w

A C QCA

T T T w w

T T w w T w T

T T w w T w T w T T T

T w w

sp v tar Q

T T T

m m X

V k x k tr F C QCF k

x k A C QC B G k D F k

tr B C QCF k G k D

tr B C QCB R G k G G k D D k G DD

Y QC Ax k B G k D F k Y

tr T A C QCAT



 

 

  

 

 

 

  

   

 

 

  

  

   

    

    

     

   
2

2 2 2

2 ( ) ( ) ( )

T T T T w w

UU

T T T T T T

UX WX WU

T w w

sp m v tar
Q

tr B C QCB tr F C QCF

tr A C QCB tr A C QCF tr B C QCF

Y QC AT Ax k B G k D F k Y



 

 

 

  

     

    

 (3-49) 

 , T

O tar spV y y Q   (3-50) 

tar p tar p tarx A x B u   (3-51) 

tar p tary C x  (3-52) 

min maxtaru u u   (3-53) 

tar spy y   (3-54) 

tar spy y     (3-55) 

0   (3-56) 





        
1

0

( ) ( ) ( , ) ( )
i

j

u k i d k i G k i k j w k j ,  0, , 1i m  (3-57) 

 


     max min max, 1, ,i id G w w u i m nu  (3-58) 

U k M U k U k  min max( ) ( ) ( )  (3-59) 

   

   
1, 3,

1, 2, 4,

1

( ) ( ) ( 1) ( 1) ( ) ( )

1 , 1, , ;T T
j v j

T T T

j v v v v j j tar

j jg F g w

g A x k B u k F w k g u k u k g y k

h j r



        

   
 (3-60) 

   

 
1, 2, 4,

1, 3,

( ) ( ) ( 1) ( 1) ( ) ( )

, 1, , ;

T T T

j v v v v j j tar

T T

j j v j w

s A x k B u k F w k s u k u k s y k

c s F s j r
 

        

    
 (3-61) 
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It is worthwhile noticing that this formulation still considers a worst-case value for 

the disturbance in order to find the robust invariant set. The extra degrees of freedom 

when compared to standard robust MPC come from the fact that constraint (3-40) 

only implies (3-35) with probability p. In comparison to nominal MPC, the main 

advantage is the explicit inclusion of the noise contribution to the prediction of future 

outputs, generating a kind of feedforward controller.  
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4. Case Studies 

 

This chapter provides numerical examples of the proposed controller’s 

performance in comparison to other possible control strategies, namely a finite 

horizon MPC and a truncated LQR (Linear Quadratic Regulator). All controllers were 

implemented in Matlab® R2012a in Windows® platform with Intel® Core i5-2400 

processor at 3.1 GHz and 8 GB of RAM. For the stochastic controller, YALMIP parser 

(Löfberg, 2004) has been used in problem formulation with GUROBI® (Gurobi 

Optimization, 2013) as the solver.  

The implemented finite horizon MPC controller is based on the same incremental 

description of the system as the stochastic controller, but ignores disturbances when 

calculating the predictions. The complete optimization problem is given by (4-1)-(4-5). 

It was solved using Matlab’s built-in routine for quadratic programming (quadprog). 

 

p m

MPC sp RQ
i i

y k i y u k i


 

     
1

2 2

1 0

min ( ) ( )  (4-1) 

subject to  

MPC v MPC vx k A x k B u k   ( 1) ( ) ( ) ,   k p 0, , 1 (4-2) 

MPC v MPCy k C x k( ) ( ) ,   k p1, ,  (4-3) 

  min max( )u u k i u ,  0, , 1i m  (4-4) 

    max( )u k i u ,  0, , 1i m  (4-5) 

 

Regarding the LQR controller, it considered a steady state gain KLQR calculated 

from matrices Q and R and using Matlab’s function dlqr. Since we consider tracking 

problems, the feedback used was 

 

 LQR tar taru k K x k x u  ( ) ( )  (4-6) 

 

where targets 
tarx and 

taru  were calculated using (3-22). Saturation of input values 

and control moves was introduced after the calculation of u according to (4-6). It is 

important to mention that such truncated controller presents neither optimality nor 

stability guarantees. 
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The structure of this Chapter is as follows: first, the system chosen as a case 

study is described, then two types of simulation results are given, for symmetric zero-

mean and non-symmetric non-zero mean noise distributions. The methodology of the 

simulation consists of 1000 Monte Carlo repetitions, with the same noise realization 

being provided to three controllers.  

Mean values for each sampling time are plotted to show that the mean of the 

outputs calculated by the stochastic controller converge to the set-point. Moreover, 

histograms of variables distributions are presented to indicate that the proposed 

controller achieves lower output variances with less intense control moves.  

It was indeed expected that the proposed stochastic controller would outperform 

the others in both cases, since it explicitly considers noise distribution and system 

constraints simultaneously. The feedforward effect of the inclusion of disturbances is 

the main responsible for the reduction of variances. 

 

4.1.1. System description  

 

The system shown below is an example adapted from Ogunnaike et al. (1983), 

representing the control of a binary ethanol-water distillation column. The system 

model is composed of first and second order transfer functions plus time delays, 

identified from experiments in a real column. Since our approach relies on invariant 

set construction, it is not computationally feasible to consider systems with large state 

space descriptions. Therefore, we have simplified the original model by omitting time 

delays. Three controlled variables are subject to three manipulated variables and to 

two disturbances, as presented in Table 4-1:   

 

 

Table 4-1: Variables of the ethanol-water system 

Variable Description 

y1 Overhead ethanol mole fraction 

y2 Side stream ethanol mole fraction 

y3 Temperature of tray number 19 (ºC) 

u1 Reflux flow rate (gpm) 

u2 Side stream product flow rate (gpm) 

u3 Reboiler stream pressure (psig) 

w1 Feed flow rate (gpm) 

w2 Feed temperature (ºC) 
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The system description without time delays is given next, with time constants in 

minutes: 

 

 
  

1 1

2 2

3 3

0.66 0.61 0.0049

6.7 1 8.64 1 9.06 1( ) ( )
1.11 2.36 0.0012

( ) ( )
3.25 1 5 1 7.09 1

( ) ( )
0.87 11.61 134.68 46.2

8.15 1 10.9 1 3.89 1 18.8 1

0.14

6.

s s sy s u s
s

y s u s
s s s

y s u s
s

s s s s

  
 

      
     

               
 

     



 
  

 
  

1

2

0.0011 26.32 1

2 1 7.85 1 14.63 1

( )0.0032 19.62 10.53

( )6.9 1 7.29 1 8.94 1

11.54 0.32

7.01 1 7.76 1

s

s s s

w ss

w ss s s

s s

  
 

   
    
   

     
 
 

  
 

 (4-7) 
 

 

The model was discretized using a sampling time of 1 minute. Ogunnaike et al. 

(1983) do not provide information regarding noise distribution, since the work only 

presents minimum and maximum disturbance values. Therefore, we have chosen 

distributions within the same order of magnitude but with various shapes.  

Regarding system constraints, Ogunnaike et al. (1983) only consider input 

bounds. In addition to these limits, maximum control moves were here imposed over 

the system, as presented in Table 4-2: 

 

Table 4-2: Input and control moves bounds 

Input Minimum value 

 umin  

Maximum value 

 umax  

Maximum change 

 u max  

u1 0.068 gpm 0.245 gpm 0.02 gpm 

u2 0.00694 gpm 0.1 gpm 0.02 gpm 

u3 15.6 psig 34 psig 5 psig 

 

Also regarding the constraints, two situations were considered: in the first, there 

are no state constraints, whereas in the second a soft constraint was added, forcing 

the overhead ethanol mole fraction (y1) to be greater than its artificial set-point with 

90% of probability. The goal of the first scenario is to show that the mean of the 
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system output with the proposed controller is able to track the set-point without offset. 

The second one demonstrates the application of the soft constraint strategy based on 

invariant sets but it induces a back-off of y1from its set-point. This result should not 

be confused with a typical offset, since it is intentionally produced by the controller in 

order to respect the violation probability.  

In terms of set-point tracking, the system was to be kept around the origin for the 

first 100 minutes and at another steady state for the second part. Initial conditions 

and set-points are presented in Table 4-3: 

 

Table 4-3: Simulation operating points 

System initial conditions Output set-points 
Inputs Outputs k 0 100  k 101 200  

0.18 gpm 0.7 0.7 0.64 

0.046 gpm 0.52 0.52 0.4 

20 psig 91 ºC 92 ºC 94 ºC 

 

The set-points considered in Ogunnaike et al. (1983) are between 0.65 and 0.7 

for y1, 0.45 and 0.53 for y2, 92ºC and 97ºC for y3. 

Since the order of magnitude of the variables spans a considerable range, a 

normalization procedure was used. The definition of scaled variables is given by  

 

sca

y
y

weight
 (4-8) 

 

Scaling weights are 10-1 for both mole fractions (y1 and y2)and 10 for the 

temperature y3. Tuning parameters given in next sections correspond to the scaled 

variables, where previously discussed bounds and transfer functions are given in 

terms of engineering units.  

 

4.1.2. Truncated Gaussian noise 

 

In this first example, we generate random noise according to distributions with 

zero-mean and standard deviation of 0.07 gpm for the feed flow rate and 8ºC for the 

temperature. The distributions are truncated at 3 standard deviations, providing 

bounded symmetric noise. These values of standard deviation have been chosen to 
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approximately match the disturbances ranges described in Ogunnaike et al. (1983), 

which are 0.2 gpm and 20ºC respectively.  

The relevant tuning parameters for the three controllers are presented in Table 

4-4. The same weights Q and R were used for all controllers, to standardize the 

relative importance of the variables.  

 

Table 4-4: Tuning parameters – symmetric noise 

Parameter Value 

Q  1 1 1  

R     
1 1 310 10 10  

Q   
4 4 410 10 10  

p 30 

m 3 

 

4.1.2.1. Simulation without state constraints 

 

Figure 4-1 shows the mean values of system outputs. Since they are disturbed 

by symmetric zero-mean noise, it is clear that on average the effect of a particular 

noise realization tends to be cancelled out by the contribution of other realizations. 

 

Figure 4-1: Mean of system outputs – symmetric noise 
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Source: own elaboration 

 
Figure 4-2: Mean of system inputs – symmetric noise 
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Source: own elaboration 

 

Regarding Figure 4-2 and the inputs, we note that the saturation of the truncated 

LQR is active on average after the set-point change at 100 min. This implies that at 

each realization it became active and therefore optimality of this controller was 

indeed lost. The fact of having active input constraints is naturally handled by the 

predictive controllers, causes them to achieve better performances in terms of 

achieving the set-point faster. The difference between the stochastic and standard 

predictive controllers is more significant regarding y3, whose average presents an 

offset in the second part of the simulation.  

In order to compare quantitatively the results obtained by each controller, the 

usual approach is to look at the corresponding objective functions and determine 

which one is better. It is not possible to follow this procedure in the present case 
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since each controller considers different contributions, for instance, standard MPC 

disregards noise whereas the proposed stochastic controller is based on expected 

values. One alternative to overcome this problem is to use a metric such as the 

Integral Square Error (ISE). We propose to use a weighted version of this criterion, 

defined as   

 



 
2

0

( ) ( )
nsim

sp Q
k

J y k y k  (4-9) 

 

where J is the weighted total error and nsim is the simulation horizon. Note that the 

set-point is explicitly allowed to change during this horizon. If all controllers are 

designed using the same matrix Q, then the errors are comparable. Finally, since this 

expression is evaluated after the simulations, the error is computed from the actual 

outputs obtained with each given noise, avoiding the evaluation of any expected 

values.  

The most direct way to analyze data from all 1000 Monte Carlo repetitions is to 

compare the means of the weighted integral square errors in all realizations. This 

comparison is presented in Table 4-5 

 

Table 4-5: Average weighted integral square error – symmetric noise 

Standard MPC JMPC Stochastic controller JSto Truncated LQR JLQR 

7.93 6.13 20.72 

 
Since mean output values are similar for the first two controllers, Figure 4-1may 

be not enough to explain the better performance revealed by Table 4-5, even though 

the transient corresponding to the stochastic controller is the fastest. The main 

reason of this improvement is the variance reduction obtained with the proposed 

controller. Figures 4-3 and 4-4 show this effect by comparing the distribution of the 

outputs for all 1000 Monte Carlo repetitions. To improve readability, each figure is 

dedicated to one steady state of the simulation. The results obtained with each 

controller are presented in separated histograms, using the same color pattern of 

previous graphs. Also, the set-point corresponding to that part of the simulation is 

marked in green. Mean (µ) and standard deviation() values are given for the 
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distribution obtained with each controller, allowing a quantitative comparison: ideally, 

the standard deviation should be as small as possible, whereas the mean should be 

equal to the set-point in this case without state constraints.  

 

Figure 4-3: Distribution of system outputs between 10 and 100 min for MPC 
(blue), Stochastic controller (red) and Truncated LQR (black). Set-point in green 
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Figure 4-4: Distribution of system outputs between 120 and 200 min for MPC 
(blue), Stochastic controller (red) and Truncated LQR (black). Set-point in green 
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From Figures 4-3 and 4-4 it is clear that the proposed controller is able to reduce 

output variances for all cases, even when compared to the truncated LQR at steady 

state, where the probability of activating the constraints is lower. Besides, they 
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evidence that the mean value is very close to the corresponding set-point for all 

outputs in both steady states, highlighting its set-point tracking capability.   

 

4.1.2.2. Simulation with state constraints 

 

 

Figure 4-5: Mean of system outputs – symmetric noise 
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Source: own elaboration 

 
Figure 4-6: Mean of system inputs – symmetric noise 
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Source: own elaboration 

 

As previously stated, noise realizations compensate each other since their 

distribution is symmetric. However, in contrast to section 4.1.2.1, the main difference 

between the results of the proposed controller and literature benchmarks is the 

presence of a back-off in the overhead ethanol mole fraction (y1) in relation to its set-

point. It is a consequence of the soft constraint: to guarantee that y1 is greater than 

the set-point for 90% of the time, it is necessary that its mean value is also greater 

than the set-point. A compromise must be found, since the objective function drives 

the outputs towards the set-points but the soft constraint tries to avoid this 

approximation. Table 4-6 subsumes the effect of this bound in each of the two 

steady-states of the simulation: from 10 to 100 min and from 120 to 200 min. Since 

the violation percentage of the stochastic controller is close to the prescribed value of 

10%, it shows that the approach is not excessively conservative. 

 

Table 4-6: Percentage of time steps with y1 lower than its set-point for each controller 

– symmetric noise 

First steady-state ( k 10 100 ) Second steady-state ( k 120 200 ) 

Controller Violations Controller Violations 

MPC 49,13% MPC 39,93% 

Stochastic 9,66% Stochastic 9,91% 

LQR 49,88% LQR 47,33% 
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It has been shown in Figure 4-5 that the inclusion of the soft constraint moves the 

system away from the set-point. However, when using the index defined in (4-9) as a 

measure of control performance, the following results are obtained: 

 

Table 4-7: Average weighted integral square error – symmetric noise 

Standard MPC JMPC Stochastic controller JSto Truncated LQR JLQR 

7.96 6.90 20.81 

 

Comparing the values of Table 4-7 and Table 4-5, for the proposed controller 

there is an increase of 12.5% (from 6.13 to 6.9) due to the inclusion of the soft 

constraint. Nonetheless, it still outperforms the standard MPC that is oblivious to this 

constraint. Small fluctuations of the average errors for the MPC and LQR between 

these two tables, in the order of 0.4%, are a consequence of the use of a different 

random seed to generate noise in each of the examples. 

 
Figure 4-7: Distribution of system outputs between 10 and 100 min for MPC 

(blue), Stochastic controller (red) and Truncated LQR (black). Set-point in green 
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Figure 4-8: Distribution of system outputs between 120 and 200 min for MPC 

(blue), Stochastic controller (red) and Truncated LQR (black). Set-point in green 
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Comparing the results obtained with the proposed controller in the situations with 

and without state constraints, it is noticeable with the state constraint the mean is 

shifted for all outputs because a different steady state with greater value of y1is 

sought, but this displacement is as small as possible. Tables 4-8 and 4-9 are 

presented to compile the results dispersed in previous figures. Since MPC and LQR 

are oblivious to the state constraint, their results should ideally be the same in both 

circumstances, but some random deviation is inevitable. However, we note that there 

is no reason to expect the values to be equal at each operating point (first and 

second steady state).  

 

Table 4-8: Output standard deviations in the first steady state– symmetric noise 

 Without state constraint With state constraint 

Output MPC  Stochastic LQR MPC  Stochastic LQR 

y1 0.0038 0.0026 0.0028 0.0038 0.0024 0.0028 

y2 0.0122 0.0087 0.0094 0.0123 0.0089 0.0095 

y3 0.421 0.384 0.408 0.423 0.395 0.411 
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Table 4-9: Output standard deviations in the second steady state– symmetric noise 

 Without state constraint With state constraint 

Output MPC  Stochastic LQR MPC  Stochastic LQR 

y1 0.0035 0.0026 0.0027 0.0035 0.0024 0.0027 

y2 0.0119 0.0087 0.0093 0.012 0.0089 0.0093 

y3 0.397 0.387 0.414 0.399 0.394 0.413 

 

The proposed controller systematically achieves lower standard deviations in all 

cases when compared to the benchmark controllers. The presence of the state 

constraint produces a further reduction of the variance of the first output, which is 

also expected: if the shape of the distribution of y1 were the same but only shifted to 

the right to satisfy the constraint, then it would cause the cost to increase significantly 

due to the right tail of the distribution being too far away from the set-point. On the 

other hand, the other outputs are allowed to vary in a larger interval and as a 

consequence: it would not be consistent if the constrained case achieved an overall 

smaller variation.   

 

4.1.3. Skew normal noise  

 

In order to develop the controller formulation for a generic noise distribution, we 

have chosen to consider skew normal distributions (Azzalini, 1985). Contrary to the 

standard normal distributions, which is completely defined with two parameters 

(mean and standard deviation), three parameters are necessary in this case. 

Location and scale parameters are similar, in some sense, to the mean and deviation 

since they may be used to shift or to flatten the distribution, respectively. The third 

parameter is called shape and is responsible for the skewness: if it is equal to 0, then 

the standard normal is recovered; otherwise, the absolute value of the skewness 

increases as the absolute value of the shape increases, and the sign of the 

skewness is equal to the sign of the shape.   

In all simulations of this section, location and shape were the same for both 

disturbances (0 and 1.2, respectively) whereas the scales were taken as the 

standard deviation values of the preceding section, i.e., 0.07 gpm for the feed flow 

rate and 8ºC for the temperature. For illustration purposes, Figure 4-9 presents a 
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comparison of probability density function of normal and skew normal distributions 

considered for the feed flow rate in the simulations.   

 
Figure 4-9: Comparison of density functions 
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Source: own elaboration 

 

Since distributions of this family are also unbounded, we have decided to 

truncate it in a similar manner to what was presented in the previous section. 

Minimum and maximum thresholds were established as the points corresponding to 

0.5% and 99.5% of the cumulative distribution. In the referred example of the feed 

flow rate distribution, the limits are -0.0906 and 0.197 gpm. It is worthwhile to 

mention that these values correspond to deviation variables relative to a steady state 

of 0.8 gpm. For the feed temperature, the steady state is 78ºC and the limits of the 

disturbance in deviation form are -10.35 and 22.46ºC.  

In a similar spirit to section 4.1.2, we present mean results and also distribution 

histograms for the three controllers after 1000 Monte Carlo repetitions, first for the 

simulation without state constraints and then to the constrained case.  
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4.1.3.1. Simulation without state constraints 

Figure 4-10: Mean of system outputs – asymmetric noise 

 

Source: own elaboration 
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Figure 4-11: Mean of system inputs – asymmetric noise 

 

 

 

Source: own elaboration 
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Figures 4-10 and 4-11 show that the truncated LQR also struggles at the moment 

of the set-point change because the first input saturates. Once again, the most 

significant difference between the standard MPC and the proposed stochastic 

controller is in y3. The situation where the mean value of the disturbances is no 

longer zero is more challenging and for this reason the mean offset value of the MPC 

is larger. As previously, it is necessary to compare the distribution of the results to 

assess how each controller is able to shape it.  

 

Figure 4-12: Distribution of system outputs between 10 and 100 min for MPC 
(blue), Stochastic controller (red) and Truncated LQR (black). Set-point in green. 
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Figure 4-13: Distribution of system outputs between 120 and 200 min for MPC 
(blue), Stochastic controller (red) and Truncated LQR (black). Set-point in green 
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Figures 4-12 and 4-13 show that the skewness of the disturbances is only 

modestly present in the outputs, being more evident in y3, which is not surprising due 

to direct relation between the feed temperature and the temperature of the trays.  

The mean value of the outputs obtained with the proposed controller is closer to the 

set-point in all cases. In terms of the standard deviations, in the case of asymmetric 

noise it is no longer true that the stochastic controller outperforms the benchmark, 

with the exception being y3 in the second part of the simulation. However, we notice 

that the standard deviation of y3 in the first part was smaller than the corresponding 

with the other controllers. The explanation is that y3 is not at steady state during all 

the second part of the simulation, but rather drifts from a greater value towards the 

set-point.  

In general, the cost associated with each controller follows the same pattern 

previously observed, with the reduction of outputs’ variances being the responsible 

for the better performance of the proposed controller, as presented in Table 4-10: 
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Table 4-10: Average weighted integral square error – asymmetric noise 
 

Standard MPC JMPC Stochastic controller JSto Truncated LQR JLQR 

6.55 5.41 21.06 

 

 

4.1.3.2. Simulation with state constraints 

 

Figure 4-14: Mean of system outputs – asymmetric noise 
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Source: own elaboration 

 

Figure 4-15: Mean of system inputs – asymmetric noise 
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Source: own elaboration 
 

The dynamics represented in Figures 4-14 and 4-15 is similar to the one obtained 

in the case of symmetric noise. The state constraint induces a back off in y1, which 

causes that system to operate at a different steady state and for this reason the other 

outputs also exhibit an offset. The inclusion of the state constraint does not change 

the mean time of stabilization of the system in closed loop, therefore we observe the 

same drift towards a steady state in the second part of the simulation fory3.   

 

Figure 4-16: Distribution of system outputs between 10 and 100 min for MPC (blue), 
Stochastic controller (red) and Truncated LQR (black). Set-point in green 
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Figure 4-17: Distribution of system outputs between 120 and 200 min for MPC (blue), 
Stochastic controller (red) and Truncated LQR (black). Set-point in green 
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The histograms of outputs in Figures 4-16 and 4-17 show that the distribution of 

y1 is shifted to the right and its variance is reduced in comparison to the case without 

state constraint, in order to satisfy it. Once again, the skewness is more pronounced 

in y3 in the second part of the simulation due to the transient characteristic of this 

variable. The comparison between average errors of the simulations with and without 

state constraints is similar to the one described in Section 4.1.2. The inclusion of the 

soft constrained increases the cost associated with the stochastic controller in 7.8% 

(from 5.41 to 5.83), but it still outperforms the benchmark controllers as seen in Table 

4-11: 

 

Table 4-11: Average weighted integral square error – asymmetric noise 

Standard MPC JMPC Stochastic controller JSto Truncated LQR JLQR 

6.52 5.83 20.99 

 

Regarding the implementation of the state constraint for the case of non-

symmetric noise, results of the percentage of violations are shown in Table 4-12: 
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Table 4-12: Percentage of time steps with y1 lower than its set-point for each 

controller – asymmetric noise 

First steady-state ( k 10 100 ) Second steady-state ( k 120 200 ) 

Controller Violations Controller Violations 

MPC 49,34% MPC 26,77% 

Stochastic 9,98% Stochastic 10,26% 

LQR 33,28% LQR 31,51% 

 

For the first steady-state there is a confirmation of the low conservativeness of 

the considered approach. However, it is interesting to note that the violation 

percentage seems to exceed the specified limit of 10% for the second steady-state. A 

more detailed analysis of the formulation helps to explain this case: the soft 

constrained is imposed over the artificial set-point, which may be different from its 

original value. In the presence of significant disturbances, such behavior may emerge 

as a means to keep feasibility. If calculations of Table 4-12 were performed 

considering the artificial set-point, then the violation percentage would be lower than 

9,6% for both cases. Therefore, we may conclude that the proposed approach 

achieves, in practice, a high level of constraint satisfaction, regardless of its indirect 

nature. 

The comparison of the standard deviation of all variables in the different 

conditions is presented in Tables 4-13 and 4-14. The standard deviation of the other 

controllers (MPC and LQR) is due to the different random seed and may be 

neglected since it is smaller than 0.5%. We notice the same result previously 

discussed of the reduced standard deviation of the constrained output with the 

corresponding increase of the others deviations, in both operating conditions. 

 

Table 4-13: Output standard deviations in the first steady state– asymmetric noise 

 Without state constraint With state constraint 

Output MPC  Stochastic LQR MPC  Stochastic LQR 

y1 0.0038 0.0026 0.0028 0.0038 0.0024 0.0028 

y2 0.0122 0.0087 0.0094 0.0123 0.0089 0.0095 

y3 0.421 0.384 0.408 0.423 0.395 0.411 
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Table 4-14: Output standard deviations in the second steady state– asymmetric 

noise 

 Without state constraint With state constraint 

Output MPC  Stochastic LQR MPC  Stochastic LQR 

y1 0.0035 0.0026 0.0027 0.0035 0.0024 0.0027 

y2 0.0119 0.0087 0.0093 0.012 0.0089 0.0093 

y3 0.397 0.387 0.414 0.399 0.394 0.413 
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5. Zone control for systems with bounded noise 

 

This chapter extends the results of Chapter 3 to accommodate zone control 

strategies. The motivation of this approach is to design a predictive controller that is 

able to filter disturbances with high frequency and low amplitude: as well as to force 

the system to remain in the specified zone, no significant control actions should be 

taken to counteract the disturbance.  

In comparison to the method proposed in Chapter 3, it is expected that the zone 

controller achieves significant lower input variances at the expense of greater output 

variances. Its main advantage when compared to literature zone control strategies is 

the ability to account for the expected influence of the disturbances, which translates 

into keeping the system inside the zones more often.  

Section 5.1 provides the mathematical details of the zone control formulation. 

Next, Section 5.2 presents some case studies using the same system as in 

Chapter3, comparing the performance of the proposed controller to a literature 

approach in the area of zone control.   

 

5.1. Problem reformulation 

 

The same state space description and input parameterization of Chapter 3 are 

considered in this section. In terms of objective function, there are two main changes: 

the offset function calculation has to be changed to deal with zone control, and input 

targets are included to guide the system to the interior of the zone. 

The modified definition of the offset function is closer to the Lemma of 

Ferramosca et al. (2009)previously stated. Let the zone be described as the set 

 min max|nyy y y y     . Then, the offset function is redefined in terms of the 

distance between the artificial target tary and the set  .  

Considering the choice of the offset function as the infinity norm and the referred 

lemma, it may be replaced by the following terms:  
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Notice that  , 0O tarV y   if tary  but the points in the interior of   are 

indistinguishable. For this reason, if the system is evolving in the interior of the zone, 

the controller is able to simply recalculate the artificial target and do not perform 

severe control actions. This behavior is appropriate in the context of zone control, 

however it could lead to situations where the set-point is close to the limit of the zone 

and disturbances would remove it from the desired region. Therefore, it is 

advantageous to include input targets that guide the system towards regions with 

less probability of escaping the zone. 

The modified control problem including input targets is:  
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1
22

( ) ( )

0

( ) ( )
u u

m

k tar k tarQ Q
i

u k i u U k U




           
X X  (5-4) 

 

where 
T

T T m nu

tar tar tarU u u     and diag( , , ) m nu m nu

u u uQ Q Q     .  

To simplify the notation, let ( ) ( 1) ( 1)
T

T T m nu

prevU k u k u k       be a 

vector aggregating the input value in the previous time step. Note that 

( ) ( 1)prevU k U k  since ( )U k is a vector of predicted inputs. 
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According to the notation of (3-27), we have ( ) ( ) ( )prevU k U k M U k   . Using the 

expressions for expected values developed in the Appendix A ((A-3) and (A-11)), the 

additional term of the cost is given by 

  
   

  

1
2

( )

0

( )

( ) ( ) 2 ( 1)

2 ( )

u

m

k tar Q
i

T
T w T

u prev prev

w w T w T wT T T T

u

T w T

tar u prev tar u tar

u k i u

tr Q U k U k U k G D M

tr Q M G G G D D G DD M

U Q U k M G D U Q U



  









   



 
   

 

    
 

   

   

X

 (5-5) 

 

Following the same structure of Chapter 3, the complete formulation of the 

stochastic zone controller is presented in a more generic description followed by the 

detailed expression implemented for simulation : 

 

Generic definition: 

 
1

2 2

( )

1 0

min ( ) ( ) ,


 

 
       

 
 

p m

k tar O tarQ R
i i

y k i y u k i V yX  (5-6) 

subject to  

min max

tar p tar p tar

tar p tar

tar

x A x B u

y C x

u u u

 



 

 (5-7) 

    max( )u k i u ,  0, , 1i m  (5-8) 

    min max( ) , 0, , 1u u k i u i m  (5-9) 

T

j v j jg x k h j r      ( 1) 1 , 1, , ;  (5-10) 

*( 1) , ( )  v SRCIx k S w k  (5-11) 

 

 

Detailed expression: 

 min ( ) , O tarV k V y   (5-12) 

subject to  
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tr B C QCB tr F C QCF
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   ( ) w T

u prev tar u tarQ U k M G D U Q U  

 

(5-13) 

 ,    T

O tarV y Q  (5-14) 

tar p tar p tarx A x B u   (5-15) 

tar p tary C x  (5-16) 

min maxtaru u u   (5-17) 

maxtary y   (5-18) 

mintary y     (5-19) 

0   (5-20) 





        
1

0

( ) ( ) ( , ) ( )
i

j

u k i d k i G k i k j w k j ,  0, , 1i m  (5-21) 

 


     max min max, 1, ,i id G w w u i m nu  (5-22) 

U k M U k U k  min max( ) ( ) ( )  (5-23) 

   

   
1, 3,

1, 2, 4,

1

( ) ( ) ( 1) ( 1) ( ) ( )

1 , 1, , ;T T
j v j

T T T

j v v v v j j tar

j jg F g w

g A x k B u k F w k g u k u k g y k

h j r



        

   
 (5-24) 

   

 
1, 2, 4,

1, 3,

( ) ( ) ( 1) ( 1) ( ) ( )

, 1, , ;

T T T

j v v v v j j tar

T T

j j v j w

s A x k B u k F w k s u k u k s y k

c s F s j r
 

        

    
 (5-25) 
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5.2. Case studies 

 

The system considered in the following simulations is the same as in Section 

4.1.2, with truncated Gaussian noise. In order to evaluate the performance of the 

proposed controller, it is necessary to confront it with other literature proposals. 

There are not many benchmarks options in this specific area. The work of 

Ferramosca et al. (2012) is an interesting option since it deals with additive noise in a 

worst-case basis to guarantee closed-loop stability. However, their formulation does 

not include input targets, which greatly change system dynamics. For this reason, we 

chose to compare the proposed controller with the one presented in González & 

Odloak (2009).  

Nonetheless, there are two drawbacks in the choice of this controller as 

benchmark: it considers an infinite horizon and it is oblivious to disturbances. Since 

the design of Ferramosca et al. (2012) calculates the objective function based only 

on a nominal output predictions, it is conceivable that the comparison with González 

& Odloak (2009)is more meaningful. A simplified version of its optimization problem is 

as follows: 

 

1
2 2

1 0

1
22

0

min ( ) ( )

( )

u

y

m

tar y des QQ
i i

m

yR S
i

y k i y u k i u

u k i





 

 





      

  

 


 (5-26) 

subject to  

( ) 0s

tar yx k m y      (5-27) 

  min max( )u u k i u ,  0, , 1i m  (5-28) 

    max( )u k i u ,  0, , 1i m  (5-29) 

min maxspy y y   (5-30) 

 

The term ( )sx k m  in constraint (5-27) is one of the state components and it is 

equivalent to the prediction of outputs steady state at the end of the control horizon. 

This constraint forces the steady state prediction to be equal to the artificial set-

point tary  whenever possible, because it is relaxed with the slack variable y . It 
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should be noticed that the state space representation considered in that work is 

derived from the step response, being different from the choice of the stochastic 

controller. Detailed explanations on this subject may be found in the referred paper.  

There is one minor difference between (5-26)-(5-30) and the formulation in 

González & Odloak (2009). In the original work, they enforce the inputs to be equal to 

its target whenever possible, similarly to constraint (5-27). We have decided to 

abandon this additional requirement to render the benchmark controller closer to our 

new proposal. The same Monte Carlo simulation methodology adopted in Chapter 3 

is considered here, with 1000 noise realizations generated and provided to each 

controller. Regarding controller tuning, there are some additional parameters: Qu for 

both controllers and Sy exclusively to the zone MPC (ZMPC). They are presented 

together with other parameters in Table 5-1:  

 

Table 5-1: Tuning parameters – zone control 

Parameter Value Parameter Value 

Q  10 1 10  Sy 
7 6 710 10 10    

R     
1 1 310 10 10  p 30 

Q   
4 4 410 10 10  m 3 

Qu 
31 10 10      

 

The proposed simulation scenario is composed of 210 minutes, divided in three 

parts: in the first two, there are zones corresponding to regions encompassing the 

origin and the other set-point of Section 4.1.2, respectively. Finally, for the third part, 

the zones collapse into a new set-point, illustrating that the controller of this Chapter 

may be seen as an extension of the one in Chapter 3. Output zones and input targets 

are defined in Tables 5-2 and 5-3 as follows: 

 

Table 5-2: Output zones (LB stands for Lower bound and UB for upper bound) 

0 70k   71 140k   141 210k   

LB UB LB UB LB UB 

0.697 0.703 0.637 0.643 0.67 0.67 

0.51 0.53 0.39 0.41 0.45 0.45 

91.5 ºC 92.5 ºC 93.5 ºC 94.5 ºC 93 ºC 93 ºC 
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Table 5-3: Input targets 

0 70k   71 140k   141 210k   

0.18 gpm 0.095 gpm 0.14 gpm 

0.046 gpm 0.07 gpm 0.065 gpm 

20 psig 17.5 psig 18.7 psig 

 

The mean result of the 1000 repetitions is presented in Figures 5-1 and 5-2: 

 

Figure 5-1: Mean of system outputs – zone control 
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Source: own elaboration 

 

Figure 5-2: Mean of system inputs – zone control 
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Source: own elaboration 

 

Figure 5-3: Distribution of system outputs between 5 and 70 min for Zone MPC (blue) 
and the Stochastic controller (red). Zone limits in green 
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We notice that outputs’ variances obtained with the proposed controller are no 

longer significantly lower than the corresponding values with the standard MPC 

benchmark. The shape of the distributions are similar in the three parts of the 
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simulations, for this reason it is sufficient to analyze only the standard deviations as 

presented in Table 5-4: 

 

Table 5-4: Output standard deviations in each steady state 

 First steady state Second steady state Third steady state 

Output ZMPC Stochastic ZMPC Stochastic ZMPC Stochastic 

y1 0.00434 0.00305 0.00413 0.00255 0.00413 0.00256 

y2 0.012 0.0105 0.0133 0.00927 0.0134 0.0087 

y3 0.456 0.488 0.454 0.422 0.529 0.349 

 

In fact, the standard deviation is greater with the proposed controller than with 

the benchmark for one controlled variable (y3) in the first part of the simulation. 

However, as stated in the introduction of this section, this is not completely 

undesirable when zone control is considered, showing that the controller is taking full 

advantage of defining different set-points at each sampling time. 

To properly quantify the performance, the integral square error proposed in 

Section 4.1.2 has to be modified in order to consider the distance to the zone and no 

longer to the fixed set-point. Therefore,  

 

min max

2

( )
0

min ( ) ( )
sp

nsim

sp Qy y k y
k

J y k y k
 



   (5-31) 

 

It must be understood that ( )spy k in equation (5-31) is defined after the simulation 

has taken place and should not be confused with the artificial target. Actually, it 

stands only to an auxiliary variable that is equal to 
maxy if a given output is greater 

than the upper bound of the zone and 
miny if the output is lower. If the variable is 

inside the zone, then ( ) ( )spy k y k and the cost contribution is null. According to this 

metric, the performance index of the proposed controller is 4.8064, compared to 

6.6238 of the benchmark, which is 27.4% lower. 

Finally, other useful metric to compare controllers’ performances is the 

distribution of system inputs as presented in Figures 5-4 and 5-5: 
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Figure 5-4: Distribution of system inputs between 5 and 70 min for Zone MPC 
(blue) and the Stochastic controller (red). Set-point in green 
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The difference between both controllers is strikingly clear in terms of inputs’ 

distributions, with the stochastic controller achieving standard deviations smaller by 

up to one order of magnitude. This is precisely the main advantage of the proposed 

technique in comparison to state of the art alternatives, since lower input variance 

without deterioration of the outputs performance represents the possibility of 

significant savings in terms of actuators’ maintenance and substitution.  
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6. Stochastic controller with stability guarantee 

 

This chapter is concerned in providing formal performance guarantees to the 

stochastic controller formulation. The chosen approach to tackle this problem is to 

rewrite the soft constraint using a method proposed in Korda et al. (2011) that, in 

addition to the strongly feasibility obtained by the first-step constraint of Chapter 3, 

assures recursive feasibility. Once that a recursive solution is available, the standard 

method to prove Lyapunov stability of predictive controllers may be used. However, 

when the disturbance is persistent as in the case considered throughout this work, 

the cost decreases only until the state achieves a given set and it does not 

converges to zero.  

 

6.1. Control formulation 

 

As defined in Section 3.4.2, the controller formulation already presented imposes 

that the state in the immediately next sampling time is included in a robust positive 

invariant set, as expressed in (3-41). The predicted input values of subsequent time 

instants are not constrained regarding the invariant set. Therefore, when the 

optimization problem has to be solved again at the next time step, it is possible that a 

shifted input sequence – obtained with the standard approach of using the previously 

optimal solution completed with a local controller for the last term – would not be 

feasible. 

The alternative approach to handle the soft constraints stems from the 

assumption of bounded noise support, which allows one to use traditional robust 

control approaches to guarantee recursive feasibility. The control actions are 

constrained to assure that the state is kept at the invariant set for all possible 

disturbances, thus the shifted solution is certainly feasible.  

As previously, the controller is based on a dual mode strategy, but its 

components are different. In the first mode, a deterministic counterpart of the soft 

constraint is imposed explicitly over the control actions. In the second mode, the 

feedback law becomes 
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 ,( ) ( )s v v taru k i K x k i x    

 

(6-1) 

 

where 
,v tarx is the artificial target associated with the velocity description. Associated 

with the second mode, it is defined a terminal cost of the form 

2

( ) ( )k tar P
y k m y  

 X , where matrix P is calculated following the commentary in 

Assumption 1: 

 

Assumption 1: There is a constant feedback 
sK corresponding to the 

law  ,( ) ( 1)s v taru k K x k x     associated with a terminal weightP that is the solution 

of the following Lyapunov equation, 

   
T T T T T

v v s v v v v s v v s s v vA B K C PC A B K C QC K RK C PC    

 

(6-2) 

The closed-loop transition matrix 
CL v v sA A B K  is strictly stable, i.e., all its 

eigenvalues are inside the unity circle.  

 

Let us now retake the notation of the augmented state defined in Chapter 3 to 

develop the expression of the constraints that actually replace the probabilistic 

expression. 

 

,

, ,

( ) ( ) ( ) ( 1) ( ) ,

( 1) ( )0 0

( 1) ( )0 0 0 0
( ) ( )

( ) ( 1)0 0 0 0 0

( 1) ( )0 0 0 0 0

T
T T T T

v v tar

v vv v v v

nu nu

nw

v tar v tarnx

k x k u k w k x k

x k x kA F B F

u k u kI I
u k w k

w k w k I

x k x kI

    

         
        
           
         
        

        

( 1) ( ) ( ) ( )k A k B u k F w k
  

      

 

(6-3) 

 
 

The evolution of the augmented state i steps ahead is given by 

 

 , ,( ) ( )i

i ik i A k B D G W F W
  

       

 

(6-4) 
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with 

   
   

1

, 0 0i

iB A B B , 

   
   

1

, 0 0i

iF A F F  and 

W is the aggregation of future noise values in positional form, 

( ) ( ) ( )
T

T TW k w k w k m    .  

Recall that the probabilistic constraint written in terms of the augmented state is 

given by: 

 

*( ) | ( 1) 1 , 1, , ;T

j j jg k i h k i j r i           

 

(6-5) 

 

For (6-5) to be valid, it is necessary that   

 

     




  
          1( ) ( ) 1 , 1, , ; 1, , 1T

j

T

j j jg F w
g A k i B u k i h j r i m

 

(6-6) 

 

Defining  





  1' 1T

j
j j jg F w

h h , (6-6) may be expressed as a function of the 

decision variables as follows: 

 

   
  

, ,

1

1, ,

( ) ( ) '

( ) '

T i

j i i j

T i

j i i j

g A A k B D G W F W B u k i h

g A k B D G W A F W h

    



    

        

     
 

(6-7) 

 

To encompass the difference between W and W , let us first define 

( ) ( 1) ( 1)
T

T T m nw

prevW k w k w k        and 

0 0

0

nw

nw nw

w

nw nw nw

I

I I
M

I I I

 
 
 
 
 
 

. Then, it 

follows that prev wW W M W   . 

 

Therefore, considering a worst-case approach for noise realization until time i, 

   1

1, , 1, ,( ) ( ) 'T i T

j i i prev j j i i w wg A k B D A F W k h g B G A F M

         


      

 

(6-8) 

 

where
w is the bound on w , which is equal to 

max minw w .  
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In the second mode, the state is constrained to belong to an invariant set defined 

as the maximum robust invariant subset of the stochastic feasibility set of(6-5).The 

feedback law  ,( ) ( )s v v taru k i K x k i x      may be summarized 

as


    ( ) ( )u k i K k i , where  0 0s sK K K

  . 

More precisely, let sK

rX be the set such that for all  sK

rX : 

 

       ,sK

rA B K F w X w
   
    

 

(6-9) 

 
    max( )K k i u

 

(6-10) 

 min max0 0 0nuu I u    (6-11) 

      
  
      ' , 1, , ; 1, , 1T

j jg A B h j r i m

 

(6-12) 

 
sK

rX may be described by a polyhedral approximation of the form  S c . 

Consequently, the constraint that has to be added to the optimization problem in 

order to ensure that the state reaches the terminal set at the end of the control 

horizon is analogous to (6-8), replacing the vectors that describe the constraints and 

the time step to m: 

 

   , , , ,( ) ( ) ,T m T

j m m prev j j m m w ws A k B D A F W k c s B G A F M
       


        

  1, , ;j r

 

(6-13) 

 

Finally, the optimization problem that has to be solved at each time step is 

presented in its generic and detailed expressions: 

 

Problem 1 – abstract definition: 

 

 
1

2 2 2

( )

0

min ( ) ( ) ( ) ,




 
         

 

m

k tar tar O tar spQ R P
i

y k i y u k i y k m y V y yX
 (6-14) 

subject to  

, , ,;v tar v v tar tar v v tarx A x y C x   (6-15) 
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    max( )u k i u ,  0, , 1i m  (6-16) 

    min max( ) , 0, , 1u u k i u i m  (6-17) 

T

j v j jg x k h j r      ( 1) 1 , 1, , ;  (6-18) 

( ) , ( ), , ( 1)    r

v Ksx k m X w k w k m  (6-19) 

 

Problem 1 – complete definition: 

 

 

,

1
2 2 2

( )
, ,

0

min ( ) ( ) ( ) ( )

,

v tar

m

k tar tarQ R PD G x
i

O tar sp

V k y k i y u k i y k m y

V y y





 
         

 



X
 (6-20) 

s.t.  

     



( 1) ( ) ( ) ( )

( ) ( )

v v v v v

v v

x k A x k B u k F w k

y k C x k

 

(6-21) 

, , ,;v tar v v tar tar v v tarx A x y C x 

 
(6-22) 

  min max( )u u k i u  ,  0, , 1i m
 

(6-23) 

    max( )u k i u
 ,  0, , 1i m  (6-24) 

 

       , 

                                  ,  

1

0

,

( ) ( ) ( , ) ( ) 0, , 1

( ) ( )

i

j

s v v tar

u k i d k i G k i k j w k j i m

u k i K x k i x i m





          

     



 

(6-25) 

   1

1, , 1, ,( ) ( ) ' ,T i T

j i i prev j j i i w wg A k B D A F W k h g B G A F M

         


      

   1, , ; 1, , 1j r i m  

 

(6-26) 

     , , , ,( ) ( ) ,T m T

j m m prev j j m m w ws A k B D A F W k c s B G A F M
       


      

   1, , ;j r

 

(6-27) 

 

The main result of this thesis is stated and proved in the next two theorems: first 

recursive feasibility is assured and then asymptotic stability ensues.  
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Theorem 1: Problem 1 is recursively feasible.   

 

Proof: The reasoning follows a similar procedure to what is done in (Korda et al., 

2011), since essentially the same parameterization is employed, changing the 

positional to the velocity form.  

The artificial reference 
,v tarx

 
may be taken as its previous value, 

, ,( 1) ( )v tar v tarx k x k  . It is obvious that with this choice  ( 1) ( )tar tary k y k . Regarding 

the remaining decision variables, it is possible to show that a feasible solution 

 ,D G at time k can be used to generate a feasible solution at time k+1 for all 

possible disturbances ( )w k . More specifically, the elements corresponding to time 

step k+1 up to k+m are taken as a time shift of the solution in k. The last control 

action is obtained from the observation that the augmented state is constrained to an 

invariant set, therefore 


    ( ) ( )u k m K k m  is feasible. All control move 

components concerning  ( )w k  are accommodated in D , which is the free term. The 

remaining feedback actions remain in G . The explicit expression for  ,D G is given 

next: 

    
      
   
    
           
 
 

( 1) ( 1, ) ( )

0 0( 2) ( 2, ) ( )

ˆ, 0

0( 1) ( 1, ) ( ) f

f

d k G k k w k

d k G k k w k

D G G

Gd k m G k m k w k

d
 

(6-28) 

 

With 

 , , ,
1:

( ) ( )m

f s m m m w
nw

d K A k B D B G F M w k
   

       

 

 

  
 


 
        

( 2, 1) 0 0

ˆ

( 1, 1) ( 1, 2) 0

G k k

G

G k m k G k m k m
  

 , ,
1:

f s m m w
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G K B G F M
 

 
     (6-29) 
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The notation  
:a b

X stands for the matrix obtained from X by extracting its columns 

from a to b. □ 

 

Next, we proceed to show that the feasible solution at time k+1 implies that the 

cost function is decreasing in mean as long as the initial state is sufficiently removed 

from the desired set-point. In contrast to nominal model predictive control, the best 

that can be achieved is the convergence in mean to the set-point, since the additive 

noise is constantly steering the outputs away from their reference points.  

 

Theorem 2: Let P be a terminal cost as stated in Assumption 1. If noise is 

assumed to be zero-mean, then, considering the sequential solution of Problem 1 if 

there are no set-point changes, the following bound is valid : 

     2

( ) ( 1) ( ) 2 ( )T T T

k v nx CL v v v W tar Q
V k V k tr F I A C PC F y k y      X

 

(6-30) 

 

Proof: Let  ,D G be the optimal solution of Problem 1 at time k and  ,D G a 

feasible solution obtained as in Theorem 1. Also, consider that tary is constant from 

time k to k+1 and using the relation , ,v v tar v tarA x x  it is possible to show that: 
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, , ,
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v v v v
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CL v v s v tar v
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A x k m B K x F w k m

A x k m B K x F w k m x A x
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Then, it follows that 
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The first term may be decomposed as follows 
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Let us carefully inspect the cross-term of (6-33):  
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The first equality of (6-34) is justified since the assumption that   w k  is 

identically distributed causes   w k to be zero-mean and therefore the term 
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containing 
,v tarx vanishes. The second equality follows since  x k m and 

 w k m 
 
are not correlated. The third is a consequence that   1x k m and 

   1u k m are not correlated to the noise in the same instant and the zero-mean 

assumption. Thus, the only non-zero component in (6-34) is the one relating 

  1w k m  with itself.  

Substituting the result back in (6-33) 
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Noticing that the terminal cost is given by   T T

CL CL s sA PA Q K RK P , it follows 

that (6-32) is equal to: 
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(6-36) 

□ 

The last inequality resembles the definition of a supermartingale. Indeed, while 

the system is sufficiently removed from the set-point, the cost is guaranteed to 

decrease on average. As it approaches a region in the neighborhood of the set-point, 

the sign of the right hand size of (6-36)becomes positive and there are no more 

guarantees of decreasing. This corresponds to the situation where the state 

fluctuates randomly inside the terminal set.  
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6.2. Case studies 

 

The system described in Pannocchia & Rawlings (2003) is a CSTR considering 

an arbitrary reaction, A →  B. The controlled variables are the liquid level, reactor 

temperature and concentration of A, which are steered using the jacket temperature 

and outlet flow rate. A general view of the reactor is provided in Figure 6-1. More 

details concerning the model may be found in the cited reference.  

 

Figure 6-1: Schematic representation of the considered system - (Pannocchia & 
Rawlings, 2003) 

 

It is evident that the system only has 2 degrees of freedom, so that not all 

controlled variables can be driven independently. Since temperature and 

concentration are highly coupled in this case, we have chosen to control only the first 

one. A complete description of the variables in this problem is given in Table 6-1: 

 

Table 6-1: Variables of the linearized CSTR 

Variable Description 

y1 Reactant concentration (kmol/L) 

y2 Reactor temperature (K) 

y3 Reactor level (m) 

u1 Jacket temperature (K) 

u2 Output flowrate (L/min) 

w1 Process noise of y1(kmol/L) 

w2 Process noise of y2(K) 

w3 Process noise of y3(m) 
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The state space (positional) model has been obtained through a linearization 

around the same steady state as described in the referred work. A sampling time of 

15 seconds has been chosen to the discretization of the model. Since the order of 

magnitude of the outputs vary over a wide range, normalizing factors of 80 kmol/L, 

8K and 0.1m were used. The definition of scaled variables is the same of Chapter 4, 

(4-8). The resulting discrete time state space description, already considering scaled 

variables, is 
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Truncated Gaussian noise with zero-mean and standard deviation of 20 kmol/L, 2 

K and 0.025 m for concentration, temperature and level, respectively, was added in 

the states at all sampling times. The truncation has been performed at three standard 

deviations, as previously. 

Tuning parameters and constraints are presented in Table 6-2 and Table 6-3, 

respectively. The input limits have been relaxed in comparison to the simulations of 

Pannocchia & Rawlings (2003) because they would saturate in the presence of the 

robust version of the chance constraint (6-8). Tuning matrix Q is given for the scaled 

outputs, but the results are shown in engineering units.  

 

Table 6-2: Input and control moves bounds 

Input Minimum value  umin  Maximum value  umax  Maximum change  u max  

u1 200K 420 K 10 K 

u2 0L/min 400 L/min 150 L/min 
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Table 6-3: Tuning parameters - CSTR 

Parameter Value 

Q  0 1 10  

R 4 410 10     

Q 
3 3 310 10 10    

m 4 

 

Finally, a soft constraint was included in y3, imposing the level to satisfy the 

following relation: 

 

3 (3) 0.02 0.9spy y      (6-38) 

 

Two cases studies are considered in this section. In the first, regulator case is 

presented for a fixed noise realization, in order to analyze the behavior of the 

objective function. The second case study is a Monte Carlo approach as done in 

Chapters 4 and 5.  

In the first case study, the system starts at a point removed from the origin and is 

directed towards it, as resumed in Table 6-4: 

 

Table 6-4: Simulation operating points in the first case study 

System initial conditions Output set-point 

Inputs Outputs 

370 K 0.700kmol/L 0.877kmol/L 

20 L/min  450 K 324.5 K 

 0.2 m 0.659 m 

 

The behavior of the system in closed-loop is illustrated in Figures 6-2 and 6-3. 

 

 

 

 

 

 

 



  117
   

   

 

Figure 6-2: System outputs – one noise realization 

 

 

 

Source: own elaboration 
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Figure 6-3: System inputs – one noise realization 

 

 

Source: own elaboration 

 

After a transient where the temperature rate constraint is active, the system 

oscillates around a steady state near the set-point. The expected behavior of the 

objective function is consistent with this simulation is composed of a phase of 

decrease followed by some oscillations, as depicted in Figure 6-7: 

 



  119
   

   

 

Figure 6-4: Objective function 

 

Source: own elaboration 

 

It is worthwhile to mention that the notion of stochastic stability and convergence 

of the objective function is a little different from the standard MPC theory, since the 

cost expected to decrease only when the initial state is sufficiently removed from the 

origin. Even in that situation, it is theoretically possible to observe some increases 

due to the probabilistic nature of the bound(6-30), which is present in Figure 6-7. The 

increases that happen at 3.5 and 6.5 minutes occur when the right-hand size of  

(6-30) becomes positive, in accordance with the result of Theorem 2.  

Regarding the second case study, we consider the same framework of Chapter 

4, comparing the proposed controller to two benchmarks: a standard nominal MPC 

and a LQR, considering the same tuning parameters. The Monte Carlo technique of 

previous chapters, with 1000 repetitions of simulations with different noise 

sequences, was reprised. 

The simulation was composed of two parts: regulation at the origin in the first half 

and set-point tracking in the second, in a total of 20 minutes (80 sampling times). The 

exact conditions are given in Table 6-5: 

 

Table 6-5: Simulation operating points in the second case study 

System initial conditions Output set-points 
Inputs Outputs 0 40k   41 80k   

100 L/min 0.877kmol/L 0.877kmol/L 0.1 kmol/L 

300 K 324.5 K 324.5 K 400.5 K 

 0.659 m 0.659 m 0.8 m 
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Figures 6-5 and 6-6 show the mean inputs and outputs.  

 

Figure 6-5: Mean of system outputs – CSTR 

 
Source: own elaboration 



  121
   

   

 

Figure 6-6: Mean of system inputs – CSTR 

 

 

Source: own elaboration 

 

As previously, the soft constraint induces a back off over one of the outputs. 

Without this constraint, the controller is able to perform the set-point tracking, which 

is illustrated by the mean trajectory of y2. The main difference in comparison to the 

formulation of Chapter 3 is not explicit in the previous figures: if the input constraints 

are tightened, the soft constraint is respected in an overly conservative fashion, 

causing for instance the system to stabilize in a position where no constraint 

violations are reported for most of the simulations.  

The comparison of the distribution of system outputs is presented in Figures 6-7 

and 6-8: 
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Figure 6-7: Distribution of system outputs between 1 and 10 min for MPC (blue), 
Stochastic controller (red) and Truncated LQR (black). Set-point in green 
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Figure 6-8: Distribution of system outputs between 13.5 and 20 min for MPC 
(blue), Stochastic controller (red) and Truncated LQR (black). Set-point in green 
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From the previous figures, we notice that the relaxed input constraints allowed 

the LQR controller to achieve optimal performance, which corresponds to the lowest 

variances for all variables, at both steady states. At some cases, the proposed 

controller is able to match the optimal variance, indicating that it may be possible to 
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guarantee local optimality of a SMPC. The accumulated costs are summarized in 

Table 6-6: 

 

Table 6-6: Average weighted integral square error - CSTR 

Standard MPC JMPC Stochastic controller JSto Truncated LQR JLQR 

451.5 436.9 405.7 

 

Besides the observation of the last paragraph, it must be kept in mind that the 

benchmark controllers ignore the probabilistic constraint, which has a direct impact 

over the cost due to the shift of the mean of y3. Since the cost of the stochastic 

controller with stability guarantee is slightly greater than the obtained in a nearly-

optimal behavior (increase of 7.7%), it follows that the proposed algorithm is an 

interesting candidate for practical applications.  

Regarding the soft constraint, the effect of mean displacement is clear from 

Figures 6-4 and 6-5. Constraint violation occurred with frequencies given in Table 

6-7, showing that the proposal was more conservative in this case in comparison to 

the controller of Chapter 3. However, the observed violation frequency is not far away 

from the prescribed limit of 10%, showing that conservativeness is not exaggerated 

in this formulation.  

 

Table 6-7: Percentage of violation of the soft constraint– CSTR 

First steady-state (4 40k  ) Second steady-state (54 80k  ) 

Controller Violations Controller Violations 

MPC 26.76% MPC 27.34% 

Stochastic 8.59% Stochastic 8.73% 

LQR 20.85% LQR 21.35% 

 

In summary, the modified stochastic controller trades off performance and 

stability, as usual. In situations where the noise level is small in comparison to the 

effect that allowed control moves may produce, its application is favored. This 

condition is common in practice, because there is no control algorithm that performs 

well in the presence of excessive noise and limited control action. 
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7. Conclusions 

 

7.1. Main contributions 

 

The problem of controlling a linear system subject to bounded additive noise has 

been tackled in this work. More specifically, we focused on the set-point tracking 

problem under these circumstances. The algorithm proposed in Chapter 3 meets 

most of the requirements initially defined: consideration of hard and soft constraint, 

adequate computational time and attractive performance in comparison to 

alternatives from the literature.  

From a more formal point of view, the modified algorithm of Chapter 6 is more 

significant since it guarantees recursive feasibility and asymptotical stability in the 

presence of persistent disturbances. The hypothesis of finite support is crucial in 

establishing those results, which are very similar in spirit to the robust model 

predictive control approach. Important features of the proposed controller in contrast 

to robust formulations are the probabilistic nature of state constraints and the 

objective value expressed as an expected value. Less conservativeness and better 

performance may be achieved over the worst-case typical approach. 

The case studies illustrated the set-point tracking ability of the proposed 

controller, an innovation when compared to the usual literature dedicated to the 

regulator case. The integral action was obtained from the incremental description of 

the system, inspired from works on nominal MPC.  An additional feature of the case 

studies is the consideration of truncated skew normal noise, which is more 

challenging than the simple Gaussian noise since its mean is not zero.  

Another major innovation of this work is the proposal of a zone control strategy in 

Chapter 5, which, to the best of our knowledge, has not been done in the SMPC 

literature. A significant reduction of the control action has been achieved with such 

strategy, since the algorithm does not try to over control the random perturbations. 

Therefore, in a practical application it could achieve a compromise between output 

tracking and conservation of the actuators. 

Finally, Chapter 6 provides a stochastic controller with stability guarantee, the 

first result in the literature for the tracking problem. The additional constraints 

necessary to prove recursive feasibility lead to a more conservative formulation that 
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may not achieve good performance in the presence of stringent input constraints. 

However, the conditions where the controller could be successfully employed are not 

uncommon; hence the result is valuable from both theoretical and practical 

viewpoints.  

 

7.2. Future work directions 

 

All control algorithms within this thesis are based on the assumption of bounded 

noise support. This hypothesis is justifiable in an industrial framework, but its 

suppression would lead to interesting theoretical contributions. Recursive feasibility 

would no longer be obtainable through worst-case considerations, and therefore it is 

not trivial to handle the problem.  

Another research line may be derived from the suppression of the full state 

measurement assumption. Output feedback is not a novelty in stochastic predictive 

control, since (Hokayem et al., 2012) and (Cannon et al., 2012) have already worked 

on this issue, but not considering the set-point tracking problem. It would be 

necessary to study how the inclusion of different observers changes the proposed 

algorithm and its stability results. An interesting candidate is the Moving Horizon 

Estimator (MHE) due to its bounds on the estimation error that could be employed by 

the controller.  

Noise distribution is assumed to be known and time invariant. However, it is 

possible in reality that a plant is subject to stronger or weaker disturbances as time 

evolves, which should be considered by the controller. Similarly, all noise is 

supposed to enter the system at every sampling time. Therefore, the case of 

disturbances with different time rates has not been addressed, even though it may be 

used to model an important situation in practice where there is a fast process noise 

coupled with a slower noise that changes the operating point.  

The zone control problem could be tackled through an approach more heavily 

based on invariant sets, since these entities are natural extensions of equilibrium 

points. Ideally, the controller would perform no control move if the system is predicted 

to continue in a given set, acting only when necessary. That approach would be even 

more attractive than the one in Chapter 5 in terms of equipment protection, but its 

stability analysis could be a lot more challenging.  
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Appendix A - Calculation of the objective function for systems 

subject to bounded noise 

 

 T1 

 

Substituting the dynamics (3-13)in the cost (3-16), we have 
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This expression can be simplified by noticing that the quadratic forms involving 

only x(k) and ( )W k  are independent of the decision variables and therefore are 

constants in the optimization problem. 
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x k A C QC B U k F W k

tr B C QCF W k U k tr B C QCB U k U k

      

        

           

X

X X

X X

 (A-2) 

 

where it was used that         tr tr  and the cyclic property of the trace, 

   tr AB tr BA . 

Thus, it is necessary to calculate the mean value of control moves and noise 

realization, in addition to the covariance of the control moves and the cross-

covariance between these inputs and the process noise.  
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o Mean of noise realization 

 

Even if the original noise is zero-mean, this term does not vanish because it is an 

expected value conditional to the information known up to time k, which includes 

w k ( 1) : 
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X X

X

X

X

 

(A-3) 

 

Since the noise is identically distributed, only the first component may be different 

from zero. It is important to notice that  ( )w k  is time-dependent even if the 

distribution of ( )w k is stationary. Remember that  ( ) ( )k ww k X is known from the 

noise distribution. Previous noise realization ( ( 1)w k  ) must also be taken into 

account at each sampling time.  

 

o Mean of control moves 
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 (A-4) 

 

o Covariance 
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where  



  135
   

   

 

      ( )( ) ( ) ( )w w T

kk W k W kX
 (A-6) 

 

This matrix is tridiagonal because, following the independence assumption on 

{ ( )}w k , there are only two classes of non-zero elements: those of the diagonal 

(involving the same noise realization) and those of the super and subdiagonal (noise 

realizations of consecutive time steps). Also, each of these classes is composed of 

two possibilities, whereas they are a function of the known noise ( 1)w k   or not. 

Altogether, there are 4 possibilities that have to be analyzed individually. 

 

1. Diagonal involving ( 1)w k   
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2. Nondiagonal involving ( 1)w k   
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3. Diagonal not involving ( 1)w k   
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4. Nondiagonal not involving ( 1)w k   
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 (A-10) 

 

The complete expression is 
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o Cross-covariance 
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 Substituting (A-3)-(A-5) and (A-12) onto (A-2), we finally have 

 

 

  

  

  

2

1 ( ) ( )

2 ( ) ( ) ( )

2 ( ) ( )

( ) ( ) ( )

T T

T T w w

A C QCA

T T T w w

T T w w T w T

T T w w T w T w T T T

T x k tr F C QCF k

x k A C QC B G k D F k

tr B C QCF k G k D

tr B C QCB G k G G k D D k G DD



 

 

  

 

 

  

   

  

 

  

  

 (A-13) 

 

 T2 

 

Considering the previously established expressions for the mean of noise (A-3)and 

control moves (A-4), it follows that 
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 (A-14) 

 

 T3 

 

The evaluation of T3 is also trivial once we have established the covariance of 

( )U k . 
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X X
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 (A-15) 

 

Considering (3-16),(A-13)-(A-15), an expression of the forced component of the 

cost that does not require the on-line calculation of any expected values is given by  
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 (A-16) 

 

 T4 

 

Substituting the dynamics (3-17)in the cost (3-20),  
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X
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Each of these terms should be individually analyzed because different 

considerations about noise correlatedness take place between state, input and noise 

itself. 
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a) Let mT be a matrix to select only the last component of ( )X k , i. e., 

 ( ) ( )m vT X k x k m . Then, 
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(A-18) 

 

Using equation (3-13), we have 
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 (A-19) 

 

Note that the cross terms between ( )vx k  and  ( )W k are only an additive 

contribution to the cost and do not interfere in the optimization. All calculations follow 

from (A-4)-(A-12),(A-13).  

 

b) First, we use the cyclic property to rearrange this term 
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We are considering a fixed feedback law for the inputs after the control horizon, 

therefore control moves are correlated only if they correspond to the same time step 

or consecutive time steps, 

 

         


                 


 

( )

( ) ( )

( 1) ( 1) , if 

( ) ( ) ( 1) ( ) , if 1

0, if | | 1

T T

k

T T T

k k

K w k i w k i K i j

u k i u k j K w k i w k i K i j

i j

X

X X  (A-21) 

 

By analogy with the previously defined matrix  w w , 
UU is also a tridiagonal 

matrix given by: 
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 (A-22) 

 

c) This term is another constant and may be dropped from the optimization,  
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The covariance matrix is also similar to w w  , as follows: 
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 (A-24) 
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d) The fourth component may be rearranged as  
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 (A-25) 

 

The only control move that is correlated to ( )vx k m  is ( )u k m  , because both 

depend on ( 1)w k m  . Thus, only the first element of 
UX  is nonzero. 
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Since 
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And 
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Therefore, the expression for UX  is 
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e) The component relating noise and state ( )vx k m  is similar to the 

previous,  
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The only non-zero component of WX  is the first, which is equal to 
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It is necessary to evaluate one new term, 
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Therefore, 
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f) The last term of 
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This term is also a constant since it is a function only of future disturbances. Each 

control move ( )u k j   (with j>m) depends on ( 1)w k j   , thus it is correlated only 

with both ( )w k j   and ( 1)w k j   . It follows that the nonzero elements of 
WU  are 

the principal diagonal and the superdiagonal: 

 

T T

w w

T T

w w
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 (A-35) 

 

Putting together (A-18), (A-20), (A-23), (A-25), (A-30) and(A-34), the expression 

for T4 is: 
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 T5 

 

This term is simpler than the preceding,  
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