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‘τὸ γάρ τοι θάνατον δεδιέναι, ὦ ἄνδρες, οὐδὲν ἄλλο ἐστὶν ἢ δοκεῖν σοφὸν εἶναι μὴ

ὄντα · δοκεῖν γὰρ εἰδέναι ἐστὶν ἃ οὐκ οἶδεν. οἶδε μὲν γὰρ οὐδεὶς τὸν θάνατον οὐδ΄

εἰ τυνγχάνει τῷι ἀνθρώπῳι πάντων μέγιστον ὂν τῶν ἀγαθῶν, δεδίασι δ΄ ὡς εὖ

εἰδότες ὅτι μέγιστον τῶν κακῶν ἐστι. καὶ τοῦτο πῶς οὐκ ἀμαθία ἐστὶν αὕτη ἡ

ἐπονείδιστος, ἡ τοῦ οἴεσθαι εἰδέναι ἃ οὐκ οἶδεν;’

(ΑΠΟΛΟΓΙΑ ΣΩΚΡΑΤΟΥΣ, ΠΛΑΤΟΝ)

�For to fear death, gentlemen, is nothing else than to think one is wise when one

is not; for it is thinking one knows what one does not know. For no one knows

whether death be not even the greatest of all blessings to man, but they fear it

as if they knew that is the greatest of evils. And is not this the most

reprehensible form of ignorance, that of thinking one knows what one does not

know?�

(The Apology, Plato - translated by Harold North Fowler)

�Porque ter medo da morte, senhores, outra coisa não é senão considerar-se

sábio; equivale a imaginar alguém que sabe o que ignora. Ninguém sabe o que

seja a morte, e, ignorando até mesmo se porventura não será para os homens o

maior dos bens, temem-na como se soubessem com certeza que é o maior dos

males. E como poderá deixar de ser censurável semelhante ignorância, isto é,

imaginar alguém que sabe o que não sabe?�

(A Apologia de Sócrates, Platão - traduzido por Carlos Alberto Nunes)
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RESUMO

Nesta tese apresenta-se uma investigação sobre a interação entre duas proteí-
nas em soluções aquosas salinas. Experimentos, modelagem e simulações mole-
culares foram realizadas para conseguir um melhor entendimento do fenômeno.
Albumina de soro bovina foi usada como proteína modelo. Uma expressão para
o fator de estrutura de proteínas globulares em solução aquosa é apresentada
neste trabalho. Esta expressão foi obtida considerando-se um potencial intermo-
lecular dado pela soma de um núcleo duro, uma contribuição atrativa tipo van
der Waals e uma contribuição de potencial coulômbico blindado. Dados experi-
mentais de espalhamento de raios-X a baixos ângulos para a albumina de soro
bovino em soluções aquosas contendo sais de sódio com diferentes concentrações
de proteína e valores de pH também são apresentados. A expressão desenvolvida
para o fator de estrutura descreve com precisão estes dados experimentais, desde
que uma dependência entre o parâmetro atrativo com a concentração de proteína
seja estabelecida. Uma expressão para a pressão osmótica foi derivada do fator
de estrutura. Com parâmetros atrativos ajustados aos dados de espalhamento
de raios-X, a pressão osmótica da albumina de soro bovino em solução aquosa
pôde ser predita com grande correlação com os dados experimentais. Uma deri-
vação dos potenciais termodinâmicos usando a nova equação osmótica de estado
é apresentada. Aplicando o critério de equilíbrio de fases, foi possível calcular o
equilíbrio �uido-�uido para a albumina de soro bovino em solução aquosa. Em-
bora tal separação não tenha sido observada experimentalmente em um pH igual
ao ponto isoelétrico, ela foi de fato observada experimentalmente para um valor
de pH menor do que o ponto isoelétrico. As predições parecem ser valiosas para
discutir como a especi�cidade iônica afeta o diagrama de fases de proteínas. De
modo a avaliar como proteínas interagem umas com as outras usando técnicas de
dinâmica molecular, dois novos campos de força coarse-grained são propostos. O
primeiro, para o sulfato de sódio em solução aquosa, evita a associação não-física
que é observada para campos de força atomísticos não-polarizáveis. Este modelo
é capaz de prever propriedades dinâmicas e termodinâmicas. O segundo, para a
albumina de soro bovino em solução aquosa, é usado como uma nova estratégia
para avaliar o fator de forma de espalhamento de proteínas como uma ferramenta
de baixa resolução na predição de estruturas proteicas.



ABSTRACT

The interaction between two proteins into salt aqueous solutions is investi-
gated throughout this thesis. Experiments, modeling and molecular simulations
were carried out to get a better understanding of the phenomenon. Bovine serum
albumin was used as a model protein. An analytical expression for the structure
factor for globular proteins in aqueous solution is presented in this work. This
expression was obtained considering an intermolecular potential given by the sum
of a hard core, a van der Waals attractive and a screened Coulomb contribution.
Experimental data of Small Angle X-Ray Scattering for bovine serum albumin in
aqueous solutions containing sodium salts at di�erent protein concentrations and
pH values are also presented. The expression developed for the structure factor
describes accurately these experimental data provided a dependence of the at-
tractive parameter on protein concentration is established. An expression for the
osmotic pressure was derived from the structure factor. With attractive param-
eters adjusted from X-ray scattering data, the osmotic pressure of bovine serum
albumin aqueous solutions could be predicted with very good agreement with
experimental data. A derivation of the thermodynamic potentials, such as the
chemical potential, using the new osmotic equation of state is presented. Apply-
ing the phase equilibrium criterion, the �uid-�uid phase equilibrium for bovine
serum albumin in salt aqueous solution was calculated. Although such separation
was not experimentally observed at the isoelectric point, it was indeed experimen-
tally observed for a pH value below the isoelectric point. The predictions seem to
be valuable to discuss how ion speci�city a�ects the phase diagram of proteins.
To apply molecular dynamic techniques to simulate how proteins interact to each
other in salt aqueous solutions, two new coarse-grained force �elds are proposed.
The �rst one, meant for sodium sulfate aqueous solution, avoids the unphysical
association observed for non-polarizable atomistic force �elds; and allows the pre-
diction of thermodynamic and dynamic properties. The second one, meant for
bovine serum albumin in aqueous solution, is used as a new strategy to evaluate
the scattering form factor of proteins as a low resolution technique for protein
structure prediction.
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1 INTRODUCTION

The epigraph of this thesis was judiciously chosen. Once I was told that

a thesis should bring more questions than answers. Well, this is precisely what

Socrates was trying to teach in his defense to the Athenians at the agora. After the

conclusion of this thesis, the candidate can honestly state that he knows almost

nothing on how proteins interact to each other. This thesis is the presentation of

an ensemble of advances on this subject, but certainly not a �nal word on this

matter.

Chemical engineering was born as an industrial need and it will remain so

as long as the name endures. Therefore, even though one needs to understand a

problem in a deep scienti�c level, one must not forget the main goal of chemical

engineering.

In the last century, bioprocesses and biotechnology evolved at the highest

speed ever. Nonetheless, most of the equations and models used in the design and

operation of such processes are quite old and not always so e�ective. Biological

systems comprise per se the most challenging systems to be studied. As in the

traditional chemical industry, most of the cost of operation is due to separation

processes (usually called downstream processes) in biochemical plants.

The main goal of this thesis is the investigation on how proteins interact

with each other in aqueous saline solutions, and how one may treat and model

these interactions to predict the phase diagram, which is the most important
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information to design and operate a separation process.

The next three chapters are devoted to brief introductions to three important

�elds of knowledge: integral equation theory, scattering theory, and molecular

simulation. It is important to stress that these chapters are rather concise and

are not meant to be an exhaustive text on each of the topics. These subjects

are classical topics in Physics and there are several canonical textbooks available.

Nevertheless, these chapters are presented because these subjects are not so usual

in the body of knowledge of chemical engineering.

The �fth chapter is devoted to the development of a new analytic expression

for the structure factor of a �uid whose attractive potential is described by a van

der Waals potential. Monte Carlo simulations are used to validate such model

and small-angle X-ray scattering experiments with bovine serum albumin (BSA)

are �tted with this model. A new equation of state is derived from this structure

factor.

The sixth chapter is devoted to the prediction of the liquid-liquid coexis-

tence curve using the new equation of state developed on the �fth chapter. This

prediction might be useful to discuss ion speci�city. The seventh chapter is a

compilation of three main developments: a new coarse-grained force �eld for

sodium sulfate aqueous solutions, a critical review on the universal reference line

for Walden plot and a new coarse-grained force �eld for bovine serum albumin in

aqueous solution. The idea behind trying to simulate proteins was to calculate

the potential of mean force between two proteins in aqueous solutions. Although

this task has not been completed, three interesting results emerged.

Given the relative independence amongst the chapters, a section devoted

exclusively to the literature review will not be presented. Instead, the literature

review will be distributed amongst the various chapters.
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2 PROLEGOMENA TO INTEGRAL

EQUATION THEORY

The title of this chapter is meant to be strictly understood. There is no

intention to write in this section more than some prolegomena. The subject of

integral equation theory is one of the richest and broadest branches of statis-

tical mechanics. Detailed reviews on this issue may be found in the literature

(BARKER; HENDERSON, 1976; CACCAMO, 1996). Therefore, we shall give

only a simple preamble to this topic, including solely the theories from which

the structure factors have been used to interpret scattering intensities of proteins

into aqueous solutions. To introduce the structure factor from integral equation

theories, one may begin at the very de�nition of the structure factor through its

parallel in real space, the radial distribution function.

2.1 Distribution functions

If there is any interaction amongst the particles of a given system, there

will be a nonindependent spatial distribution of such particles. Knowing the

correlation function which describes this �nonindependence�, one may calculate all

the relevant thermodynamic properties as internal energy, pressure and chemical

potential.

For a system containing N particles, this correlation function may be de�ned
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as (MCQUARRIE, 2000):

g(n)(~r1, . . . , ~rn) =
V nN !

Nn(N − n)!

∫
. . .
∫
e−UN/kBTd~rn+1 . . . d~rN∫

. . .
∫
e−UN/kBTd~r1 . . . d~rN

(2.1)

where ~rn is the position of the n-th particle, V is the volume of the system, UN

is the interparticle potential, kB is the Boltzmann constant and T is the absolute

temperature of the system.

Obviously, for the pair distribution function, g(2)(~r1, ~r2), one has:

g(2)(~r1, ~r2) =
V 2N(N − 1)

N2

∫
. . .
∫
e−UN/kBTd~r3 . . . d~rN∫

. . .
∫
e−UN/kBTd~r1 . . . d~rN

(2.2)

In a �uid of spherically symmetric particles, the pair distribution function

depends only upon the relative distance r between particles 1 and 2. Therefore,

this correlation function is mostly expressed as g(r), the radial distribution func-

tion. If g(r) = 1 for the entire range of r, no correlation amongst the particles in

the system is found, as for an ideal gas.

Generically, using such function, one may write the pressure, p, and the

chemical potential, µ, as:

p = ρkBT −
2πρ2

3

∫ +∞

0

du(r)

dr
g(r)r3dr (2.3)

µ = kBT ln ρΛ3 + 4πρ

∫ 1

0

∫ +∞

0

u(r)g(r; ξ)r3drdξ (2.4)

where ρ is the number density, u(r) is the interparticle two-body potential, Λ is

the de Broglie thermal wavelength and ξ is a coupling parameter.

Figure 1 shows the typical behavior of the radial distribution function for

three states of matter: gas, liquid and a face centered cubic crystal. In a gas

there is some correlation near the central particle, but at long ranges, there is

practically no correlation. In a crystal, the correlations are expressed as a series of
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Dirac delta functions on the equilibrium sites of the particles. This fully ordered

behavior is what may be seen in a di�ractogram. The liquid is by far the most

complicated. There is some order, however, not as well de�ned as in a crystal.

0.0
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1.5

gas

0.0
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2.0

g
(r

) liquid

0.0

25.0

50.0
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r/σ

crystal

Figure 1: Radial distribution function as a function of relative distance for three
states of matter: gas, liquid and crystal. These states are represented within the
plot by snaphots of Monte Carlo simulations.

Alternatively, there is another, and equivalent, way to de�ne the radial distri-

bution function in terms of the local particle density (HANSEN; MCDONALD,

1986). The density at a point ~r is given by:

ρ(~r) =
N∑
j=1

δ(~r − ~rj) (2.5)

where δ(~r) is the Dirac delta function.

Evidently, in a homogeneous system, the ensemble average density at ~r equals

the macroscopic density of the system. This is the very de�nition of a homoge-

neous system, id est, every point in the system will have the same density and,
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therefore, this density is the very density of the system.

In the classical limit, the van Hove space-time correlation function

(MCQUARRIE, 2000), which is the density-density autocorrelation function

(HANSEN; MCDONALD, 1986), may be written as:

G(~r, t) =
1

N

〈
N∑
j=1

N∑
k=1

δ(~r + ~rj(0)− ~rk(t)

〉
(2.6)

where t is time.

For t = 0, one has the static density-density autocorrelation function:

G(~r, 0) =
1

N

∫
〈ρ(~r′ + ~r) · ρ(~r′)〉dr′ (2.7)

Replacing Equation (2.5) on Equation (2.7), one has:

G(~r, 0) =
1

N

〈∫ N∑
j=1

N∑
k=1,k 6=j

δ(~r′ + ~r − ~rj)δ(~r′ − ~rk)dr′
〉

+ δ(~r) (2.8)

When ~r′ = ~rk, δ(~r′ − ~rk) = 1, otherwise, δ(~r′ − ~rk) = 0. Therefore:

G(~r, 0) =
1

N

〈
N∑
j=1

N∑
k=1,k 6=j

δ(~r + ~rk − ~rj)

〉
+ δ(~r) (2.9)

Thus, the radial distribution function can be written as:

g(r) =
V

N2

〈
N∑
j=1

N∑
k=1,k 6=j

δ(~r + ~rk − ~rj)

〉
(2.10)

2.2 Static structure factor

If one takes the Fourier transform of the density, ρq, expressed in Equation

(2.5), one will have (HANSEN; MCDONALD, 1986):

ρq(~q) =

∫
e−i~q·~rρ(~r)d~r (2.11)

where i is the imaginary unit.
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Substituting Equation (2.5) on Equation (2.11):

ρq(~q) =

∫ N∑
j=1

e−i~q·~rδ(~r − ~rj)d~r (2.12)

which may be simpli�ed using the de�nition of Dirac delta function as:

ρq(~q) =
N∑
j=1

e−i~q·~rj (2.13)

The autocorrelation function of such Fourier transform of the number density

is de�ned as:

S(~q) =
1

N
〈ρq(~q) · ρq(−~q)〉 (2.14)

where S(~q) is also called the static structure factor, which may also be written

as:

S(~q) =
1

N

〈
N∑
j=1

N∑
k=1

e−i~q·~rjei~q·~rk

〉

= 1 +
1

N

〈
N∑
j=1

N∑
k=1,k 6=j

e−i~q·(~rj−~rk)

〉 (2.15)

Therefore, for a homogeneous �uid, the static structure factor has an intrinsic

relation to the pair distribution function:

S(~q) = 1 + ρ

∫
e−i~q·(~r−

~r′)g(~r)d~r (2.16)

And for an isotropic �uid:

S(q) = 1 + 4πρ

∫
g(r)r2 sin qr

qr
dr (2.17)

This means that the static structure factor contains the same amount of

information as the radial distribution function, however not in the real space,

but in the Fourier space. The choice of which one is better to be used is just a

matter of convenience. For the radiation scattering problem, the static structure

factor happens to be much more convenient, because it naturally emerges from
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the scattering theory as we shall present in the next chapter. One may recover

the radial distribution function by the inverse Fourier transform of the static

structure factor. Also, at the limit of low ~q, the static structure factor gives the

ratio between the isothermal compressibilities of the �uid and of the ideal gas.

A brief introduction to the Ornstein-Zernike equation is given in Section 5.3.

Loosely, this equation relates the total correlation function, h(r), which is the

radial distribution function shifted by 1, and the direct correlation function, c(r).

From the application of the Fourier transform on this equation, it raises a rela-

tion between the static structure factor and the Fourier transform of the direct

correlation function, C(q). Most of the research on this �eld was made assuming

approximations for the c(r) in terms of the interaction potential to evaluate the

static structure factor. Such approximations are called closure relations. Several

closure relations are reported in the open literature. For some simple interac-

tion potentials, some approximations are analytically solvable. Here, we shall

present two of the most common solutions applied to biological systems: Percus-

Yevick Approximation for hard spheres and Mean Spherical Approximation for

macroions in solution.

2.3 Percus-Yevick Approximation for hard

spheres

The Percus-Yecick Approximation is given by (PERCUS; YEVICK, 1958):

c(r) =


g(r)

[
1− eU(r)/kBT

]
, if r ≤ σ

0, if r > σ

(2.18)
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For a hard sphere �uid, the interaction potential is:

U(r) =


∞, if r ≤ σ

0, if r > σ

(2.19)

The analytical solution for a hard sphere �uid within the Percus-Yevick

approximation was obtained independently, and almost simultaneously, by

Wertheim (WERTHEIM, 1963) and Thiele (THIELE, 1963). The static structure

factor had its functional form presented by Ashcroft and Lekner (ASHCROFT;

LEKNER, 1966):

C(k) = −24η

ρk6
{αk3 [sin k − k cos k] + βk2

[
2k sin k −

(
k2 − 2

)
cos k − 2

]
+ γ

[(
4k3 − 24k

)
sin k −

(
k4 − 12k2 + 24

)
cos k + 24

]
}

(2.20)

where η = ρπσ3/6 is the packing fraction, k = qσ, σ is the sphere diameter, and:

α =
(1 + 2η)2

(1− η)4 (2.21)

β = −η
3

(18 + 20η − 12η2 + η4)
2

(1− η)4 (2.22)

γ =
ηα

2
(2.23)

Figure 2 shows the remarkable agreement between the results of such approx-

imation and the results from Monte Carlo simulations of a hard sphere �uid. The

technique of Monte Carlo as well as molecular dynamics will be explained latter,

in Chapter 4.
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Figure 2: Static structure factor for hard sphere �uid with η = 0.25. Continuous
line, Percus-Yevick Approximation. Open circles, Monte Carlo simulations.

2.4 Mean Spherical Approximation for macroions

in solution

The Mean Spherical Approximation is given by (LEBOWITZ; PERCUS,

1966):

c(r) =


g(r)

[
1− eU(r)/kBT

]
, if r ≤ σ

−U(r)/kBT, if r > σ

(2.24)

where U(r) is the interparticle interaction potential, kB is the Boltzmann constant

and T is the absolute temperature.
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The interaction potential for macroions in solution is given by:

U(r) =


+∞, if r ≤ σ

z2
me

2

πε0ε(2+κσ)2r
exp [−κ(r − σ)] , if r > σ

(2.25)

where σ is the particle diameter, zm is the electronic charge of the macroions

in units of the elementary charge e, κ is the inverse of Debye's length, ε0 is the

vacuum permittivity and ε is the medium dielectric constant.

This potential may be rewritten in a dimensionless way:

U(x)

kBT
=


+∞, if x ≤ 1

γ exp(−Kx)
x

if x > 1

(2.26)

where x = r/σ, γ = z2
me

2σ exp (κσ)/πε0ε(2 + κσ)2 and K = κσ.

There is something subtle here: for this sort of potential, one is considering

the solution as a continuous medium and the macroions as discrete particles; this

certanily places such approach within the McMillan-Mayer framework (MCMIL-

LAN; MAYER, 1945).

The solution for this particular interaction potential through the Mean Spher-

ical Approximantion is due to Hayter and Penfold (HAYTER; PENFOLD, 1981).

The resulting functional form of the static structure factor is a huge set of equa-

tions, which is available in the original paper. For the sake of conciseness, we

shall skip the tedious presentation of such ensemble of equations and the reader

to whom these are necessary is refered to the original work.

Although this model is considered an analytical solution, the algorithm to cal-

culate it is somehow tricky. Since the roots of a fourth-order polynomial function

must be found within the calculation, one could use a Newton-Raphson algorithm

to �nd the roots coupled with Ru�ni's rule to exclude the already found roots

writing the polynomial in Horner form. All real roots which obey the restriction
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of g(r) = 0 for r < σ are correct. And to evaluate the radial distribution func-

tion, a numerical integration method, such as trapezoidal rule, might be used to

calculate the inverse Fourier transform of the static structure factor. An ad hoc

code to calculate this structure factor was written in C language and is presented

on Appendix B.
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Figure 3: Static structure factor for macroions into solution using Hayter-Penfold
equation (HAYTER; PENFOLD, 1981) with κ = 0.04 and γ = 10.0. Continuous
line, η = 0.3. Dashed-dotted line, η = 0.2. Dotted line, η = 0.05.

Figure 3 presents the static structure factor for macroions into solution using

the equation proposed by Hayter and Penfold (HAYTER; PENFOLD, 1981) for

three di�erent values of packing fraction, (η). By decreasing the packing fraction

and keeping the inverse of Debye's length constant, the structure factor limit at

low q increases, and therefore, the isothermal compressibility increases and also

the attraction between two macroions is favored. This is not obvious and will

be discussed later in Chapter 5. Nevertheless, it is not only the structure factor

limit at low q that changes, but also the position of the peaks. Thus, the whole
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structure changes and not only the compressibility.

Figure 4 presents the same structure factor, but for three di�erent values of

γ, which is proportional to the square charge of the macroion. As γ increases,

the isothermal compressibility decreases, indicating that the repulsion among the

macroions becomes stronger. Nevertheless, the positions of the peaks remain the

same even though the height of the peaks changes.
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Figure 4: Static structure factor for macroions into solution using Hayter-Penfold
equation (HAYTER; PENFOLD, 1981) with η = 0.05 and κ = 0.04. Continuous
line, γ = 100.0. Dashed-dotted line, γ = 10.0. Dotted line, γ = 0.0.

Figure 5 presents the variation of the structure factor of Hayter and Penfold

(HAYTER; PENFOLD, 1981) as the inverse of the Debye's length, κ, changes.

The increment of κ increases the isothermal compressibility, which indicates that

the larger the value of κ, the more attractive the system becomes. This is in

accordance to the linearized Poisson-Boltzmann equation for which the lower the

Debye's length, the more screened is the Coulomb potential.
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Figure 5: Static structure factor for macroions into solution using Hayter-Penfold
equation (HAYTER; PENFOLD, 1981) with η = 0.05 and γ = 10.0. Continuous
line, κ = 0.20. Dashed-dotted line, κ = 0.10. Dotted line, κ = 0.04.

Even though in this thesis the Hayter-Penfold equation (HAYTER; PEN-

FOLD, 1981) is not explicitly applied, it serves as a basis for comparison and is

also as a good way to learn about macroion interaction in solution.
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3 BASIC RADIATION SCATTERING

THEORY

The purpose of this chapter is to provide an introduction to scattering theory

to facilitate the appreciation of the small-angle X-ray scattering experiments that

have been conducted during this Ph.D. work. The objective, however, is not to

give an exhaustive explanation of this subject. Since only the description of

X-ray scattering is the main concern, we shall neglect the Compton e�ect and

derive a theory speci�c to the elastic scatter phenomenon. Even though the

elastic scattering violates the momentum conservation, for small-angles this can

be easily overcome since the Compton e�ect depends on the scattering angle, and

for small angles, this e�ect can be neglected.

When a system of electric charges is exposed to electromagnetic waves, these

electric charges are set in motion (LANDAU; LIFSHITZ, 1975). Firstly, we shall

derive a proper equation of motion for a simple system composed by an oscillating

electron with natural frequency, ω0, coupled to a stationary positively charged nu-

cleous, and subjected to a linearly polarized electromagnetic wave. Such equation

of motion may be the same as for a driven damped harmonic oscillator. Secondly,

we shall evaluate the scattering intensity associated with this interaction. At this

point, we shall observe the di�erences between Rayleigh and Thompson scatter-

ings. Thirdly, we shall extend the framework to include scattering with many

atoms with several electrons.
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3.1 Driven damped harmonic oscillator

Consider an incident monochromatic plane electromagnetic wave linearly po-

larized with electric �eld, ~E, as shown in Figure 6, given by:

~E = E0e
−iωt~x (3.1)

where E0 is the amplitude, i is the imaginary unit, ω is the frequency, t is time

and ~x is the unit vector that de�nes x-direction.

~z

~y

~x

~n

~E

~B

θ

Γ

Figure 6: Representation of the oscillating electron-positive nucleous system. The
axes represent the coordinate system. The continuous line represents electric �eld
and the dotted line represents the magnetic �eld. ~n is the unit vector in the same
direction as the scattered wave. Γ is the angle between ~x and ~n; and θ is the
angle between ~z and ~n.

The equation of motion for such driven damped harmonic oscillator is given

by the following second-order ordinary di�erential equation:

d2~r

dt2
+ 2ζω0

d~r

dt
+ ω2

0~r =
e

m
E0e

−iωt~x (3.2)
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where ~r is the electron position, ζ is the damping ratio, ω0 is the undamped

natural frequency of the electron (de�ned as the square root of the ratio between

the spring elastic constant and the electron mass), e is the elementary charge and

m is the mass of the electron.

The steady-state solution of this di�erential equation can be written as:

~r(t) = − e

m

(
1

ω2 − ω2
0 + i2ζω0ω

)
E0e

−iωt~x (3.3)

Therefore, the acceleration of such electron would be given by:

d2~r

dt2
=

e

m

(
ω2

ω2 − ω2
0 + i2ζω0ω

)
E0e

−iωt~x (3.4)

3.2 Scattering intensity

To obtain the scattered intensity by a single electron exposed to an elec-

tromagnetic wave with an electric �eld given by Equation (3.1), one ought to

consider that such time-averaged intensity, < I >, is equal to the time-averaged

Poynting vector magnitude, < ||~S|| > (KOCH; VACHETTE; SVERGUN, 2003).

There is more than one way to de�ne the Poynting vector (KINSLER;

FAVARO; MCCALL, 2009), but here the de�nition given by Landau and Lifs-

chitz (LANDAU; LIFSHITZ, 1969) will be assumed; however, instead of Gaussian

units, SI units will be adopted. Thus, the Poynting vector may be de�ned as:

~S =
1

µ0

~E × ~B (3.5)

where ~B is the magnetic �eld and µ0 is the vacuum permeability.

Knowing that ~E · ~B = 0 (id est, the vectors are orthogonal) and that || ~E|| =

c|| ~B||, where c is the speed of light, and from the de�nition of the Poynting vector,
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the cross product may be rewritten as:

~S =
c

µ0

|| ~B||2~z (3.6)

where ~z is the unit vector that de�nes z-direction.

Moreover, the magnetic �eld may be related to the dipole moment which is

e~r: (LANDAU; LIFSHITZ, 1975):

~B =
µ0

4πrc

[
d2(e~r)

dt2
× ~n

]
(3.7)

where ~n is the unit vector that de�nes the direction of the scattered wave.

Substituting Equation (3.7) on Equation (3.6), one has:

~S =

(
1

4π

)2
e2

ε0c3r2

(
d2~r

dt2
× ~n

)2

~z (3.8)

where ε0 is the vacuum permittivity and c2 = 1/µ0ε0.

Rewritting the cross product considering the angle, Γ, between the incident

electric �eld and the scattered wave:

~S =

(
1

4π

)2
e2

ε0c3r2
||d

2~r

dt2
||2 sin2 Γ~z (3.9)

Considering the steady-state solution for a driven damped harmonic oscillator

expressed by Equation (3.4), the Poynting vector will be written as:

~S =

(
1

4π

)2
e4E2

0

m2ε0c3r2

[
ω4

(ω2 − ω2
0)

2
+ 4ζ2ω2

0ω
2

]
sin2 Γ~z (3.10)

Since (LANDAU; LIFSHITZ, 1969):

〈sin2 Γ〉 =

(
1 + cos2 θ

2

)
(3.11)
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The time-averaged scattering intensity is given by:

〈I〉 =

(
1

4π

)2
e4E2

0

m2ε0c3r2

[
ω4

(ω2 − ω2
0)

2
+ 4ζ2ω2

0ω
2

](
1 + cos2 θ

2

)
(3.12)

Figure 7 presents how the intensity given by Equation (3.12) depends on the

relative frequency, ω/ω0. When the relative frequency is low, id est, ω � ω0, one

has the so-called Rayleigh scattering, which is responsible for the blue color of the

sky. In such scattering, the intensity depends on the frequency to the power of

four. When, however, the relative frequency is high, id est, ω � ω0, one has the

so-called Thomson scattering. In this case, the scattering intensity is constant

regardless of the frequency. Because the frequency of X-ray is high, the scattering

will be in the region of Thomson scattering.

0.0

2.0

4.0

6.0

8.0

10.0

12.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

I
(ω

)

ω/ω0

Rayleigh
I ∝ ω4

Thomson
I ∝ constant

Figure 7: Scattering intensity as a function of the relative frequency.
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3.3 Scattering of a system with many atoms

By judicious choice, we shall skip several lines of derivation and present the

�nal results, which are the most important aspect for this thesis. The full deriva-

tions are presented in classical books (GLATTER; KRATKY, 1982; FEIGIN;

SVERGUN, 1987).

Since the Compton e�ect is neglected, all scattered waves are coherent and,

therefore, the scattering amplitudes are added and the intensity is given by the

absolute square of the amplitudes. Consider N identical atoms with scattering

amplitude F (~q). The intensity will be given by (GLATTER; KRATKY, 1982):

I(~q) =
N∑
j=1

N∑
k=1

F (~q)F ∗(~q) exp[i~q · (~rj − ~rk)] (3.13)

where ~q is the wavevector, which is de�ned as the di�erence between the scattered

and the incident vectors and |~q| = (4π/λ) sin θ, being λ the radiation wavelength

and 2θ the scattering angle; i is the imaginary unit, ~rj is the position of the atom

j and F ∗(~q) is the complex conjugate of F (~q).

For the sake of simplicity, we shall write the norm of ~q simply as q, thus,

de�ning the form factor, P (q), as:

P (q) = |F (q)F ∗(q)|2 (3.14)

and the static structure factor, S(q), as:

S(q) =
1

N

∣∣∣∣∣∑
i=1

exp[i~q · ~r]

∣∣∣∣∣
2

(3.15)

One has that Equation (3.13) may be rewritten as:

I(q) = NP (q)S(q) (3.16)

This ablation of the scattering intensity allows some important physical inter-
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pretations. The form factor is related to the geometry of the scattering particles

and the structure factor is related to the interaction potential among the parti-

cles. For highly diluted solutions, the particles are so far from each other that

one may consider there is no interaction among them, and therefore, S(q) = 1.

3.4 Form factor expressions

Even though the main concern of this thesis is related to the study of the

structure factor, it seems quite important to show, at least, some simple analytical

models to describe the form factor.

The �rst one is due to Lord Rayleigh, who evaluated the scattering amplitude

of a homogeneous sphere as (PEDERSEN, 1997):

F (q, R) = 3

[
sin(qR)− qR cos(qR)

(qR)3

]
(3.17)

where R is the radius of the sphere.

According to Equation (3.14), the form factor is given by:

P (q, R) = 9

[
sin(qR)− qR cos(qR)

(qR)3

]2

(3.18)

Figure 8 presents a tridimensional plot of a homogeneous sphere scattering

following Equation (3.18) for the scattering intensity.

The second one is due to André Guinier and is derived for an ellipsoid of

revolution with semi axes R, R and εR (PEDERSEN, 1997):

P (q, R, ε) =

∫ π/2

0

F [q, r(R, ε, α)] sinαdα (3.19)

where F [q, r(R, ε, α)] is given by Equation (3.17) coupled to:

r(R, ε, α) = R
√

(sin2 α + ε2 cos2 α) (3.20)
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Figure 8: Homogeneous sphere X-ray scattering scheme.
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Figure 9: Form factor as a function of k = qR. Continuous line, Equation (3.18)
for a homogeneous sphere. Dotted line, Equation (3.19) for an oblate ellipsoid of
revolution with ε = 0.4
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Figure 9 shows the comparison between the form factor of a homogeneous

sphere and an ellipsoid of revolution. One may observe that the geometry of the

particle alters completely the scattering intensity. That is the reason why scat-

tering experiments are so helpful to resolve the structure of complex molecules.
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4 INTRODUCTION TO MOLECULAR

SIMULATION

Statistical mechanics, either on its classical (GIBBS, 1902) or quantum deriva-

tion (SCHRÖDINGER, 1989), is based on the Hamiltonian mechanics and not

on the most traditional Newtonian framework. Molecular simulations also make

use of such approach. In classical terms, the Hamiltonian (H) is given by the

summation of the kinect (K) and the potential (V ) energies, and is a function of

position (~r) and momentum (~p) coordinates of the particles.

H(~r, ~p) = K(~p) + V (~r) (4.1)

The kinect energy is given by the following common expression:

K(~p) =
N∑
j=1

|~pj|2

2mj

(4.2)

where ~pj is the momentum of particle j and mj is the mass of particle j.

The very �rst approximation, which is usually assumed (but most of the

time remains implicit on classical molecular simulation studies), is the Born-

Oppenhaimer approximation. In such approximation, one considers the decou-

pling between nuclear and electronic dynamics due to the nuclei being much

heavier than the electrons and, therefore, much slower. In quantum terms, there

will be two distinct Schrödinger equations generating two wavefunctions whose
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convolution represents the total wavefunction of the system.

Ψtotal = ΨnucleusΨelectron (4.3)

This implies that the total Hamiltonian operator will be given by the sum of

the nuclear and the electronic Hamiltonian operators (MCQUARRIE, 2000):

Ĥtotal = Ĥnucleus + Ĥelectron (4.4)

For classical molecular simulations, only the nuclear Hamiltonian is explicitly

taken into account. Therefore, the force �eld (id est, the potential) takes into

account only the interaction among the nuclei.

A second approximation, which is largely considered, is the pair-wise approx-

imantion. According to it, the potential energy, V , might be described as the

sum of two-body potentials, V (rij), (HILL, 1987):

V (~r) =
N∑

1≤i<j≤N

V (rij) (4.5)

This force �eld (the interaction potential is usually called force �eld), how-

ever, must encompass intermolecular as well as intramolecular potentials. There

are many functional forms for force �elds. If the polarization phenomenon is ne-

glected, one has the Lennard-Jones potential, which basically comprises a contact

repulsive and a dipolar attractive terms, and a Coulomb potential to describe the

electrostatic interactions as the most common form. Such potential could be writ-

ten, considering only two-body interactions, as (ALLEN; TILDESLEY, 1987):

V inter
ij (rij) = 4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

+
qiqj

4πε0rij
(4.6)

where Vij is the interaction potential between two particles i and j, rij is the

distance between these two particles, εij is the energy well depth, σij is the

distance between the particles i and j for which the Lennard-Jones potential is
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null, qi is the electric charge of the particle and ε0 is the vacuum permitivitty.

The parameters ε and σ are given by each particular nucleus, and the cross

terms are evaluated by combining rules, being the Lorentz-Berthelot the most

used (ALLEN; TILDESLEY, 1987):

σij =
σii + σjj

2
(4.7)

εij =
√
εiiεjj (4.8)

For the intramolecular potential, it is necessary to consider the bond potential

between two adjacent nuclei, the angular potential among three adjacent nuclei

and also the dihedral potential among four adjacent nuclei. For each one of these

types of potential there is at least one model.

Beyond the proposition of theories and experiments, computational simula-

tions have been playing a valuable role in providing essentially precise numerical

results for problems on statistical mechanics which otherwise would only have

approximated solutions (ALLEN; TILDESLEY, 1987). There are two families of

molecular simulation methods: molecular dynamics and Monte Carlo. Whilst the

former is based on the integration of classical equations of motion for each system

in the ensemble, given an interaction potential between the systems, the latter is

a stochastic sampling of coordinates. Short introductions on both methods are

presented in the next sections.

4.1 Molecular dynamics

In molecular dynamics, given an interaction potential between the particles,

their initial space coordinates and respective initial momenta, one may advance

in time taking into account the force that each particle exerts on the other at
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this simulation step. This means that if it is possbile to know the interaction

potential between two particles, V (~rij), the force, ~Fij, is given by

~Fij = −~∇V (~rij) (4.9)

Following Newton's second law, the acceleration, ~a, of a particle i is:

~ai =
1

mi

∑
j 6=i

~Fij (4.10)

where mi is the mass of particle i.

Or in terms of position:

d2~ri
dt2

=
1

mi

∑
j 6=i

~Fij (4.11)

where ~ri is the position of particle i.

Therefore, if one is able to discretize the equation of motion in terms of

position, one may evaluate the next position of a particle i. There are several

traditional algorithms employed to evaluate this time evolution such as Verlet,

Velocity Verlet and Leap Frog (ALLEN; TILDESLEY, 1987). One important

thing in the integration of the equations of motion is the energy conservation.

That is precisely the reason why some algorithms for solving di�erential equations

may not be useful for molecular dynamics. Moreover, Newton's equations of

motion are time reversible, and hence, the integrated solution must also be so

(FRENKEL; SMIT, 2002).

4.1.1 Verlet algorithm

The Verlet algorithm is based on the Taylor expansion about ~r(t) truncated

after the acceleration term (ALLEN; TILDESLEY, 1987):

~r(t+ ∆t) = ~r(t) + ~v(t)δt+
1

2
~a(t)(∆t)2 (4.12)
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~r(t−∆t) = ~r(t)− ~v(t)δt+
1

2
~a(t)(∆t)2 (4.13)

If one uses only the �rst equation, one obtains Euler algorithm, which is not

time reversible and fails to keep energy conservation (FRENKEL; SMIT, 2002).

Subtracting both equations, one arrives at Verlet algorithm for position:

~r(t+ ∆t) = 2~r(t)− ~r(t−∆t) + ~a(t)(∆t)2 (4.14)

With such equation, one is able to calculate the whole trajectory of the sys-

tem. If one is interested in the calculation of the kinect energy, one must calculate

the velocities, which are given by:

~v(t) =
~r(t+ ∆t)− ~r(t−∆t)

2∆t
(4.15)

One may see that the symmetry of equations to ~r(t+∆t) and ~r(t−∆r) makes

the solution of Verlet algorithm essentially time reversible (excluding numerical

errors).

4.1.2 Leap Frog algorithm

To derive the Leap Frog algorithm, one may start with the velocities at half-

integer time (FRENKEL; SMIT, 2002):

~v(t+ ∆t/2) =
~r(t+ ∆t)− ~r(t)

∆t
(4.16)

~v(t−∆t/2) =
~r(t)− ~r(t−∆t)

∆t
(4.17)

The �rst equation gives the evolution of position:

~r(t+ ∆t) = ~r(t) + ~v(t+ ∆t/2)∆t (4.18)
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The velocities are given by:

~v(t+ ∆t/2) = ~v(t−∆t/2) + ~a(t)∆t (4.19)

In this thesis, all molecular dynamics simulations were carried out using the

Leap Frog algorithm, because this is the natural integrator in the package used

in this thesis.

If there is no other restraint, the number of particles, the box volume and

the system energy are kept constant given a conservative trajectory. This sort

of simulations entails the so-called microcanonical ensemble. To simulate other

ensembles, one must impose other constraints such as thermostats and barostats.

4.2 Monte Carlo simulations

4.2.1 Markov chains

To de�ne a Markov chain, let us �rst recall Kolmogorov's axioms of prob-

ability (KOLMOGOROV, 1956). Let S be a collection of elements A1, . . . , An,

which are random events, then the probability is a function that must obey the

following rules:

i. P (Ak) ≥ 0 for all values of k.

ii. If A1, . . . , An are disjoint, id est, mutually exclusive, then:

P

(
n⋃
k=1

Ak

)
=

n∑
k=1

P (Ak)

iii. P (S) = 1
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In such framework, one may de�ne the conditional probability of event Aj

under the condition Ak as (ROZANOV, 1977):

P (Aj|Ak) =
P (Aj ∩ Ak)
P (Ak)

(4.20)

Therefore, for a sequence of events A1, . . . , An, one has:

P

(
n⋂
k=1

Ak

)
= P (A1)

n−1∏
k=1

P

(
Ak+1 |

k⋂
j=1

Aj

)
(4.21)

Let us now de�ne a stochastic variable xt, which assumes only integer values

and t = 0, 1, 2, 3 . . . is time. A stochastic process is completely de�ned at instant

l by the joint probability distribution (TOMÉ; OLIVEIRA, 2001):

Pl

(
l⋂

t=0

xt = nt

)
(4.22)

where xt assumes the value nt at instant t.

Then, one may de�ne a Markovian process as a stochastic process for which:

Pl+1

(
xl+1 = nl+1|

l⋂
t=0

xt = nt

)
= Pl+1 (xl+1 = nl+1|xl = nl) (4.23)

In other terms, a Markovian process is such process in which the conditional

probability of xt be a certain value depends exclusively on the imediately previous

value.

Substituting the de�nition of a Markov chain given by Equation (4.23) on the

chain rule expressed by Equation (4.21), one has:

Pl

(
l⋂

t=0

xt = nt

)
= P (x0 = n0)

l−1∏
t=0

P (xt+1 = nt+1|xt = nt) (4.24)
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Nevertheless, the probability that the variable xt assumes the value nl at

instant t = l is given by:

Pl(xl = nl) =
∑
nl−1

Pl

(
l⋂

t=0

xt = nt

)
(4.25)

Replacing Equation (4.24) onto Equation (4.26), one has the following law of

recurrence:

Pl(xl = nl) =
∑
nl−1

Pl (xl = nl|xl−1 = nl−1)Pl−1 (xl−1 = nl−1) (4.26)

The conditional probability in the last equation may be viewed as a transition

probability from the state xl−1 = nl−1 to state xl = nl. In principle, this transition

probability can change at each instant t. We shall consider here only transition

probabilities that remain the same regardless of t. To simplify the notation, we

shall write this transition probability as π(nl, nl−1). Considering the transition

of a state n to a state m, one may write:

Pl(n) =
∑
m

π(n,m)Pl−1(m) (4.27)

4.2.2 Microscopic reversibility

Consider the trajectory of a Markov chain as the sequence of states n0 →

· · · → nl. The reverse trajectory is going to be the inverse sequence nl → · · · →

n0. The joint probability distribution for such reverse trajectory is:

Pl

(
0⋂
t=l

xt = nt

)
= P (xl = nl)

l−1∏
t=0

P (xt+1 = nt+1|xt = nt) (4.28)

Therefore, the reverse transition probability, π′(n,m), is:

π′(n,m) = π(m,n)
P (n)

P (m)
(4.29)
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A Markovian process has microscopic reversibility if (ALLEN; TILDESLEY,

1987):

π′(n,m) = π(n,m) (4.30)

Replacing the condition of microscopic reversibilty onto Equation (4.27), one

has: ∑
m

[π(n,m)P (m)− π(m,n)P (n)] = 0 (4.31)

which is called detailed balance if each term within the summation is null.

4.2.3 Metropolis Algorithm

The transition probability can be written in terms of a matrix α and the

probability of accepting a trial move (FRENKEL; SMIT, 2002):

π(n,m) = α(n,m)acc(n,m) (4.32)

In Metropolis Algorithm, the matrix α is considered to be a symmetric matrix,

id est, α(n,m) = α(m,n). Thus, the ratio of acceptance can be written as:

acc(n,m)

acc(m,n)
=

P (n)

P (m)
(4.33)

Since acc(n,m) is a probability, it cannot be grater than 1. Therefore:

acc(n,m) =


P (n)/P (m), if P (n) < P (m)

1, if P (n) ≥ P (m)

(4.34)

For NVT ensemble, the probability of a state is given by Boltzmann distri-

bution of energy. Thus:

acc(n,m) = min{1, exp [−(Un − Um)/kBT )]} (4.35)
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4.2.4 Monte Carlo algorithm

In Monte Carlo simulations, one particle is randomly selected, the energy of

such con�guration is evaluated, this particle is randomly displaced and the en-

ergy of this new con�guration is also evaluated. This move may be accepted or

not. If accepted, the iterative process goes on, otherwise, a new displacement of

the selected particle is tryied. This is a quite rough and general scheme of the

so-called Metropolis algorithm, which is usually applied on Monte Carlo simula-

tions (FRENKEL; SMIT, 2002). The Monte Carlo technique, being a stochastic

sampling, does not represent a physical trajectory, however, for a thermodynamic

equilibrium this is irrelevant provided the microscopic reversibility is guaranteed.

Figure 10 presents an initial solid face centered cubic (FCC) con�guration of

Lennard-Jones particles and a �nal liquid con�guration from a melting process

using Monte Carlo simulations.

Figure 10: NVT Monte Carlo simulations of Lennard-Jones particles. The initial
con�guration on the left side is a face centerd cubic (FCC) crystal. The �nal
con�guration on the right side is a representation of the melted system.
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5 FROM THE STRUCTURE FACTOR TO

OSMOTIC PRESSURE

5.1 Introduction1

Despite the increasing importance of bioprocesses in the chemical industry,

the description of proteins in aqueous solutions, aiming at the development of

models suitable to correlate and predict phase diagrams, still poses challenges.

Phase diagrams of systems constituted by proteins in aqueous solutions may be

very di�erent from those of systems that do not contain biomolecules (PRAUS-

NITZ, 2008). Moreover, the in�uence of system conditions (such as temperature,

pH and concentration) on the phase diagram is often counterintuitive.

Systems constituted by solutes and solvent, such as those constituted by a

protein in aqueous solutions, are usually studied through a modi�ed Hamiltonian.

This modi�cation considers only the solutes as individual particles and treats the

solvent as a continuum medium characterized by properties such as permittivity,

viscosity and density. A rigorous formal treatment to this approach was presented

by McMillan and Mayer (MCMILLAN; MAYER, 1945). The McMillan-Mayer

approach can be understood as an expanded ensemble in which the number of all

component molecules is split in two independent variables: the solvent chemical

potential and the number of solute molecules. The McMillan-Mayer framework

can be converted in either Gibbs or Helmholtz frameworks (MOLLERUP; BREIL,

1Most of the content of this chapter is already published (Franco, L.F.M.; Oliveira, C.L.P.;
Pessôa Filho, P. de A., Thermodynamics of protein aqueous solutions: from the structure factor
to the osmotic pressure, AIChE J., 61, 2871-2880, 2015.)
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2009a; MOLLERUP; BREIL, 2009b). The advantage of using the McMillan-

Mayer approach is the possibility of describing the behavior of solute molecules

in a solvent by using the same equations used for describing the behavior of gas

molecules in vacuum (HILL, 1986). This advantage has resulted in its extensive

application on the description of colloidal systems.

The basis of the McMillan-Mayer framework is to consider that the interac-

tion between two solute molecules is given by the potential of mean force, i.e., the

interaction potential averaged over all solvent molecule con�gurations (PRAUS-

NITZ, 2003). Therefore, the key aspect for any calculation within this approach

is to determine the potential of mean force between two solute molecules at cer-

tain solvent condition. This can be done for protein solutions either through

experiments or through molecular simulation. McMillan and Mayer (MCMIL-

LAN; MAYER, 1945) considered the expansion of the grand-partition function

in a power series in fugacities in their derivation. Therefore, their framework is

usually employed through the virial expansion for the osmotic pressure (MCMIL-

LAN; MAYER, 1945), for which the osmotic second virial coe�cient arises as an

important parameter. There is great interest in the experimental determination

of this coe�cient due to its relationship with the outcome of precipitation oper-

ations. George and Wilson (GEORGE; WILSON, 1994) proposed that protein

crystallization would occur if the second virial coe�cient lay in a de�nite range.

Since their work, many investigations have been conducted to get deeper insight

on this relation (TESSIER et al., 2003).

Despite recent advances in computational research, much of the experimental

research in solution Thermodynamics still uses analytical solutions to interpret

experimental data. This is due to intrinsic characteristics inherent to analytical

solutions. The most important of these characteristics is the fact that a small set

of parameters may provide insightful understanding of the raw data. Particularly
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on the �eld of light, neutron and X-ray scattering, analytical solutions for the

structure factor, which accounts for interparticle interaction, are commonly used

to reproduce the experimental scattering intensity.

The development of analytical expressions for the structure factor usually con-

siders the Ornstein and Zernike equation (ORNSTEIN; ZERNIKE, 1914), which

de�nes the direct correlation function. However, this equation can only be solved

by using approximations known as closure relations. A review on this subject can

be found in Caccamo (CACCAMO, 1996). One of these closure relations, which

results in analytical solutions for simple interparticle potentials, was formulated

by Percus and Yevick (PERCUS; YEVICK, 1958). Such relation was solved

independently by Wertheim (WERTHEIM, 1963) and Thiele (THIELE, 1963)

for a hard sphere �uid. The resulting functional form for the structure factor

was presented by Ashcroft and Lekner (ASHCROFT; LEKNER, 1966). Bax-

ter (BAXTER, 1968) proposed an analytical solution, also through the Percus-

Yevick closure relation, for the adhesive hard sphere �uid. Sharma and Sharma

(SHARMA; SHARMA, 1976) introduced a modi�cation in the Ashcroft-Lekner

equation in order to be consistent with the Carnahan and Starling (CARNAHAN;

STARLING, 1969) equation of state for hard sphere �uids.

Lebowitz and Percus (LEBOWITZ; PERCUS, 1966) proposed the Mean

Spherical Approximation, formulated as a generalization of the spherical model

for Ising spin systems to classical �uids (PALMER; WEEKS, 1973). Such ap-

proximation can be considered a perturbation of the Percus-Yevick closure re-

lation (SHARMA; SHARMA, 1977). Expressions for the structure factor for a

square well �uid (SHARMA; SHARMA, 1977), for charged particles in a neutral-

izing background (PALMER; WEEKS, 1973) and for macro-ions interacting via a

screened Coulomb potential (HAYTER; PENFOLD, 1981; HANSEN; HAYTER,

1982) were proposed through this closure relation.
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For protein solutions, structure factors given by an attractive potential with

a hard core have been reported. For γ-crystallin and lysozyme solutions Malfois

et al. (MALFOIS et al., 1996) and Tardieu et al. (TARDIEU et al., 1999) used

a Yukawa potential within the Hyper-Netted Chain approximation, which can

only be solved numerically. Barbosa et al. (BARBOSA et al., 2010) described

the structure factor of bovine serum albumin through a similar approach with

the extension introduced by Narayanan and Liu (NARAYANAN; LIU, 2003).

However, in Zhang et al. (ZHANG et al., 2007) and in Barbosa et al. (BARBOSA

et al., 2010), the attractive parameter (either the depth from the square well

potential or the Yukawa parameter) increases when the protein concentration

decreases, even though the salt concentration remains constant.

Therefore, a more realistic attractive potential that allows a better under-

standing of the behavior of protein solutions is still needed. Here, we present

a possible solution to the structure factor considering that the potential com-

prises a repulsive hard core, an attractive potential proportional to 1/r6 - a van

der Waals potential - and a repulsive screened Coulomb potential. Small-Angle

X-ray Scattering (SAXS) experiments were conducted with bovine serum albu-

min (BSA) in concentrated salt solutions, which is the most important condition

for industrial purposes, and these results were used to obtain the parameters of

the intermolecular potential. The expression for the structure factor is used to

generate an expression for the osmotic equation of state. With this expression

and the parameters obtained from regressing SAXS scattering data, the osmotic

pressure curve of BSA as a function of protein concentration in aqueous solution

with sodium chloride is predicted with excellent agreement with the experimental

data.
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5.2 Materials and Methods

5.2.1 Reagents

The reagents used in the experiments were bovine serum albumin (Sigma-

Aldrich, A3059, >= 99.0%), acetid acid (Sigma-Aldrich, 320099, >= 99.7%),

trihydrated sodium acetate (Sigma-Aldrich, 32318, >= 99.5%), sodium chloride

(Sigma-Aldrich, S7653, >= 99.5%), sodium sulfate (Sigma-Aldrich, 239313, >=

99.0%), sodium nitrate (Sigma-Adrich, S5506, >= 99.0 %) and deionized water

(Milli-Q R©). Protein stock-solutions of 100.0 mg·mL−1 were prepared in bu�er

of acetic acid and trihydrated sodium acetate. pH values were measured in a

pH-meter Digimed R©.

5.2.2 SAXS experiments

Small-Angle X-ray Scattering (SAXS) experiments were run at room tem-

perature of 23 ± 1oC, using a Bruker's R© NANOSTAR R© equipment, with wave-

length λ = 1.5418 Å of CuKα radiation and sample-detector distance of 67.0 mm.

Scattering intensity data are presented as a function of the wavevector modulus

q = (4π/λ) sin θ, in which λ is the radiation wavelength and 2θ is the scatter-

ing angle. The momentum transfer range was 0.013 to 0.33 Å−1. Background

intensities were obtained from the scattering of bu�er solutions measured inside

the same capillaries. The scattering data were obtained with 300 to 1200 s of

exposition, depending on the protein concentration, and were analyzed with the

software SUPERSAXS (OLIVEIRA, 2009). In these experiments, the sample

was continuously �own inside the vacuum chamber using an external peristaltic

pump. By diluting the original stock solution with bu�er solution, this mechanism

allowed to obtain curves for several protein concentrations. The initial protein

concentration was 100.0 mg·mL−1, and the salt concentration of both the stock
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protein solution and the bu�er solution was 1.0 mol·L−1. The scattering of BSA

in sodium chloride, sodium sulfate and sodium nitrate solutions was investigated.

The scattering intensity was used to calculate the form and structure factors

through the following analysis. Assuming that interactions are independent of

the orientation, the scattering intensity I(q) at the wavevector modulus q, for

a monodisperse ensemble of anisotropic particles, is given by (KOTLARCHYK;

CHEN, 1983):

I(q) = KP (q) [1 + β(q) (S(q)− 1)] (5.1)

where K is a proportionality constant that depends on the number of scattering

particles, S(q) is the structure factor and P (q) is the form factor, de�ned by:

P (q) = 〈A2(q)〉 (5.2)

where A(q) is the amplitude of scattering at q and β(q) is the ratio between the

square of the average amplitude and the form factor:

β(q) =
〈A(q)〉2

〈A2(q)〉
(5.3)

For spherical particles, β(q) = 1.

The BSA form factor was calculated using CRYSOL (SVERGUN; BARBER-

ATO; KOCH, 1995) with the crystallographic structure of monomer A of 4F5S

�le from Protein Data Bank (BUJACZ, 2012). The amplitude was adjusted

using the Nelder and Mead algorithm (NELDER; MEAD, 1965) (a code for

this algorithm is presented on Appendix D) for an oblate ellipsoid of revolu-

tion (41.4Å×41.4Å×18.6Å), following Guinier's expression (PEDERSEN, 1997)

with the volume equivalent to a sphere with diameter 63.4 Å.
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5.2.3 Monte Carlo simulations

Each Monte Carlo simulation was conducted with 2048 spherical particles of

diameter σ. These particles were allocated within a cubic box with edge length

of 17.5 σ, such that the packing fraction was 0.2. The initial con�guration was

that correspondent to a face centered cubic crystal. Each translational trial was

attempted following the Metropolis method in canonical ensemble and respecting

periodic boundary conditions (FRENKEL; SMIT, 2002); the acceptance ratio

was set to 0.5. Interaction potentials were truncated at 3.0 σ. For equilibration,

2.048× 107 steps were performed. For the production stage, the same amount of

cycles was used. Space coordinates were stored each 2048 steps. The interaction

potential used in the simulations was:

U(x)

ε
=


∞, if x ≤ 1

−
(

1
x

)6
, if x > 1

(5.4)

where ε is the absolute value of the attractive potential at the contact distance,

x = r/σ and σ is the particle diameter. Lennard-Jones units were used in the

simulations.

The calculation of the structure factor was done with a post-processing code.

The structure factor, S(q), is related to the �uctuations of the spatial Fourier

transform of the number density, ρ, through (ALLEN; TILDESLEY, 1987):

S(q) =
1

N
< ρ(q)ρ(−q) > (5.5)

ρ(q) =
N∑
j=1

ei~q·~rj (5.6)

In a cubic box, ~q = (2π/L)(qx, qy, qz) where L is the box edge length and qx,

qy and qz are integers. Thus, following the approach of Frenkel et al. (FRENKEL
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et al., 1986) and Cannavacciuolo et al. (CANNAVACCIUOLO et al., 2000), the

structure factor was calculated at the reciprocal lattice points of the box. A

set of 13 directions (h, k, l) generated by 001, 110 and 111 and their equivalents

directions was considered (OLIVEIRA, 2005):

S(qp) =
1

N

[
N∑
j=1

e−ip2π(hxj+kyj+lzj)/L

]2

(5.7)

qp =
2π

L
p
√

(h2 + k2 + l2), p = 1, 2, ... (5.8)

Structure factors from di�erent directions were averaged. The variance was

calculated according to:

σ2 =
1

M

M∑
i=1

[
Si(q)− S(q)

]
(5.9)

where M is the total number of samples.

5.3 Theoretical framework

Using the concept of structure factor is not common in chemical thermo-

dynamics. Therefore, its relationship to other quantities must be established

beforehand. The structure factor is simply the Fourier transform of the radial

distribution function (CACCAMO, 1996):

S(q) = 1 + ρ

∫ +∞

0

g(r)e−iqrdr (5.10)

De�ning the total correlation function h(r) as:

h(r) = g(r)− 1 (5.11)

The Ornstein-Zernike equation relates the total correlation function, h(r), and
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the direct correlation function, c(r), through (ORNSTEIN; ZERNIKE, 1914):

h(r) = c(r) + ρ

∫
h(|r′ − r|)c(r′)dr′ (5.12)

Applying the Fourier transform on this equation results in:

H(q) = C(q) + ρH(q)C(q) (5.13)

where H(q) is the Fourier transform of h(r), and C(q) is the Fourier transform

of c(r). Coupling equations (5.10) and (5.13):

S(q) =
1

1− ρC(q)
(5.14)

Therefore, to obtain S(q) we need an expression for C(q). To relate C(q) with the

interparticle potential, the mean spherical approximation (LEBOWITZ; PER-

CUS, 1966) may be considered:

c(r) =


g(r)

[
1− eU(r)/kBT

]
, if r ≤ σ

−U(r)
kBT

, if r > σ

(5.15)

where U(r) is the interparticle interaction potential, kB is the Boltzmann constant

and T is the absolute temperature. Here we adopted the procedure developed

by Sharma and Sharma (SHARMA; SHARMA, 1977). The direct correlation

function is equal to a modi�ed Percus-Yevick solution (SHARMA; SHARMA,

1976) for r ≤ σ, and is proportional to the interaction potentical (likewise the

random phase approximation) for r > σ. The interaction potential is considered

to be the sum of an attractive contribution and a screened Coulomb contribution:

U(r) =


∞, if r ≤ σ

−ε
(
σ
r

)6
+ (ze)2 exp[−κ(r−σ)]

4πε0εrr(1+κσ/2)2 , if r > σ

(5.16)

where ε is the attractive potential depth, σ is the particle diameter, z is the
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charge of the particle in units of the elementary charge e, κ is the inverse of

Debye's length, ε0 is the vacuum permittivity and εr is the medium dielectric

constant.

Following the approach of Sharma and Sharma (SHARMA; SHARMA, 1977),

the direct correlation function c(r) can be written as a sum of the direct corre-

lation functions generated by a hard sphere potential, chs(r), by the attractive

potential, cvdW (r), and by the screened Coulomb potential, cCoul(r):

c(r) = chs(r) + cvdW (r) + cCoul(r) (5.17)

The Fourier transform of Equation (5.17) is:

C(q) = Chs(q) + CvdW (q) + CCoul(q) (5.18)

For the hard sphere contribution, we will consider the solution obtained by

Ashcroft and Lekner (ASHCROFT; LEKNER, 1966) with the modi�cation in-

troduced by Sharma and Sharma (SHARMA; SHARMA, 1976):

Chs(k) = −24η

ρk6
{αk3 [sin k − k cos k] + βk2

[
2k sin k −

(
k2 − 2

)
cos k − 2

]
+ γ

[(
4k3 − 24k

)
sin k −

(
k4 − 12k2 + 24

)
cos k + 24

]
}

(5.19)

where η = ρπσ3/6 is the packing fraction, and:

k = qσ (5.20)

α =

[
(1 + 2η)2 + η3 (η − 4)

]
(1− η)4 (5.21)
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β = −η
3

(18 + 20η − 12η2 + η4)
2

(1− η)4 (5.22)

γ =
ηα

2
(5.23)

This expression is consistent with the Carnahan-Starling equation of state

(SHARMA; SHARMA, 1976). In this case, the Fourier transform depends on

the protein concentration, implicit in the packing fraction η; however, we left Chs

written simply as function of k, as this parameter is related to q and r (through

inverse Fourier transform).

The attractive contribution of the direct correlation function is obtained from

the functional form of the interparticle interaction in Equation (5.16):

CvdW (q) = 4π
σ6

T ∗

∫ ∞
σ

1

r6

sin(qr)

qr
r2dr (5.24)

where T ∗ is the reduced temperature, de�ned by T ∗ = kBT/ε. This expression

results in:

CvdW (k) =
πσ3

6T ∗k

[
k4
(π

2
− Si(k)

)
+
(
6− k2

)
sin(k) + k

(
2− k2

)
cos(k)

]
(5.25)

where k is de�ned by Equation (5.20) and Si(x) is the integral de�ned as:

Si(x) =

∫ x

0

sin(t)

t
dt (5.26)

From the functional form of the interparticle interaction in Equation (5.16),
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the direct correlation function of the electrostatic contribution is:

CCoul(q) = − z2e2 exp (κσ)

kBTε0εr (1 + κσ/2)2

∫ ∞
σ

exp (−κr)
r

sin (qr)

qr
r2dr (5.27)

where κ is the inverse of Debye's length, de�ned as:

κ =

√(
2NAe2Iρs
ε0εrkBT

)
(5.28)

NA is Avogadro's number, ρs is the solvent density and I is the ionic strength,

de�ned as:

I =
1

2

N∑
i=1

miz
2
i (5.29)

where mi is the molality (in mol per kilograms of solvent) of particle i. The

in�uence of protein on the ionic strength is neglected 2.

From Equation (5.27):

CCoul(k) = −z2 φ

qκ

(
sin k +Q cos k

1 +Q2

)
(5.30)

φ =
e2

kBTε0εr (1 +K)2 (5.31)

where k = qσ, Q = q/κ and K = κσ/2.

The Debye-Hückel point ion limit can be recovered from Equation (5.30),

letting σ → 0 and considering the low density �rst term expansion.

Coupling Equation (5.18) with Equations (5.19), (5.25) and (5.30), the �nal

2As it has been pointed out by Prof. Dr. Marcelo Castier, the in�uence of the protein on the
ionic strength calculation is not neglectable. Nevertheless, the real contribution of the protein
to the ionic strength is still under debate, because the very de�nition of the ionic strength is
developed for punctual electric charges. One possible way to minimize this e�ect is to use a
similar approach that has been used for common polyelectrolytes (PESSÔA-FILHO; MAURER,
2008). Using such approach, it is possible to neglect this e�ect here.
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expression for the direct correlation function C(k) is:

C(k) = −24η

ρk6
{αk3 [sin k − k cos k] + βk2

[
2k sin k −

(
k2 − 2

)
cos k − 2

]
+ γ

[(
4k3 − 24k

)
sin k −

(
k4 − 12k2 + 24

)
cos k + 24

]
− k5ε

24kBT

[
k4
(π

2
− Si(k)

)
+
(
6− k2

)
sin(k) + k

(
2− k2

)
cos(k)

]
+

k6φz2

4πσ3qκ

(
sin k +Q cos k

1 +Q2

)
}

(5.32)

5.3.1 Isothermal compressibility and the osmotic equation
of state

The isothermal compressibility is related to the limit of q = 0 in the structure

factor so that:

lim
q→0

S(q) = ρkBTκT = kBT

(
∂ρ

∂Π

)
T

(5.33)

where Π is the osmotic pressure and κT is the isothermal compressibility. The

structure factor presented in Equation (5.32) gives, for an uncharged system

(exempli gratia, at the isoelectric point), the following isothermal compressibility:

κT =
πσ3

6η (αkBT − 8εη)
(5.34)

where α is given by Equation (5.21). The osmotic pressure can be calculated

through:

Π =

∫ η

0

dη

ηκT
(5.35)

which results in:

Z =
Π

ρkBT
=

1 + η + η2 − η3

(1− η)3 − 8

ηkBT

∫ η

0

ε(η)ηdη (5.36)

We left intentionally ε as a function of η due to the experimental evidence

that ε is not constant for proteins in aqueous solutions (ZHANG et al., 2007;
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BARBOSA et al., 2010). As Z must approach 1 as η approaches 0, the expression

for ε must follow the limit:

lim
η→0

1

η

∫ η

0

ε(η)ηdη = 0 (5.37)

Equation (5.36) reduces to the Carnahan-Starling-van der Waals equation of

state if ε is constant.

5.4 Results

5.4.1 Validation of the structure factor

An example of the structure factor generated by Equation (5.32) is presented

in Figure 11. This Figure was generated using a highly attractive parameter

(ε/kBT = 1.67). For high values of k, the structure factor goes to 1 as expected.

For small values of η, the structure factor goes to 1 regardless of k, which means

that dilute systems approach the ideal behavior. However, the �rst peak enlarges

when η increases, and so does the isothermal compressibility (given by the limit of

k → 0) for small values of η. After certain η value, the isothermal compressibility

decreases when η increases.

Figure 11 shows that the expected limits are respected, but it does not allow

an assessment of whether the approximations assumed in the derivation of Equa-

tion (5.32) are adequate. Therefore, comparison with Monte Carlo simulations

was carried out. Figure 12 shows the results of the structure factor obtained

from Monte Carlo simulations (using the interparticle potential from Equation

5.4) and from Equation (5.32) for an uncharged particle, calculated for di�erent

values of the attractive parameter and η = 0.2.

The agreement between the results from Equation (5.32) and from Monte

Carlo simulations is remarkable. However, for high values of the attractive pa-
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Figure 11: Structure factor (Equation 5.32) as a function of η and k (Equation
5.20) calculated for a system of uncharged particles and attractive parameter
ε/kBT = 1.67.

rameter a non-negligible di�erence between the isothermal compressibility calcu-

lated via Monte Carlo and Equation (5.32) is observed. This means that Equation

(5.32) fails to predict the large increment on the isothermal compressibility for

highly attractive systems. This failure is related to the hypotheses behind the

random phase approximation, which considers the attractive potential as a per-

turbation of the hard sphere reference system.

5.4.2 Structure factor of Bovine Serum Albumin (BSA) in
aqueous salt solutions

Figure 13 shows the form factor for BSA in aqueous solution. We considered

that the form factor is equal to the scattering intensity in very dilute solutions.

In this case, the experimental data was obtained with a protein concentration of

6.8 mg·mL−1. The agreement between the calculated curve and the experimental
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Figure 12: Structure factor as a function of k = qσ and ε/kBT for a system of
uncharged particles with η = 0.2. Open circles, Monte Carlo results (standard
deviations are smaller than symbol size). Continuous line, Equations (5.14) and
(5.32).

data is high. The value of β(q) is close to 1 for small scattering angles, which

indicates that at small angles BSA can be modeled as an oblate ellipsoid of

revolution.
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Figure 13: Form factor for bovine serum albumin (BSA) in aqueous solution.
Experimental results for the scattering intensity (in a.u., arbitrary units) of BSA
in aqueous solution with 6.8 mg·mL−1, open circles. Curve calculated using
CRYSOL (SVERGUN; BARBERATO; KOCH, 1995), continuous line. The inlet
plot shows β(q) (Equation 5.3) considering an oblate ellipsoid of revolution.

The experimental data of scattering intensity as a function of protein concen-

tration and wavevector modulus are presented on Appendix G.

Previous works (BARBOSA et al., 2010; ZHANG et al., 2007) showed that the

attractive parameter of proteins in solution may depend on protein concentration.

The simplest relation between ε and η that follows the thermodynamic restriction

imposed by Equation (5.37) is:

ε = εo − ε′η (5.38)

where εo is the value of the attractive parameter at in�nite dilution. The pa-

rameters of Equation (5.38) were obtained by minimizing the following objective
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function:

χ2
r =

1

NcN −M

Nc∑
j=1

N∑
i=1

(
Iexpj (qi)− Imodj (qi)

cp,jσji

)2

(5.39)

where Nc is the number of di�erent sets of experimental data, N is the number

of experimental intensities for a single protein concentration, M is the number of

parameters used in the �tting procedure, Iexpj (qi) is the experimental scattering

intensity, Imodj (qi) is the calculated scattering intensity and σji is the standard

deviation of the experimental scattering intensity at qi and protein concentra-

tion cp,j. Table 1 presents the values of parameters εo and ε′ adjusted to the

experimental data using Equation (5.38), as well as the values of χ.

Table 1: Values of parameters εo and ε′, Equation (5.38), values of χ for the �tting
procedure, Equation (5.39), and values of the osmotic second virial coe�cient B,
Equation (5.44), calculated for BSA in aqueous solutions with 1.0 mol·L−1 sodium
salts.

pH Anion εo/kBT ε′/kBT χ B × 104 / cm3·mol·g−2

4.9 SO−2
4 2.00 8.24 2.52 -2.18

Cl− 2.32 11.10 11.35 -2.65

NO−3 2.43 16.95 6.26 -2.81

6.3 SO−2
4 1.44 5.55 1.96 -1.37

Cl− 2.39 14.77 8.05 -2.75

NO−3 1.92 11.17 6.18 -2.06

A �rst question that arises from the analysis of experimental data is whether ε

actually depends on η. Figure 14 shows the comparison, for two protein solutions,

among the results obtained for the Hard Sphere Percus Yevick equation, for

Equation (5.32) and constant ε, and for Equation (5.32) coupled with Equation

(5.38). For concentrated protein solutions, electrostatic interactions are screened

by ions in solution, and even the hard sphere potential is su�cient to predict
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the scattering intensity. However, as the protein concentration decreases, the

experimental scattering deviates from the Percus Yevick prediction. The use of a

single value of ε does not allow a good correlation for all protein concentrations,

and considering that ε depends on the protein concentration is necessary.

1.0
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3.0

0.01 0.02 0.04 0.06

I(
q)
/c

(a
.u
.)

q / Å−1

31.1 mg/mL
100.0 mg/mL

Figure 14: X-ray scattering intensity (in a.u., arbitrary units) of BSA in 1.0
mol·L−1 NaNO3 aqueous solution at pH=4.9 and 23 oC for di�erent BSA con-
centrations at very small q values. Open symbols, experimental data; continuous
line, Equation (5.32) with ε calculated using Equation (5.38); dotted-dashed line,
Equation (5.32) with constant ε; dashed line, Hard-Sphere Percus-Yevick solu-
tion.

Figure 15 shows the scattering intensity of BSA in aqueous solution with

NaNO3 (1.0 mol·L−1) at the isoelectric point (i.e. the pH value for which the

protein net charge is null, pH = 4.9 for BSA) for three protein concentrations,

and Figure 16 presents the scattering intensity of BSA in aqueous solution with

NaNO3 above the isoeletric point (pH = 6.3). The agreement between the scat-

tering intensities calculated by Equation (5.32) and the experimental data is very

good. In both Figures, the calculated structure factor with the proposed model,
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Equation (5.32), is also presented. Figures comprising all systems studied are

presented on Appendix H.

For the isoelectric point, the net charge is null and the Coulomb contribu-

tion to the structure factor vanishes. However, for a pH above the isoelectric

point, the protein molecule bears a negative charge that must be considered in

Equation (5.27). To obtain the net charge pro�le of BSA as a function of pH,

the pKA values obtained by PROPKA (LI; ROBERTSON; JENSEN, 2005) with

the crystallographic structure of BSA (BUJACZ, 2012) were considered, and the

resulting pro�le was adjusted so that the isoelectric point was placed at pH =

4.9.

The results for parameters εo and ε′ shown in Table 1 present two interesting

features. The �rst one is that they depend on the pH. Even considering that

this dependence is weak, it shows that the decoupling of the attractive part of

c(r) into cvdW (r) and cCoul(r), Equation (5.17), is imperfect - otherwise, cvdW (r)

should not be in�uenced by the protein net charge. This may be due either to the

expressions considered for CvdW (q) and CCoul(q), which involve approximations

such as the calculation of the protein net charge, or to the very hypothesis that

c(r) can be decoupled in this way. The decoupling of the interaction potential

into short-range and long-range terms is certainly an approximation, but is a

useful and widely employed one. On the other hand, the expressions used for

CvdW (q) and CCoul(q) also entail approximations. The experimental data are not

su�cient to decide which one of these aspects is critical. However, these �ndings

warn against using this model uncritically.

The second feature is that the �tting of Equation (5.38) leads to the un-

expected conclusion that the more diluted is the protein in solution, the more

attractive is its interaction potential. The very fact that the attractive parame-

ter may depend on the solute concentration is not obvious. If the analogy with the
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non-ideal gas behavior, hypothesized by the McMillan and Mayer (MCMILLAN;

MAYER, 1945) approach, was complete, then this potential should be indepen-

dent of the solute concentration. However, as previously shown in Figure 14,

considering this dependence is necessary even at the isoelectric point, at which

the average charge of protein molecules is null; in this case, the decoupling of the

attractive part of C(q) and the expression used for CCoul(q) play no role in the

calculations.

One possible explanation for this contradiction is that the many-body contri-

bution to the interaction potential, which is more relevant for more concentrated

protein solutions, would lead to an apparent decrease (in absolute value) of the

value of the interaction parameter. However, this contribution always leads to an

increase in the attraction between molecules, which would result in an increase

in the absolute value of the interaction parameter. A brief general demonstration

of this fact is presented in the Appendix A.

Another possible explanation for this fact lies in the charge-dipole interac-

tions. According to Striolo et al. (STRIOLO et al., 2002; STRIOLO et al., 2003)

and Bratko et al. (BRATKO et al., 2002), accounting for charge-dipole interac-

tions improves the description of protein-protein interactions. In this case, the

following term should be added to the interaction potential (ISRAELACHVILI,

2011):

U c−d(r) = −ζ
(σ
r

)4

, if r > σ (5.40)

where ζ is a parameter proportional to the square of the product between the

protein charge, z, and the protein dipole moment, µ.

This would mean that the following term should be added to the direct cor-

relation function, Equation (5.32):

Cc−d(k) =
2πσ3ζ

kBT

[
sin k

k
− cos k + k2

(
2Si(k)− π

2

)]
(5.41)
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However, this term does not provide any insight in why ε changes with η,

as it does not depend on protein concentration and would have the same e�ect

on S(q) for all protein concentrations. Particularly at the isoelectric point, this

contribution is null, since the protein has no net charge and ζ is zero.

Finally, the other possible explanation for this �nding is that the implicit

solvent hypothesis behind the McMillan-Mayer framework is not adequate to de-

scribe the behavior of protein solutions. The fact that di�erent salts have di�erent

e�ects on the protein molecules has long been known (ZHANG; CREMER, 2006).

The conclusion of this work is subtler: the e�ect of the same salt at the same

concentration may not be the same, and may depend on the concentration of the

protein - or likewise on the proportion between salt ions to protein molecules. In

this sense, the inclusion of the salt ions as solutes in the study of protein solu-

tions, instead of a co-solvent, seems to be unavoidable even within the McMillan

and Mayer framework.

5.4.3 Osmotic equation of state

By coupling Equation (5.38) and Equation (5.36) the following expression for

Z is obtained for uncharged systems:

Z =
1 + η + η2 − η3

(1− η)3 − 4εoη

kBT
+

8ε′η2

3kBT
(5.42)

The osmotic second virial coe�cient, B, can be calculated through:

B = lim
ρ→0

Z − 1

ρ
(5.43)

From Equation (5.42):

B =
2πσ3

3

(
1− 2εo

kBT

)
(5.44)
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Table 1 presents the value of the osmotic second virial coe�cient calculated

for BSA in these salt solutions. All values are negative, which indicates the

predominance of attractive forces over repulsive ones. The osmotic second virial

coe�cient is known to depend on the pH, due to the dependence of the average net

charge on the pH, which shifts the electrostatic repulsion (NEAL; ASTHAGIRI;

LENHOFF, 1998). For BSA, the calculated values of B at pH 6.3 are lower (in

absolute value) than the calculated values of B at the isoelectric point, except

for sodium chloride. The calculated values of B are similar to those previously

reported for BSA in aqueous salt solutions. For instance, the experimental data

by Wu and Prausnitz (WU; PRAUSNITZ, 1999) suggests a value of B = -1.7 ×

10−4 cm3·mol·g−2 for BSA in aqueous solution with 1.0 mol·L−1 sodium chloride

at pH = 4.5. For BSA in aqueous solution with 1.0 mol·L−1 ammonium sulfate

at pH = 4.8, a value of B = -0.77 × 10−4 cm3·mol·g−2 was reported (LU et al.,

2009).

Further analysis can be done by considering experimental data on osmotic

pressures. Figure 17 shows the results for BSA osmotic pressure as a function

of protein concentration in 1.0 mol·L−1 NaCl aqueous solution. The continuous

line was drawn using Equation (5.42) with parameters presented in Table 1. The

developed equation can reproduce with good agreement the experimental data,

despite the slight di�erence in pH values. The comparison with the Hard-Sphere

Percus-Yevick equation shows that accounting for the attractive intermolecular

interactions is important when calculating the osmotic pressure even at low pro-

tein concentrations. The agreement between the proposed equation for Π and

the experimental results shows that the simpli�ed hypotheses adopted in the de-

velopment do not result in a loss of accuracy for the description of macroscopic

quantities.
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Figure 15: A) X-ray scattering intensity (in a.u., arbitrary units) of BSA in 1.0
mol·L−1 NaNO3 aqueous solution at pH=4.9 and 23 oC. Open symbols, experi-
mental data; continuous line, Equation (5.32) with ε calculated using Equation
(5.38). B) Calculated structure factor. Continuous line, Equations (5.14) and
(5.32) with ε calculated using Equation (5.38); dashed line, Hard-Sphere Percus-
Yevick solution.
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Figure 16: A) X-ray scattering intensity (in a.u., arbitrary units) of BSA in 1.0
mol·L−1 NaNO3 aqueous solution at pH=6.3 and 23 oC. Open symbols, experi-
mental data; continuous line, Equation (5.32) with ε calculated using Equation
(5.38). B) Calculated structure factor. Continuous line, Equations (5.14) and
(5.32) with ε calculated using Equation (5.38); dashed line, Hard-Sphere Percus-
Yevick solution.
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Figure 17: Osmotic pressure of BSA in 1.0 mol·L−1 NaCl aqueous solution.
Open circles, experimental data from Wu and Prausnitz (WU; PRAUSNITZ,
1999) (pH=4.5); continuous line, Equation (5.42) with parameters calculated at
pH=4.9; dashed line, Hard-Sphere Percus-Yevick equation of state.
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6 FROM THE OSMOTIC PRESSURE TO

FLUID-FLUID COEXISTENCE CURVE

6.1 Introduction

One of the most important problems related to the thermodynamics of protein

systems is the ability to predict phase separation. From the perspective of a

chemical engineer, the possibility of drawing a phase diagram is the key point to

design, operate and optimize a separation process, exempli gratia, precipitation,

crystallization, or even chromatography. From the medical point of view, the

phase diagram of protein systems is the key to understand the mechanism of

some diseases such as cataract, sickel cell disease, Alzheimer's disease and multiple

myeloma (BENEDEK, 1997); diseases called �protein condensation diseases�.

To plot a phase diagram for protein systems, one needs to know the interac-

tion potential between two proteins in solution. The interaction potential is the

Achilles heel of such problem, because with all the thermodynamic relations the

knowledge of such potential is the necessary and su�cient condition to predict a

phase separation.

There at least two types of protein system phase separations which encounter

ressonance in engineering and in medical applications: solid-liquid and liquid-

liquid. Solid-liquid phase separation means that two phases result from the phase

split: one solid phase containing a solid protein (which may be a crystal or

not) and a liquid phase containing mostly the solvent and co-solvents and the
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protein. Liquid-liquid phase separation means that two phases also result from

the phase split: one with high protein concentration and another with low protein

concentration.

The solid-liquid equilibrium has been extensively studied both experimentally

and theoretically by means of the solubility. There is a considerably large amount

of solubility data for a variety of proteins and conditions such as temperature,

salt type, salt concentration and pH. The liquid-liquid equilibrium has also been

studied, however, the available experimental coexistence line is restricted to pro-

teins as lysozime (KATSONIS; BRANDON; VEKILOV, 2006) and γ-crystallin

(BROIDE et al., 1991). Most of the studies are concerned to the theoretical pre-

diction of the liquid-liquid coexistence line for di�erent interaction potential mod-

els (TAVARES; PRAUSNITZ, 2004; TAVARES; SANDLER, 1997; KASTELIC

et al., 2015).

There is a general belief, although there are some controversies, that the

short-ranged attractive potential is responsible for the liquid-liquid separation of

protein systems (DUDA, 2009).

In the previous chapter, we derived a new equation of state which attractive

parameters were �tted to small-angle X-ray scattering intensity data for bovine

serum albumin. The main purpose of the present chapter is to calculate the �uid-

�uid coexistence curve using this equation of state and the �tted parameters. No

�uid-�uid coexistence was observed for this protein at the isoelectric point or at

a higher pH value. Nevertheless, such transition was experimentally observed at

lower pH values.
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6.2 Derivation of thermodynamic potentials

Following the McMillan-Mayer ensemble, one has to consider that the pro-

tein is viewed as one single component in a continuous medium. Therefore, all

thermodynamic potentials are functions of the number of protein molecules and

the solvent chemical potential. For the sake of simplicity, the latter dependece

will not be explicitly presented, although it must be kept in mind.

Once one has presented an equation of state as Equation (5.42), one is able

to derive several thermodynamic potentials as the residual Helmholtz free energy

and the residual chemical potential. The residual molar Helmholtz free energy,

aR, which is the di�erence between the molar Helmholtz free energy of the system,

a and the molar ideal solution Helmholtz free energy, aIS, is calculated through

the following expression (TESTER; MODELL, 1997):

aR(T, v) = a(T, v)− aIS(T, vIS) = −
∫ v

+∞

(
Π− RT

v

)
dv

v
+RT ln

(
vIS

v

)
(6.1)

where T is the absolute temperature, v is the molar volume, Π is the osmotic

pressure, R is the gas constant (which is basically the multiplication of Avogadro's

number by the Boltzmann constant) and vIS is the molar volume of an ideal

solution at the same pressure and temperature.

In terms of the packing fraction, η, one would have:

aR(T, η)

RT
=

∫ η

0

(Z − 1)
dη

η
+ ln

(
η

ηIS

)
(6.2)

Replacing Equation (5.42) on Equation (6.2), one has:

aR(T, η)

RT
= ln

(
η

ηIG

)
+

4η − 3η2

(1− η)2 − 4
ε0

kBT
η +

4

3

ε′

kBT
η2 (6.3)

Since the molar Gibbs free energy, g, is given by the following Legendre
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transform of the molar Helmholtz free energy, a:

gR = aR + ΠvR (6.4)

And that for a single component the molar chemical potential, µ, equals the

molar Gibbs free energy. Therefore, one has that the residual molar chemical

potential, which is related to the natural logarithm of the fugacity coe�cient, φ,

may be calculated as:

µR(T, η)

RT
= lnφ(T, η) =

aR(T, η)

RT
+ Z − 1 (6.5)

Substituting Equations (5.36) and (6.3) on Equation (6.5), one has that the

natural logarithm of the fugacity coe�cient is:

lnφ(T, η) = ln

(
η

ηIS

)
+

1 + η + η2 − η3

(1− η)3 +
4η − 3η2

(1− η)2 −1−8
ε0

kBT
η+4

ε′

kBT
η2 (6.6)

Obviously, if ε′ = 0, van der Waals-Carnahan-Starling fugacity coe�cient is

recovered from Equation (6.6).

6.3 Condition of equilibrium

The condition of liquid-liquid equilibrium of a single component is (PRAUS-

NITZ; LICHTENTHALER; AZEVEDO, 1999):

T I = T II (6.7)

ΠI = ΠII (6.8)

µI = µII (6.9)

where T I is the absolute temperature of phase I, ΠI is the osmotic pressure in

phase I and µI is the chemical potential of phase I. One may replace the equality

of chemical potentials by the equality of fugacities.
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To evaluate the densities of each phase at a particular temperature, the equal-

ity of pressures was calculated using the Newton-Raphson algorithm and the

equality of chemical potentials using the Maxwell area rule, id est:

Πe =
1

vII − vI

∫ vII

vI
Π(v)dv (6.10)

where Πe is the equilibrium osmotic pressure, vI is the speci�c volume of phase I

and Π(v) is the osmotic pressure given by the equation of state (5.42). Neverthe-

less, the chemical potential is the core of the algorithm to evaluate the new guess

for pressure in the iterative process. The code to do this calculation, written in

FORTRAN77, is presented on Appendix E.

6.4 Coexistence curve through molecular simula-

tion

One way to check whether the calculations are consistent or not is to com-

pare with molecular simulation predictions. For simple potentials this has been

already done, however, for Lennard-Jones potential the densities close to the

critical temperature are rather scarce. Thus, Monte Carlo simulation has been

applied to get points nearer to the critical point.

There are at least two main approaches to calculate a phase envelope us-

ing molecular simulation. One is based on the Gibbs ensemble with two boxes

(FRENKEL; SMIT, 2002) and its variants and the other is based on the canonical

ensemble with a single box (CHAPELA et al., 1977).

Canonical Monte Carlo simulations were carried out to predict the vapor-

liquid coexistence line for Lennard-Jones �uid:

U(r) =


+∞ if r ≤ σ

4ε
[(

σ
r

)12 −
(
σ
r

)6
]

if r > σ

(6.11)
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where U(r) is the interaction potential, σ is the particle diameter and ε is the

potential depth.

Simulations with 2048 particles were performed in a pallelepiped cell of di-

mensions Lx = Ly = 12σ and Lz = 40σ. Initially the particles were placed in

a face centered cubic (FCC) arrange at the right side of the box and the rest

of the box was in vaccum. Figure 18 illustrates this initial con�guation. Each

translational trial was attempted following the Metropolis method in canonical

ensemble and respecting periodic boundary conditions (FRENKEL; SMIT, 2002);

the acceptance ratio was set to 0.45. The interaction potential was truncated at

3.0σ. For equilibration, 8.192 × 107 steps were performed. For the production

stage, the same amount of cycles was used. Space coordinates were stored each

2048 steps. The codes to generate the initial con�guration and to run the Monte

Carlo simulation are presented on Appendix C. Evidently, this calculation could

have been done using Gibbs Ensemble Monte Carlo simulations.

The local particle density along z-direction is the average of the number of

particles in a slab of volume δV = LxLyδz:

ρ(z) =
〈N(z)〉
LxLyδz

(6.12)

The code to calculate the local particle density along z-direction is presented

on Appendix C; the value of δz was set to be 0.05σ. The densities from each

production step were averaged and, then, the average density was �tted to the

following tangent hyperbolic function (CHAPELA et al., 1977):

ρ(z) =
1

2
(ρV + ρL)− 1

2
(ρV − ρL) tanh

[
2(z − z0)

d

]
(6.13)

where ρV is the vapor density, ρL is the liquid density, z0 is the position of

the Gibbs dividing surface and d is a measure of the thickness of the interface

(CHAPELA et al., 1977; OREA; DUDA; ALEJANDRE, 2003). The position of
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the liquid and vapor densities are exchangeable on this equation depending on

which side the dense phase is placed.

Since it is quite complicated to simulate the system at the critical point, the

rectilinear diameter law was used to estimate the critical properties (KATSONIS;

BRANDON; VEKILOV, 2006):

ρL + ρV
2

= ρc + A(Tc − T ) (6.14)

ρL − ρV = B(Tc − T )0.325 (6.15)

whereA andB are �tting parameters, ρc is the critical density and Tc is the critical

temperature. Table 2 presents the comparison between the calculated results and

the values reported in the literature. Although the critical temperature agrees

well to the reported values in the literature, the critical density is a little bit

lower. This fact is probably due to the �tting of the local particle density.

Table 2: Values of Lennard-Jones critical temperature and densitity.

Reference T ∗c ρ∗c

This work 1.291± 0.002 0.256± 0.009

(CAILLOL, 1998) 1.326± 0.002 0.316± 0.002

NIST (SHEN; SIDERIUS; KRELKELBERG, 2015) 1.291 0.317

6.5 Fluid-�uid coexistence curve

Figure 19 presents the calculated liquid-liquid coexistence curves for bovine

serum albumin in salt aqueous solutions at the isoelectric point and 23oC with

three di�erent salts (sodium chloride, sodium nitrate and sodium sulfate) pre-

dicted with Equations (5.36) and (6.6) using parameters from Table 1. The criti-
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Figure 18: Illustrative example of the calculation of equilibrium densities using
a single canonical Monte Carlo simulations with 2048 Lennard-Jones particles.
The �rst image represents the inital state with a dense face centered cubic (FCC)
con�guration on the very right side and vacuum in the rest of the parallelepiped.
The second image represents the �nal con�guration exhibiting two phases in
equilibrium. The graph at the bottom is a plot of the variation of local particle
density as function of direction z.
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cal temperature is much lower than the freezing point of water at the atmospheric

pressure. Therefore, these results are in agreement with which is experimentally

observed: there is no liquid-liquid separation for this protein in such solutions at

the pH value equal to the isoelectric point. Thus, the predictions of the model

are essentially unphysical; however, they may provide interesting information that

may be extrapolated to other conditions in which there is a phase separation.
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Figure 19: Liquid-liquid coexistence curve for bovine serum albumin aqueous
solution at pH=4.9 and 23oC using Equations (5.36) and (6.6) with parameters
given at Table 1. Continuous line, 1.0 mol·kg−1 NaNO3. Dotted line, 1.0 mol·kg−1

Na2SO4. Dashed-dotted line, 1.0 mol·kg−1 NaCl.

Table 3 shows the values of critical points for these coexistence lines.

Table 3: Critical properties for liquid-liquid equilibrium lines for BSA in salt
aqueous solutions at the isoelectric point.
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Salt Tc / K vc / m3·mol−1 pc / Pa Zc

NaCl 147.58 1.192 345.73 0.336

NaNO3 126.51 1.517 231.97 0.334

Na2SO4 136.15 1.098 347.28 0.337

The critical properties seem to be salt dependent. This is certainly an im-

portant observation in terms of the e�ect of the ion speci�city. Nevertheless,

the critical compressibility factors are very similar, and therefore, it is to be ex-

pected that, besides the ion speci�city, the law of correspondence states is roughly

obeyed.

If one plots the reduced temperature as a function of the reduced density, one

may see that all the curves are overlapped. Figure 20 presents such plot. Near

the critical point, the law of correspondence states is strictly obeyed, however, at

low temperature, one may observe a small divergence due to the ion speci�city.

At this same plot, one interesting aspect rises. Plotting the results of molecular

simulation, one may note that for bovine serum albumin the coexistence line is

better represented by a not so short-range attractive potential as it was observed

for γ-crystallin and lysozime (DUDA, 2009). This might imply that the range of

attractive interaction may depend upon the protein being considered.

The whole discussion seems to be �nonsense�, since this phase separation

is unphysical, and no phase separation is observed at the isoelectric point at all.

Nevetheless, for pH values below the isoelectric point, a phase separation is indeed

observed.

It is quite hard to �nd a way to show this separation. One way to see it

is from scattering data. Using Guinier's approximation, one may observe the

formation of aggregates. At the limit of q → 0, Guinier's approximation states
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Figure 20: Liquid-liquid coexistence curve for BSA aqueous solution at pH=4.9
and 23oC using Equations (5.36) and (6.6) with parameters given at Table
1. Continuous line, 1.0 mol·kg−1 NaNO3. Dotted line, 1.0 mol·kg−1 Na2SO4.
Dashed-dotted line, 1.0 mol·kg−1 NaCl. Open circles, Lennard-Jones liquid-vapor
equilibrium calculated in this work. Closed cirles, Lennard-Jones liquid-vapor
equilibrium calculated using grand-canonical transition-matrix Monte Carlo and
histogram re-weighting obtained from NIST (SHEN; SIDERIUS; KRELKEL-
BERG, 2015). Closed squares, Square-well liquid-vapor equilibrium calculated
for λ = 1.375 (LÓPEZ-RENDÓN; REYES; OREA, 2006).

(GLATTER; KRATKY, 1982; GUINIER, 1994):

I(q) = I0 exp

(−q2R2
g

3

)
(6.16)

where I(q) is the scatteting intensity, I(0) is the scattering intensity at q = 0, q

is the wavevector modulus and Rg is the radius of gyration.

If a system follows Guinier's approximation, the plot of the natural logarithm

of the scattering intensity against the square modulus of the wavevector must be

a straight line. Nevertheless, if there is a non-linear increasing in the scattering

intensity, this means there are some aggregates in the sample, which causes the
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augment of the radius of gyration. Figure 21 presents the scattering intensities

of bovine serum albumin (BSA) 1.0 mol·kg−1 NaCl aqueous solution at pH =

3.4 and 23oC for two di�erent BSA concentrations1. One may visualize that for

highly diluted BSA system, there is a non-negligible deviation from the Guinier's

approximation, which implicates that there is a formation of aggregates in the

sample. And indeed a macroscopic phase separation was observed during the

experiment.
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Figure 21: Guinier plot for small-angle X-ray scattering of BSA 1.0 mol·kg−1

NaCl aqueous solution at pH=3.4 and 23oC. Open circles, experimental data for
BSA concentration of 25.9 mg·mL−1. Open squares, experimental data for BSA
concentration of 5.6 mg·mL−1. Continuous line, Guinier's approximation to BSA
concentration of 25.9 mg·mL−1.

Figure 22 shows the liquid-liquid coexistence line predicted with our model

for bovine serum albumin 1.0 mol·kg−1 NaCl aqueous solution at pH = 3.4 as well

as the spinodal curve. The critical temperature is still below the freezing temper-

1The experimental procedures used in these experiments were the same as described in
Section 5.2
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ature of water, however, the estimated critical temperature is much higher than

those found at the isoelectric point. Moreover, the range of protein concentra-

tion in which there is a phase separation seems to be di�erent comparing Figures

21 and 22. This means that our model is only able to qualitatively predict the

phase separation. What is remarkable though is the e�ect of pH on the protein

phase diagram. This could be partially explained by protein changes in conforma-

tion. At the isoelectric point, bovine serum albumin �nds itself in a con�guration

called �Normal�, however, at pH = 4.3, this protein changes its con�guration to

one called �Fast� and at pH = 2.7 to one called �Extended� (PETERS, 1995).

These two acid conformations are much more unfolded than the �Normal�. This

could be responsible for exposing residues that in the �Normal� conformation are

hidden and this exposure changes completely the interactions among the proteins

in solution.
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Figure 22: Liquid-liquid coexistence curve for BSA 1.0 mol·kg−1 NaCl aqueous
solution at pH=3.4 and 23oC using Equations (5.36) and (6.6) with ε0/kBT = 4.03
and ε′/kBT = 21.19. Continuous line, binodal curve. Dashed line, spinodal curve.
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7 OTHER RELATED QUESTIONS

7.1 Introduction

The three developments that are shown in this chapter may appear to be a

huge detour from the objective of this thesis as explained in the �rst chapter. The

�rst one is due to the formulation of a coarse-grained model for sodium sulfate

aqueous solution for which there is no aggregation of the salt in a concentration

below the experimental solubility. The second one is a critic review on the idea

of an universal reference line for Walden plot. This review came from the inves-

tigation of dynamic properties with the coarse-grained model for sodium sulfate

aqueous solution. And �nally, the third result is a coarse-grained force �eld for

bovine serum albumin in aqueous solution. This last development is presented

here as a new strategy to evaluate the scattering form factor of proteins.

7.2 Sodium sulfate unphysical association

7.2.1 Introduction

The relevance of electrolyte solutions for mankind and for nature itself is truly

remarkable. Nevertheless, even though ionic solutions are of great importance in

physical chemistry as well as in biology systems, approaches to treat such systems

are still under development. This is probably one of the most di�cult problems in

Thermodynamics: the theory of electrolytes. It involves all the subtle questions of
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nonelectrolyte systems and, additionally, all the issues related to the electrostatic

interactions.

From the point of view of molecular simulation, ionic systems also pose chal-

lenges. The �rst one is due to the long-range behavior of the Coulomb interaction

potential, which requires speci�c strategies of calculation (such as Ewald summa-

tion) in a �nite box (ALLEN; TILDESLEY, 1987). Other complications include

polarizable force �elds, which are still very scarcely applied when compared to

non-polarizable force �elds due to large required computational e�ort.

The unphysical association among sodium and sulfate ions in aqueous so-

lutions of sodium sulfate is predicted by non-polarizable atomistic force �elds

and has already been observed in the literature. If polarizable force �elds are

used, mainly for water, one can get more consistent structures for such solutions

(WERNESSON; JUNGWIRTH, 2010). Although this solves the issue for many

cases, the large computational cost of polarizable force �elds makes this approach

impractical for modeling systems containing large proteins in aqueous salt solu-

tions. Therefore, there is still a need for a simple and reliable model to simulate

salt solutions.

Figure 23 shows a snapshot of a 2.0 ns NPT molecular dynamic simulation

for an atomistic sodium sulfate force �eld CHARMM19 (REIHER-III, 1985) with

270 sulfate ions and 540 sodium ions in 10000 SPC/E water (BERENDSEN;

GRIGERA; STRAATSMA, 1987) (which corresponds to 1.5 mol·kg−1 of sodium

sulfate) at 303.15 K. Considering periodic boundary conditions, one may see, at

least qualitatively, that there is a clear association of the sodium sulfate salt.

One must bear in mind that the experimental solubility of sodium sulfate in

water at this same temperature is 2.03 mol·kg−1 (OKORAFOR, 1999). Thus,

this atomistic force �eld exhibits an aggregation of the salt with less than 74% of

its experimental solubility.
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Figure 23: Snapshot of a 2.0 ns NPT molecular dynamic simulation for 270
CHARMM19 sodium sulfate particles in 10000 SPC/E water particles at 303.15
K. Oxygens are represented in red, sodium ions in blue and sulfur ions in yellow.
Water molecules are represented as lines.

From a perspective of bioprocesses, this is a problem, since for most of the

industrial applications large amounts of salts are used to precipitate proteins.

Therefore, a model which avoids this unphysical association is desired.
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7.2.2 Force Field

Recently, Shinoda et al. (SHINODA; DEVANE; KLEIN, 2007) proposed

a new coarse-grained force �eld for water. Each bead represents three water

molecules and has no charge. This model is being successfully applied to a variety

of systems which requires large computational e�ort. The force �eld developed

here is inpired on Shinoda et al. (SHINODA; DEVANE; KLEIN, 2007) coarse-

grained water model. To generate a similar force �eld for the salt, the coarse-

grained sodium ion was considered as a single bead that accounts for one sodium

ion and three water molecules as Shinoda et al. (SHINODA; DEVANE; KLEIN,

2011) had done before. For the sulfate ion, only a single bead was considered

to account for the whole ion with no water molecules. Figure 24 shows such

coarse-grained model.

W NA SU

Figure 24: Representation of the coarse-grained model. W stands for the coarse-
grain water model (SHINODA; DEVANE; KLEIN, 2007), a single sphere which
accounts for three atomistic water molecules. NA stands for the coarse-grain
sodium ion (SHINODA; DEVANE; KLEIN, 2011), a single sphere which accounts
for atomistic sodium ion and three atomistic water molecules. SU stands for the
coarse-grain sulfate ion, a single sphere which accounts for the atomistic sulfate
ion. The diameters of W , NA and SU are set to be equal.

The interparticle potential is considered as to have one electrostatic contri-

bution given by a Coulomb potential and a contribution given by Mie potential.
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Following the water model developed by Shinoda et al. (SHINODA; DEVANE;

KLEIN, 2007), a Mie12-4 potential, instead of the traditional Lennard-Jones

(Mie12-6), has been adopted to be keep the consistency. Thus, the interaction

potential, Vij, could be written as:

Vij =
qiqj

4πε0εrrij
+

3
√

3

2
εij

[(
σij
rij

)12

−
(
σij
rij

)4
]

(7.1)

where qi is the charge of particle i, ε0 is the vaccuum permitivity, εr is the dielectric

constant of the medium, εij is the attractive potential depth between particles i

and j, σij is the distance between particles i and j for which the Mie contribution

is null, and the cross terms are given by the following rule:

σW,W = σS,S = σN,N = 0.4371 nm (7.2)

εW,W = εS,S = εN,N = 3.7447 kJ·mol−1 (7.3)

εW,S =
1

α

√
εW,W εS,S (7.4)

εS,N = α
√
εS,SεN,N (7.5)

where α is an association parameter. If α < 1, the attractive interaction between

sulfate and sodium is decreased whereas the hydration of sulfate is favored.

Since Shinoda et al. water model (SHINODA; DEVANE; KLEIN, 2007)

has no partial charge, there are no electric dipoles, ergo one needs to consider

the dielectric constant of the medium in the electrostatic contribution. For this

purpose, an empirical equation (UEMATSU; FRANCK, 1980) to determine the

pure water dielectric constant at di�erent temperatures has been used. Table

4 presents the values of the dielectric constant of pure water as function of the

temperature.
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Table 4: Values of dielectric constant of pure water as a function of temperature
according to an empirical equation (UEMATSU; FRANCK, 1980).

Temperature / K Dielectric constant

288.15 81.30

293.15 79.84

298.15 78.41

303.15 77.01

308.15 75.63

318.15 72.95

328.15 70.38

7.2.3 Molecular dynamic details

All simulations were performed using GROMACS 4.5.5 software package

(BERENDSEN; van-der-SPOEL; van-DRUNEN, 1995). The Leap Frog algo-

rithm was used to integrate the equations of motion with periodic boundary con-

ditions and 2 fs timestep. The Nosé-Hoover thermostat (NOSÉ, 1984; HOOVER,

1985) was used. For NPT calculations, the isotropic Parrinelo-Rahman baro-

stat (PARRINELLO; RAHMAN, 1981) was used to keep the pressure at 1 bar

(isothermal compressibility of 4.5 × 10−5 bar−1). Long-range as well as short-

range interactions were both treated with cuto� radii of 1.5 nm. Positions and

velocities were stored at each 1 ps. Electrostatic potential was calculated using

Particle Mesh Ewald method (DARDEN; YORK; PEDERSEN, 1993).

7.2.3.1 Parameterization

For the parameterization of the association parameter, α, NPT ensemble was

used with T = 298.15 K and p = 1 bar. Runs of 2 ns were carried out. The

�rst 0.5 ns was used for equilibration and the last 1.5 ns for production. Table 5
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sumarizes the number of particles for each sodium sulfate concentration.

Table 5: Number of particles for each sodium sulfate concentration.

Molality of Na2SO4 (mol/kg) W NA SU

0.050 4972 28 14

0.100 4946 54 27

0.500 4730 270 135

0.700 4622 378 189

1.000 4460 540 270

1.200 4352 648 324

1.500 4190 810 405

7.2.3.2 Density

To evaluate densities, we carried out 3 ns NPT simulations at seven di�erent

temperatures as shown on Table 4 for each sodium sulfate established on Table

5. The �rst 0.5 ns was used for equilibration and the last 2.5 ns for production.

7.2.3.3 Dynamic properties

Dynamic properties such as viscosity and ionic conductivity were calculated

within Green-Kubo framework (KUBO, 1957), i. e., one dynamic property, λΦ,

may be calculated by the autocorrelation function of the �uxes, ~jΦ, of the entity

Φ:

λΦ = ξ

∫ +∞

0

〈
~jΦ(t+ t0) ·~jΦ(t0)

〉
dt (7.6)

where ξ is a constant.

Thus, if Φ is momentum, λΦ is viscosity, ~jΦ is the pressure tensor:

η =
V

kBT

∫ +∞

0

〈Pαβ(t0 + t) · Pαβ(t0)〉 dt (7.7)
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where V is the volume, kB is the Boltzmann constant, T is the absolute tempera-

ture, Pαβ is the pressure tensor. To improve the statistics, the average over the six

independent terms of the pressure tensor were used: Pxy, Pyz, Pzx, 0.5(Pxx−Pyy),

0.5(Pyy − Pzz) and 0.5(Pxx − Pzz) (REY-CASTRO; VEGA, 2006). Each element

of the pressure tensor was calculated through the following equation:

Pαβ =
1

V

(∑
j

mjvαjvβj +
1

2

∑
i 6=j

rαijfβij

)
(7.8)

where mj is the mass of particle j, vαj is the α component of the velocity of

particle j, rαij is the α component of the relative position between particles i and

j, and fβij is the β component of the force acting between i and j.

For the ionic conductivity, one has the following Green-Kubo relation:

σ =
1

kBTV

∫ +∞

0

〈
~J(t0 + t) · ~J(t0)

〉
dt (7.9)

where:

~J =
∑
j

qj~vj (7.10)

where qj is the electric charge of particle j and ~vj is the velocity of particle j.

Appendix F presents a code to evaluate the viscosity within Green-Kubo

framework from the pressure tensor simulated data. To check the codes, simula-

tions to a well known potential for molten sodium chloride: Born-Huggins-Mayer-

Tosi-Fumi (MAYER, 1933; TOSI; FUMI, 1964) have been run.

Figure 46, in Appendix I, illustrates the initial FCC arrange and the �nal

molten NaCl from equilibrium molecular dynamics simulations. Figures 47 and

48, in Appendix I, presents the viscosity (and the stress autocorrelation function)

and the electric current autocorrelation function (and the ionic conductivity) for

molten NaCl respectively. Table 6 presents the agreement between the calculated

values and the values found in the literature.
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Table 6: Viscosity and ionic conductivity of molten NaCl obtained from equilib-
rium molecular dynamics simulations using the Born-Huggins-Mayer-Tosi-Fumi
force �eld and the Green-Kubo relations.

Reference T / K η / mPa.s T / K σ / S.cm−1

This work 1100 1.025± 0.004 1300 3.74± 0.07

(REY-CASTRO; VEGA, 2006) 1126 1.11± 0.01 1305 3.6± 0.1

7.2.4 Results and discussions

7.2.4.1 Parameterization of α

To �nd the optimum value of α, several simulations were run with di�erent

values of α and the deviation, χ, of density between the simulated and the exper-

imental data (ISONO, 1984) for seven di�erent sodium sulfate molalities (0.05;

0.10; 0.50; 0.70; 1.00; 1.20 and 1.50 mol·kg−1) in aqueous solutions at 298.15 K

was calculated as:

χ =

√√√√ 1

N

N∑
j=1

(
ρEXPj − ρSIMj

)2
(7.11)

where N is the number of experimental points, ρEXPj is the experimental solution

density at the j sodium sulfate molality and ρSIMj is the simulated solution density

at the j sodium sulfate molality.

As one can see in Figure 25, there is a value of α which minimizes χ. Each

point on this plot represents the χ value for a set of seven di�erent sodium sulfate

molalities. To �nd the optimum value for α, the values of χ were �tted by the

following equation:

χ(α) = A1 cos(ω1α + δ)e−α/τ + A2 cos(ω2α) (7.12)

where A1, ω1, δ, τ , A2 and ω2 are �tting parameters.

The optimum value of α was found to be α = 0.459 using Newton-Raphson

algorithm to �nd the α for which ∂χ(α)/∂α = 0.
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Figure 25: Deviation of density, χ, between the simulated and experimental data
(ISONO, 1984) for seven di�erent sodium sulfate molalities (0.05; 0.10; 0.50;0.70;
1.00; 1.20 and 1.50 mol·kg−1) in aqueous solution at 298.15 K as a function the
association parameter α. Open circles, true values of χ. Continuous line, �tting
equation (7.12).

7.2.4.2 Thermodynamic properties

The �rst check for consitency is to consider the coordination number between

two sulfates. For a system in which there is some sort of a aggregation, it is to

be expected a high peak of coordination number near the central molecule. The

coordination number may be de�ned in terms of the radial distribution function

as:
N(r)

Nrandom

=
3

r3

∫ r

0

g(r′)r′2dr′ (7.13)

where N(r) is the coordination number, Nrandom is the coordination number for a

uniformly distributed set of particles (g(r) = 1), and g(r) is the radial distribution

function.
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Figure 26: Coordination number for 1.5 mol·kg−1 sodium sulfate aqueous solution
at 303.15 K. Continuous line, our coarse-grained force �eld. Dotted-dashed line,
non-polarizable atomistic force �eld.

Figure 26 presents the coordination number of two sulfates for our coarse-

grained force �eld and for the atomistic CHARMM19 force �eld for sulfate coupled

to SPC/E water with 1.5 mol·kg−1 sodium sulfate aqueous solution. Even at this

reasonably high temperature of 303.15 K, the atomistic force �eld predicts a

quite high coordination number near the central sulfate ion. One must notice

that the experimental solubility for sodium sulfate at this same temperature is

2.03 mol·kg−1 (OKORAFOR, 1999). Therefore, the atomistic non-polarizable

force �eld fails to predict a correct structure of sodium sulfate aqueous solutions.

This is the very motivation underneath this development.

Figure 27 shows a snapshot of a molecular dynamic simulation of our coarse-

grained model for 1.5 mol·kg−1 sodium sulfate aqueous solution at 303.15 K.

Di�erently from Figure 23, the sulfate ions, represented by yellow beads, are not
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clustered at all.

Figure 27: Snapshot of a molecular dynamic simulation of the proposed coarse-
grained force �eld for 1.5 mol·kg−1 sodium sulfate aqueous solutions at 303.15 K.
Red beads represent water molecules, blue beads sodium ions and yellow beads
sulfate ions.

Figure 28 presents the density results for sodium sulfate aqueous solution

at various temperatures and salt concentrations. The coarse-grained force �eld

proposed here is able to correlate very well the experimental data for density. The

best correlation is found at 298.15 K, but this is not surprising since these data

were used in the parameterization of the force �eld. Also, one may notice that,

even though the results are quite good, the slope of density in relation to the

temperature is always a little bit higher for the model than for the experimental

data. This means the thermal expansion coe�cient not well correlated.
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Figure 28: Density of sodium sulfate aqueous solution as a function of tempera-
ture and salt concentration. Open circles, results by molecular dynamic simula-
tions using the proposed coarse-grained force �eld. Closed circles, experimental
data (ISONO, 1984). The standard deviations of the simulated data are lower
than the symbol size.

The thermal expanion coe�cient, αv, is de�ned as:

αv = −1

ρ

(
∂ρ

∂T

)
p

(7.14)

where ρ is density, T is the absolute temperature and p is the pressure.

One simple way to calculate this property is using the �nite di�erence method

with density data, although it is possible to do this calculation through �uctuation

theory. Figure 29 presents the results for thermal expansion coe�cient of sodium

sulfate aqueous solutions using the �nite di�erence method. Despite the order

of magnitude is somehow in agreement, the coarse-grained force �eld fails to

predict with accuracy the experimental data. It seems, however, impossible to

scape from this disagreement since at the limit of salt free solutions there is a
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quite signi�cant di�erence between the simulated and the experimental thermal

expansion coe�cient. As the model for pure water fails to predict this property,

any model for a salt based on such model for water fails as well.
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Figure 29: Thermal expansion coe�cient of sodium sulfate aqueous solution as
a function salt concentration. Open circles, results by �nite di�erence method
of molecular dynamic simulations using the proposed coarse-grained force �eld.
Closed circles, results by �nite di�erence method using the experimental data
(ISONO, 1984).

7.2.4.3 Dynamic properties

Even though we can get no aggregation at all with our force �eld, this does

not mean we are able to predict the correct structure of the real sodium sulfate

aqueous solution. To investigate deeper this problem, dynamic properties such

as viscosity and ionic conductivity were calculated.

Since there is a lot of issues concerning the convergence and the �uctuations

in the autocorrelation function integrations, one ought to �t the results with a
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proper empirical equation. For viscosity, the following equation was used (REY-

CASTRO; VEGA, 2006):

η(t) = Aατ1

(
1− e−t/τ1

)
+ A (1− α) τ2

(
1− e−t/τ2

)
(7.15)

where A, α, τ1 and τ2 are �tting parameters.

For ionic conductivity, the used �tting equation was that proposed by

Schröder and Steinhauser (SCHRÖDER; STEINHAUSER, 2009):

σ(t) =
n∑
k=1

Akτk
1 + τ 2

kω
2
k

(e−t/τk [τkωk sin(ωkt+δk)−cos(ωkt+δk)]−[τkωk sin(δk)−cos(δk)])

(7.16)

Examples of the divergence along simulation time in the calculation of dy-

namic properties are shown on Appendix J. The standard deviation of �ve dif-

ferent initial con�gurations simulated under the same conditions becomes very

high as the time advances. Since the properties are de�ned in the limit of in�nity

time, the criterion to evaluate the property is somehow subjective.

Figure 30 presents the results for viscosity and Figure 31 for ionic conductivity

for a diluted 0.05 mol·kg−1 sodium sulfate aqueous solution at various tempera-

tures. When compared to experimental data, the trend of such properties with

temperature appears to be the same. At low temperatures, however, the model

underestimates the viscosity and overestimates the conductivity. Nevertheless,

even though the viscosity is well predicted, mainly at higher temperatures, the

ionic conductivity is consistently higher than the experimental value. One pos-

sible explanation is that, avoiding any form of association, the model represents

an ion solution in which the ionic mobility is higher than the real one, and there-

fore, the ionic conductivity is higher. It is remarkable though that such di�erence

appears even at this quite diluted 0.05 mol·kg−1 sodium sulfate aqueous solution.

The relation between the ionic conductivity and the viscosity may be stud-
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Figure 30: Viscosity of 0.05 mol·kg−1 sodium sulfate aqueous solution as a func-
tion of temperature. Open circles, results by molecular dynamic simulations
using the proposed coarse-grained force �eld. Closed circles, experimental data
(ISONO, 1984).

ied using the so-called Walden plot. On the next section there will be a more

consistent review on the basis of the Walden plot. By now it is only important

to consider that for this plot there is a reference line. If the data lie below this

line, it is believed that there is a sort of an ion pair formation or even some ag-

gregation on the system. If the data lie above this line, it is believed that there

is a decoupling between the structural relaxation and the dynamic properties

(YAMAGUCHI et al., 2013).

Figure 32 presents the Walden plot for 0.05 mol·kg−1 sodium sulfate aque-

ous solution. The comparison between our results and the experimental data

would mean that avoiding any sort of association among the ions one gets a large

deviation on Walden plot, even though the Walden rule is still obeyed.
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Figure 31: Ionic conductivity of 0.05 mol·kg−1 sodium sulfate aqueous solution as
a function of temperature. Open circles, results by molecular dynamic simulations
using the proposed coarse-grained force �eld. Closed circles, experimental data
(ISONO, 1984).

The fact that our results are placed above the ideal line and the experimental

data are placed below the ideal line called our attention to the real meaning of

this reference line. A critic review on the idea of an universal reference line for

the Walden plot will be given in the next section.

In Figure 32 the Nernst-Einstein conductivities are also presented. They

were obtained using the self-di�usion coe�cients that were calculated by Einstein

relation through the mean square displacement (FRENKEL; SMIT, 2002):

D =
1

6
lim
t→+∞

∂ 〈~r2(t)〉
∂t

(7.17)

The high agreement between Nernst-Einstein conductivity and the true con-

ducitivity data in Walden plot means that our coarse-grained model presents no
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degree of correlation among the ions, and this is in agreement with the very

formulation of the force �eld to avoid any association among the ions.
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Figure 32: Walden plot for 0.05 mol·kg−1 sodium sulfate aqueous solution at
various values of temperature. Open circles, results by molecular dynamic simu-
lations using the proposed coarse-grained force �eld. Closed circles, experimen-
tal data (ISONO, 1984). Open squares, Nernst-Einstein conductivity obtained
from di�usivity calculation by molecular dynamic simulation using the proposed
coarse-grained force �eld. Dotted line, KCl ideal line.

Even though the proposed coarse-grained model fails to quantitatively pre-

dict ionic conductivity, it seems to be a good model to be used in simulations

involving coarse-grained proteins. The density of the solution and the viscosity

are good enough for this kind of calculation. Nevetheless, one must pay attention

to calculations in which the ionic conductivity plays an important role.
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7.3 Critic review on the reference line for Walden

plot

When we are celebrating the one-hundred-and-ten-year anniversary of the

Walden's paper (WALDEN, 1906) on the relation between the limiting molar

ionic conductivity and the viscosity for electrolytes, it urges to revisit the general

belief in an universal reference for his rule. In 1906, Walden published a paper

in which he presented experimental data on the limiting molar ionic conductivity

and the viscosity of in�nitely diluted N(C2H5)4I in almost thirty di�erent solvents.

His empirical observations led him to the conclusion that the product of these

two dynamic properties would be constant regardless of the system temperature

or the used solvent.

The Walden's rule can be derived considering the Stokes-Einstein relation for

the ionic di�usivity, Di, and the solution viscosity, η:

Di =
kBT

6πηri
(7.18)

where kB is the Boltzmann constant, T is the absolute temperature and ri is

the Stokes radius of ion i. And also considering the Nernst-Einstein relation

(URAHATA; RIBEIRO, 2006) for the ionic conducivity, σNE:

σNE =
e2

kBT

N∑
i=1

ρiz
2
iDi (7.19)

where e is the elementary charge, ρi is the number density of ion i and zi is the

valence of ion i.

Since the limiting molar ionic conductivity, Λ, is given by:

Λ =
σ

nec
(7.20)

where ne is a charge normalization factor (ne is one for 1:1 electrolytes) and c is

the electrolyte molar concentration; therefore, for a 1:1 electrolyte, the Walden's
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rule can be written as:

ΛNEη =
e2NA

6π

[
1

r+
+

1

r−

]
(7.21)

Nonetheless, the true ionic conductivity does not always equal the Nernst-

Einstein ionic conductivity, for implicitly in Nernst-Einstein equation the cross

terms among the ions are neglected. Hence, whenever one is intended to repro-

duce the experimentally determined ionic conductivity, one ought to consider the

following expression:

σ = σNE (1−∆) (7.22)

where ∆ is a measure of the degree of correlation among the ions. Thus, one

can rewrite Walden's rule in a more comprehensive form, in terms of the Stokes-

Nernst-Einstein framework for a 1:1 electrolyte, as:

Λη =
e2NA (1−∆)

6π

[
1

r+
+

1

r−

]
(7.23)

where NA is the Avogadro number, r+ and r− are the cation and the anion Stokes

radii respectively.

The so-called Walden plot is a log-log graph in which the limiting molar ionic

conductivity is displayed as ordinate and the inverse of viscosity as abscissa. If a

certain system follows the Walden's rule, a line with unity slope may be drawn

on Walden plot; however, unless ∆, r+ and r− are known, there is no way to be

sure where such a line would lie on Walden plot.

Notwithstanding the fact that Walden's paper was based upon in�nite diluted

salt in non-aqueous solvents, to de�ne a reference to which one could discuss one's

data, it has been proposed that such a reference might be placed considering

aqueous KCl solution; since it is believed that this electrolyte is fully dissociated

in water (XU; COOPER; ANGELL, 2003). As pointed out by Harris (HARRIS,

2010), it is not even clear, for those who use this line, whether one should use
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0.01 M or 1 M aqueous KCl as a reference point (MACFARLANE et al., 2009;

XU; COOPER; ANGELL, 2003). Schreiner et. al. (SCHREINER et al., 2010), in

order to clarify this problem, have shown that the true experimental data for 0.01

M aqueous KCl lie above the so-called KCl �ideal� line and that the experimental

datum for 1 M aqueous KCl at 25 oC gives only a �nice� datum (y = x) in which

this ideal line of unity slope would pass through.

Despite this clearly arbritary criterion to establish it, this KCl ideal line

has not only been used extensively (YOSHIZAWA; XU; ANGELL, 2003; XU;

COOPER; ANGELL, 2003; MACFARLANE et al., 2009; LEE; UENO; AN-

GELL, 2012; YAMAGUCHI et al., 2013), but also it seems to hide a deeper

question: is there any possible universal line that can be drawn in Walden plot

to which all systems can be compared?

Data of ionic liquids that lie exactly on KCl ideal line are believed to be

fully dissociated and a coupling between the ionic transport and the structural

relaxation can be considered. Such ionic liquids are called �good� ionic liquids.

A �poor� ionic liquid though has its data placed below below this ideal line and

is believed to have an incomplete ionic dissociation. A �superionic� liquid has

its data placed above this ideal line, and is believed for such system that the

ionic transport and the structural relaxation are decoupled (YAMAGUCHI et

al., 2013). In Figure 33, it is shown a schematic representation of this sort of

qualitative analysis above mentioned.

In spite of the fact that such analysis has been vastly applied, to the best of

our knowledge, a rigorous check of the real aqueous KCl system is still needed.

The experimental determination of the Nernst-Eintein ionic conductivity is

based upon the determination of the ionic di�usivities, however, such data are

usually reported in terms of a mean di�usivity coe�cient for the salt and not for

each ionic species. To write a relation between this mean di�usivity coe�cient and
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Figure 33: Schematic representation of the general analysis on Walden plot for
ionic liquids.

the di�usivities for the cation and the anion, one must consider that the mean

di�usivity coe�cient, D, may be expressed as the harmonic mean of the ionic

di�usivities weighted by the stoichiometric coe�cients (PROBSTEIN, 1994):

D =
ν+ + ν−
ν+

D+
+ ν−

D−

(7.24)

where ν+ is the stoichiometric coe�cient of the cation, ν− is the stoichiometric

coe�cient of the anion, D+ is the cation di�usivity andD− is the anion di�usivity.

This relation is necessary but not su�cient to completely rewrite Nerns-

Einstein equation in terms of the mean di�usivity coe�cient; one more relation

is still needed. Although for monovalent molten salts the equality D+ = D− = D

has been assigned (HANSEN; MCDONALD, 1986), for salts diluted in water this

is not the case. One possible relation though between the cation and the anion

di�usivities is possible to be found for such solutions using the Stokes-Einstein
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law. Thus, one may write the ratio of the ionic di�usivities as the inverse ratio

of the Stokes radii of the ions:

D+

D−
=
r−
r+

(7.25)

For simple ions that form alkali halides, these data are available in the liter-

ature (PAU; BERG; MCMILLAN, 1990). The coupling of Equations (7.24) and

(7.25) is presented on Appendix K.

Therefore, one could rewrite the Nernst-Einstein equation for a 1:1 electrolyte

in terms of the mean di�usivity coe�cient as:

ΛNE =
(1 + δ)2De2NA

2δkBT
(7.26)

where δ = r−/r+ as shown on Appendix K.

Figure 34 shows the striking result for the actual aqueous 1.0 mol·L−1 KCl

experimental data that this system contains a non-negligible degree of correlation

among the ions. This positive ∆ tells us that there is a signi�cative correlation.

As it has been shown elsewhere (HERTZ, 1977; PADRÓ; TRULLÀS; SESÉ, 1991;

HARRIS, 2010), whithin Green-Kubo framework, this ∆ is related to the cross

terms in the integral of the velocity correlation functions. This result implies that

the system which has provided the ideal line is not an ideal system in terms of

full ionic dissociation.

Now that we have surmounted the basic idea behind this common qualitative

analysis, it remains the necessity to overcome the question on a possible uni-

versality for the Walden plot. Should one show another system for which the

Nernst-Einstein line is not the same as for aqueous KCl, one will be able to state

the impossibility of an universal line on Walden plot.

Figure 35 presents the experimental data for a highly diluted aqueous NaCl.



123

1.6

1.8

2.0

2.2

2.4

1.6 1.8 2.0 2.2 2.4

lo
g(

Λ
/
S·
cm

2
·m

ol
−

1
)

log(η−1 / P−1)

∆ > 0

Figure 34: Walden plot for 1 M aqueous KCl solution experimental data. The
dashed line is the KCl ideal line. Ionic conductivities were obtained by Wu et al.

(WU et al., 1994). Densities and dynamic viscosities were obtained by Kestin et

al. (KESTIN; KHALIFA; CORREIA, 1981a). And mean di�usivity coe�cients
were obtained by Longsworth (LONGSWORTH, 1957).

For this system, ∆ can be considered practically null, as it would be expected for

such high dilution. However, even though the experimental data for this system

coincidentally match the KCl ideal line, it is clear that the Nernst-Einstein line

is di�erent, ergo there is no such a thing as an universal line for the classical

Walden plot.

Had one plotted only the true ionic conductivity on a Walden plot for both

systems (1.0 mol·L−1 KCl and 0.005 mol·L−1 NaCl aqueous solutions), one would

have erroneously concluded that these systems share the same degree of correla-

tion among their ions. This misinterpretation may only be avoided by plotting

also the Nernst-Einstein ionic conductivity. Therefore no universal line could

be drawn on a classical Walden plot to which all systems could be compared
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Figure 35: Walden plot for 0.005 M aqueous NaCl solution experimental data.
The dashed line is the KCl ideal line. Limiting molar ionic conductivities were
obtained by Gunning et al. (GUNNING; GORDON, 1942). Viscosities were
obtained by Kestin et al. (KESTIN; KHALIFA; CORREIA, 1981b). And mean
di�usivity coe�cients were obtained by Fell et al. (FELL; HUTCHISON, 1971).

regardless of their nature.
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7.4 A coarse-grained force �eld for Bovine Serum

Albumin

7.4.1 Introduction

The possibility to simulate proteins with atomistic force �elds is already a

reality. But for some particular applications and proteins, a coarse-grained force

�eld is not only a helpful model, but the only feasible one depending on the length

or time scales of interest (BLANCO et al., 2013).

Bovine Serum Albumin (BSA) is certainly not a small protein. Its primary

structure is composed by more than 580 amino acids (PETERS, 1995). Even

though the protein itself has less than 10000 atoms, what could be consider not an

extremely large system to be simulated with an atomistic force �eld, a potential of

mean force calculation using only two proteins in aqueous solution would require

a large number of water molecules. This makes such strategy impractical.

There are many ways to build coarse-grained force �elds, as there are many

levels of coarse graining. The investigation of all possibilities is not part of the

scope of this thesis. Several reviews on this subject are available in the liter-

ature (NIELSEN et al., 2004; TOZZINI, 2005; TAKADA, 2012; SAUNDERS;

VOTH, 2013). Recently a coarse-grained force �eld for BSA has been proposed

in a study of protein adsorption on silver nanoparticles (VOICESCU; IONESCU;

ANGELESCU, 2012). This force �eld is based on a previous coarse-grained model

for polyelectrolytes (ANGELESCU; STENHAMMAR; LINSE, 2007).

One particular application to which a coarse-grained model of proteins would

be interesting is as an auxiliary tool for protein structure prediction. There are

many proteins for which no crystallographic structure is available. This was the

case for BSA until 2012 (BUJACZ, 2012). Since Small-Angle X-ray Scattering

(SAXS) for highly diluted protein solutions can provide the form factor (discussed
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on Chapter 5), one would use only the primary structure information and molec-

ular simulation to reproduce the form factor obtained from SAXS experiments.

This is the main objective of this section.

Using molecular dynamics to predict the form factor is not a novelty itself.

Nevertheless, the usual approach is to consider the crystallographic structure of

the protein as an initial input for an atomistic simulation (KNIGHT; HUB, 2015).

The main purpose here is to use molecular dynamics as a tool to predict the form

factor of proteins for which the crystallographic structure is not available, even

though the need of the atomic coordinates of proteins seems to be a necessary

(but not su�cient) condition for evaluating the scattering intensity (NGUYEN

et al., 2014).

Small-angle X-ray scattering is a low resolution method that can provide the

shape and the size of the scattering particle (CHACÓN et al., 1998; CHACÓN

et al., 2000), and these informations are helpful to predict the structure of such

particle. The knowledge of the protein structure seems to be essential to the

understanding of protein function and dynamics (AHN et al., 2000), even though

intrinsically disordered protein segments, playing important roles in protein func-

tion, challenge the once believed stricit relationship between structure and func-

tion (DUNKER et al., 2001).

Usually there are two types of problems related to scattering intensity data:

one is the evaluation of the scattering intensity from the knowledge of the atomic

coordinates, and the other is the inverse problem (REIS; APARICIO; ZHANG,

2011): using the scattering intensity to obtain the structure. Since small-angle

X-ray scattering is a low resolution technique, no unique atomistic structure can

be found in the second problem.

There are at least three ab initio methods for shape determination in

small-angle scattering: envelop function (SVERGUN et al., 1996), bead model
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(CHACÓN et al., 1998) and dummy residues model (SVERGUN; PETOUKHOV;

KOCH, 2001). The idea underneath these methods is to retrieve a three-

dimensional model using one-dimensional scattering data. Although the tech-

niques employed in this reconstruction have some physical basis (simulated an-

nealing and genetic algorithm), the models do not have any, since they are based

on spherical subunits or only on the envelop itself.

The main goal of this section is to provide a more physical model (using

coarse-grained models) for evaluating the scattering intensity of a highly diluted

protein in aqueous solution knowing only its primary structure, id est, the se-

quence of amino acids, and the radius of gyration.

The coarse-grained model developed here is inspired on Shinoda et al. (SHIN-

ODA; DEVANE; KLEIN, 2007) coarse-grained water force �eld. The reason to

develop a coarse-grained force �eld which is consistent with a model for water is

the possibility to try other applications in the future, such as the calculation of

the potential of mean force of the protein in aqueous solution. This approach is

certainly an improvement to implicit solvent models such as that used on Chapter

5.

7.4.2 Coarse-grained force �eld

Each amino acid is represented by a single bead. The beads (in a total of

583 beads) are conected in a single chain. Each bead has a molar mass equal to

114.065 g·mol−1. There are three types of beads according to their net charge:

MET, GLU and HIS. MET (named after methionine) is an uncharged bead and

represents in the chain all residues that have no charge at the BSA isoelectric

point (pH=4.9) according to their isolated pKA values (including the terminal

aspartic acid). GLU (named after glutamic acid) is a negatively charged bead and

represents all glutamic acids, all aspartic acids and the terminal alanine residue
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(to represent the terminal-COOH). HIS (named after histidine) is a positively

charged bead and represents all histidines, lysines and arginines in the chain. All

cysteines are considered to be uncharged, and therefore, are represented as MET.

No disul�de bonds or hydrogen bonds were considered. The parameters were

�tted to give an average radius of gyration similar to the experimental radius of

gyration (circa 2.9 nm).

The force �eld is a sum of three contributions:

V =

Nb∑
i=1

Vnonbond,ij + Vbond + Vangle (7.27)

where:

Vnonbond,ij =
qiqj

4πε0εrrij
+

3
√

3

2
εij

[(
σij
rij

)12

−
(
σij
rij

)4
]

(7.28)

where Nb is the number of beads, qi is the charge of particle i, ε0 is the vaccuum

permitivity, εr is the dielectric constant of the medium, εij is the attractive po-

tential depth between particles i and j, σij is the distance between particles i and

j for which the Mie contribution is null. The cross terms are calculated using

Lorentz-Berthelot mixing rules; an exception is the interaction between water and

MET for which the potential depth is calculated as half as the one given by the

mixing rule to account for hydrophobic interactions. Table 7 presents the values

for nonbonded interaction parameters for each pair.

The bond interaction is given by:

Vbond =

Nb−1∑
i=1

kb
2

(ri,i+1 − r0)2 (7.29)

where ri,i+1 is the distance between two adjacent beads at the same chain, r0 is the

equilibrium bond distance (r0 = 8 Å), and kb is the bond constant (kb = 1× 105

kJ.mol−1.nm−2).
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The angle contribution is given by:

Vangle =

Nb−1∑
i=2

kθ
2

(θi − θ0)2 (7.30)

where θi is the angle between three beads in a sequence in the chain, θ0 is

the equilibrium angle (θ0 = 180o) and kθ is the angle constant (kθ = 100.0

kJ.mol−1.rad−2).

Table 7: Nonbonded interaction parameters for each pair.

Bead i Bead j σij / Å εij / kJ.mol−1 qiqj / e2

W W 4.371 3.745 0.0

HIS HIS 5.000 2.479 +1.0

GLU GLU 5.000 2.479 +1.0

MET MET 5.000 2.479 0.0

W HIS 4.686 3.047 0.0

W GLU 4.686 3.047 0.0

W MET 4.686 1.523 0.0

HIS GLU 5.000 2.479 -1.0

HIS MET 5.000 2.479 0.0

GLU MET 5.000 2.479 0.0

7.4.3 Molecular dynamics and form factor calculation de-
tails

A NPT molecular dynamic simulation was performed using GROMACS 4.5.5

software package (BERENDSEN; van-der-SPOEL; van-DRUNEN, 1995). The

initial con�guration was set as an helicoidal conformation of the coarse-grained

BSA in 8000 coarse-grained water molecules (SHINODA; DEVANE; KLEIN,

2007). The Leap Frog algorithm was used to integrate the equations of motion

with periodic boundary conditions and 2 fs timestep. The Berendsen thermostat

(BERENDSEN et al., 1984) was used to keep the temperature at 298.15 K. The
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isotropic Berendsen barostat was used to keep the pressure at 1 bar (isothermal

compressibility of 4.5 × 10−5 bar−1). Long-range as well as short-range interac-

tions were both treated with cuto� radii of 1.5 nm. Positions and velocities were

stored at each 1 ps. Electrostatic potential was calculated using Particle Mesh

Ewald method (DARDEN; YORK; PEDERSEN, 1993). The dielectric constant

of the water was considered to be 78.41 (UEMATSU; FRANCK, 1980). For equi-

libration, 1.5 ns were used and the rest 0.5 ns were considered as production

stage.

The form factor was calculated as the average over the instantaneous form fac-

tor of each one of the 500 con�gurations on the production stage using CRYSOL

(SVERGUN; BARBERATO; KOCH, 1995).

7.4.4 Results and Discussions

Figure 36 illustrates the conformations of the coarse-grained BSA during the

simulation and also the crystallographic structure (BUJACZ, 2012). One may

observe that the initial helicoidal conformation is rapidly folded. And the �nal

con�guration has some similarities with the crystallographic structure.

One way to quantitatively measure the folding during the simulation is by

the calculation of the radius of gyration:

Rg =

√√√√ 1

Nb

Nb∑
i=1

|~ri − ~rcom|2 (7.31)

where ~ri is the position vector of bead i and ~rcom is the position vector of the

center of mass of the BSA.

Figure 37 presents the evolution of the radius of gyration for our coarse-

grained model with the simulation time.

It is noteworthy that the average radius of gyration is similar to the radius
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Figure 36: Snapshots of equilibration and production NPT molecular dynamics
of BSA coarse-grained force �eld. MET beads are gray, GLU are red and HIS are
blue.
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Figure 37: Radius of gyration as a function of time step for NPT molecular
dynamics of the coarse-grained BSA in aqueous solution free of salt.

of gyration for the crystallographic structure (circa 2.9 nm).

One may observe in Figure 38 that the proposed force �eld is able to predict

the form factor of BSA with reasonable accuracy when compared to the experi-

mental data and also to the predictions using the crystallographic structure. And

the form factor calculated using this coarse-grained force �eld is certainly better

than the simple ellipsoid of revolution �tting.

The proposed coarse-grained model neglects important structure informa-

tions. The fact that no disul�de bonds or hydrogen bonds are explicitly consid-

ered is certainly a problem to accurate protein structure prediction.

Disul�de bonds are relevant not only for the protein structure, but also for

the protein activity (HOGG, 2003). Hydrogen bonds are extremely important

for the conformation of the secondary structure, exempli gratia, α-helix and
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Figure 38: Form factor of bovine serum albumin. Open circles, small-angle X-ray
experimental data (FRANCO; OLIVEIRA; FILHO, 2015). Red line, cryslallo-
graphic structure predicion with CRYSOL (SVERGUN; BARBERATO; KOCH,
1995). Continuous line, the proposed coarse-grained force �eld using CRYSOL
to calculate the form factor. Dotted line, ellipsoid of revolution.

β-sheet (PAULING; COREY; BRANSON, 1951; BAKER; HUBBARD, 1984).

Models for hydrogen bonding have been proposed for coarse-grained force �elds

(TAKADA, 2012; MAUPETIT; TUFFERY; DERREUMAUX, 2007).

Small-angle X-ray scattering experiments constitute a low resolution tech-

nique for protein structure prediction. Therefore, low resolution models may be

able to describe the scattering intensity of a highly diluted protein solution. This

is certainly an issue, since many di�erent models may result in a very well de-

scription of the scattering intensity, and hence no unique solution may be found.

It turns out that the proposed coarse-grained model, even neglecting im-

portant structure features as the secondary structure conformation, is able to

reproduce the scattering intensity of BSA in aqueous solution. What is being
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claimed here is the possibility to use this very rough approach in situations when

the crystallographic structure is not available. Moreover, the ability to predict

the form factor using molecular dynamics sounds to have a consistent physical

basis.

Unlike the common ab initio methods, the model proposed here is based

on physical informations, such as the protein primary structure and the radius of

gyration. Therefore, using this method, one is able to retrieve the protein envelop

with a more physically consistent model.

Thus the coupling between coarse-grained force �eld molecular dynamics and

small-angle X-ray scattering seems to be a promising strategy to provide helpful

information on the structure of proteins at a low resolution level.

Since this force �eld was developed based on a previous water model, the

calculation of the potential of mean force of two proteins in aqueous solution

using this force �eld can be done. Also the e�ect of salts could be studied using

models as that developed for sodium sulfate in the last section.
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8 CONCLUSIONS AND SUGGESTIONS FOR

FUTURE WORK

The general conclusion of this thesis is that there is a subtle limit in the

treatment of the ions as co-solvent or co-solute on implicit solvent models. The

interaction potential amongst proteins depends on the pH, on the temperature

and seems to be also dependent of the ratio between the number of salt ions

and the number of protein molecules in solution. This reveals a great challenge,

since the interaction potential would be dependent of the protein concentration.

The range of attractiveness seems to be protein dependent (very short-ranged

for proteins as lysozyme and γ-crystallin and long-ranged for proteins as bovine

serum albumin). And coarse-grained force �elds for molecular simulations seems

to be a very promising way to avoid implicit solvent models in the calculation of

the interaction potential between two protein molecules in salt aqueous solutions.

An analytical expression for the structure factor of a �uid described by a

van-der-Waals-like attractive potential was developed. The expression predicts

quite well the structure of a van der Waals �uid generated through Monte Carlo

simulations. Introducing an empirical relation to account for the dependence

of the attractive parameter on the protein concentration allowed to correlate

accurately experimental X-ray scattering intensities of BSA aqueous solution at

relatively high salt concentration. The results posed the question of how far

some hypotheses usually assumed in implicit solvent approaches can be taken

for granted. The expression for the structure factor was also used to develop an
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osmotic equation of state, which was used to predict experimental data of osmotic

pressure of BSA solutions with good agreement.

A virtual liquid-liquid coexistence curve for BSA in aqueous solution at the

isoelectric point was predicted using the previous developed osmotic equation of

state. For a pH value below the isoelectric point, a phase separation was indeed

observed and our model was able to qualitatively predict such separation. A com-

parison with molecular simulation results showed that the state correspondence

law is obeyed near the critical point, but the ion speci�city became larger to low

temperatures. Also, the predicted lines showed that the range of the attractive

potential is not so short as it is usually believed.

A new coarse-grained force �eld for sodium sulfate aqueous solution that

avoids unphysical association among the ions was developed. The new model was

able to reproduce the experimental data for density, although it fails to predict

the thermal expansion coe�cient accurately. Dynamic properties such as viscosity

and ionic conductivity were calculated within Green-Kubo framework, and the

model was able to correlate viscosity data reasonably well, but it overestimates

the ionic conductivity. A discussion on the structure and the dynamics was done

based on the Walden plot.

A critical review on the idea of an universal reference line for Walden plot

was proposed. Showing the experimental data of KCl and NaCl available in the

literature, it was proved that no universal reference line to which all systems may

be compared can be drawn on Walden plot.

A new coarse-grained model for BSA in aqueous solution was developed. The

model was used as a new strategy to evaluate the scattering form factor of proteins

as a tool in protein structure prediction. The coarse-grained model was able to

reproduce the experimental form factor with quite high accuracy as well as the

radius of gyration calculated with the crystallographic structure. This model is
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certainly an improvement to the assumption that the protein may be represented

as an ellipsoid of revolution.

As stated in the introduction, this thesis raised more questions than brought

answers. Therefore, there are few suggestions to continue the work that has begun

here. The �rst one is the extension of the small-angle X-ray experiments changing

the salt concentration to understand the e�ect of the proportion of ions and pro-

tein molecules on the attractive potential. The second one is the measure of BSA

aqueous solution liquid-liquid coexistence line for pH values below the isoelectric

point. This would be most valuable to corroborate the predictions that were

made here. The third one is the application of Isothermal Titration Calorime-

try to study how the ion speci�city changes the phase diagram of proteins. The

fourth suggestion is the appplication of the coarse-grained models proposed in

this thesis to evaluate the potential of mean force between two BSA molecules in

sodium sulfate aqueous solutions. These simulations would be extremely helpful

if they were compared to the small-angle X-ray experiments.
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APPENDIX A -- THE MANY BODY

EFFECT

Considering that the radial distribution function may be written as an expan-

sion on densities - the same approach used to derive pressure as a virial expansion

(MCQUARRIE, 2000) - the following equation is obtained:

g(r, T, ρ) =
N−2∑
j=0

ρjgj(r, T ) (A.1)

By the de�nition of the potential of mean force (MCQUARRIE, 2000), W ,

one may rewrite Equation (A.1) as:

e−W (r,ρ)/kBT =
N−2∑
j=0

ρje−Wj(r)/kBT (A.2)

or:

e−[W (r,ρ)−W0(r)]/kBT = 1 +
N−2∑
j=1

ρje−[Wj(r)−W0(r)]/kBT (A.3)

where W0 is the two-body contribution. Taking the natural logarithm leads to:

W (r, ρ) = W0(r)− kBT ln

[
1 +

N−2∑
j=1

ρje−[Wj(r)−W0(r)]/kBT

]
(A.4)

The logarithm value on the right side of Equation (A.4) is always positive,

thus W is always lower than W0; they will be equal at in�nite dilution. Thus,

all many-body contributions are somehow attractive in relation to the two-body

interaction potential, provided the radial distribution function can be written as

an expansion on densities.
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APPENDIX B -- CODE FOR

HAYTER-PENFOLD

STRUCTURE FACTOR

This code is written in C. It has been successfully compiled with gcc and has

been successfully executed in Linux.

/******************************************************************************/

/* School of Engineering - University of São Paulo - Brazil */

/* Bioprocess Engineering Group - Department of Chemical Engineering */

/* Structure factor of Hayter and Pendold (1981) */

/* Developed by: Luís Fernando Mercier Franco */

/* Advisor: Prof. Dr. Pedro de Alcântara Pessôa Filho */

/* Processos FAPESP: 2011/22070-5 and 2013/01857-2 */

/* July 3rd, 2013 */

/* Reference: J.B. Hayter, J. Penfold, Mol. Phys. 42 (1981) 109-118. */

/******************************************************************************/

/******************************************************************************/

/* Supporting Information: */

/* */

/* 1) To use the program an input file is required. */

/* This file must contain the diameter, SIGMA, the packing fraction, ETA */

/* and also the values of KAPPA and GAMMA as described in the functional */

/* form of the interaction potential. Moreover, one must declare the */

/* number, N, of points for the calculation and the minimum (QMIN) and */

/* the maximum (QMAX) value of the wavevector, q. */

/* The following is an example, which structure must be obeyed */

/* */

/* SIGMA: */

/* 80.0 */

/* ETA: */

/* 0.05 */

/* KAPPA: */

/* 0.04 */

/* GAMMA: */

/* 10.0 */
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/* N: */

/* 1000 */

/* QMIN_QMAX: */

/* 0.01 0.5 */

/* */

/* 2) There is a single output file in which it is saved the wavevector, */

/* q, on the first column and the calculated structure factor, S(q) */

/* on the second column. */

/* */

/* 3) To compile, save this file as "HAYPEN.c", then */

/* in the terminal: */

/* > gcc HAYPEN.c -o HAYPEN.exe -lm */

/* */

/* 4) To run the code: */

/* > echo INPUT_FILE_NAME OUTPUT_FILE_NAME | ./HAYPEN.exe */

/* */

/* 5) The authors do not accept any liability for the use of this */

/* program. */

/******************************************************************************/

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

#include <string.h>

#include <complex.h>

#define MAX 1000

#define NITERMAX 1000

void HP(double SIGMA, double ETA, double KAPPA, double GAMMA, double PP[4]);

double INTTRAP(double SIGMA, double ETA, double KAPPA, double GAMMA,

double PP[4], double X);

double SKHP(double SIGMA, double ETA, double KAPPA, double GAMMA,

double Q, double PP[4]);

double complex PXHORN(double complex AX[MAX], double complex X, int N);

void BR(double complex CX[MAX], double complex B[MAX], double complex ROOTS, int N);

double complex DERIVPX(double complex AX[MAX], double complex X, int N);

double complex NR(double complex AX[MAX], double complex X0, double TOL, int N);

int main(){

int J, N;

double SIGMA, ETA, KAPPA, GAMMA, QMIN, QMAX, DQ;

double Q[MAX], SQ[MAX], PP[4];

char nfile[40], get[40], nout[40];

FILE *ENT, *OUT;

scanf("%s %s", nfile, nout);

ENT = fopen(nfile, "r");

fscanf(ENT, "%s", get);

fscanf(ENT, "%lf", &SIGMA);

fscanf(ENT, "%s", get);

fscanf(ENT, "%lf", &ETA);

fscanf(ENT, "%s", get);
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fscanf(ENT, "%lf", &KAPPA);

fscanf(ENT, "%s", get);

fscanf(ENT, "%lf", &GAMMA);

fscanf(ENT, "%s", get);

fscanf(ENT, "%d", &N);

fscanf(ENT, "%s", get);

fscanf(ENT, "%lf", &QMIN);

fscanf(ENT, "%lf", &QMAX);

fclose(ENT);

Q[0] = QMIN;

DQ = (QMAX - QMIN) / (1.0 * N);

for (J = 1; J < N; J++)

Q[J] = Q[J-1] + DQ;

HP(SIGMA, ETA, KAPPA, GAMMA, PP);

for (J = 0; J < N; J++)

SQ[J] = SKHP(SIGMA, ETA, KAPPA, GAMMA, Q[J], PP);

OUT = fopen(nout, "w");

for (J = 0; J < N; J++)

fprintf(OUT, "%lf %lf\n", Q[J], SQ[J]);

fclose(OUT);

return 0;

}

void HP(double SIGMA, double ETA, double KAPPA, double GAMMA, double PP[4]){

int K, N, M, J, L;

double KMIN, KM2, DEL, DEL2, DEL4, ET2, ALPHA1, ALPHA2, ALPHA3;

double BETA1, BETA2, BETA3, NU1, NU2, NU3, NU4, NU5, PHI1, PHI2, TAU1;

double TAU2, TAU3, TAU4, TAU5, A1, A2, A3, B1, B2, B3, V1, V2, V3, P1;

double P2, P3, T1, T2, T3, MU1, MU2, MU3, MU4, MU5, MU6, LBD1, LBD2, LBD3;

double LBD4, LBD5, LBD6, W12, W13, W14, W15, W16, W23, W24, W25, W26, W34;

double W35, W36, W45, W46, W56, W4, W3, W2, W1, W0, CHI, ROOT, F;

double X0NR, X, GX, TOL;

double complex X0;

double ALR[5], W[5];

double complex B[5], ALPHA[5], C[5];

KMIN = KAPPA * SIGMA;

KM2 = KMIN * KMIN;

DEL = 1.0 - ETA;

DEL2 = DEL * DEL;

DEL4 = DEL2 * DEL2;

ET2 = ETA * ETA;

ALPHA1 = -1.0 * (2.0 * ETA + 1.0) * DEL / KMIN;

ALPHA2 = (14.0 * ET2 - 4.0 * ETA - 1.0) / KM2;

ALPHA3 = 36.0 * ET2 / KM2 / KM2;

BETA1 = -1.0 * (ET2 + 7.0 * ETA + 1.0) * DEL / KMIN;

BETA2 = 9.0 * ETA * (ET2 + 4.0 * ETA - 2.0) / KM2;

BETA3 = 12.0 * ETA * (2.0 * ET2 + 8.0 * ETA - 1.0) / KM2 / KM2;

NU1 = -1.0 *(ET2 * ETA + 3.0 * ET2 + 45.0 * ETA + 5.0) * DEL / KMIN;

NU2 = (2.0 * ET2 * ETA + 3.0 * ET2 + 42.0 * ETA - 20.0) / KM2;
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NU3 = (2.0 * ET2 * ETA + 30.0 * ETA - 5.0) / KM2 / KM2;

NU4 = NU1 + 24.0 * ETA * KMIN * NU3;

NU5 = 6.0 * ETA * (NU2 + 4.0 * NU3);

PHI1 = 6.0 * ETA / KMIN;

PHI2 = DEL - 12.0 * ETA / KM2;

TAU1 = (ETA + 5.0) / (5.0 * KMIN);

TAU2 = (ETA + 2.0) / KM2;

TAU3 = -12.0 * ETA * GAMMA * exp(-1.0 * KMIN) * (TAU1 + TAU2);

TAU4 = 3.0 * ETA * KM2 * (TAU1 * TAU1 - TAU2 * TAU2);

TAU5 = 3.0 * ETA * (ETA + 8.0) / 10.0 - 2.0 * (2.0 * ETA + 1.0) *

(2.0 * ETA + 1.0) / KM2;

A1 = (24.0 * ETA * GAMMA * exp(-1.0 * KMIN) * (ALPHA1 + ALPHA2 +

(1.0 + KMIN) * ALPHA3) - (2.0 * ETA + 1.0) *

(2.0 * ETA + 1.0)) / DEL4;

A2 = 24.0 * ETA * (ALPHA3 * (sinh(KMIN) - KMIN * cosh(KMIN)) +

ALPHA2 * sinh(KMIN) - ALPHA1 * cosh(KMIN)) / DEL4;

A3 = 24.0 * ETA * ((2.0 * ETA + 1.0) * (2.0 * ETA + 1.0) / KM2 -

DEL2 / 2.0 + ALPHA3 * (cosh(KMIN) - 1.0 - KMIN * sinh(KMIN)) -

ALPHA1 * sinh(KMIN) + ALPHA2 * cosh(KMIN)) / DEL4;

B1 = (3.0 * ETA * (ETA + 2.0) * (ETA + 2.0) / 2.0 -

12.0 * ETA * GAMMA * exp(-1.0 * KMIN) * (BETA1 + BETA2 +

(1.0 + KMIN) * BETA3)) / DEL4;

B2 = 12.0 * ETA * (BETA3 * (KMIN * cosh(KMIN) - sinh(KMIN)) -

BETA2 * sinh(KMIN) + BETA1 * cosh(KMIN)) / DEL4;

B3 = 12.0 * ETA * (DEL2 * (ETA + 2.0) / 2.0 - 3.0 * ETA * (ETA + 2.0) *

(ETA + 2.0) / KM2 - BETA3 * (cosh(KMIN) - 1.0 - KMIN * sinh(KMIN)) +

BETA1 * sinh(KMIN)- BETA2 * cosh(KMIN)) / DEL4;

V1 = ((2.0 * ETA + 1.0) * (ET2 - 2.0 * ETA + 10.0) / 4.0 -

GAMMA * exp(-1.0 * KMIN) * (NU4 + NU5)) / (5.0 * DEL4);

V2 = (NU4 * cosh(KMIN)- NU5 * sinh(KMIN))/ (5.0 * DEL4);

V3 = ((ET2 * ETA - 6.0 * ET2 + 5.0) * DEL - 6.0 * ETA *

(2.0 * ET2 * ETA - 3.0 * ET2 + 18.0 * ETA + 10.0) / KM2 +

24.0 * ETA * NU3 + NU4 * sinh(KMIN) -

NU5 * cosh(KMIN)) / (5.0 * DEL4);

P1 = (GAMMA * exp(-1.0 * KMIN) * (PHI1 - PHI2) * (PHI1 - PHI2) -

(ETA + 2.0) / 2.0) / DEL2;

P2 = ((PHI1 * PHI1 + PHI2 * PHI2) * sinh(KMIN) +

2.0 * PHI1 * PHI2 * cosh(KMIN)) / DEL2;

P3 = ((PHI1 * PHI1 + PHI2 * PHI2) * cosh(KMIN) +

2.0 * PHI1 * PHI2 * sinh(KMIN) + PHI1 * PHI1 - PHI2 * PHI2) / DEL2;

T1 = TAU3 + TAU4 * A1 + TAU5 * B1;

T2 = TAU4 * A2 + TAU5 * B2 + 12.0 * ETA * (TAU1 * cosh(KMIN) -

TAU2 * sinh(KMIN));

T3 = TAU4 * A3 + TAU5 * B3 + 12.0 * ETA * (TAU1 * sinh(KMIN) -

TAU2 * (cosh(KMIN) - 1.0)) - 2.0 * ETA * (ETA + 10.0) / 5.0 - 1.0;

MU1 = T2 * A2 - 12.0 * ETA * V2 * V2;

MU2 = T1 * A2 + T2 * A1 - 24.0 * ETA * V1 * V2;

MU3 = T2 * A3 + T3 * A2 - 24.0 * ETA * V2 * V3;

MU4 = T1 * A1 - 12.0 * ETA * V1 * V1;

MU5 = T1 * A3 + T3 * A1 - 24.0 * ETA * V1 * V3;

MU6 = T3 * A3 - 12.0 * ETA * V3 * V3;

LBD1 = 12.0 * ETA * P2 * P2;

LBD2 = 24.0 * ETA * P1 * P2 - 2.0 * B2;

LBD3 = 24.0 * ETA * P2 * P3;

LBD4 = 12.0 * ETA * P1 * P1 - 2.0 * B1;

LBD5 = 24.0 * ETA * P1 * P3 - 2.0 * B3 - KM2;
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LBD6 = 12.0 * ETA * P3 * P3;

W12 = MU1 * LBD2 - MU2 * LBD1;

W13 = MU1 * LBD3 - MU3 * LBD1;

W14 = MU1 * LBD4 - MU4 * LBD1;

W15 = MU1 * LBD5 - MU5 * LBD1;

W16 = MU1 * LBD6 - MU6 * LBD1;

W23 = MU2 * LBD3 - MU3 * LBD2;

W24 = MU2 * LBD4 - MU4 * LBD2;

W25 = MU2 * LBD5 - MU5 * LBD2;

W26 = MU2 * LBD6 - MU6 * LBD2;

W34 = MU3 * LBD4 - MU4 * LBD3;

W35 = MU3 * LBD5 - MU5 * LBD3;

W36 = MU3 * LBD6 - MU6 * LBD3;

W45 = MU4 * LBD5 - MU5 * LBD4;

W46 = MU4 * LBD6 - MU6 * LBD4;

W56 = MU5 * LBD6 - MU6 * LBD5;

W4 = W16 * W16 - W13 * W36;

W3 = 2.0 * W16 * W15 - W13 * (W35 + W26) - W12 * W36;

W2 = W15 * W15 + 2.0 * W16 * W14 - W13 * (W34 + W25) -

W12 * (W35 + W26);

W1 = 2.0 * W15 * W14 - W13 * W24 - W12 * (W34 + W25);

W0 = W14 * W14 - W12 * W24;

W[0] = W0;

W[1] = W1;

W[2] = W2;

W[3] = W3;

W[4] = W4;

TOL = pow(10.0, -3.0);

N = 4;

X0NR = 1.0;

for (K = 0; K <= N; K++)

B[K] = W[K] + 0.0 * I;

X0 = X0NR + (X0NR / 1000.0) * I;

M = N;

for (K = 0; K < N; K++){

ALPHA[K] = NR(B, X0, TOL, N); /* Newton-Raphson */

for (J = 0; J <= M; J++)

C[J] = B[J];

if (K < N - 1)

BR(C, B, ALPHA[K], M); /* Briott-Ruffini */

B[M] = 0.0;

M = M - 1;

}

J = 0;

for (K = 0; K < N; K++){

if (fabs(cimag(ALPHA[K])) < 5.0 * TOL){

ALR[J] = creal(ALPHA[K]); /* real roots */

J = J + 1;

}

}

/* Search for the right root */

for (K = 0; K < J; K++){

F = ALR[K];
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PP[0] = F;

PP[1] = (W16 * F * F + W15 * F + W14) / (W13 * F + W12);

PP[2] = B1 + B2 * PP[1] + B3 * F;

PP[3] = A1 + A2 * PP[1] + A3 * F;

CHI = 0.0;

for (L = 0; L < 10; L++){

X = 1.0 * (L + 1) / 10.0;

GX = 1.0 + 1.0 /(12.0 * M_PI * ETA * X) *

INTTRAP(SIGMA, ETA, KAPPA, GAMMA, PP, X);

CHI = CHI + GX * GX;

}

if (CHI <= 1000.0 * TOL){

ROOT = ALR[K];

K = K + J + 1;

}

}

F = ROOT;

PP[0] = F;

PP[1] = (W16 * F * F + W15 * F + W14) / (W13 * F + W12);

PP[2] = B1 + B2 * PP[1] + B3 * F;

PP[3] = A1 + A2 * PP[1] + A3 * F;

}

double INTTRAP(double SIGMA, double ETA, double KAPPA, double GAMMA,

double PP[4], double X){

int K, N;

double ALPHA, A, B, H, Q, SK, SUM;

A = pow(10.0, -6.0);

B = 100.0;

N = 500;

H = (B - A) / (1.0 * (N - 1));

ALPHA = A;

Q = ALPHA / SIGMA;

SK = SKHP(SIGMA, ETA, KAPPA, GAMMA, Q, PP);

SUM = (SK - 1.0) * ALPHA * sin(ALPHA * X);

ALPHA = ALPHA + H;

for (K = 1; K < N; K++){

Q = ALPHA / SIGMA;

SK = SKHP(SIGMA, ETA, KAPPA, GAMMA, Q, PP);

SUM = SUM + 2.0 * (SK - 1.0) * ALPHA * sin(ALPHA * X);

ALPHA = ALPHA + H;

}

Q = ALPHA / SIGMA;

SK = SKHP(SIGMA, ETA, KAPPA, GAMMA, Q, PP);

SUM = SUM + (SK - 1.0) * ALPHA * sin(ALPHA * X);

SUM = SUM * H / 2.0;

return SUM;

}

double SKHP(double SIGMA, double ETA, double KAPPA, double GAMMA,

double Q, double PP[4]){
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double KMIN, F, C, B, A, K, K2, K3, TER1, TER2, TER3, TER4, TER5, TER6;

double TER7, AK, SK;

KMIN = KAPPA * SIGMA;

F = PP[0];

C = PP[1];

B = PP[2];

A = PP[3];

K = Q * SIGMA;

K2 = K * K;

K3 = K2 * K;

TER1 = A * (sin(K) - K * cos(K)) / K3;

TER2 = B * ((2.0 / K2 - 1.0) * K * cos(K) + 2.0 * sin(K) - 2.0 / K) / K3;

TER3 = ETA * A *(24.0 / K3 + 4.0 * (1.0 - 6.0 / K2) * sin(K) -

(1.0 - 12.0 / K2 + 24.0 / K2 / K2) * K * cos(K)) / (2.0 * K3);

TER4 = C * (KMIN * cosh(KMIN) * sin(K) - K * sinh(KMIN) * cos(K)) /

K / (K2 + KMIN * KMIN);

TER5 = F * (KMIN * sinh(KMIN) * sin(K) -

K * (cosh(KMIN) * cos(K) - 1.0)) / K / (K2 + KMIN * KMIN);

TER6 = F * (cos(K) - 1.0) / K2;

TER7 = -1.0 * GAMMA * exp(-1.0 * KMIN) * (KMIN * sin(K) +

K * cos(K)) / K / (K2 + KMIN * KMIN);

AK = TER1 + TER2 + TER3 + TER4 + TER5 + TER6 + TER7;

SK = 1.0 / (1.0 - 24.0 * ETA * AK);

return SK;

}

double complex PXHORN(double complex AX[MAX], double complex X, int N){

int K;

double complex PX; complex AUX;

AUX = AX[N] + 0.0 * I;

for (K = N; K >= 1; K--){

PX = AUX * X + AX[K-1];

AUX = PX;

}

return PX;

}

void BR(double complex CX[MAX], double complex B[MAX], double complex ROOTS, int N){

int K;

double complex R;

double complex S;

R = CX[N];

for (K = N; K > 0; K--){

S = CX[K-1];

B[K-1] = R;

R = S + ROOTS * R;

}

}

double complex DERIVPX(double complex AX[MAX], double complex X, int N){

int K, M;
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double complex DER;

double complex B[MAX];

M = N - 1;

for (K = 0; K <= M; K++)

B[K] = AX[K+1] * (1.0 * K + 1.0);

DER = PXHORN(B, X, M);

return DER;

}

double complex NR(double complex AX[MAX], double complex X0, double TOL, int N){

int K, NITER;

double complex XOLD;

double complex ALPHA;

double complex XNEW;

XOLD = X0;

for (K = 0; K < NITERMAX; K++){

XNEW = XOLD - PXHORN(AX, XOLD, N) / DERIVPX(AX, XOLD, N);

if (cabs(XNEW - XOLD) < TOL && cabs(PXHORN(AX, XNEW, N)) < TOL){

ALPHA = XNEW;

NITER = K;

K = NITERMAX + 1;

}

else

XOLD = XNEW;

}

return ALPHA;

}



157

APPENDIX C -- CODES FOR MONTE

CARLO SIMULATIONS

The codes presented in this section were developed to be used in the same

manner and always in Lennard-Jones units. Therefore, an input �le is common

to all of them. Such input �le called master �le is a list of desired �le names to be

used by the various codes. The structure of this master �le is simply a sequence

of �le names. The following is an example:

mc1.log

conf1.xyz

mc1.sci

ratio1.dat

pos1.xyz

thermo1.dat

gofr1.dat

sofq1.dat

zpd1.dat

Table 8 presents the meaning of each �le. While the name of the �les are to

be freely chosen, the extension as well the order of presentation is not.
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Table 8: Description of the list of �les in the master �le for Monte Carlo simula-
tions

Name in the example Description

mc1.log This is a log �le for NVT simulation.

conf1.xyz This is an initial FCC con�guration �le

written in �.xyz� fashion.

mc1.sci This is control �le with the proper

information for the simulation. An example

will be given later.

ratio1.dat This �le stores the value of acceptance ratio.

pos1.xyz This is �.xyz� �le which stores all

the equilibrium con�gurations of the simulation.

thermo1.dat This �le contains the thermodynamic

information at each step. The reduced potential,

the compressibility factor and the reduced pressure.

gofr1.dat This is an output �le with the radial

distribution function.

sofq1.dat This is an output �le with the structure factor.

zpd1.dat This is an output �le with local particle density

along z-direction.

An example of the �.sci� �le is:

System= LJ_fluid

Lx= 12.0

Ly= 12.0

Lz= 40.0

Temperature= 1.10

Equil_steps= 40000

Prod_steps= 40000

DRMAX= 0.3
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Rcutoff= 3.0

NADJUST= 5000

Table 9 presents the meaning of each command.

Table 9: Description of each command in �sci� �les.
Command Description
System The name of the system to be simulated.
Lx The x-dimension of the box in LJ units.
Ly The y-dimension of the box in LJ units.
Lz The z-dimension of the box in LJ units.
Temperature The temperature in LJ units.
Equil_steps Number which multiplied by the number

of particles gives the steps for equilibration.
No con�guration is stored during equilibration.

Prod_steps Number which multiplied by the number
of particles gives the steps for production.

DRMAX Initial maximum displacement in LJ units.
Rcuto� Potential radius of cut-o� in LJ units.
NADJUST Number of steps to adjust the maximum displacent.

C.1 Code to generate a FCC crystal

/******************************************************************************/

/* School of Engineering - University of São Paulo - Brazil */

/* Bioprocess Engineering Group - Department of Chemical Engineering */

/* Generation of a FCC crystal in .xyz file */

/* Developed by: Luís Fernando Mercier Franco */

/* Advisor: Prof. Dr. Pedro de Alcântara Pessôa Filho */

/* Processos FAPESP: 2011/22070-5 and 2013/01857-2 */

/* November 28th, 2012 */

/* Reference: M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids, */

/* Oxford University Press, New York, 1987. */

/******************************************************************************/

/******************************************************************************/

/* Supporting Information: */

/* */

/* 1) To compile, save this file as "FCC.c", then */

/* in the terminal: */

/* > gcc FCC.c -o FCC.exe -lm */

/* */

/* 2) To run the code: */

/* > echo NUMBER_OF_PARTICLES MASTER_FILE_NAME | ./FCC.exe */
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/* */

/* 3) The authors do not accept any liability for the use of this */

/* program. */

/* */

/* Note: if Lz is different from Lx (or Ly) the cube will be placed at */

/* the very right side of the box. */

/******************************************************************************/

/******************************************************************************/

#include <stdio.h>

#include <math.h>

#define MAX 3000

main(){

int I, J, K, N, NE, CONT;

double RX[MAX], RY[MAX], RZ[MAX];

double RHO, L, BOXL, LX, LY, LZ, DISZ;

double KB, NA;

char get[100], LOGFILE[40], CONFFILE[40], SCIFILE[40];

char MFILE[40], SYS[100];

FILE *IN, *OUT;

scanf("%d %s", &N, MFILE);

IN = fopen(MFILE, "r");

fscanf(IN, "%s", LOGFILE);

fscanf(IN, "%s", CONFFILE);

fscanf(IN, "%s", SCIFILE);

fclose(IN);

IN = fopen(SCIFILE, "r");

fscanf(IN, "%s", get);

fscanf(IN, "%s", SYS);

fscanf(IN, "%s", get);

fscanf(IN, "%lf", &LX);

fscanf(IN, "%s", get);

fscanf(IN, "%lf", &LY);

fscanf(IN, "%s", get);

fscanf(IN, "%lf", &LZ);

fclose(IN);

NE = (int)cbrt(N / 4);

RHO = (1.0 * N) / LX / LX / LX;

L = cbrt(4.0 / RHO);

CONT = 0;

for (I = 0; I < NE; I++){

for (J = 0; J < NE; J++){

for (K = 0; K < NE; K++){

RX[CONT] = (1.0 * I) * L;

RY[CONT] = (1.0 * J) * L;

RZ[CONT] = (1.0 * K) * L;

CONT = CONT + 1;

}

}

}
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for (I = 0; I < NE; I++){

for (J = 0; J < NE; J++){

for (K = 0; K < NE; K++){

RX[CONT] = L / 2.0 + (1.0 * I) * L;

RY[CONT] = L / 2.0 + (1.0 * J) * L;

RZ[CONT] = (1.0 * K) * L;

CONT = CONT + 1;

}

}

}

for (I = 0; I < NE; I++){

for (J = 0; J < NE; J++){

for (K = 0; K < NE; K++){

RX[CONT] = L / 2.0 + (1.0 * I) * L;

RY[CONT] = (1.0 * J) * L;

RZ[CONT] = L / 2.0 + (1.0 * K) * L;

CONT = CONT + 1;

}

}

}

for (I = 0; I < NE; I++){

for (J = 0; J < NE; J++){

for (K = 0; K < NE; K++){

RX[CONT] = (1.0 * I) * L;

RY[CONT] = L / 2.0 + (1.0 * J) * L;

RZ[CONT] = L / 2.0 + (1.0 * K) * L;

CONT = CONT + 1;

}

}

}

BOXL = cbrt((1.0 * N) / RHO);

DISZ = (LZ - LX) / 2.0;

for (I = 0; I < N; I++){

RX[I] = RX[I] - BOXL / 2.0;

RY[I] = RY[I] - BOXL / 2.0;

RZ[I] = RZ[I] - BOXL / 2.0 + DISZ;

}

OUT = fopen(CONFFILE, "w");

fprintf(OUT, "%d\n", N);

fprintf(OUT, "%s\n", SYS);

for (I = 0; I < N; I++){

fprintf(OUT, "C %e ", RX[I]);

fprintf(OUT, "%e ", RY[I]);

fprintf(OUT, "%e\n", RZ[I]);

}

fclose(OUT);

return 0;

}
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C.2 Code for NVT ensemble Monte Carlo simu-

lation

/******************************************************************************/

/* School of Engineering - University of São Paulo - Brazil */

/* Bioprocess Engineering Group - Department of Chemical Engineering */

/* NVT Monte Carlo code for Lennard-Jones particles */

/* Developed by: Luís Fernando Mercier Franco */

/* Advisor: Prof. Dr. Pedro de Alcântara Pessôa Filho */

/* Processos FAPESP: 2011/22070-5 and 2013/01857-2 */

/* July 27th, 2013 */

/* Reference: M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids, */

/* Oxford University Press, New York, 1987. */

/******************************************************************************/

/******************************************************************************/

/* Supporting Information: */

/* */

/* 1) To compile, save this file as "NVT.c", then */

/* in the terminal: */

/* > gcc NVT.c -o NVT.exe -lm */

/* */

/* 2) To run the code: */

/* > echo MASTER_FILE_NAME | ./NVT.exe */

/* */

/* 3) The authors do not accept any liability for the use of this */

/* program. */

/******************************************************************************/

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

#include <time.h>

#define TRUE 1

#define MAX 3000

/*******************************************************************/

/* Declaration of subroutines */

/*******************************************************************/

/* Subroutine to calculate the potential energy and the virial term */

/* of a given configuration. */

void TOTENERGY(double RX[MAX], double RY[MAX], double RZ[MAX],

double RCUTSQ, double LX, double LY, double LZ,

double SIGSQ, double *V, double *W, int N);

/* Subroutine to calculate the potential energy and the virial term */

/* of a given particle in relation to others. */

void ENERGY(double RX[MAX], double RY[MAX], double RZ[MAX],

double RXI, double RYI, double RZI,

double RCUTSQ, double LX, double LY, double LZ,
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double SIGSQ, double *V, double *W, int I, int N);

/* Subroutine to calculate the square distance between two particles */

double DISTSQ(double RXI, double RYI, double RZI, double LX, double LY,

double LZ, double RXJ, double RYJ, double RZJ);

/* Subroutine to calculate the virial term between two particles */

double VIRIJ(double RIJSQ, double SIGSQ);

/* Subroutine to calculate the potential between two particles */

double POTIJ(double RIJSQ, double SIGSQ);

/* Subroutine to generate a random number between 0 and 1 */

double RANF(int SEED[1]);

/*******************************************************************/

/*******************************************************************/

/* Main routine */

/*******************************************************************/

main(){

int STEP, NSTEPP, NSTEPE, I, J, N, NADJUST, NACCPT, CONT;

int SEED[1];

double SUMVSQ, V, RXIOLD, RYIOLD, RZIOLD, RXINEW, RYINEW, RZINEW;

double RIJSQ, RIJ, RCUT, RHO, T, RATIO, VN, VOLD, VNEW, DV, DVB, DRMAX;

double W, WOLD, WNEW, DW, Z, PRES, LX, LY, LZ;

double RX[MAX], RY[MAX], RZ[MAX];

char get[100], LOGFILE[40], CONFFILE[40], SCIFILE[40];

char MFILE[40], RATFILE[40], POSFILE[40], THERMOFILE[40], SYS[100];

time_t t1, t2;

FILE *IN, *OUT1, *OUT2, *OUT3, *LOGB;

(void) time(&t1);

scanf("%s", MFILE);

IN = fopen(MFILE, "r");

fscanf(IN, "%s", LOGFILE);

fscanf(IN, "%s", CONFFILE);

fscanf(IN, "%s", SCIFILE);

fscanf(IN, "%s", RATFILE);

fscanf(IN, "%s", POSFILE);

fscanf(IN, "%s", THERMOFILE);

fclose(IN);

LOGB = fopen(LOGFILE, "w");

fprintf(LOGB, "\n");

fprintf(LOGB, "\n\t SCHOOL OF ENGINEERING OF UNIVERSITY OF SAO PAULO \n");

fprintf(LOGB, "\n\t DEPARTAMENT OF CHEMICAL ENGINEERING \n");

fprintf(LOGB, "\n\t BIOPROCESS ENGINEERING GROUP \n");

fprintf(LOGB, "\n\t ............................................. ");

fprintf(LOGB, "\n\t : MONTE CARLO : ");

fprintf(LOGB, "\n\t :...........................................: \n");

fprintf(LOGB, " \n\t Developed by Luis Fernando Mercier Franco");

fprintf(LOGB, " \n\t Advisor: Prof. Dr. Pedro de Alcantara Pessoa Filho");
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fprintf(LOGB, " \n\t Processo FAPESP (2011/22070-5)\n\n");

/*******************************************************************/

/* Reading input files */

/*******************************************************************/

IN = fopen(CONFFILE, "r");

fscanf(IN, "%d", &N);

fscanf(IN, "%s", get);

for (J = 0; J < N; J++)

fscanf(IN, "%s %lf %lf %lf", get, &RX[J], &RY[J], &RZ[J]);

fclose(IN);

IN = fopen(SCIFILE, "r");

fscanf(IN, "%s", get);

fscanf(IN, "%s", SYS);

fscanf(IN, "%s", get);

fscanf(IN, "%lf", &LX);

fscanf(IN, "%s", get);

fscanf(IN, "%lf", &LY);

fscanf(IN, "%s", get);

fscanf(IN, "%lf", &LZ);

fscanf(IN, "%s", get);

fscanf(IN, "%lf", &T);

fscanf(IN, "%s", get);

fscanf(IN, "%d", &NSTEPE);

fscanf(IN, "%s", get);

fscanf(IN, "%d", &NSTEPP);

fscanf(IN, "%s", get);

fscanf(IN, "%lf", &DRMAX);

fscanf(IN, "%s", get);

fscanf(IN, "%lf", &RCUT);

fscanf(IN, "%s", get);

fscanf(IN, "%d", &NADJUST);

fclose(IN);

RHO = (1.0 * N) / LX / LY / LZ;

/*****************************************************************/

fprintf(LOGB, " Simulation Parameters: \n");

fprintf(LOGB, " Number of particles: %d\n", N);

fprintf(LOGB, " DRMAX*: %.2lf\n", DRMAX);

fprintf(LOGB, " RCUTOFF*: %.2lf\n", RCUT);

fprintf(LOGB, " RHO*: %.2lf\n\n\n", RHO);

fprintf(LOGB, " T*: %.2lf\n\n\n", T);

/*****************************************************************/

/* Inicialization of variables */

/*****************************************************************/

int NSTEP = NSTEPP + NSTEPE;

double RCUTSQ = RCUT * RCUT;

double BOXL = LX * LY * LZ;

double VOL = BOXL * BOXL * BOXL;

double SIGSQ = 1.0;

double SR3 = 1.0 / RCUT / RCUT / RCUT;
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double SR9 = SR3 * SR3 * SR3;

double VLRC12 = 8.0 * M_PI * RHO * (1.0 * N) * SR9 / 9.0;

double VLRC6 = -8.0 * M_PI * RHO * (1.0 * N) * SR3 / 3.0;

double VLRC = VLRC12 + VLRC6;

double WLRC12 = 4.0 * VLRC12;

double WLRC6 = 2.0 * VLRC6;

double WLRC = WLRC12 + WLRC6;

SEED[0] = 352450618;

/******************************************************************/

/******************************************************************/

/* Generation of new configuration (Metropolis algorithm) */

/******************************************************************/

TOTENERGY(RX, RY, RZ, RCUTSQ, LX, LY, LZ, SIGSQ, &V, &W, N);

V = V + VLRC;

W = W + WLRC;

OUT1 = fopen(RATFILE, "w");

OUT2 = fopen(POSFILE, "w");

OUT3 = fopen(THERMOFILE, "w");

NACCPT = 0;

CONT = 0;

for (STEP = 1; STEP <= NSTEP; STEP++){

for (I = 0; I < N; I++){

RXIOLD = RX[I];

RYIOLD = RY[I];

RZIOLD = RZ[I];

/* calculates the potential energy of OLD configuration */

ENERGY(RX, RY, RZ, RXIOLD, RYIOLD, RZIOLD, RCUTSQ,

LX, LY, LZ, SIGSQ, &VOLD, &WOLD, I, N);

/* moves particle i */

RXINEW = RXIOLD + (2.0 * RANF(SEED) - 1.0) * DRMAX;

RYINEW = RYIOLD + (2.0 * RANF(SEED) - 1.0) * DRMAX;

RZINEW = RZIOLD + (2.0 * RANF(SEED) - 1.0) * DRMAX;

/* selects central image */

RXINEW = RXINEW - LX * (1.0 * round(RXINEW / LX));

RYINEW = RYINEW - LY * (1.0 * round(RYINEW / LY));

RZINEW = RZINEW - LZ * (1.0 * round(RZINEW / LZ));

/* calculates the potential energy of NEW configuration */

ENERGY(RX, RY, RZ, RXINEW, RYINEW, RZINEW, RCUTSQ,

LX, LY, LZ, SIGSQ, &VNEW, &WNEW, I, N);

/* acceptance criterion */

DV = VNEW - VOLD;

DW = WNEW - WOLD;

DVB = DV / T;

if (DVB < 75.0){

if (DV <= 0.0){

V = V + DV;

W = W + DW;

RX[I] = RXINEW;
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RY[I] = RYINEW;

RZ[I] = RZINEW;

NACCPT = NACCPT + 1;

}

else{

if (exp(-1.0 * DVB) > RANF(SEED)){

V = V + DV;

W = W + DW;

RX[I] = RXINEW;

RY[I] = RYINEW;

RZ[I] = RZINEW;

NACCPT = NACCPT + 1;

}

}

}

VN = V / (1.0 * N);

CONT = CONT + 1;

PRES = RHO * T + W / VOL;

Z = PRES / RHO / T;

if (CONT % NADJUST == 0){

RATIO = (1.0 * NACCPT) / (1.0 * NADJUST);

fprintf(OUT1, "%d %lf %lf\n", CONT, RATIO, DRMAX);

if (RATIO > 0.45)

DRMAX = DRMAX * 1.05;

else

DRMAX = DRMAX * 0.95;

NACCPT = 0;

}

}

fprintf(OUT3, "\t %d %lf %lf %lf\n", STEP, VN, Z, PRES);

printf("\t %d %lf %lf %lf\n", STEP, VN, Z, PRES);

/* save configurations */

if (CONT > NSTEPE * N){

fprintf(OUT2, "%d\n", N);

fprintf(OUT2, "%s\n", SYS);

for (J = 0; J < N; J++)

fprintf(OUT2, "C %e %e %e\n", RX[J], RY[J], RZ[J]);

}

}

fclose(OUT1);

fclose(OUT2);

fclose(OUT3);

/********************************************************************/

(void) time(&t2);

printf("\n\n Execution time = %ld seconds\n", (int) t2-t1);

fprintf(LOGB, "\n\n Execution time = %ld seconds\n", (int) t2-t1);

/********************************************************************/

return 0;
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}

void TOTENERGY(double RX[MAX], double RY[MAX], double RZ[MAX],

double RCUTSQ, double LX, double LY, double LZ, double SIGSQ,

double *V, double *W, int N){

int I, J;

double RXI, RYI, RZI, RIJSQ;

*V = 0.0;

*W = 0.0;

for (I = 0; I < N; I++){

RXI = RX[I];

RYI = RY[I];

RZI = RZ[I];

for (J = I + 1; J < N; J++){

RIJSQ = DISTSQ(RXI, RYI, RZI, LX, LY, LZ,

RX[J], RY[J], RZ[J]);

/* imposes the radius of cut-off */

if (RIJSQ <= RCUTSQ){

*V = *V + POTIJ(RIJSQ, SIGSQ);

*W = *W + VIRIJ(RIJSQ, SIGSQ);

}

}

}

}

void ENERGY(double RX[MAX], double RY[MAX], double RZ[MAX],

double RXI, double RYI, double RZI,

double RCUTSQ, double LX, double LY, double LZ, double SIGSQ,

double *V, double *W, int I, int N){

int J;

double RIJSQ;

*V = 0.0;

*W = 0.0;

for (J = 0; J < N; J++){

if (I != J){

RIJSQ = DISTSQ(RXI, RYI, RZI, LX, LY, LZ, RX[J], RY[J], RZ[J]);

/* imposes the radius of cut-off */

if (RIJSQ <= RCUTSQ){

*V = *V + POTIJ(RIJSQ, SIGSQ);

*W = *W + VIRIJ(RIJSQ, SIGSQ);

}

}

}

}

double DISTSQ(double RXI, double RYI, double RZI, double LX, double LY,

double LZ, double RXJ, double RYJ, double RZJ){

/* calculates distance in x, y and z for each ij pair */

double RXIJ = RXI - RXJ;
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double RYIJ = RYI - RYJ;

double RZIJ = RZI - RZJ;

/* applies minimum image convention */

RXIJ = RXIJ - LX * (1.0 * round(RXIJ / LX));

RYIJ = RYIJ - LY * (1.0 * round(RYIJ / LY));

RZIJ = RZIJ - LZ * (1.0 * round(RZIJ / LZ));

/* calculates the square distance between i and j */

double RIJSQ = RXIJ * RXIJ + RYIJ * RYIJ + RZIJ * RZIJ;

return RIJSQ;

}

double VIRIJ(double RIJSQ, double SIGSQ){

/* calculates the virial */

double DIST = RIJSQ / SIGSQ;

double SR2 = 1.0 / DIST;

double SR6 = SR2 * SR2 * SR2;

double WIJ = 48.0 * SR6 * (SR6 - 0.5) / 3.0;

return WIJ;

}

double POTIJ(double RIJSQ, double SIGSQ){

/* calculates the interparticle potential (Lennard-Jones) */

double DIST = RIJSQ / SIGSQ;

double SR2 = 1.0 / DIST;

double SR6 = SR2 * SR2 * SR2;

double VIJ = 4.0 * SR6 * (SR6 - 1.0);

return VIJ;

}

double RANF(int SEED[1]){

int L = 1029;

int C = 221591;

int M = 1048576;

SEED[0] = (SEED[0] * L + C) % M;

double FUN = (1.0 * SEED[0]) / (1.0 * M);

return FUN;

}



169

C.3 Code to calculate the structure factor and the

radial distribution function

/******************************************************************************/

/* School of Engineering - University of São Paulo - Brazil */

/* Bioprocess Engineering Group - Department of Chemical Engineering */

/* Calculus of g(r) and S(q) */

/* Developed by: Luís Fernando Mercier Franco */

/* Advisor: Prof. Dr. Pedro de Alcântara Pessôa Filho */

/* Processos FAPESP: 2011/22070-5 and 2013/01857-2 */

/* February 7th, 2014 */

/* Reference: D. Frenkel, R. J. Vos, C. G. Kruif, A. Vrij, J. Chem. Phys., 84*/

/* (1986) 4625-4630. */

/* L. Cannavaciuolo, C. Sommer, J. S. Pedersen, P. Schurtenberger,*/

/* Phys. Rev. E, 62 (2000) 5409-5419. */

/******************************************************************************/

/******************************************************************************/

/* Supporting Information: */

/* */

/* 1) To compile, save this file as "SQ.c", then */

/* in the terminal: */

/* > gcc SQ.c -o SQ.exe -lm */

/* */

/* 2) To run the code: */

/* > echo NUBER_OF_PARTICLES MASTER_FILE_NAME | ./SQ.exe */

/* */

/* 3) The authors do not accept any liability for the use of this */

/* program. */

/* */

/* Note: This code requires a file called ``dir.in'' (at the same directory*/

/* as the executable file) with the 13 independent directions. */

/* Such file must be exactly as the following example: */

/* */

/* 1.0 0.0 0.0 */

/* 0.0 1.0 0.0 */

/* 0.0 0.0 1.0 */

/* 1.0 1.0 0.0 */

/* 1.0 0.0 1.0 */

/* 0.0 1.0 1.0 */

/* -1.0 1.0 0.0 */

/* 1.0 0.0 -1.0 */

/* 0.0 1.0 -1.0 */

/* 1.0 1.0 1.0 */

/* -1.0 1.0 1.0 */

/* 1.0 -1.0 1.0 */

/* 1.0 1.0 -1.0 */

/******************************************************************************/

#include <stdlib.h>

#include <stdio.h>

#include <math.h>
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#include <time.h>

#define MAX 3000

#define MAXP 40

#define MAXP2 80

#define MAXP3 120

#define MAXBIN 300

/*******************************************************************/

/* Declaration of subroutines */

/*******************************************************************/

/* calculates the histogram for radial distribution function */

void GOFR(double RX[MAX], double RY[MAX], double RZ[MAX], double BOXL,

double DELR, int HIST[MAX], int N);

/* calculates the structure factor of a configuration */

void SQ(double RX[MAX], double RY[MAX], double RZ[MAX], double BOXL,

double S[MAXP3], double MD[13][3], int N);

/* feeds the direction matrix for the structure factor calculation */

void DIRECTIONS(double MD[13][3]);

/* arranges the scattering vector in order */

void ORDENA(double Q[MAXP3], double SM[MAXP3], double SIG[MAXP3]);

/*******************************************************************/

/*******************************************************************/

/* Main function */

/*******************************************************************/

main(){

int STEP, NSTEPE, NSTEP, I, J, N, P, PP, BIN;

int HIST[MAX];

double BOXL, TR, LX, LY, LZ, RHO, VOL, DELR, RLOWER, RUPPER, NIDEAL;

double RX[MAX], RY[MAX], RZ[MAX], S[MAXP3], Q[MAXP3], MD[13][3];

double SM[MAXP3], SIG[MAXP3], GR[MAX];

char get[100], LOGFILE[40], CONFFILE[40], SCIFILE[40];

char MFILE[40], RATFILE[40], POSFILE[40], THERMOFILE[40], GRFILE[40];

char SQFILE[40], SYS[100];

time_t t1, t2;

FILE *IN, *OUT;

(void) time(&t1);

/*******************************************************************/

/* Reads input files */

/*******************************************************************/

scanf("%d %s", &N, MFILE);

IN = fopen(MFILE, "r");

fscanf(IN, "%s", LOGFILE);

fscanf(IN, "%s", CONFFILE);

fscanf(IN, "%s", SCIFILE);

fscanf(IN, "%s", RATFILE);

fscanf(IN, "%s", POSFILE);
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fscanf(IN, "%s", THERMOFILE);

fscanf(IN, "%s", GRFILE);

fscanf(IN, "%s", SQFILE);

fclose(IN);

IN = fopen(SCIFILE, "r");

fscanf(IN, "%s", get);

fscanf(IN, "%s", SYS);

fscanf(IN, "%s", get);

fscanf(IN, "%lf", &LX);

fscanf(IN, "%s", get);

fscanf(IN, "%lf", &LY);

fscanf(IN, "%s", get);

fscanf(IN, "%lf", &LZ);

fscanf(IN, "%s", get);

fscanf(IN, "%lf", &TR);

fscanf(IN, "%s", get);

fscanf(IN, "%d", &NSTEPE);

fscanf(IN, "%s", get);

fscanf(IN, "%d", &NSTEP);

fclose(IN);

/*****************************************************************/

/*****************************************************************/

/* Initialization of variables */

/*****************************************************************/

BOXL = LX * LY * LZ;

VOL = BOXL * BOXL * BOXL;

DELR = BOXL / 2.0 / (1.0 * MAXBIN);

for (BIN = 1; BIN < MAXBIN; BIN++)

HIST[BIN] = 0;

DIRECTIONS(MD);

for (P = 0; P < MAXP3; P++){

SM[P] = 0.0;

SIG[P] = 0.0;

}

P = 1;

for (PP = 0; PP < MAXP; PP++){

Q[PP] = (2.0 * P) * M_PI / BOXL; /* Family [100] */

P++;

}

P = 1;

for (PP = MAXP; PP < MAXP2; PP++){

Q[PP] = (2.0 * P) * M_PI * M_SQRT2 / BOXL; /* Family [110] */

P++;

}

P = 1;

for (PP = MAXP2; PP < MAXP3; PP++){

Q[PP] = (2.0 * P) * M_PI * sqrt(3.0) / BOXL; /* Family [111] */

P++;

}

/******************************************************************/

/*******************************************************************/

/* Calculus of S(q) */
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/*******************************************************************/

IN = fopen(POSFILE, "r");

for (STEP = 1; STEP <= NSTEP; STEP++){

fscanf(IN, "%d", &N);

fscanf(IN, "%s", get);

for (J = 0; J < N; J++)

fscanf(IN, "%s %lf %lf %lf", get, &RX[J], &RY[J], &RZ[J]);

SQ(RX, RY, RZ, BOXL, S, MD, N);

for (P = 0; P < MAXP3; P++)

SM[P] = SM[P] + S[P];

}

fclose(IN);

for (P = 0; P < MAXP3; P++)

SM[P] = SM[P] / (1.0 * N * NSTEP);

IN = fopen(POSFILE, "r");

for (STEP = 1; STEP <= NSTEP; STEP++){

fscanf(IN, "%d", &N);

fscanf(IN, "%s", get);

for (J = 0; J < N; J++)

fscanf(IN, "%s %lf %lf %lf", get, &RX[J], &RY[J], &RZ[J]);

GOFR(RX, RY, RZ, BOXL, DELR, HIST, N);

SQ(RX, RY, RZ, BOXL, S, MD, N);

for (P = 0; P < MAXP3; P++)

SIG[P] = SIG[P] + (S[P] / (1.0 * N) - SM[P]) *

(S[P] / (1.0 * N) - SM[P]);

}

fclose(IN);

for (P = 0; P < MAXP3; P++)

SIG[P] = sqrt(SIG[P] / (1.0 * N * NSTEP));

ORDENA(Q, SM, SIG);

OUT = fopen(GRFILE, "w");

double CONST = 4.0 * M_PI * N / VOL / 3.0;

for (BIN = 1; BIN < MAXBIN; BIN++){

RLOWER = 1.0 * (BIN - 1) * DELR;

RUPPER = RLOWER + DELR;

NIDEAL = CONST * (pow(RUPPER, 3.0) - pow(RLOWER, 3.0));

GR[BIN] = 1.0 * HIST[BIN] / (1.0 * NSTEP) / (1.0 * N) / NIDEAL;

fprintf(OUT, "%lf %lf\n", 1.0 * BIN * DELR, GR[BIN]);

}

fclose(OUT);

OUT = fopen(SQFILE, "w");

for (P = 0; P < MAXP3; P++)

fprintf(OUT, "%lf %lf %lf %lf\n", 1.0 / TR, Q[P], SM[P], SIG[P]);

fclose(OUT);

/********************************************************************/

(void) time(&t2);

printf("\n\n Execution time = %ld seconds\n", (int) t2-t1);

/********************************************************************/

return 0;

}
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void GOFR(double RX[MAX], double RY[MAX], double RZ[MAX], double BOXL,

double DELR, int HIST[MAX], int N){

int I, J, BIN;

double RXI, RYI, RZI, RIJ, RXIJ, RYIJ, RZIJ, RIJSQ;

for (I = 0; I < N - 1; I++){

RXI = RX[I];

RYI = RY[I];

RZI = RZ[I];

for (J = I + 1; J < N; J++){

RXIJ = RXI - RX[J];

RYIJ = RYI - RY[J];

RZIJ = RZI - RZ[J];

RXIJ = RXIJ - BOXL * (1.0 * round(RXIJ / BOXL));

RYIJ = RYIJ - BOXL * (1.0 * round(RYIJ / BOXL));

RZIJ = RZIJ - BOXL * (1.0 * round(RZIJ / BOXL));

RIJSQ = RXIJ * RXIJ + RYIJ * RYIJ + RZIJ * RZIJ;

RIJ = sqrt(RIJSQ);

BIN = (int)(RIJ / DELR) + 1;

if (BIN <= MAXBIN)

HIST[BIN] = HIST[BIN] + 2;

}

}

}

void SQ(double RX[MAX], double RY[MAX], double RZ[MAX], double BOXL,

double S[MAXP3], double MD[13][3], int N){

int F, J, P, PP;

double H, K, L, SCOSA, SSENA, SCOSB, SSENB, COSAJ, SENAJ;

double COSBJ, SENBJ, COSBI, SENBI, RXJ, RYJ, RZJ;

double COSA[MAX], SENA[MAX], COSB[MAX], SENB[MAX], SQF[13][MAX];

for (F = 0; F < 13; F++){

H = MD[F][0];

K = MD[F][1];

L = MD[F][2];

SCOSA = 0.0;

SSENA = 0.0;

SCOSB = 0.0;

SSENB = 0.0;

for (J = 0; J < N; J++){

RXJ = RX[J];

RYJ = RY[J];

RZJ = RZ[J];

COSAJ = cos(2.0 * M_PI * (H * RXJ + K * RYJ + L * RZJ) / BOXL);

SENAJ = sin(2.0 * M_PI * (H * RXJ + K * RYJ + L * RZJ) / BOXL);
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COSBJ = 2.0 * COSAJ * COSAJ - 1.0;

SENBJ = 2.0 * SENAJ * COSAJ;

SCOSA = SCOSA + COSAJ;

SSENA = SSENA + SENAJ;

SCOSB = SCOSB + COSBJ;

SSENB = SSENB + SENBJ;

COSA[J] = COSAJ;

SENA[J] = SENAJ;

COSB[J] = COSBJ;

SENB[J] = SENBJ;

}

SQF[F][0] = SCOSA * SCOSA + SSENA * SSENA;

SQF[F][1] = SCOSB * SCOSB + SSENB * SSENB;

for (P = 2; P < MAXP; P++){

SCOSB = 0.0;

SSENB = 0.0;

for (J = 0; J < N; J++){

COSAJ = COSA[J];

SENAJ = SENA[J];

COSBJ = COSB[J];

SENBJ = SENB[J];

COSBI = COSAJ * COSBJ - SENAJ * SENBJ;

SENBI = SENAJ * COSBJ + COSAJ * SENBJ;

SCOSB = SCOSB + COSBI;

SSENB = SSENB + SENBI;

COSB[J] = COSBI;

SENB[J] = SENBI;

}

SQF[F][P] = SCOSB * SCOSB + SSENB * SSENB;

}

}

/* Average over family [100] */

for (P = 0; P < MAXP; P++){

S[P] = 0.0;

for (F = 0; F < 3; F++)

S[P] = S[P] + SQF[F][P];

S[P] = S[P] / 3.0;

}

/* Average over family [110] */

PP = 0;

for (P = MAXP; P < MAXP2; P++){

S[P] = 0.0;

for (F = 3; F < 9; F++)

S[P] = S[P] + SQF[F][PP];

S[P] = S[P] / 6.0;

PP++;

}

/* Average over family [111] */

PP = 0;

for (P = MAXP2; P < MAXP3; P++){

S[P] = 0.0;

for (F = 9; F < 13; F++)

S[P] = S[P] + SQF[F][PP];

S[P] = S[P] / 4.0;

PP++;

}
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}

void DIRECTIONS(double MD[13][3]){

int I, J;

FILE *IN;

IN = fopen("dir.in", "r");

for (I = 0; I < 13; I++)

for (J = 0; J < 3; J++)

fscanf(IN, "%lf", &MD[I][J]);

fclose(IN);

}

void ORDENA(double Q[MAXP3], double SM[MAXP3], double SIG[MAXP3]){

int P;

double AUX, AUX2, AUX3;

for (P = 1; P < MAXP3; P++){

while ((P != 0) && (Q[P] < Q[P-1])){

AUX = Q[P];

AUX2 = SM[P];

AUX3 = SIG[P];

Q[P] = Q[P-1];

SM[P] = SM[P-1];

SIG[P] = SIG[P-1];

Q[P-1] = AUX;

SM[P-1] = AUX2;

SIG[P-1] = AUX3;

P--;

}

}

}

C.4 Code to calculate local particle density along

z-direction

/******************************************************************************/

/* School of Engineering - University of São Paulo - Brazil */

/* Bioprocess Engineering Group - Department of Chemical Engineering */

/* Calculus of local particle density along z-direction */

/* Developed by: Luís Fernando Mercier Franco */

/* Advisor: Prof. Dr. Pedro de Alcântara Pessôa Filho */

/* Processos FAPESP: 2011/22070-5 and 2013/01857-2 */

/* September 1st, 2015 */

/******************************************************************************/
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/******************************************************************************/

/* Supporting Information: */

/* */

/* 1) To compile, save this file as "LPD.c", then */

/* in the terminal: */

/* > gcc LPD.c -o LPD.exe -lm */

/* */

/* 2) To run the code: */

/* > echo NUBER_OF_PARTICLES MASTER_FILE_NAME | ./LPD.exe */

/* */

/* 3) The authors do not accept any liability for the use of this */

/* program. */

/*******************************************************************************/

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

#include <time.h>

#define MAX 3000

#define MAXBIN 800

/*******************************************************************/

/* Declaration of subroutines */

/*******************************************************************/

void LPD(double RZ[MAX], double LZ,

double DELZ, int HIST[MAX], int N);

/*******************************************************************/

/* Main routine */

/*******************************************************************/

main(){

int STEP, NSTEPE, NSTEP, I, J, N, BIN;

int HIST[MAX];

double LX, LY, LZ, TR, RHO, VOL, DELZ;

double RX[MAX], RY[MAX], RZ[MAX], GR[MAX];

char get[100], LOGFILE[40], CONFFILE[40], SCIFILE[40];

char MFILE[40], RATFILE[40], POSFILE[40], THERMOFILE[40], GRFILE[40];

char SQFILE[40], SYS[100], LPD[40];

time_t t1, t2;

FILE *IN, *OUT;

(void) time(&t1);

/*******************************************************************/

/* Reads input files */

/*******************************************************************/

scanf("%d %s", &N, MFILE);

IN = fopen(MFILE, "r");

fscanf(IN, "%s", LOGFILE);

fscanf(IN, "%s", CONFFILE);

fscanf(IN, "%s", SCIFILE);

fscanf(IN, "%s", RATFILE);

fscanf(IN, "%s", POSFILE);
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fscanf(IN, "%s", THERMOFILE);

fscanf(IN, "%s", GRFILE);

fscanf(IN, "%s", SQFILE);

fscanf(IN, "%s", LPDFILE);

fclose(IN);

IN = fopen(SCIFILE, "r");

fscanf(IN, "%s", get);

fscanf(IN, "%s", SYS);

fscanf(IN, "%s", get);

fscanf(IN, "%lf", &LX);

fscanf(IN, "%s", get);

fscanf(IN, "%lf", &LY);

fscanf(IN, "%s", get);

fscanf(IN, "%lf", &LZ);

fscanf(IN, "%s", get);

fscanf(IN, "%lf", &TR);

fscanf(IN, "%s", get);

fscanf(IN, "%d", &NSTEPE);

fscanf(IN, "%s", get);

fscanf(IN, "%d", &NSTEP);

fclose(IN);

/*****************************************************************/

/*****************************************************************/

/* Initialization of variables */

/*****************************************************************/

VOL = LX * LY * LZ;

DELZ = LZ / (1.0 * MAXBIN);

for (BIN = 1; BIN < MAXBIN; BIN++)

HIST[BIN] = 0;

/******************************************************************/

/********************************************************************/

/* Calculus of local particle density, d(z) */

/********************************************************************/

IN = fopen(POSFILE, "r");

for (STEP = 1; STEP <= NSTEP; STEP++){

fscanf(IN, "%d", &N);

fscanf(IN, "%s", get);

for (J = 0; J < N; J++)

fscanf(IN, "%s %lf %lf %lf", get, &RX[J], &RY[J], &RZ[J]);

LPD(RZ, LZ, DELZ, HIST, N);

}

fclose(IN);

OUT = fopen(LPDFILE, "w");

for (BIN = 1; BIN < MAXBIN; BIN++){

GR[BIN] = 1.0 * HIST[BIN] / (1.0 * NSTEP) / LX / LY / DELZ;

fprintf(OUT, "%lf %lf\n", 1.0 * BIN * DELZ, GR[BIN]);

}

fclose(OUT);

/********************************************************************/

(void) time(&t2);
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printf("\n\n Execution time = %ld seconds\n", (int) t2-t1);

/********************************************************************/

return 0;

}

void LPD(double RZ[MAX], double LZ,

double DELZ, int HIST[MAX], int N){

int J, BIN;

double RZJ;

for (J = 0; J < N; J++){

RZJ = RZ[J];

BIN = (int)((RZJ + LZ / 2.0) / DELZ) + 1;

if (BIN <= MAXBIN)

HIST[BIN] = HIST[BIN] + 1;

}

}
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APPENDIX D -- CODE FOR NELDER

AND MEAD

ALGORITHM

/******************************************************************************/

/* School of Engineering - University of São Paulo - Brazil */

/* Bioprocess Engineering Group - Department of Chemical Engineering */

/* Calculus of local particle density along z-direction */

/* Developed by: Luís Fernando Mercier Franco */

/* Advisor: Prof. Dr. Pedro de Alcântara Pessôa Filho */

/* Processos FAPESP: 2011/22070-5 and 2013/01857-2 */

/* February 12th, 2014 */

/* Reference: J.A. Nelder, R.A. Mead, Comp. J. 7 (1965) 308-313. */

/******************************************************************************/

/******************************************************************************/

/* Supporting Information: */

/* */

/* 1) An input file is needed following the same structure as this example:*/

/* */

/* #Number_of_parameters: */

/* 2 */

/* #Initial_estimative: */

/* -1.2 */

/* 1.0 */

/* #MIN_and_MAX_values: */

/* -10.0 10.0 */

/* -10.0 10.0 */

/* */

/* 2) To compile, save this file as "ADJ.c", then */

/* in the terminal: */

/* > gcc ADJ.c -o ADJ.exe -lm */

/* */

/* 3) To run the code: */

/* > echo INPUT_FILE_NAME | ./ADJ.exe */

/* */

/* 4) The authors do not accept any liability for the use of this */

/* program. */

/* */

/* Note: this code is supposed to be a optimization program. Here, the */

/* function to be minimized is the Rosenbrock's parabolic valley: */
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/* f(x) = 100(x2-x1^2)^2 + (1-x1)^2. Obviously, to */

/* use this code for other functions one ought to alter the code */

/* and write in proper C sintaxe the new function. */

/******************************************************************************/

#include <stdio.h>

#include <math.h>

#define NPM 100

double OF(double LAMBDA[NPM], int N);

main(){

int J, N, LS;

double X1[NPM], X2[NPM], X3[NPM], XK[NPM], XMIN[NPM], XMAX[NPM], EMAX[NPM];

double EFAC, Y, Y1, YSTAR, YTEST, YBASE;

char get[40], NFILE[40];

FILE *INP, *OUT;

/**************************************************************************/

/* Reading the file name and the initial estimative */

/**************************************************************************/

scanf("%s", NFILE);

printf("\n Reading the input file...\n");

INP = fopen(NFILE, "r");

fscanf(INP, "%s", get);

fscanf(INP, "%d", &N);

fscanf(INP, "%s", get);

for (J = 0; J < N; J++){

fscanf(INP, "%lf", &X1[J]);

}

fscanf(INP, "%s", get);

for (J = 0; J < N; J++){

fscanf(INP, "%lf", &XMIN[J]);

fscanf(INP, "%lf", &XMAX[J]);

}

fclose(INP);

/**************************************************************************/

/**************************************************************************/

/* Minimization of the object function */

/**************************************************************************/

printf(" Minimizating the object function...\n");

EFAC = pow(10.0, -3.0);

Y = OF(X1, N);

for (J = 0; J < N; J++){

XK[J] = 1.0;

EMAX[J] = 0.01 * (XMAX[J]-XMIN[J]);

X2[J] = X1[J];

X3[J] = X1[J];

}

YSTAR = Y;

LS = 0;

P100:

YTEST = YSTAR;

for (J = 0; J < N; J++){
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if (X1[J] >= XMAX[J] && XK[J] > 0.0) goto P1010;

if (X1[J] <= XMIN[J] && XK[J] < 0.0) goto P1010;

X2[J] = X1[J] + XK[J] * EMAX[J];

if (X2[J] > XMAX[J]) X2[J] = XMAX[J];

if (X2[J] < XMIN[J]) X2[J] = XMIN[J];

Y1 = OF(X2, N);

if (Y1 >= YTEST) goto P1010;

XK[J] = 2.0 * XK[J];

if (XK[J] > 1.0) XK[J] = 1.0;

if (XK[J] < -1.0) XK[J] = -1.0;

goto P103;

P1010:

if (X1[J] <= XMIN[J] && XK[J] > 0.0) goto P1011;

if (X1[J] >= XMAX[J] && XK[J] < 0.0) goto P1011;

X2[J] = X1[J] - XK[J] * EMAX[J];

if (X2[J] < XMIN[J]) X2[J] = XMIN[J];

if (X2[J] > XMAX[J]) X2[J] = XMAX[J];

Y1 = OF(X2, N);

if (Y1 >= YTEST) goto P1011;

XK[J] = -1.0 * XK[J];

goto P103;

P1011:

X2[J] = X1[J];

XK[J] = 0.5 * XK[J];

if (XK[J] < 0.0) goto P1015;

if (XK[J] < 0.5 * EFAC) XK[J] = 0.5 * EFAC;

goto P1018;

P1015:

if (fabs(XK[J]) < 0.5 * EFAC) XK[J] = -0.5 * EFAC;

P1018:

Y1 = YTEST;

P103:

YTEST = Y1;

}

if (LS == 1) goto P350;

YBASE = YTEST;

if (YBASE < YSTAR) goto P300;

for (J = 0; J < N; J++)

if (fabs(XK[J]) > 0.5 * EFAC) goto P100;

goto P600;

P300:

for (J = 0; J < N; J++){

X1[J] = X3[J] + 2.0 * (X2[J] - X3[J]);

if (X1[J] < XMIN[J]) X1[J] = XMIN[J];

if (X1[J] > XMAX[J]) X1[J] = XMAX[J];

X3[J] = X2[J];

X2[J] = X1[J];

}

YSTAR = OF(X1, N);

LS = 1;

goto P100;

P350:

LS = 0;

if (YTEST >= YBASE) goto P500;

YBASE = YTEST;

goto P300;
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P500:

for (J = 0; J < N; J++){

X1[J] = X3[J];

X2[J] = X1[J];

}

YSTAR = YBASE;

goto P100;

P600:

Y = OF(X1, N);

printf(" The solution is:\n\n");

for (J = 0; J < N; J++)

printf(" X[%d] = %e\n", J + 1, X1[J]);

printf(" The optimum value is: Y = %e\n\n", Y);

printf(" The calculation is ended...\n\n");

return 0;

}

double OF(double PAR[NPM], int N){

double F;

double X1 = PAR[0];

double X2 = PAR[1];

F = 100.0 * (X2 - X1 * X1) * (X2 - X1 * X1) + (1.0 - X1) * (1.0 - X1);

return F;

}
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APPENDIX E -- CODE FOR PHASE

ENVELOPE

CALCULATION

The following code is written in FORTRAN 77. It has been successfully

compiled with gfortran and it has been successfully executed in Linux.

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C School of Engineering - University of São Paulo - Brazil C

C Bioprocess Engineering Group - Department of Chemical Engineering C

C Phase envelope calculation considering the osmotic pressure C

C derived by Franco et al. (2015) C

C Developed by: Luís Fernando Mercier Franco C

C Advisor: Prof. Dr. Pedro de Alcântara Pessôa Filho C

C Processos FAPESP: 2011/22070-5 and 2013/01857-2 C

C July 22nd, 2015 C

C Reference: Franco, LFM; Oliveira, CLP; Pessôa Filho, PA. C

C Thermodynamics of protein solutions: from the structure C

C factor to the osmotic pressure, AIChE J, 2015 (in press)C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C Supporting Information: C

C C

C 1) To use the program an input file is required. The following C

C is an example: C

C C

C TREF = 23.0 C

C TMIN = -149.0 C

C TMAX = -126.0 C

C LAMDA = 0.1 C

C EPS0 = 2.32 C

C EPS1 = 11.10 C

C C

C TREF is the reference temperature at which the potential C

C parameter was fitted. TMIN and TMAX are the minimum and C

C the maximum temperature for the calculation of the coexistence C

C curve. Attention must be paid lest the maximum temperature C
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C exceeds the critical temperature. LAMDA is the lambda value C

C used in the loop of equilibrium pressure to guarantee C

C the convergence. EPS0 and EPS1 are the potential parameters. C

C C

C 2) There are three output files: "dens.dat", pressure.dat", C

C "volume.dat" and "crit.dat". C

C In the very first one, the phase envelope is printed: C

C the temperature in Kelvin on the first column and the protein C

C concentration in mg/mL of equilibirum on the second column. On C

C the third column is plotted the protein concentration in mg/mL C

C of the spinodal curve. C

C In the second file ("pressure.dat"), the temperature in Kelvin,C

C the pressure in Pascal and also the values of the difference C

C between the chemical potential of the two phases and the value C

C of PSI used in Maxwell area rule. C

C In the third file ("volume.dat"), the temperature in Kelvin, C

C the volumes of the light and heavy phases in m3/mol as well as C

C the difference of chemical potential between thw two phases C

C are stored. C

C The last file ("crit.dat") shows the critical point data. C

C C

C 3) The authors do not accept any liability for the use of this C

C program. C

C C

C Note: this code is written specifically to Bovine Serum AlbuminC

C and because of it the molar mass is fixed to be 66.5 kDa.C

C If one wants to run to other proteins, one must change C

C the MM value (always in kDa). C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

PROGRAM MAIN

INTEGER N, NMAX, J, K

REAL TOL, TREF, T, EF1, EF2, ZETA, TMAX, ATT0, ATT1, RF

REAL ALPHA, EPS0, EPS1, PIN, EMAX, EMIN, PSI, LAMBDA, VL, VH

REAL MM, NA, KB, SIG, PI, PRES, DMUR, TMIN, PC, VC, CC, FAC

REAL TEMP(10000), HEAV(10000), LIGH(10000)

REAL SPIH(10000), SPIL(10000)

CHARACTER DUM*8, FNAME*15

COMMON EPS0, EPS1, ZETA, T

TOL = 10.0**(-5.0)

READ(*,300) FNAME

OPEN(1,FILE=FNAME)

READ(1,200) DUM, TREF

READ(1,200) DUM, T

READ(1,200) DUM, TMAX

READ(1,200) DUM, LAMBDA

READ(1,200) DUM, ATT0

READ(1,200) DUM, ATT1

CLOSE(1)

MM = 66.5

NA = 6.0221314

KB = 1.3806488

SIG = 63.3967351934

PI = 3.14159265359

FAC = 6.0*MM/PI/SIG**3.0/NA*10.0**7.0
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NMAX = 1000

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C Loop of temperature C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

OPEN(2,FILE='pressure.dat')

OPEN(8,FILE='volume.dat')

K = 1

DO WHILE (T .LT. TMAX)

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C Inflexion point C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

EPS0 = ATT0 * (273.15 + TREF) / (273.15 + T)

EPS1 = ATT1 * (273.15 + TREF) / (273.15 + T)

PIN = 0.1

DO WHILE (ABS(SDER(PIN)) .GT. TOL)

PIN = PIN - SDER(PIN) / TDER(PIN)

END DO

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C Maximum and minimum pressure C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

EMAX = 0.5 * PIN

DO WHILE (ABS(FDER(EMAX)) .GT. TOL)

EMAX = EMAX - FDER(EMAX) / SDER(EMAX)

END DO

EMIN = 2.0 * PIN

DO WHILE (ABS(FDER(EMIN)) .GT. TOL)

EMIN = EMIN - FDER(EMIN) / SDER(EMIN)

END DO

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C Loop of equilibrium pressure C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

ZETA = 0.5

ZMAX = FUN(EMAX) + ZETA

ZMIN = FUN(EMIN) + ZETA

IF (ZMIN .LT. 0.0) THEN

ZETA = ZMAX / 2.0

ELSE

ZETA = (ZMAX + ZMIN) / 2.0

END IF

EF1 = 0.9 * EMAX

DO WHILE (ABS(FUN(EF1)) .GT. TOL)

EF1 = EF1 - FUN(EF1) / FDER(EF1)

END DO

EF2 = 2.0 * EMIN

DO WHILE (ABS(FUN(EF2)) .GT. TOL)

EF2 = EF2 - FUN(EF2) / FDER(EF2)

END DO

PSI = ZETA*(EF2-EF1)-PHI(EF2)+PHI(EF1)

DO WHILE(ABS(PSI) .GT. TOL)

RF = (EF2/EF1)*EXP(CSI(EF1)-CSI(EF2))

ZETA = ZETA*RF**LAMBDA

IF (ZETA .GT. ZMAX) THEN

ZETA = (ZETA - ZMAX) / (ZETA + ZMAX)

END IF

IF (ZETA .LT. ZMIN) THEN
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IF (ZMIN .LT. 0.0) THEN

ZETA = ZMAX / 2.0

ELSE

ZETA = (ZETA + ZMAX) / 2.0

END IF

END IF

EF1 = 0.01 * EMAX

DO WHILE (ABS(FUN(EF1)) .GT. TOL)

EF1 = EF1 - FUN(EF1) / FDER(EF1)

END DO

EF2 = 1.1 * EMIN

DO WHILE (ABS(FUN(EF2)) .GT. TOL)

EF2 = EF2 - FUN(EF2) / FDER(EF2)

END DO

PSI = ZETA*(EF2-EF1)-PHI(EF2)+PHI(EF1)

END DO

TEMP(K) = T + 273.15

LIGH(K) = EF1*FAC

HEAV(K) = EF2*FAC

SPIL(K) = EMAX*FAC

SPIH(K) = EMIN*FAC

VL = MM/LIGH(K)

VH = MM/HEAV(K)

PRES = 6.0*ZETA*(T+273.15)*KB/SIG**3.0/PI*10.0**7.0

DMUR = (LOG(EF1/EF2) + CSI(EF1) - CSI(EF2))*NA*KB*(T+273.15)

WRITE(2,100), T+273.15, PRES, DMUR, PSI

WRITE(8,100), T+273.15, VL, VH, DMUR

T = T + 0.1

K = K + 1

END DO

CLOSE(2)

CLOSE(8)

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C Critical point C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

TMIN = TMAX - 5

TMAX = TMAX + 5

N = 1

ZETA = 0.0

DO WHILE (N .LE. NMAX)

T = (TMAX + TMIN) / 2.0

EPS0 = ATT0 * (273.15 + TREF) / (273.15 + T)

EPS1 = ATT1 * (273.15 + TREF) / (273.15 + T)

PIN = 0.001

DO WHILE (ABS(SDER(PIN)) .GT. TOL)

PIN = PIN - SDER(PIN) / TDER(PIN)

END DO

IF (ABS(FDER(PIN)) .LE. TOL) THEN

ETAC = PIN

TC = T + 273.15

PC = FUN(ETAC) + ZETA

GO TO 400

END IF

N = N + 1

IF (FDER(PIN) .LT. 0.0) THEN
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TMIN = T

ELSE

TMAX = T

END IF

END DO

400 PC = 6.0*PC*TC*KB/SIG**3.0/PI*10.0**7.0

VC = MM/ETAC/FAC

CC = ETAC*FAC

OPEN(3,FILE='crit.dat')

WRITE(3,*), 'TC(K) =', TC

WRITE(3,*), 'PC(Pa) =', PC

WRITE(3,*), 'VC(m3/mol)=', VC

WRITE(3,*), 'ZC =', PC*VC/TC/NA/KB

WRITE(3,*), 'ETAC =', ETAC

WRITE(3,*), 'CC(mg/mL) =', CC

WRITE(3,*), 'FD =', FDER(ETAC)

WRITE(3,*), 'SD =', SDER(ETAC)

WRITE(3,*), 'TC(C) =', TC - 273.15

CLOSE(3)

OPEN(4,FILE='dens.dat')

J = 1

DO WHILE (J .LT. K)

WRITE(4,100), TEMP(J), LIGH(J), SPIL(J)

J = J + 1

END DO

WRITE(4,100), TC, CC, CC

J = K - 1

DO WHILE (J .GE. 1)

WRITE(4,100), TEMP(J), HEAV(J), SPIH(J)

J = J - 1

END DO

CLOSE(4)

100 FORMAT(' ', 4F15.8)

200 FORMAT(A8, F8.8)

300 FORMAT(A15)

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C Pressure as a function of ETA C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

REAL FUNCTION FUN(ETA)

REAL ALPHA, ZETA, EPS0, EPS1

COMMON EPS0, EPS1, ZETA

ALPHA = (ETA+ETA**2.0+ETA**3.0-ETA**4.0)/(1.0-ETA)**3

FUN = ALPHA-4.0*EPS0*ETA**2.0+8.0/3.0*EPS1*ETA**3.0-ZETA

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C First derivative of pressure in relation to ETA C
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

REAL FUNCTION FDER(ETA)

REAL ALPHA, EPS0, EPS1

COMMON EPS0, EPS1, ZETA

ALPHA = ((1.0+2.0*ETA)**2.0+ETA**3.0*(ETA-4.0))/(1.0-ETA)**4.0

FDER = ALPHA-8.0*ETA*(EPS0-EPS1*ETA)

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C Second derivative of pressure in relation to ETA C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

REAL FUNCTION SDER(ETA)

REAL ALPHA, EPS0, EPS1

COMMON EPS0, EPS1, ZETA

ALPHA = (2.0+5.0*ETA-ETA**2.0)/(1.0-ETA)**5.0

SDER = 4.0*(ALPHA-2.0*EPS0+4.0*EPS1*ETA)

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C Third derivative of pressure in relation to ETA C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

REAL FUNCTION TDER(ETA)

REAL ALPHA, EPS0, EPS1

COMMON EPS0, EPS1, ZETA

ALPHA = -12.0*(ETA**2-6.0*ETA-5.0)/(ETA-1.0)**6

TDER = 16.0*EPS1+ALPHA

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C Antiderivaive of pressure in relation to ETA for the calculus of C

C Maxwell area rule C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

REAL FUNCTION PHI(ETA)

REAL ALPHA, EPS0, EPS1

COMMON EPS0, EPS1, ZETA

ALPH1 = ETA**2.0/2.0+2.0*ETA+2.0/(ETA-1.0)+1.0/(ETA-1.0)**2.0

ALPH2 = 2.0*LOG(1.0-ETA)-5.0/2.0

PHI = -4.0/3.0*EPS0*ETA**3.0+2.0/3.0*EPS1*ETA**4.0+ALPH1+ALPH2

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C Logarithm of fugacity coeficient C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

REAL FUNCTION CSI(ETA)

REAL ALPH1, ALPH2

COMMON EPS0, EPS1, ZETA

ALPH1 = (1.0+ETA+ETA**2.0-ETA**3.0)/(1.0-ETA)**3-1.0
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ALPH2 = (4.0*ETA-3.0*ETA**2.0)/(ETA-1.0)**2

CSI = ALPH1+ALPH2-8.0*EPS0*ETA+4.0*EPS1*ETA**2

END



190

APPENDIX F -- CODE FOR VISCOSITY

VIA GREEN-KUBO

This code is written in C. It has been successfully compiled with gcc and has

been successfully executed in Linux.

/******************************************************************************/

/* School of Engineering - University of São Paulo - Brazil */

/* Bioprocess Engineering Group - Department of Chemical Engineering */

/* Calculus of local particle density along z-direction */

/* Developed by: Luís Fernando Mercier Franco */

/* Advisor: Prof. Dr. Pedro de Alcântara Pessôa Filho */

/* Processos FAPESP: 2011/22070-5 and 2013/01857-2 */

/* November 11th, 2013 */

/* Reference: J.A. Nelder, R.A. Mead, Comp. J. 7 (1965) 308-313. */

/******************************************************************************/

/******************************************************************************/

/* Supporting Information: */

/* */

/* 1) An input file is needed. In this input file the first line is */

/* considered to be a comment. The second line must contain the following */

/* information: the box length in nm, the temperature in Kelvin, */

/* the maximum time for calculation in ps, the TAU value for correction */

/* of dynamics for coarse-grained (if one does not want to consider */

/* such correction, set TAU = 1), the file name with time in ps and */

/* the pressure tensors (PXX, PXY, PXZ, PYY, PYZ, PZZ), the file name */

/* of the file in which the stress correlation function must be stored */

/* and the file name of the file in which the viscosity must be stored. */

/* */

/* 2) To compile, save this file as "VISC.c", then */

/* in the terminal: */

/* > gcc VISC.c -o VISC.exe -lm */

/* */

/* 3) To run the code: */

/* > echo INPUT_FILE_NAME | ./VISC.exe */

/* */

/* 4) The authors do not accept any liability for the use of this */

/* program. */
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/*******************************************************************************/

#include <stdio.h>

#include <math.h>

#define TRUE 1

#define MAX 200010

main(){

int J, K, NDATA, L, NMAX, P;

double KB, NA, M, D, BOXL, VOL, T, CONST, TMAX, TAU;

double SXY, SXZ, SYZ, SX1, SY1, SZ1, VIS, PRESXX, PRESYY, PRESZZ;

double TIME[MAX], PRESXY[MAX], PRESXZ[MAX], PRESYZ[MAX], PRESX1[MAX];

double PRESY1[MAX], PRESZ1[MAX], SAVG[MAX], AVG[6];

char NFILE[20], PFILE[20], OFILE[40], QFILE[40], COMMAND[500];

FILE *INP, *OUT;

/************************************************************************/

/* Reading input files */

/************************************************************************/

scanf("%s", NFILE);

printf("\n Reading input file...\n");

INP = fopen(NFILE, "r");

fgets(COMMAND, 500, INP);

fscanf(INP, "%lf %lf %lf %lf %s %s %s", &BOXL, &T, &TMAX,

&TAU, PFILE, OFILE, QFILE);

fclose(INP);

KB = 1.3806488 * pow(10.0, -23.0);

VOL = BOXL * BOXL * BOXL * pow(10.0, -27.0);

CONST = 10.0 * VOL / KB / T;

INP = fopen(PFILE, "r");

NDATA = 0;

while (TRUE){

K = fscanf(INP, "%lf", &TIME[NDATA]);

if (K != 1) break;

fscanf(INP, "%lf", &PRESXX);

fscanf(INP, "%lf", &PRESXY[NDATA]);

fscanf(INP, "%lf", &PRESXZ[NDATA]);

fscanf(INP, "%lf", &PRESYY);

fscanf(INP, "%lf", &PRESYZ[NDATA]);

fscanf(INP, "%lf", &PRESZZ);

PRESX1[NDATA] = 0.5 * (PRESXX - PRESYY);

PRESY1[NDATA] = 0.5 * (PRESYY - PRESZZ);

PRESZ1[NDATA] = 0.5 * (PRESXX - PRESZZ);

if (TIME[NDATA] == TMAX) NMAX = NDATA;

TIME[NDATA] = TIME[NDATA] * TAU;

NDATA++;

}

fclose(INP);

/************************************************************************/

for (P = 0; P < 6; P++)

AVG[P] = 0.0;

for (K = 0; K < NDATA; K++){
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AVG[0] = AVG[0] + PRESX1[K];

AVG[1] = AVG[1] + PRESXY[K];

AVG[2] = AVG[2] + PRESXZ[K];

AVG[3] = AVG[3] + PRESY1[K];

AVG[4] = AVG[4] + PRESYZ[K];

AVG[5] = AVG[5] + PRESZ1[K];

}

for (P = 0; P < 6; P++)

AVG[P] = AVG[P] / (1.0 * (NDATA - 1));

for (K = 0; K < NDATA; K++){

PRESX1[K] = PRESX1[K] - AVG[0];

PRESXY[K] = PRESXY[K] - AVG[1];

PRESXZ[K] = PRESXZ[K] - AVG[2];

PRESY1[K] = PRESY1[K] - AVG[3];

PRESYZ[K] = PRESYZ[K] - AVG[4];

PRESZ1[K] = PRESZ1[K] - AVG[5];

}

/************************************************************************/

/* Stress Auto-Correlation Function calculation */

/* <PAB(0)*PAB(t)>=1/N * sum_(L=0)^(N) (PAB(L)*PAB(L+t)) */

/* Averages over PXY,PXZ,PYZ,0.5*(PXX-PYY),0.5*(PYY-PZZ),0.5*(PXX-PZZ) */

/* Results saved in OFILE */

/* Reference: */

/* Rey-Castro, C.; Vega, L. F., J. Phys. Chem. B, 110, 14426-14435, 2006*/

/************************************************************************/

printf(" Calculating Stress ACF...\n");

OUT = fopen(OFILE, "w");

for (K = 0; K < NMAX; K++){

SXY = 0.0;

SXZ = 0.0;

SYZ = 0.0;

SX1 = 0.0;

SY1 = 0.0;

SZ1 = 0.0;

for (L = K; L < K + (NDATA / 2) ; L++){

SXY = SXY + PRESXY[L] * PRESXY[L + K];

SXZ = SXZ + PRESXZ[L] * PRESXZ[L + K];

SYZ = SYZ + PRESYZ[L] * PRESYZ[L + K];

SX1 = SX1 + PRESX1[L] * PRESX1[L + K];

SY1 = SY1 + PRESY1[L] * PRESY1[L + K];

SZ1 = SZ1 + PRESZ1[L] * PRESZ1[L + K];

}

SXY = SXY / (1.0 * (NDATA / 2));

SXZ = SXZ / (1.0 * (NDATA / 2));

SYZ = SYZ / (1.0 * (NDATA / 2));

SX1 = SX1 / (1.0 * (NDATA / 2));

SY1 = SY1 / (1.0 * (NDATA / 2));

SZ1 = SZ1 / (1.0 * (NDATA / 2));

SAVG[K] = 1.0 / 6.0 * (SXY + SXZ + SYZ + SX1 + SY1 + SZ1);

fprintf(OUT, "%lf %lf\n", TIME[K], SAVG[K]);

}

fclose(OUT);

/*************************************************************************/
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/*************************************************************************/

/* Integration of Stress Auto-Correlation Function */

/* Green-Kubo equation for viscosity */

/* Reference: */

/* Allen, M. P.; Tildesley, D. J., Computer Simulation of Liquids, */

/* Oxford University Press, New York, 1987. */

/*************************************************************************/

printf(" Integrating Stress ACF to calculate viscosity...\n");

OUT = fopen(QFILE, "w");

for (K = 0; K < NMAX; K++){

VIS = SAVG[0];

for (L = 1; L < K - 1; L++)

VIS = VIS + 2.0 * SAVG[L];

VIS = CONST * (TIME[L] - TIME[0]) / (2.0 * (K - 1)) *

(VIS + SAVG[L]);

if (L > 1)

fprintf(OUT, "%lf %lf\n", TIME[L], VIS);

}

fclose(OUT);

printf(" The calculation is ended...\n\n");

/**************************************************************************/

return 0;

}



194

APPENDIX G -- SAXS INTENSITY

DATA
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Table 10: Small-Angle X-ray Scattering intensities (in arbitrary units) as a function of the wavevector, q, for BSA in 1.0 mol·L−1

NaNO3 aqueous solutions at pH = 4.9, at several protein concentrations, cp, (mg·mL−1).
q / Å−1 cp = 100.00 cp = 81.79 cp = 76.85 cp = 72.81 cp = 64.20 cp = 56.57 cp = 51.98 cp = 48.24 cp = 44.53 cp = 39.67

0.0142 1.05 ± 0.03 1.49 ± 0.03 1.62 ± 0.06 1.61 ± 0.06 1.68 ± 0.07 1.78 ± 0.05 1.90 ± 0.08 1.95 ± 0.08 2.02 ± 0.09 2.06 ± 0.09

0.0156 1.12 ± 0.02 1.53 ± 0.02 1.59 ± 0.03 1.73 ± 0.03 1.79 ± 0.04 1.77 ± 0.03 1.95 ± 0.05 2.01 ± 0.05 2.10 ± 0.05 2.08 ± 0.05

0.0171 1.11 ± 0.01 1.56 ± 0.01 1.56 ± 0.03 1.67 ± 0.03 1.72 ± 0.03 1.81 ± 0.02 1.90 ± 0.04 1.96 ± 0.04 2.06 ± 0.05 2.12 ± 0.04

0.0185 1.12 ± 0.01 1.53 ± 0.01 1.55 ± 0.03 1.64 ± 0.03 1.70 ± 0.03 1.82 ± 0.02 1.87 ± 0.04 1.90 ± 0.04 1.99 ± 0.04 2.08 ± 0.04

0.0199 1.13 ± 0.01 1.49 ± 0.01 1.52 ± 0.03 1.59 ± 0.03 1.64 ± 0.03 1.79 ± 0.02 1.79 ± 0.03 1.87 ± 0.04 1.99 ± 0.04 2.01 ± 0.04

0.0213 1.08 ± 0.01 1.43 ± 0.01 1.48 ± 0.02 1.53 ± 0.02 1.63 ± 0.03 1.65 ± 0.02 1.70 ± 0.03 1.81 ± 0.03 1.78 ± 0.04 1.92 ± 0.03

0.0228 1.12 ± 0.01 1.45 ± 0.01 1.55 ± 0.02 1.54 ± 0.02 1.67 ± 0.03 1.74 ± 0.02 1.74 ± 0.03 1.83 ± 0.03 1.92 ± 0.03 1.91 ± 0.03

0.0242 1.10 ± 0.01 1.42 ± 0.01 1.47 ± 0.02 1.47 ± 0.02 1.60 ± 0.02 1.68 ± 0.02 1.76 ± 0.03 1.78 ± 0.03 1.82 ± 0.03 1.87 ± 0.03

0.0256 1.08 ± 0.01 1.39 ± 0.01 1.44 ± 0.02 1.49 ± 0.02 1.56 ± 0.02 1.65 ± 0.02 1.69 ± 0.03 1.70 ± 0.03 1.74 ± 0.03 1.82 ± 0.03

0.0270 1.07 ± 0.01 1.41 ± 0.01 1.44 ± 0.02 1.46 ± 0.02 1.59 ± 0.02 1.61 ± 0.01 1.63 ± 0.03 1.72 ± 0.03 1.67 ± 0.03 1.78 ± 0.02

0.0284 1.14 ± 0.01 1.45 ± 0.01 1.50 ± 0.02 1.52 ± 0.02 1.62 ± 0.02 1.66 ± 0.01 1.64 ± 0.02 1.73 ± 0.03 1.80 ± 0.03 1.82 ± 0.02

0.0299 1.09 ± 0.01 1.36 ± 0.01 1.38 ± 0.02 1.43 ± 0.02 1.51 ± 0.02 1.58 ± 0.01 1.56 ± 0.02 1.65 ± 0.02 1.66 ± 0.03 1.69 ± 0.02

0.0320 1.07 ± 0.01 1.37 ± 0.01 1.39 ± 0.01 1.43 ± 0.01 1.49 ± 0.01 1.56 ± 0.01 1.56 ± 0.02 1.62 ± 0.02 1.64 ± 0.02 1.68 ± 0.02

0.0349 1.03 ± 0.01 1.27 ± 0.01 1.30 ± 0.01 1.33 ± 0.01 1.34 ± 0.01 1.43 ± 0.01 1.44 ± 0.01 1.47 ± 0.02 1.48 ± 0.02 1.52 ± 0.01

0.0377 0.983 ± 0.006 1.18 ± 0.00 1.22 ± 0.01 1.23 ± 0.01 1.28 ± 0.01 1.34 ± 0.01 1.35 ± 0.01 1.37 ± 0.01 1.39 ± 0.01 1.41 ± 0.01

0.0405 0.995 ± 0.005 1.17 ± 0.00 1.19 ± 0.01 1.21 ± 0.01 1.27 ± 0.01 1.30 ± 0.01 1.32 ± 0.01 1.35 ± 0.01 1.34 ± 0.01 1.37 ± 0.01

0.0434 0.930 ± 0.005 1.10 ± 0.00 1.13 ± 0.01 1.14 ± 0.01 1.18 ± 0.01 1.20 ± 0.01 1.22 ± 0.01 1.25 ± 0.01 1.23 ± 0.01 1.28 ± 0.01

0.0462 0.932 ± 0.005 1.07 ± 0.00 1.09 ± 0.01 1.11 ± 0.01 1.12 ± 0.01 1.15 ± 0.01 1.17 ± 0.01 1.18 ± 0.01 1.17 ± 0.01 1.22 ± 0.01

0.0491 0.867 ± 0.005 0.979 ± 0.004 0.987 ± 0.008 1.03 ± 0.01 1.04 ± 0.01 1.05 ± 0.01 1.03 ± 0.01 1.08 ± 0.01 1.07 ± 0.01 1.08 ± 0.01

0.0519 0.839 ± 0.004 0.941 ± 0.004 0.947 ± 0.008 0.957 ± 0.008 0.989 ± 0.009 0.992 ± 0.006 0.992 ± 0.010 1.01 ± 0.01 1.01 ± 0.01 1.03 ± 0.01

0.0548 0.799 ± 0.004 0.872 ± 0.004 0.877 ± 0.007 0.894 ± 0.007 0.914 ± 0.008 0.922 ± 0.005 0.917 ± 0.009 0.943 ± 0.010 0.924 ± 0.010 0.945 ± 0.009

0.0576 0.751 ± 0.004 0.820 ± 0.003 0.831 ± 0.007 0.836 ± 0.007 0.847 ± 0.008 0.850 ± 0.005 0.865 ± 0.009 0.855 ± 0.009 0.859 ± 0.009 0.860 ± 0.008

0.0605 0.719 ± 0.004 0.756 ± 0.003 0.763 ± 0.006 0.770 ± 0.006 0.778 ± 0.007 0.788 ± 0.005 0.785 ± 0.008 0.787 ± 0.009 0.776 ± 0.009 0.790 ± 0.008

0.0647 0.628 ± 0.002 0.658 ± 0.002 0.661 ± 0.004 0.669 ± 0.004 0.664 ± 0.005 0.671 ± 0.003 0.667 ± 0.005 0.678 ± 0.005 0.674 ± 0.006 0.692 ± 0.005

0.0704 0.545 ± 0.002 0.556 ± 0.002 0.554 ± 0.004 0.559 ± 0.004 0.555 ± 0.004 0.566 ± 0.003 0.562 ± 0.005 0.560 ± 0.005 0.557 ± 0.005 0.574 ± 0.004
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q / Å−1 cp = 100.00 cp = 81.79 cp = 76.85 cp = 72.81 cp = 64.20 cp = 56.57 cp = 51.98 cp = 48.24 cp = 44.53 cp = 39.67

0.0761 0.448 ± 0.002 0.453 ± 0.002 0.458 ± 0.003 0.448 ± 0.003 0.455 ± 0.003 0.452 ± 0.002 0.453 ± 0.004 0.451 ± 0.004 0.455 ± 0.004 0.456 ± 0.004

0.0818 0.361 ± 0.002 0.362 ± 0.001 0.353 ± 0.003 0.359 ± 0.003 0.366 ± 0.003 0.359 ± 0.002 0.362 ± 0.003 0.367 ± 0.004 0.356 ± 0.004 0.361 ± 0.003

0.0875 0.289 ± 0.001 0.288 ± 0.001 0.287 ± 0.002 0.287 ± 0.002 0.288 ± 0.003 0.286 ± 0.002 0.284 ± 0.003 0.286 ± 0.003 0.285 ± 0.003 0.282 ± 0.003

0.0932 0.230 ± 0.001 0.228 ± 0.001 0.224 ± 0.002 0.225 ± 0.002 0.224 ± 0.002 0.228 ± 0.002 0.223 ± 0.003 0.226 ± 0.003 0.226 ± 0.003 0.227 ± 0.003

0.0989 0.180 ± 0.001 0.177 ± 0.001 0.180 ± 0.002 0.179 ± 0.002 0.174 ± 0.002 0.179 ± 0.001 0.184 ± 0.002 0.180 ± 0.003 0.176 ± 0.003 0.176 ± 0.002

0.1074 0.121 ± 0.001 0.121 ± 0.001 0.121 ± 0.001 0.122 ± 0.001 0.122 ± 0.001 0.122 ± 0.001 0.121 ± 0.001 0.119 ± 0.002 0.120 ± 0.002 0.121 ± 0.001

0.1188 0.0808 ± 0.0005 0.0799 ± 0.0004 0.0807 ± 0.0009 0.0805 ± 0.0009 0.0791 ± 0.0010 0.0796 ± 0.0007 0.0787 ± 0.0012 0.0779 ± 0.0013 0.0814 ± 0.0013 0.0810 ± 0.0012

0.1302 0.0576 ± 0.0004 0.0583 ± 0.0004 0.0582 ± 0.0008 0.0580 ± 0.0008 0.0570 ± 0.0009 0.0596 ± 0.0006 0.0590 ± 0.0010 0.0592 ± 0.0011 0.0577 ± 0.0012 0.0580 ± 0.0011

0.1415 0.0461 ± 0.0004 0.0472 ± 0.0003 0.0480 ± 0.0007 0.0482 ± 0.0007 0.0470 ± 0.0008 0.0470 ± 0.0006 0.0467 ± 0.0010 0.0476 ± 0.0010 0.0485 ± 0.0011 0.0473 ± 0.0010

0.1529 0.0400 ± 0.0004 0.0401 ± 0.0003 0.0406 ± 0.0007 0.0399 ± 0.0007 0.0392 ± 0.0007 0.0396 ± 0.0005 0.0404 ± 0.0009 0.0396 ± 0.0010 0.0409 ± 0.0010 0.0412 ± 0.0009

0.1643 0.0341 ± 0.0003 0.0340 ± 0.0003 0.0341 ± 0.0006 0.0333 ± 0.0006 0.0349 ± 0.0007 0.0341 ± 0.0005 0.0342 ± 0.0008 0.0343 ± 0.0009 0.0334 ± 0.0010 0.0341 ± 0.0009

0.1757 0.0288 ± 0.0003 0.0284 ± 0.0003 0.0283 ± 0.0006 0.0294 ± 0.0006 0.0290 ± 0.0007 0.0294 ± 0.0005 0.0284 ± 0.0008 0.0295 ± 0.0009 0.0279 ± 0.0009 0.0281 ± 0.0008

0.1870 0.0247 ± 0.0003 0.0245 ± 0.0003 0.0245 ± 0.0005 0.0255 ± 0.0005 0.0242 ± 0.0006 0.0248 ± 0.0004 0.0244 ± 0.0007 0.0243 ± 0.0008 0.0253 ± 0.0009 0.0245 ± 0.0008

0.1984 0.0205 ± 0.0003 0.0208 ± 0.0002 0.0211 ± 0.0005 0.0214 ± 0.0005 0.0214 ± 0.0006 0.0203 ± 0.0004 0.0205 ± 0.0007 0.0193 ± 0.0008 0.0224 ± 0.0008 0.0210 ± 0.0008

0.2098 0.0178 ± 0.0003 0.0174 ± 0.0002 0.0178 ± 0.0005 0.0177 ± 0.0005 0.0174 ± 0.0006 0.0169 ± 0.0004 0.0181 ± 0.0007 0.0160 ± 0.0007 0.0175 ± 0.0008 0.0173 ± 0.0007

0.2212 0.0148 ± 0.0002 0.0141 ± 0.0002 0.0144 ± 0.0005 0.0141 ± 0.0005 0.0149 ± 0.0005 0.0152 ± 0.0004 0.0147 ± 0.0007 0.0146 ± 0.0007 0.0131 ± 0.0007 0.0147 ± 0.0007

0.2325 0.0130 ± 0.0002 0.0132 ± 0.0002 0.0139 ± 0.0004 0.0131 ± 0.0005 0.0134 ± 0.0005 0.0125 ± 0.0004 0.0126 ± 0.0006 0.0141 ± 0.0007 0.0136 ± 0.0007 0.0130 ± 0.0007

0.2439 0.0110 ± 0.0002 0.0106 ± 0.0002 0.0107 ± 0.0004 0.00999 ± 0.00043 0.0100 ± 0.0005 0.0111 ± 0.0004 0.0117 ± 0.0006 0.0126 ± 0.0007 0.0105 ± 0.0007 0.0110 ± 0.0007

0.2553 0.00969 ± 0.00021 0.00954 ± 0.00019 0.00972 ± 0.00041 0.00931 ± 0.00042 0.00934 ± 0.00048 0.00935 ± 0.00034 0.00988 ± 0.00060 0.00889 ± 0.00064 0.00959 ± 0.00069 0.00959 ± 0.00066

0.2667 0.00924 ± 0.00020 0.00890 ± 0.00019 0.00866 ± 0.00040 0.00960 ± 0.00041 0.00925 ± 0.00048 0.00895 ± 0.00034 0.00854 ± 0.00058 0.00844 ± 0.00063 0.00795 ± 0.00066 0.00873 ± 0.00064

0.2780 0.00903 ± 0.00020 0.00992 ± 0.00019 0.0103 ± 0.0004 0.0104 ± 0.0004 0.0102 ± 0.0005 0.00993 ± 0.00033 0.00950 ± 0.00056 0.00935 ± 0.00061 0.0102 ± 0.0007 0.0106 ± 0.0006

0.2894 0.00927 ± 0.00020 0.00946 ± 0.00018 0.00886 ± 0.00038 0.0102 ± 0.0004 0.0103 ± 0.0005 0.00952 ± 0.00032 0.00956 ± 0.00056 0.0103 ± 0.0006 0.0106 ± 0.0007 0.0101 ± 0.0006

0.3008 0.00960 ± 0.00019 0.00958 ± 0.00018 0.00978 ± 0.00038 0.00928 ± 0.00039 0.00978 ± 0.00045 0.00900 ± 0.00032 0.0103 ± 0.0005 0.00965 ± 0.00060 0.00957 ± 0.00063 0.00912 ± 0.00060

0.3122 0.00990 ± 0.00019 0.00952 ± 0.00018 0.00896 ± 0.00038 0.00880 ± 0.00039 0.00884 ± 0.00044 0.00906 ± 0.00031 0.00891 ± 0.00054 0.00992 ± 0.00059 0.00898 ± 0.00063 0.00911 ± 0.00060

0.3235 0.00988 ± 0.00019 0.00973 ± 0.00018 0.00960 ± 0.00037 0.00889 ± 0.00038 0.00937 ± 0.00044 0.0103 ± 0.0003 0.00974 ± 0.00054 0.00954 ± 0.00059 0.00984 ± 0.00063 0.00881 ± 0.00060

0.3349 0.00963 ± 0.00019 0.00984 ± 0.00017 0.00927 ± 0.00036 0.00974 ± 0.00038 0.00977 ± 0.00043 0.00976 ± 0.00031 0.00927 ± 0.00053 0.00955 ± 0.00058 0.00957 ± 0.00062 0.00947 ± 0.00059

0.3448 0.00880 ± 0.00021 0.00942 ± 0.00020 0.00920 ± 0.00041 0.00905 ± 0.00042 0.00881 ± 0.00049 0.00935 ± 0.00035 0.00898 ± 0.00060 0.00868 ± 0.00065 0.00860 ± 0.00070 0.00970 ± 0.00067
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Table 11: Small-Angle X-ray Scattering intensities (in arbitrary units) as a function of the wavevector, q, for BSA in 1.0 mol·L−1

NaCl aqueous solutions at pH = 4.9, at several protein concentrations, cp, (mg·mL−1).
q / Å−1 cp = 100.00 cp = 67.90 cp = 65.51 cp = 59.30 cp = 54.92 cp = 49.95 cp = 45.85 cp = 40.86 cp = 36.68 cp = 31.10

0.0142 1.17 ± 0.04 1.95 ± 0.06 2.05 ± 0.07 2.10 ± 0.07 2.11 ± 0.07 2.38 ± 0.08 2.47 ± 0.08 2.50 ± 0.09 2.82 ± 0.10 2.70 ± 0.11

0.0156 1.14 ± 0.03 1.95 ± 0.04 1.96 ± 0.04 2.11 ± 0.04 2.16 ± 0.04 2.28 ± 0.05 2.45 ± 0.05 2.48 ± 0.05 2.51 ± 0.06 2.80 ± 0.07

0.0171 1.17 ± 0.02 1.95 ± 0.03 1.97 ± 0.03 2.15 ± 0.04 2.22 ± 0.04 2.37 ± 0.04 2.44 ± 0.05 2.59 ± 0.05 2.74 ± 0.05 2.81 ± 0.06

0.0185 1.16 ± 0.02 1.90 ± 0.03 1.96 ± 0.03 2.04 ± 0.03 2.16 ± 0.04 2.29 ± 0.04 2.33 ± 0.04 2.45 ± 0.05 2.56 ± 0.05 2.73 ± 0.06

0.0199 1.19 ± 0.02 1.85 ± 0.03 1.98 ± 0.03 2.00 ± 0.03 2.17 ± 0.03 2.26 ± 0.04 2.33 ± 0.04 2.36 ± 0.04 2.49 ± 0.05 2.75 ± 0.05

0.0213 1.19 ± 0.02 1.81 ± 0.03 1.90 ± 0.03 1.98 ± 0.03 2.13 ± 0.03 2.15 ± 0.03 2.32 ± 0.04 2.33 ± 0.04 2.48 ± 0.04 2.56 ± 0.05

0.0228 1.18 ± 0.02 1.80 ± 0.03 1.90 ± 0.03 2.00 ± 0.03 2.07 ± 0.03 2.13 ± 0.03 2.26 ± 0.03 2.28 ± 0.04 2.48 ± 0.04 2.52 ± 0.04

0.0242 1.17 ± 0.02 1.78 ± 0.02 1.88 ± 0.03 1.96 ± 0.03 1.99 ± 0.03 2.08 ± 0.03 2.15 ± 0.03 2.21 ± 0.04 2.40 ± 0.04 2.43 ± 0.04

0.0256 1.17 ± 0.02 1.70 ± 0.02 1.79 ± 0.02 1.87 ± 0.03 1.93 ± 0.03 2.02 ± 0.03 2.10 ± 0.03 2.08 ± 0.03 2.23 ± 0.04 2.30 ± 0.04

0.0270 1.20 ± 0.02 1.81 ± 0.02 1.81 ± 0.02 1.90 ± 0.02 1.94 ± 0.03 2.03 ± 0.03 2.16 ± 0.03 2.19 ± 0.03 2.29 ± 0.03 2.38 ± 0.04

0.0284 1.24 ± 0.02 1.85 ± 0.02 1.86 ± 0.02 1.91 ± 0.02 1.95 ± 0.03 2.06 ± 0.03 2.12 ± 0.03 2.19 ± 0.03 2.33 ± 0.03 2.43 ± 0.04

0.0299 1.17 ± 0.02 1.71 ± 0.02 1.74 ± 0.02 1.80 ± 0.02 1.89 ± 0.02 1.97 ± 0.03 2.03 ± 0.03 2.03 ± 0.03 2.13 ± 0.03 2.26 ± 0.04

0.0320 1.21 ± 0.01 1.70 ± 0.01 1.73 ± 0.01 1.80 ± 0.02 1.88 ± 0.02 1.93 ± 0.02 2.00 ± 0.02 2.06 ± 0.02 2.13 ± 0.02 2.20 ± 0.02

0.0349 1.16 ± 0.01 1.58 ± 0.01 1.64 ± 0.01 1.68 ± 0.01 1.72 ± 0.02 1.76 ± 0.02 1.82 ± 0.02 1.88 ± 0.02 1.95 ± 0.02 1.96 ± 0.02

0.0377 1.11 ± 0.01 1.49 ± 0.01 1.56 ± 0.01 1.56 ± 0.01 1.61 ± 0.01 1.65 ± 0.02 1.70 ± 0.02 1.75 ± 0.02 1.80 ± 0.02 1.87 ± 0.02

0.0405 1.13 ± 0.01 1.46 ± 0.01 1.48 ± 0.01 1.51 ± 0.01 1.59 ± 0.01 1.63 ± 0.01 1.67 ± 0.02 1.67 ± 0.02 1.74 ± 0.02 1.78 ± 0.02

0.0434 1.09 ± 0.01 1.41 ± 0.01 1.44 ± 0.01 1.48 ± 0.01 1.51 ± 0.01 1.54 ± 0.01 1.58 ± 0.01 1.55 ± 0.02 1.62 ± 0.02 1.70 ± 0.02

0.0462 1.07 ± 0.01 1.34 ± 0.01 1.37 ± 0.01 1.40 ± 0.01 1.41 ± 0.01 1.44 ± 0.01 1.49 ± 0.01 1.50 ± 0.01 1.50 ± 0.02 1.56 ± 0.02

0.0491 1.04 ± 0.01 1.27 ± 0.01 1.28 ± 0.01 1.30 ± 0.01 1.34 ± 0.01 1.35 ± 0.01 1.37 ± 0.01 1.38 ± 0.01 1.36 ± 0.01 1.45 ± 0.02

0.0519 1.01 ± 0.01 1.20 ± 0.01 1.20 ± 0.01 1.23 ± 0.01 1.26 ± 0.01 1.27 ± 0.01 1.33 ± 0.01 1.30 ± 0.01 1.33 ± 0.01 1.37 ± 0.01

0.0548 0.981 ± 0.007 1.14 ± 0.01 1.15 ± 0.01 1.13 ± 0.01 1.17 ± 0.01 1.19 ± 0.01 1.20 ± 0.01 1.20 ± 0.01 1.22 ± 0.01 1.24 ± 0.01

0.0576 0.930 ± 0.007 1.05 ± 0.01 1.06 ± 0.01 1.07 ± 0.01 1.07 ± 0.01 1.10 ± 0.01 1.09 ± 0.01 1.11 ± 0.01 1.11 ± 0.01 1.12 ± 0.01

0.0605 0.887 ± 0.007 1.01 ± 0.01 0.997 ± 0.008 0.994 ± 0.009 1.00 ± 0.01 1.01 ± 0.01 1.01 ± 0.01 1.05 ± 0.01 1.02 ± 0.01 1.02 ± 0.01

0.0647 0.792 ± 0.004 0.858 ± 0.005 0.860 ± 0.005 0.866 ± 0.005 0.865 ± 0.006 0.865 ± 0.006 0.884 ± 0.006 0.861 ± 0.007 0.880 ± 0.007 0.884 ± 0.008

0.0704 0.683 ± 0.004 0.729 ± 0.005 0.718 ± 0.005 0.721 ± 0.005 0.714 ± 0.005 0.720 ± 0.005 0.715 ± 0.006 0.718 ± 0.006 0.726 ± 0.006 0.735 ± 0.007
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q / Å−1 cp = 100.00 cp = 67.90 cp = 65.51 cp = 59.30 cp = 54.92 cp = 49.95 cp = 45.85 cp = 40.86 cp = 36.68 cp = 31.10

0.0761 0.572 ± 0.003 0.576 ± 0.004 0.584 ± 0.004 0.586 ± 0.004 0.582 ± 0.004 0.582 ± 0.005 0.585 ± 0.005 0.571 ± 0.005 0.583 ± 0.006 0.576 ± 0.006

0.0818 0.468 ± 0.003 0.465 ± 0.003 0.466 ± 0.004 0.466 ± 0.004 0.466 ± 0.004 0.457 ± 0.004 0.467 ± 0.004 0.471 ± 0.005 0.454 ± 0.005 0.467 ± 0.005

0.0875 0.374 ± 0.003 0.372 ± 0.003 0.375 ± 0.003 0.367 ± 0.003 0.365 ± 0.003 0.368 ± 0.004 0.361 ± 0.004 0.366 ± 0.004 0.375 ± 0.004 0.360 ± 0.005

0.0932 0.295 ± 0.002 0.289 ± 0.003 0.291 ± 0.003 0.285 ± 0.003 0.285 ± 0.003 0.289 ± 0.003 0.292 ± 0.003 0.283 ± 0.004 0.286 ± 0.004 0.288 ± 0.004

0.0989 0.233 ± 0.002 0.225 ± 0.002 0.222 ± 0.002 0.227 ± 0.002 0.221 ± 0.003 0.230 ± 0.003 0.230 ± 0.003 0.228 ± 0.003 0.229 ± 0.003 0.234 ± 0.004

0.1074 0.152 ± 0.001 0.153 ± 0.001 0.150 ± 0.001 0.152 ± 0.001 0.153 ± 0.002 0.155 ± 0.002 0.150 ± 0.002 0.155 ± 0.002 0.151 ± 0.002 0.154 ± 0.002

0.1188 0.0964 ± 0.0009 0.101 ± 0.001 0.0963 ± 0.0011 0.0983 ± 0.0012 0.0991 ± 0.0013 0.0975 ± 0.0014 0.0979 ± 0.0015 0.0986 ± 0.0016 0.101 ± 0.002 0.0997 ± 0.0019

0.1302 0.0656 ± 0.0008 0.0678 ± 0.0010 0.0692 ± 0.0010 0.0680 ± 0.0010 0.0698 ± 0.0011 0.0687 ± 0.0012 0.0681 ± 0.0013 0.0686 ± 0.0014 0.0697 ± 0.0015 0.0666 ± 0.0017

0.1415 0.0517 ± 0.0007 0.0520 ± 0.0009 0.0533 ± 0.0009 0.0536 ± 0.0009 0.0550 ± 0.0010 0.0551 ± 0.0011 0.0522 ± 0.0012 0.0542 ± 0.0013 0.0532 ± 0.0014 0.0527 ± 0.0016

0.1529 0.0438 ± 0.0007 0.0441 ± 0.0008 0.0431 ± 0.0008 0.0441 ± 0.0009 0.0420 ± 0.0009 0.0424 ± 0.0010 0.0444 ± 0.0011 0.0440 ± 0.0012 0.0435 ± 0.0013 0.0450 ± 0.0015

0.1643 0.0358 ± 0.0006 0.0362 ± 0.0007 0.0346 ± 0.0007 0.0353 ± 0.0008 0.0363 ± 0.0009 0.0351 ± 0.0009 0.0348 ± 0.0010 0.0343 ± 0.0011 0.0346 ± 0.0012 0.0364 ± 0.0014

0.1757 0.0281 ± 0.0005 0.0283 ± 0.0007 0.0289 ± 0.0007 0.0289 ± 0.0007 0.0318 ± 0.0008 0.0296 ± 0.0009 0.0297 ± 0.0009 0.0301 ± 0.0010 0.0295 ± 0.0011 0.0286 ± 0.0013

0.1870 0.0252 ± 0.0005 0.0252 ± 0.0006 0.0256 ± 0.0007 0.0249 ± 0.0007 0.0243 ± 0.0007 0.0261 ± 0.0008 0.0249 ± 0.0009 0.0252 ± 0.0010 0.0247 ± 0.0011 0.0246 ± 0.0012

0.1984 0.0198 ± 0.0005 0.0195 ± 0.0006 0.0208 ± 0.0006 0.0197 ± 0.0007 0.0194 ± 0.0007 0.0185 ± 0.0008 0.0217 ± 0.0008 0.0196 ± 0.0009 0.0184 ± 0.0010 0.0184 ± 0.0012

0.2098 0.0156 ± 0.0005 0.0170 ± 0.0006 0.0167 ± 0.0006 0.0162 ± 0.0006 0.0160 ± 0.0007 0.0150 ± 0.0007 0.0166 ± 0.0008 0.0167 ± 0.0009 0.0147 ± 0.0010 0.0183 ± 0.0011

0.2212 0.0149 ± 0.0004 0.0145 ± 0.0005 0.0134 ± 0.0006 0.0146 ± 0.0006 0.0152 ± 0.0007 0.0140 ± 0.0007 0.0130 ± 0.0008 0.0145 ± 0.0009 0.0133 ± 0.0010 0.0140 ± 0.0011

0.2325 0.0128 ± 0.0004 0.0120 ± 0.0005 0.0114 ± 0.0006 0.0127 ± 0.0006 0.0124 ± 0.0006 0.0119 ± 0.0007 0.0134 ± 0.0008 0.0122 ± 0.0008 0.0132 ± 0.0009 0.0120 ± 0.0011

0.2439 0.00997 ± 0.00042 0.0101 ± 0.0005 0.00996 ± 0.00053 0.0106 ± 0.0006 0.00987 ± 0.00062 0.00999 ± 0.00067 0.0113 ± 0.0007 0.0115 ± 0.0008 0.0113 ± 0.0009 0.0108 ± 0.0011

0.2553 0.00922 ± 0.00041 0.00887 ± 0.00050 0.00976 ± 0.00052 0.0104 ± 0.0006 0.0104 ± 0.0006 0.00924 ± 0.00066 0.00880 ± 0.00072 0.0108 ± 0.0008 0.0108 ± 0.0009 0.00879 ± 0.00103

0.2667 0.00893 ± 0.00040 0.00850 ± 0.00049 0.00834 ± 0.00051 0.00917 ± 0.00055 0.00753 ± 0.00059 0.00890 ± 0.00065 0.00896 ± 0.00071 0.00847 ± 0.00079 0.00987 ± 0.00088 0.00837 ± 0.00100

0.2780 0.00868 ± 0.00039 0.00851 ± 0.00048 0.00895 ± 0.00050 0.00856 ± 0.00054 0.00860 ± 0.00058 0.00850 ± 0.00064 0.00915 ± 0.00070 0.00896 ± 0.00078 0.00889 ± 0.00086 0.00823 ± 0.00099

0.2894 0.00952 ± 0.00038 0.00920 ± 0.00047 0.00835 ± 0.00049 0.0100 ± 0.0005 0.00826 ± 0.00057 0.00949 ± 0.00063 0.00842 ± 0.00068 0.0104 ± 0.0008 0.00913 ± 0.00085 0.00899 ± 0.00098

0.3008 0.00958 ± 0.00038 0.00987 ± 0.00047 0.00953 ± 0.00049 0.00853 ± 0.00052 0.00972 ± 0.00057 0.00936 ± 0.00062 0.00895 ± 0.00067 0.00871 ± 0.00076 0.00869 ± 0.00084 0.00898 ± 0.00097

0.3122 0.0104 ± 0.0004 0.00984 ± 0.00046 0.00949 ± 0.00048 0.00922 ± 0.00052 0.0101 ± 0.0006 0.0111 ± 0.0006 0.00938 ± 0.00067 0.00847 ± 0.00075 0.00838 ± 0.00083 0.00941 ± 0.00095

0.3235 0.00984 ± 0.00037 0.00894 ± 0.00046 0.00966 ± 0.00047 0.0102 ± 0.0005 0.00925 ± 0.00056 0.00972 ± 0.00061 0.01000 ± 0.00066 0.00736 ± 0.00073 0.00960 ± 0.00082 0.0112 ± 0.0009

0.3349 0.00907 ± 0.00036 0.00950 ± 0.00045 0.0103 ± 0.0005 0.00892 ± 0.00050 0.00934 ± 0.00055 0.00980 ± 0.00060 0.00873 ± 0.00065 0.00971 ± 0.00073 0.00945 ± 0.00081 0.00826 ± 0.00092

0.3448 0.00851 ± 0.00041 0.00941 ± 0.00051 0.00979 ± 0.00053 0.00717 ± 0.00056 0.00798 ± 0.00061 0.00770 ± 0.00067 0.00847 ± 0.00073 0.00816 ± 0.00083 0.00929 ± 0.00092 0.00981 ± 0.00105
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Table 12: Small-Angle X-ray Scattering intensities (in arbitrary units) as a function of the wavevector, q, for BSA in 1.0 mol·L−1

Na2SO4 aqueous solutions at pH = 4.9, at several protein concentrations, cp, (mg·mL−1).
q / Å−1 cp = 100.00 cp = 73.10 cp = 62.94 cp = 58.29 cp = 55.14 cp = 52.80 cp = 48.24 cp = 45.93 cp = 40.44 cp = 36.38

0.0142 0.478 ± 0.033 0.669 ± 0.055 0.826 ± 0.078 0.696 ± 0.057 0.819 ± 0.060 0.878 ± 0.063 0.850 ± 0.070 0.882 ± 0.073 0.952 ± 0.080 0.910 ± 0.046

0.0156 0.479 ± 0.019 0.699 ± 0.037 0.740 ± 0.042 0.723 ± 0.032 0.776 ± 0.034 0.880 ± 0.035 0.832 ± 0.038 0.917 ± 0.041 0.818 ± 0.044 0.894 ± 0.026

0.0171 0.487 ± 0.018 0.688 ± 0.033 0.729 ± 0.037 0.730 ± 0.028 0.789 ± 0.030 0.791 ± 0.031 0.831 ± 0.034 0.876 ± 0.036 0.858 ± 0.040 0.908 ± 0.023

0.0185 0.510 ± 0.016 0.700 ± 0.029 0.714 ± 0.033 0.731 ± 0.025 0.773 ± 0.027 0.780 ± 0.028 0.808 ± 0.030 0.864 ± 0.032 0.852 ± 0.035 0.869 ± 0.021

0.0199 0.526 ± 0.015 0.716 ± 0.027 0.708 ± 0.031 0.724 ± 0.023 0.849 ± 0.026 0.773 ± 0.025 0.835 ± 0.029 0.831 ± 0.029 0.838 ± 0.032 0.880 ± 0.019

0.0213 0.478 ± 0.013 0.703 ± 0.025 0.726 ± 0.028 0.708 ± 0.021 0.730 ± 0.023 0.737 ± 0.023 0.807 ± 0.026 0.773 ± 0.027 0.834 ± 0.028 0.846 ± 0.017

0.0228 0.482 ± 0.012 0.681 ± 0.023 0.723 ± 0.026 0.709 ± 0.020 0.748 ± 0.021 0.769 ± 0.021 0.781 ± 0.023 0.772 ± 0.024 0.810 ± 0.026 0.824 ± 0.015

0.0242 0.495 ± 0.012 0.639 ± 0.022 0.694 ± 0.024 0.718 ± 0.019 0.720 ± 0.019 0.757 ± 0.020 0.740 ± 0.021 0.719 ± 0.022 0.759 ± 0.024 0.802 ± 0.015

0.0256 0.489 ± 0.011 0.607 ± 0.020 0.653 ± 0.023 0.670 ± 0.017 0.684 ± 0.018 0.700 ± 0.018 0.724 ± 0.020 0.685 ± 0.020 0.731 ± 0.023 0.766 ± 0.013

0.0270 0.484 ± 0.011 0.597 ± 0.019 0.687 ± 0.022 0.675 ± 0.017 0.716 ± 0.018 0.710 ± 0.018 0.707 ± 0.019 0.700 ± 0.020 0.740 ± 0.022 0.750 ± 0.013

0.0284 0.481 ± 0.010 0.636 ± 0.019 0.689 ± 0.021 0.667 ± 0.016 0.689 ± 0.017 0.719 ± 0.017 0.708 ± 0.018 0.658 ± 0.019 0.766 ± 0.021 0.752 ± 0.012

0.0299 0.478 ± 0.010 0.576 ± 0.017 0.624 ± 0.020 0.666 ± 0.015 0.642 ± 0.015 0.651 ± 0.016 0.690 ± 0.017 0.661 ± 0.017 0.701 ± 0.020 0.728 ± 0.011

0.0320 0.466 ± 0.007 0.594 ± 0.012 0.623 ± 0.013 0.649 ± 0.010 0.626 ± 0.010 0.649 ± 0.011 0.697 ± 0.012 0.715 ± 0.012 0.697 ± 0.013 0.716 ± 0.008

0.0349 0.430 ± 0.006 0.544 ± 0.011 0.611 ± 0.012 0.576 ± 0.009 0.589 ± 0.009 0.597 ± 0.010 0.635 ± 0.011 0.629 ± 0.011 0.625 ± 0.012 0.649 ± 0.007

0.0377 0.422 ± 0.006 0.500 ± 0.010 0.557 ± 0.011 0.547 ± 0.008 0.559 ± 0.009 0.567 ± 0.009 0.574 ± 0.010 0.572 ± 0.010 0.575 ± 0.011 0.600 ± 0.006

0.0405 0.403 ± 0.006 0.497 ± 0.010 0.518 ± 0.011 0.533 ± 0.008 0.558 ± 0.009 0.538 ± 0.009 0.545 ± 0.009 0.552 ± 0.010 0.569 ± 0.010 0.586 ± 0.006

0.0434 0.407 ± 0.005 0.473 ± 0.009 0.498 ± 0.010 0.508 ± 0.008 0.533 ± 0.008 0.519 ± 0.008 0.506 ± 0.009 0.527 ± 0.009 0.558 ± 0.010 0.548 ± 0.006

0.0462 0.376 ± 0.005 0.429 ± 0.009 0.469 ± 0.010 0.474 ± 0.007 0.488 ± 0.008 0.483 ± 0.008 0.481 ± 0.008 0.482 ± 0.009 0.504 ± 0.009 0.500 ± 0.005

0.0491 0.367 ± 0.005 0.424 ± 0.008 0.442 ± 0.009 0.452 ± 0.007 0.453 ± 0.007 0.445 ± 0.007 0.461 ± 0.008 0.437 ± 0.008 0.461 ± 0.009 0.476 ± 0.005

0.0519 0.358 ± 0.005 0.393 ± 0.008 0.423 ± 0.009 0.424 ± 0.007 0.427 ± 0.007 0.423 ± 0.007 0.445 ± 0.008 0.448 ± 0.008 0.420 ± 0.008 0.440 ± 0.005

0.0548 0.342 ± 0.004 0.372 ± 0.007 0.395 ± 0.008 0.374 ± 0.006 0.395 ± 0.007 0.388 ± 0.007 0.402 ± 0.007 0.390 ± 0.007 0.396 ± 0.008 0.393 ± 0.005

0.0576 0.326 ± 0.004 0.352 ± 0.007 0.350 ± 0.008 0.366 ± 0.006 0.365 ± 0.006 0.370 ± 0.006 0.360 ± 0.007 0.372 ± 0.007 0.379 ± 0.008 0.383 ± 0.004

0.0605 0.306 ± 0.004 0.320 ± 0.007 0.313 ± 0.007 0.335 ± 0.006 0.332 ± 0.006 0.339 ± 0.006 0.337 ± 0.006 0.323 ± 0.007 0.345 ± 0.007 0.338 ± 0.004

0.0647 0.273 ± 0.003 0.283 ± 0.004 0.301 ± 0.005 0.301 ± 0.004 0.294 ± 0.004 0.295 ± 0.004 0.295 ± 0.004 0.297 ± 0.004 0.297 ± 0.005 0.300 ± 0.003

0.0704 0.241 ± 0.002 0.245 ± 0.004 0.251 ± 0.004 0.244 ± 0.003 0.252 ± 0.004 0.253 ± 0.004 0.257 ± 0.004 0.245 ± 0.004 0.257 ± 0.004 0.251 ± 0.003
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q / Å−1 cp = 100.00 cp = 73.10 cp = 62.94 cp = 58.29 cp = 55.14 cp = 52.80 cp = 48.24 cp = 45.93 cp = 40.44 cp = 36.38

0.0761 0.206 ± 0.002 0.205 ± 0.004 0.206 ± 0.004 0.208 ± 0.003 0.207 ± 0.003 0.204 ± 0.003 0.208 ± 0.003 0.212 ± 0.004 0.202 ± 0.004 0.206 ± 0.002

0.0818 0.171 ± 0.002 0.170 ± 0.003 0.167 ± 0.004 0.172 ± 0.003 0.170 ± 0.003 0.172 ± 0.003 0.173 ± 0.003 0.166 ± 0.003 0.172 ± 0.004 0.170 ± 0.002

0.0875 0.140 ± 0.002 0.141 ± 0.003 0.145 ± 0.003 0.138 ± 0.003 0.135 ± 0.003 0.138 ± 0.003 0.135 ± 0.003 0.139 ± 0.003 0.138 ± 0.003 0.138 ± 0.002

0.0932 0.114 ± 0.002 0.114 ± 0.003 0.108 ± 0.003 0.109 ± 0.002 0.112 ± 0.003 0.112 ± 0.003 0.108 ± 0.003 0.108 ± 0.003 0.113 ± 0.003 0.108 ± 0.002

0.0989 0.0903 ± 0.0016 0.0861 ± 0.0025 0.0898 ± 0.0029 0.0946 ± 0.0022 0.0907 ± 0.0023 0.0896 ± 0.0024 0.0931 ± 0.0026 0.0884 ± 0.0027 0.0839 ± 0.0030 0.0914 ± 0.0018

0.1074 0.0634 ± 0.0010 0.0617 ± 0.0016 0.0626 ± 0.0018 0.0587 ± 0.0014 0.0644 ± 0.0015 0.0646 ± 0.0015 0.0616 ± 0.0016 0.0610 ± 0.0017 0.0613 ± 0.0019 0.0627 ± 0.0011

0.1188 0.0403 ± 0.0009 0.0439 ± 0.0014 0.0400 ± 0.0016 0.0406 ± 0.0013 0.0409 ± 0.0013 0.0418 ± 0.0014 0.0409 ± 0.0015 0.0412 ± 0.0016 0.0445 ± 0.0018 0.0425 ± 0.0010

0.1302 0.0288 ± 0.0008 0.0290 ± 0.0013 0.0302 ± 0.0015 0.0308 ± 0.0012 0.0289 ± 0.0012 0.0283 ± 0.0012 0.0303 ± 0.0014 0.0305 ± 0.0014 0.0313 ± 0.0016 0.0299 ± 0.0010

0.1415 0.0227 ± 0.0007 0.0207 ± 0.0012 0.0222 ± 0.0014 0.0223 ± 0.0011 0.0205 ± 0.0011 0.0215 ± 0.0012 0.0225 ± 0.0013 0.0207 ± 0.0013 0.0207 ± 0.0015 0.0221 ± 0.0009

0.1529 0.0167 ± 0.0007 0.0169 ± 0.0011 0.0178 ± 0.0013 0.0188 ± 0.0010 0.0175 ± 0.0011 0.0184 ± 0.0011 0.0182 ± 0.0012 0.0175 ± 0.0013 0.0192 ± 0.0014 0.0176 ± 0.0008

0.1643 0.0144 ± 0.0006 0.0160 ± 0.0011 0.0176 ± 0.0012 0.0165 ± 0.0009 0.0171 ± 0.0010 0.0167 ± 0.0010 0.0152 ± 0.0011 0.0163 ± 0.0012 0.0178 ± 0.0013 0.0170 ± 0.0008

0.1757 0.0126 ± 0.0006 0.0138 ± 0.0010 0.0118 ± 0.0012 0.0123 ± 0.0009 0.0131 ± 0.0010 0.0123 ± 0.0010 0.0119 ± 0.0011 0.0151 ± 0.0012 0.0138 ± 0.0013 0.0112 ± 0.0008

0.1870 0.00944 ± 0.00057 0.0122 ± 0.0010 0.0119 ± 0.0011 0.00962 ± 0.00086 0.0127 ± 0.0009 0.00942 ± 0.00094 0.0119 ± 0.0010 0.0135 ± 0.0011 0.0112 ± 0.0012 0.0116 ± 0.0007

0.1984 0.00856 ± 0.00054 0.00971 ± 0.00090 0.00988 ± 0.00107 0.00974 ± 0.00083 0.00893 ± 0.00088 0.00839 ± 0.00090 0.0109 ± 0.0010 0.00895 ± 0.00104 0.00916 ± 0.00118 0.00943 ± 0.00071

0.2098 0.00783 ± 0.00053 0.00888 ± 0.00088 0.00969 ± 0.00104 0.00679 ± 0.00080 0.00734 ± 0.00085 0.00796 ± 0.00088 0.00752 ± 0.00095 0.00555 ± 0.00101 0.00521 ± 0.00113 0.00805 ± 0.00069

0.2212 0.00574 ± 0.00051 0.00587 ± 0.00085 0.00678 ± 0.00101 0.00744 ± 0.00078 0.00588 ± 0.00083 0.00623 ± 0.00086 0.00564 ± 0.00094 0.00806 ± 0.00100 0.00658 ± 0.00111 0.00679 ± 0.00067

0.2325 0.00598 ± 0.00050 0.00572 ± 0.00083 0.00712 ± 0.00099 0.00699 ± 0.00076 0.00668 ± 0.00081 0.00712 ± 0.00084 0.00638 ± 0.00091 0.00780 ± 0.00097 0.00674 ± 0.00108 0.00605 ± 0.00065

0.2439 0.00484 ± 0.00048 0.00394 ± 0.00080 0.00556 ± 0.00096 0.00468 ± 0.00074 0.00551 ± 0.00079 0.00608 ± 0.00081 0.00604 ± 0.00089 0.00482 ± 0.00094 0.00591 ± 0.00106 0.00432 ± 0.00063

0.2553 0.00568 ± 0.00047 0.00547 ± 0.00079 0.00465 ± 0.00093 0.00543 ± 0.00072 0.00568 ± 0.00077 0.00512 ± 0.00079 0.00697 ± 0.00088 0.00664 ± 0.00093 0.00566 ± 0.00103 0.00565 ± 0.00062

0.2667 0.00428 ± 0.00046 0.00592 ± 0.00078 0.00400 ± 0.00092 0.00468 ± 0.00071 0.00588 ± 0.00076 0.00397 ± 0.00078 0.00574 ± 0.00086 0.00583 ± 0.00090 0.00683 ± 0.00102 0.00689 ± 0.00061

0.2780 0.00489 ± 0.00046 0.00411 ± 0.00075 0.00437 ± 0.00090 0.00625 ± 0.00070 0.00701 ± 0.00074 0.00630 ± 0.00077 0.00636 ± 0.00083 0.00759 ± 0.00089 0.00577 ± 0.00100 0.00664 ± 0.00060

0.2894 0.00646 ± 0.00045 0.00595 ± 0.00075 0.00540 ± 0.00088 0.00760 ± 0.00069 0.00633 ± 0.00073 0.00622 ± 0.00075 0.00674 ± 0.00082 0.00534 ± 0.00087 0.00588 ± 0.00098 0.00779 ± 0.00059

0.3008 0.00693 ± 0.00044 0.00687 ± 0.00074 0.00792 ± 0.00087 0.00723 ± 0.00067 0.00668 ± 0.00072 0.00697 ± 0.00074 0.00563 ± 0.00081 0.00622 ± 0.00085 0.00578 ± 0.00096 0.00689 ± 0.00057

0.3122 0.00769 ± 0.00043 0.00714 ± 0.00072 0.00639 ± 0.00085 0.00704 ± 0.00066 0.00720 ± 0.00070 0.00725 ± 0.00073 0.00671 ± 0.00080 0.00632 ± 0.00084 0.00575 ± 0.00094 0.00636 ± 0.00057

0.3235 0.00800 ± 0.00043 0.00713 ± 0.00072 0.00441 ± 0.00084 0.00491 ± 0.00065 0.00445 ± 0.00069 0.00681 ± 0.00072 0.00591 ± 0.00078 0.00507 ± 0.00083 0.00783 ± 0.00093 0.00540 ± 0.00056

0.3349 0.00711 ± 0.00042 0.00563 ± 0.00070 0.00613 ± 0.00083 0.00615 ± 0.00064 0.00429 ± 0.00068 0.00534 ± 0.00070 0.00507 ± 0.00077 0.00376 ± 0.00081 0.00553 ± 0.00091 0.00434 ± 0.00055

0.3448 0.00619 ± 0.00048 0.00597 ± 0.00080 0.00700 ± 0.00094 0.00461 ± 0.00072 0.00646 ± 0.00077 0.00577 ± 0.00080 0.00398 ± 0.00087 0.00562 ± 0.00092 0.00325 ± 0.00103 0.00445 ± 0.00062
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Table 13: Small-Angle X-ray Scattering intensities (in arbitrary units) as a function of the wavevector, q, for BSA in 1.0 mol·L−1

NaNO3 aqueous solutions at pH = 6.3, at several protein concentrations, cp, (mg·mL−1).
q / Å−1 cp = 100.00 cp = 79.88 cp = 75.85 cp = 69.96 cp = 64.90 cp = 59.46 cp = 55.45 cp = 48.53 cp = 43.91 cp = 39.63

0.0142 1.12 ± 0.04 1.45 ± 0.05 1.49 ± 0.05 1.58 ± 0.05 1.69 ± 0.06 1.73 ± 0.06 1.93 ± 0.07 2.04 ± 0.08 2.03 ± 0.08 2.15 ± 0.09

0.0156 1.11 ± 0.02 1.47 ± 0.03 1.52 ± 0.03 1.57 ± 0.03 1.70 ± 0.04 1.70 ± 0.04 1.86 ± 0.04 1.99 ± 0.05 2.06 ± 0.05 2.12 ± 0.06

0.0171 1.13 ± 0.02 1.46 ± 0.03 1.56 ± 0.03 1.57 ± 0.03 1.68 ± 0.03 1.77 ± 0.04 1.87 ± 0.04 1.93 ± 0.04 2.10 ± 0.05 2.13 ± 0.05

0.0185 1.09 ± 0.02 1.46 ± 0.03 1.55 ± 0.03 1.56 ± 0.03 1.70 ± 0.03 1.78 ± 0.03 1.78 ± 0.03 1.89 ± 0.04 2.00 ± 0.04 2.12 ± 0.05

0.0199 1.12 ± 0.02 1.47 ± 0.02 1.51 ± 0.03 1.56 ± 0.03 1.66 ± 0.03 1.76 ± 0.03 1.74 ± 0.03 1.91 ± 0.04 1.98 ± 0.04 2.09 ± 0.04

0.0213 1.12 ± 0.02 1.42 ± 0.02 1.49 ± 0.02 1.57 ± 0.03 1.62 ± 0.03 1.74 ± 0.03 1.76 ± 0.03 1.90 ± 0.03 1.92 ± 0.04 2.06 ± 0.04

0.0228 1.11 ± 0.02 1.41 ± 0.02 1.49 ± 0.02 1.55 ± 0.02 1.62 ± 0.03 1.68 ± 0.03 1.78 ± 0.03 1.88 ± 0.03 1.87 ± 0.03 1.99 ± 0.04

0.0242 1.09 ± 0.02 1.43 ± 0.02 1.48 ± 0.02 1.53 ± 0.02 1.62 ± 0.02 1.67 ± 0.03 1.73 ± 0.03 1.83 ± 0.03 1.88 ± 0.03 1.97 ± 0.04

0.0256 1.11 ± 0.02 1.39 ± 0.02 1.45 ± 0.02 1.51 ± 0.02 1.60 ± 0.02 1.66 ± 0.03 1.72 ± 0.03 1.78 ± 0.03 1.85 ± 0.03 1.93 ± 0.04

0.0270 1.13 ± 0.02 1.40 ± 0.02 1.46 ± 0.02 1.49 ± 0.02 1.59 ± 0.02 1.62 ± 0.02 1.71 ± 0.03 1.76 ± 0.03 1.82 ± 0.03 1.93 ± 0.03

0.0284 1.10 ± 0.02 1.40 ± 0.02 1.41 ± 0.02 1.49 ± 0.02 1.52 ± 0.02 1.59 ± 0.02 1.60 ± 0.03 1.75 ± 0.03 1.75 ± 0.03 1.87 ± 0.03

0.0299 1.06 ± 0.02 1.40 ± 0.02 1.40 ± 0.02 1.47 ± 0.02 1.51 ± 0.02 1.55 ± 0.02 1.59 ± 0.02 1.74 ± 0.03 1.78 ± 0.03 1.84 ± 0.03

0.0320 1.08 ± 0.01 1.33 ± 0.01 1.40 ± 0.01 1.44 ± 0.01 1.49 ± 0.01 1.55 ± 0.02 1.56 ± 0.02 1.71 ± 0.02 1.68 ± 0.02 1.75 ± 0.02

0.0349 1.07 ± 0.01 1.32 ± 0.01 1.33 ± 0.01 1.39 ± 0.01 1.41 ± 0.01 1.48 ± 0.01 1.51 ± 0.02 1.59 ± 0.02 1.61 ± 0.02 1.71 ± 0.02

0.0377 1.04 ± 0.01 1.27 ± 0.01 1.30 ± 0.01 1.36 ± 0.01 1.39 ± 0.01 1.43 ± 0.01 1.45 ± 0.01 1.49 ± 0.02 1.55 ± 0.02 1.61 ± 0.02

0.0405 1.02 ± 0.01 1.22 ± 0.01 1.25 ± 0.01 1.28 ± 0.01 1.31 ± 0.01 1.34 ± 0.01 1.36 ± 0.01 1.42 ± 0.01 1.44 ± 0.02 1.49 ± 0.02

0.0434 0.998 ± 0.009 1.19 ± 0.01 1.20 ± 0.01 1.25 ± 0.01 1.27 ± 0.01 1.27 ± 0.01 1.30 ± 0.01 1.37 ± 0.01 1.41 ± 0.02 1.44 ± 0.02

0.0462 0.969 ± 0.008 1.12 ± 0.01 1.15 ± 0.01 1.18 ± 0.01 1.19 ± 0.01 1.20 ± 0.01 1.22 ± 0.01 1.27 ± 0.01 1.29 ± 0.01 1.32 ± 0.02

0.0491 0.949 ± 0.008 1.07 ± 0.01 1.10 ± 0.01 1.12 ± 0.01 1.12 ± 0.01 1.15 ± 0.01 1.17 ± 0.01 1.22 ± 0.01 1.20 ± 0.01 1.25 ± 0.01

0.0519 0.907 ± 0.007 1.01 ± 0.01 1.02 ± 0.01 1.06 ± 0.01 1.05 ± 0.01 1.08 ± 0.01 1.09 ± 0.01 1.13 ± 0.01 1.12 ± 0.01 1.18 ± 0.01

0.0548 0.871 ± 0.007 0.955 ± 0.008 0.976 ± 0.009 0.989 ± 0.009 0.978 ± 0.009 1.01 ± 0.01 1.03 ± 0.01 1.06 ± 0.01 1.05 ± 0.01 1.08 ± 0.01

0.0576 0.830 ± 0.007 0.904 ± 0.008 0.922 ± 0.008 0.922 ± 0.008 0.925 ± 0.009 0.941 ± 0.009 0.950 ± 0.010 0.963 ± 0.011 0.972 ± 0.011 0.994 ± 0.012

0.0605 0.793 ± 0.006 0.840 ± 0.007 0.843 ± 0.008 0.859 ± 0.008 0.853 ± 0.008 0.864 ± 0.009 0.870 ± 0.009 0.902 ± 0.010 0.888 ± 0.010 0.916 ± 0.012

0.0647 0.719 ± 0.004 0.750 ± 0.005 0.754 ± 0.005 0.759 ± 0.005 0.760 ± 0.005 0.764 ± 0.006 0.763 ± 0.006 0.775 ± 0.006 0.784 ± 0.007 0.783 ± 0.007

0.0704 0.612 ± 0.004 0.624 ± 0.004 0.618 ± 0.004 0.625 ± 0.005 0.629 ± 0.005 0.637 ± 0.005 0.639 ± 0.005 0.637 ± 0.006 0.629 ± 0.006 0.644 ± 0.006
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q / Å−1 cp = 100.00 cp = 79.88 cp = 75.85 cp = 69.96 cp = 64.90 cp = 59.46 cp = 55.45 cp = 48.53 cp = 43.91 cp = 39.63

0.0761 0.515 ± 0.003 0.513 ± 0.004 0.511 ± 0.004 0.520 ± 0.004 0.518 ± 0.004 0.516 ± 0.004 0.518 ± 0.005 0.508 ± 0.005 0.518 ± 0.005 0.517 ± 0.006

0.0818 0.419 ± 0.003 0.421 ± 0.003 0.412 ± 0.003 0.414 ± 0.003 0.418 ± 0.004 0.413 ± 0.004 0.413 ± 0.004 0.412 ± 0.004 0.417 ± 0.005 0.419 ± 0.005

0.0875 0.330 ± 0.003 0.327 ± 0.003 0.330 ± 0.003 0.322 ± 0.003 0.326 ± 0.003 0.323 ± 0.003 0.323 ± 0.004 0.327 ± 0.004 0.323 ± 0.004 0.319 ± 0.004

0.0932 0.259 ± 0.002 0.250 ± 0.002 0.254 ± 0.003 0.253 ± 0.003 0.250 ± 0.003 0.254 ± 0.003 0.249 ± 0.003 0.254 ± 0.003 0.243 ± 0.003 0.249 ± 0.004

0.0989 0.202 ± 0.002 0.196 ± 0.002 0.200 ± 0.002 0.197 ± 0.002 0.195 ± 0.002 0.198 ± 0.003 0.196 ± 0.003 0.196 ± 0.003 0.198 ± 0.003 0.197 ± 0.003

0.1074 0.133 ± 0.001 0.132 ± 0.001 0.131 ± 0.001 0.131 ± 0.001 0.132 ± 0.001 0.133 ± 0.002 0.131 ± 0.002 0.134 ± 0.002 0.134 ± 0.002 0.131 ± 0.002

0.1188 0.0807 ± 0.0009 0.0815 ± 0.0010 0.0811 ± 0.0011 0.0820 ± 0.0011 0.0812 ± 0.0011 0.0800 ± 0.0012 0.0837 ± 0.0013 0.0814 ± 0.0014 0.0813 ± 0.0015 0.0840 ± 0.0018

0.1302 0.0531 ± 0.0007 0.0561 ± 0.0009 0.0562 ± 0.0009 0.0555 ± 0.0009 0.0556 ± 0.0010 0.0559 ± 0.0011 0.0580 ± 0.0012 0.0583 ± 0.0013 0.0572 ± 0.0014 0.0564 ± 0.0015

0.1415 0.0399 ± 0.0006 0.0406 ± 0.0007 0.0421 ± 0.0008 0.0409 ± 0.0008 0.0410 ± 0.0009 0.0418 ± 0.0009 0.0413 ± 0.0010 0.0430 ± 0.0011 0.0425 ± 0.0012 0.0430 ± 0.0014

0.1529 0.0323 ± 0.0006 0.0342 ± 0.0007 0.0351 ± 0.0007 0.0341 ± 0.0008 0.0336 ± 0.0008 0.0353 ± 0.0009 0.0345 ± 0.0009 0.0339 ± 0.0010 0.0333 ± 0.0011 0.0357 ± 0.0013

0.1643 0.0271 ± 0.0005 0.0285 ± 0.0006 0.0287 ± 0.0007 0.0292 ± 0.0007 0.0299 ± 0.0007 0.0281 ± 0.0008 0.0285 ± 0.0009 0.0277 ± 0.0010 0.0291 ± 0.0010 0.0286 ± 0.0012

0.1757 0.0218 ± 0.0005 0.0223 ± 0.0006 0.0218 ± 0.0006 0.0235 ± 0.0007 0.0227 ± 0.0007 0.0231 ± 0.0007 0.0222 ± 0.0008 0.0226 ± 0.0009 0.0228 ± 0.0010 0.0204 ± 0.0011

0.1870 0.0174 ± 0.0004 0.0184 ± 0.0005 0.0181 ± 0.0006 0.0192 ± 0.0006 0.0194 ± 0.0006 0.0186 ± 0.0007 0.0177 ± 0.0008 0.0177 ± 0.0008 0.0167 ± 0.0009 0.0161 ± 0.0010

0.1984 0.0155 ± 0.0004 0.0167 ± 0.0005 0.0171 ± 0.0005 0.0164 ± 0.0006 0.0161 ± 0.0006 0.0159 ± 0.0007 0.0174 ± 0.0007 0.0164 ± 0.0008 0.0164 ± 0.0009 0.0175 ± 0.0010

0.2098 0.0134 ± 0.0004 0.0142 ± 0.0005 0.0128 ± 0.0005 0.0136 ± 0.0006 0.0139 ± 0.0006 0.0135 ± 0.0006 0.0129 ± 0.0007 0.0133 ± 0.0008 0.0141 ± 0.0008 0.0119 ± 0.0009

0.2212 0.0116 ± 0.0004 0.0113 ± 0.0005 0.0110 ± 0.0005 0.0113 ± 0.0005 0.0110 ± 0.0006 0.0112 ± 0.0006 0.0116 ± 0.0007 0.00909 ± 0.00073 0.0119 ± 0.0008 0.0118 ± 0.0009

0.2325 0.00957 ± 0.00036 0.0101 ± 0.0005 0.00959 ± 0.00048 0.0107 ± 0.0005 0.0100 ± 0.0005 0.0109 ± 0.0006 0.00941 ± 0.00064 0.0109 ± 0.0007 0.00905 ± 0.00078 0.0100 ± 0.0009

0.2439 0.00890 ± 0.00035 0.00786 ± 0.00044 0.00803 ± 0.00047 0.00855 ± 0.00050 0.00870 ± 0.00053 0.00857 ± 0.00058 0.00801 ± 0.00063 0.00851 ± 0.00070 0.00869 ± 0.00078 0.00886 ± 0.00089

0.2553 0.00873 ± 0.00035 0.00831 ± 0.00044 0.00785 ± 0.00046 0.00837 ± 0.00050 0.00766 ± 0.00052 0.00791 ± 0.00057 0.00705 ± 0.00061 0.00884 ± 0.00071 0.00833 ± 0.00077 0.00716 ± 0.00087

0.2667 0.00803 ± 0.00034 0.00756 ± 0.00043 0.00686 ± 0.00046 0.00749 ± 0.00049 0.00696 ± 0.00051 0.00818 ± 0.00056 0.00739 ± 0.00061 0.00845 ± 0.00069 0.00719 ± 0.00076 0.00689 ± 0.00086

0.2780 0.00835 ± 0.00034 0.00856 ± 0.00043 0.00750 ± 0.00045 0.00676 ± 0.00048 0.00772 ± 0.00051 0.00757 ± 0.00056 0.00757 ± 0.00060 0.00741 ± 0.00068 0.00861 ± 0.00075 0.00779 ± 0.00085

0.2894 0.00872 ± 0.00034 0.00888 ± 0.00042 0.00923 ± 0.00045 0.00878 ± 0.00048 0.00841 ± 0.00050 0.00863 ± 0.00055 0.00866 ± 0.00060 0.00911 ± 0.00068 0.00904 ± 0.00074 0.00926 ± 0.00086

0.3008 0.00918 ± 0.00034 0.00871 ± 0.00042 0.00875 ± 0.00045 0.00860 ± 0.00048 0.00825 ± 0.00050 0.00823 ± 0.00054 0.00817 ± 0.00059 0.00880 ± 0.00067 0.00854 ± 0.00073 0.00919 ± 0.00084

0.3122 0.00982 ± 0.00034 0.00893 ± 0.00041 0.00957 ± 0.00044 0.00906 ± 0.00047 0.00943 ± 0.00049 0.00926 ± 0.00054 0.0101 ± 0.0006 0.00882 ± 0.00066 0.00837 ± 0.00072 0.0108 ± 0.0008

0.3235 0.00895 ± 0.00033 0.00852 ± 0.00040 0.00934 ± 0.00043 0.00873 ± 0.00046 0.00980 ± 0.00048 0.00915 ± 0.00053 0.00992 ± 0.00057 0.00949 ± 0.00065 0.00869 ± 0.00071 0.00916 ± 0.00081

0.3349 0.00867 ± 0.00032 0.00765 ± 0.00039 0.00848 ± 0.00042 0.00754 ± 0.00044 0.00854 ± 0.00047 0.00790 ± 0.00052 0.00841 ± 0.00056 0.00775 ± 0.00063 0.00803 ± 0.00069 0.00772 ± 0.00079

0.3448 0.00803 ± 0.00036 0.00806 ± 0.00044 0.00849 ± 0.00048 0.00818 ± 0.00051 0.00713 ± 0.00053 0.00703 ± 0.00058 0.00802 ± 0.00064 0.00727 ± 0.00071 0.00847 ± 0.00079 0.00787 ± 0.00090
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Table 14: Small-Angle X-ray Scattering intensities (in arbitrary units) as a function of the wavevector, q, for BSA in 1.0 mol·L−1

NaCl aqueous solutions at pH = 6.3, at several protein concentrations, cp, (mg·mL−1).
q / Å−1 cp = 100.00 cp = 80.79 cp = 77.29 cp = 70.35 cp = 65.40 cp = 60.59 cp = 56.05 cp = 50.01 cp = 44.39 cp = 39.53

0.0142 0.945 ± 0.036 1.57 ± 0.05 1.62 ± 0.06 1.71 ± 0.06 1.82 ± 0.07 2.00 ± 0.07 2.06 ± 0.08 2.01 ± 0.08 2.21 ± 0.09 2.22 ± 0.10

0.0156 1.01 ± 0.02 1.58 ± 0.03 1.62 ± 0.03 1.72 ± 0.03 1.82 ± 0.04 1.94 ± 0.04 2.06 ± 0.04 2.02 ± 0.04 2.18 ± 0.05 2.27 ± 0.06

0.0171 0.988 ± 0.021 1.59 ± 0.03 1.58 ± 0.03 1.69 ± 0.03 1.78 ± 0.03 1.92 ± 0.03 1.97 ± 0.04 1.99 ± 0.04 2.11 ± 0.04 2.21 ± 0.05

0.0185 1.03 ± 0.02 1.51 ± 0.02 1.63 ± 0.03 1.65 ± 0.03 1.82 ± 0.03 1.87 ± 0.03 1.95 ± 0.03 2.00 ± 0.04 2.12 ± 0.04 2.20 ± 0.04

0.0199 1.07 ± 0.02 1.57 ± 0.02 1.66 ± 0.02 1.69 ± 0.03 1.77 ± 0.03 1.86 ± 0.03 1.95 ± 0.03 2.04 ± 0.03 2.12 ± 0.04 2.23 ± 0.04

0.0213 1.09 ± 0.02 1.59 ± 0.02 1.63 ± 0.02 1.74 ± 0.02 1.77 ± 0.03 1.84 ± 0.03 1.94 ± 0.03 1.98 ± 0.03 2.10 ± 0.04 2.17 ± 0.04

0.0228 1.12 ± 0.02 1.54 ± 0.02 1.58 ± 0.02 1.66 ± 0.02 1.74 ± 0.02 1.78 ± 0.03 1.87 ± 0.03 1.97 ± 0.03 1.97 ± 0.03 2.12 ± 0.04

0.0242 1.12 ± 0.02 1.54 ± 0.02 1.59 ± 0.02 1.64 ± 0.02 1.72 ± 0.02 1.78 ± 0.03 1.83 ± 0.03 1.90 ± 0.03 2.02 ± 0.03 2.07 ± 0.04

0.0256 1.10 ± 0.02 1.51 ± 0.02 1.57 ± 0.02 1.63 ± 0.02 1.68 ± 0.02 1.71 ± 0.02 1.81 ± 0.03 1.87 ± 0.03 1.94 ± 0.03 1.99 ± 0.03

0.0270 1.13 ± 0.02 1.52 ± 0.02 1.53 ± 0.02 1.60 ± 0.02 1.67 ± 0.02 1.69 ± 0.02 1.82 ± 0.03 1.88 ± 0.03 1.92 ± 0.03 2.00 ± 0.03

0.0284 1.12 ± 0.01 1.49 ± 0.02 1.49 ± 0.02 1.54 ± 0.02 1.64 ± 0.02 1.66 ± 0.02 1.74 ± 0.02 1.85 ± 0.03 1.87 ± 0.03 1.93 ± 0.03

0.0299 1.12 ± 0.01 1.46 ± 0.02 1.46 ± 0.02 1.55 ± 0.02 1.63 ± 0.02 1.68 ± 0.02 1.73 ± 0.02 1.81 ± 0.03 1.83 ± 0.03 1.88 ± 0.03

0.0320 1.11 ± 0.01 1.45 ± 0.01 1.47 ± 0.01 1.53 ± 0.01 1.59 ± 0.01 1.63 ± 0.01 1.71 ± 0.02 1.71 ± 0.02 1.80 ± 0.02 1.82 ± 0.02

0.0349 1.10 ± 0.01 1.41 ± 0.01 1.41 ± 0.01 1.46 ± 0.01 1.51 ± 0.01 1.57 ± 0.01 1.62 ± 0.01 1.63 ± 0.02 1.74 ± 0.02 1.74 ± 0.02

0.0377 1.08 ± 0.01 1.33 ± 0.01 1.34 ± 0.01 1.42 ± 0.01 1.45 ± 0.01 1.49 ± 0.01 1.55 ± 0.01 1.55 ± 0.01 1.62 ± 0.02 1.65 ± 0.02

0.0405 1.04 ± 0.01 1.28 ± 0.01 1.28 ± 0.01 1.33 ± 0.01 1.39 ± 0.01 1.39 ± 0.01 1.44 ± 0.01 1.46 ± 0.01 1.51 ± 0.01 1.56 ± 0.02

0.0434 1.04 ± 0.01 1.23 ± 0.01 1.24 ± 0.01 1.27 ± 0.01 1.32 ± 0.01 1.34 ± 0.01 1.39 ± 0.01 1.38 ± 0.01 1.45 ± 0.01 1.47 ± 0.02

0.0462 1.00 ± 0.01 1.18 ± 0.01 1.19 ± 0.01 1.20 ± 0.01 1.24 ± 0.01 1.27 ± 0.01 1.27 ± 0.01 1.28 ± 0.01 1.32 ± 0.01 1.33 ± 0.01

0.0491 0.958 ± 0.007 1.11 ± 0.01 1.13 ± 0.01 1.15 ± 0.01 1.18 ± 0.01 1.17 ± 0.01 1.20 ± 0.01 1.22 ± 0.01 1.25 ± 0.01 1.26 ± 0.01

0.0519 0.934 ± 0.007 1.05 ± 0.01 1.04 ± 0.01 1.07 ± 0.01 1.10 ± 0.01 1.12 ± 0.01 1.12 ± 0.01 1.12 ± 0.01 1.17 ± 0.01 1.14 ± 0.01

0.0548 0.887 ± 0.006 0.989 ± 0.008 0.990 ± 0.008 1.01 ± 0.01 1.03 ± 0.01 1.04 ± 0.01 1.03 ± 0.01 1.05 ± 0.01 1.06 ± 0.01 1.06 ± 0.01

0.0576 0.848 ± 0.006 0.923 ± 0.007 0.928 ± 0.007 0.932 ± 0.008 0.948 ± 0.008 0.972 ± 0.009 0.977 ± 0.009 0.979 ± 0.010 0.985 ± 0.010 0.999 ± 0.011

0.0605 0.797 ± 0.006 0.862 ± 0.007 0.856 ± 0.007 0.876 ± 0.007 0.887 ± 0.008 0.885 ± 0.008 0.904 ± 0.008 0.896 ± 0.009 0.912 ± 0.009 0.930 ± 0.011

0.0647 0.717 ± 0.004 0.760 ± 0.004 0.760 ± 0.004 0.766 ± 0.005 0.772 ± 0.005 0.773 ± 0.005 0.782 ± 0.005 0.780 ± 0.006 0.803 ± 0.006 0.795 ± 0.007

0.0704 0.618 ± 0.003 0.639 ± 0.004 0.638 ± 0.004 0.639 ± 0.004 0.648 ± 0.004 0.643 ± 0.005 0.644 ± 0.005 0.650 ± 0.005 0.653 ± 0.005 0.655 ± 0.006
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q / Å−1 cp = 100.00 cp = 80.79 cp = 77.29 cp = 70.35 cp = 65.40 cp = 60.59 cp = 56.05 cp = 50.01 cp = 44.39 cp = 39.53

0.0761 0.513 ± 0.003 0.524 ± 0.003 0.527 ± 0.003 0.523 ± 0.004 0.528 ± 0.004 0.525 ± 0.004 0.526 ± 0.004 0.521 ± 0.004 0.519 ± 0.005 0.515 ± 0.005

0.0818 0.415 ± 0.003 0.420 ± 0.003 0.418 ± 0.003 0.423 ± 0.003 0.419 ± 0.003 0.421 ± 0.003 0.421 ± 0.004 0.417 ± 0.004 0.413 ± 0.004 0.417 ± 0.004

0.0875 0.335 ± 0.002 0.332 ± 0.003 0.331 ± 0.003 0.328 ± 0.003 0.332 ± 0.003 0.333 ± 0.003 0.326 ± 0.003 0.325 ± 0.003 0.323 ± 0.004 0.328 ± 0.004

0.0932 0.261 ± 0.002 0.257 ± 0.002 0.259 ± 0.002 0.256 ± 0.002 0.254 ± 0.002 0.255 ± 0.003 0.257 ± 0.003 0.255 ± 0.003 0.260 ± 0.003 0.256 ± 0.003

0.0989 0.204 ± 0.002 0.200 ± 0.002 0.197 ± 0.002 0.201 ± 0.002 0.198 ± 0.002 0.197 ± 0.002 0.198 ± 0.002 0.199 ± 0.003 0.200 ± 0.003 0.196 ± 0.003

0.1074 0.134 ± 0.001 0.131 ± 0.001 0.132 ± 0.001 0.132 ± 0.001 0.130 ± 0.001 0.131 ± 0.001 0.129 ± 0.001 0.130 ± 0.001 0.132 ± 0.002 0.130 ± 0.002

0.1188 0.0832 ± 0.0008 0.0812 ± 0.0009 0.0820 ± 0.0009 0.0815 ± 0.0009 0.0837 ± 0.0010 0.0818 ± 0.0011 0.0825 ± 0.0011 0.0842 ± 0.0012 0.0822 ± 0.0013 0.0836 ± 0.0015

0.1302 0.0550 ± 0.0006 0.0555 ± 0.0007 0.0560 ± 0.0008 0.0564 ± 0.0008 0.0551 ± 0.0009 0.0563 ± 0.0009 0.0572 ± 0.0010 0.0587 ± 0.0011 0.0586 ± 0.0012 0.0580 ± 0.0013

0.1415 0.0418 ± 0.0006 0.0427 ± 0.0006 0.0431 ± 0.0007 0.0426 ± 0.0007 0.0427 ± 0.0008 0.0431 ± 0.0008 0.0434 ± 0.0009 0.0431 ± 0.0009 0.0433 ± 0.0010 0.0429 ± 0.0012

0.1529 0.0347 ± 0.0005 0.0347 ± 0.0006 0.0340 ± 0.0006 0.0341 ± 0.0006 0.0356 ± 0.0007 0.0347 ± 0.0007 0.0355 ± 0.0008 0.0354 ± 0.0009 0.0355 ± 0.0009 0.0368 ± 0.0011

0.1643 0.0276 ± 0.0005 0.0282 ± 0.0005 0.0275 ± 0.0005 0.0274 ± 0.0006 0.0282 ± 0.0006 0.0279 ± 0.0007 0.0290 ± 0.0007 0.0280 ± 0.0008 0.0295 ± 0.0009 0.0293 ± 0.0010

0.1757 0.0220 ± 0.0004 0.0226 ± 0.0005 0.0225 ± 0.0005 0.0226 ± 0.0005 0.0230 ± 0.0006 0.0229 ± 0.0006 0.0225 ± 0.0007 0.0240 ± 0.0007 0.0226 ± 0.0008 0.0232 ± 0.0009

0.1870 0.0192 ± 0.0004 0.0197 ± 0.0005 0.0186 ± 0.0005 0.0191 ± 0.0005 0.0191 ± 0.0005 0.0183 ± 0.0006 0.0181 ± 0.0006 0.0197 ± 0.0007 0.0188 ± 0.0007 0.0201 ± 0.0009

0.1984 0.0151 ± 0.0004 0.0156 ± 0.0004 0.0165 ± 0.0004 0.0165 ± 0.0005 0.0158 ± 0.0005 0.0164 ± 0.0005 0.0157 ± 0.0006 0.0158 ± 0.0006 0.0168 ± 0.0007 0.0175 ± 0.0008

0.2098 0.0127 ± 0.0003 0.0128 ± 0.0004 0.0133 ± 0.0004 0.0136 ± 0.0004 0.0134 ± 0.0005 0.0127 ± 0.0005 0.0129 ± 0.0006 0.0141 ± 0.0006 0.0145 ± 0.0007 0.0150 ± 0.0008

0.2212 0.0116 ± 0.0003 0.0113 ± 0.0004 0.0115 ± 0.0004 0.0106 ± 0.0004 0.0112 ± 0.0005 0.0111 ± 0.0005 0.0110 ± 0.0005 0.0110 ± 0.0006 0.0115 ± 0.0007 0.0114 ± 0.0008

0.2325 0.00956 ± 0.00031 0.00974 ± 0.00037 0.00930 ± 0.00038 0.01000 ± 0.00042 0.00992 ± 0.00045 0.00923 ± 0.00049 0.0105 ± 0.0005 0.0103 ± 0.0006 0.0104 ± 0.0006 0.00979 ± 0.00074

0.2439 0.00860 ± 0.00030 0.00813 ± 0.00036 0.00772 ± 0.00037 0.00877 ± 0.00041 0.00816 ± 0.00044 0.00908 ± 0.00048 0.00824 ± 0.00051 0.00828 ± 0.00057 0.00818 ± 0.00063 0.00788 ± 0.00072

0.2553 0.00788 ± 0.00030 0.00753 ± 0.00036 0.00709 ± 0.00037 0.00689 ± 0.00040 0.00730 ± 0.00043 0.00725 ± 0.00047 0.00705 ± 0.00050 0.00749 ± 0.00056 0.00837 ± 0.00063 0.00822 ± 0.00072

0.2667 0.00736 ± 0.00030 0.00742 ± 0.00035 0.00757 ± 0.00037 0.00740 ± 0.00040 0.00746 ± 0.00043 0.00705 ± 0.00047 0.00762 ± 0.00050 0.00789 ± 0.00056 0.00713 ± 0.00062 0.00749 ± 0.00071

0.2780 0.00732 ± 0.00029 0.00721 ± 0.00035 0.00760 ± 0.00036 0.00817 ± 0.00040 0.00749 ± 0.00043 0.00777 ± 0.00046 0.00711 ± 0.00050 0.00751 ± 0.00055 0.00822 ± 0.00062 0.00641 ± 0.00070

0.2894 0.00787 ± 0.00029 0.00835 ± 0.00035 0.00861 ± 0.00036 0.00856 ± 0.00040 0.00756 ± 0.00042 0.00845 ± 0.00046 0.00796 ± 0.00050 0.00719 ± 0.00054 0.00804 ± 0.00061 0.00849 ± 0.00071

0.3008 0.00846 ± 0.00029 0.00879 ± 0.00035 0.00904 ± 0.00037 0.00864 ± 0.00040 0.00869 ± 0.00043 0.00804 ± 0.00046 0.00854 ± 0.00050 0.00830 ± 0.00055 0.00645 ± 0.00061 0.00723 ± 0.00070

0.3122 0.00890 ± 0.00029 0.00835 ± 0.00034 0.00843 ± 0.00036 0.00800 ± 0.00039 0.00800 ± 0.00042 0.00829 ± 0.00046 0.00923 ± 0.00049 0.00773 ± 0.00054 0.00787 ± 0.00060 0.00794 ± 0.00069

0.3235 0.00839 ± 0.00028 0.00851 ± 0.00034 0.00925 ± 0.00036 0.00833 ± 0.00038 0.00875 ± 0.00042 0.00905 ± 0.00045 0.00918 ± 0.00049 0.00873 ± 0.00053 0.00870 ± 0.00059 0.00781 ± 0.00069

0.3349 0.00834 ± 0.00028 0.00861 ± 0.00033 0.00781 ± 0.00035 0.00775 ± 0.00037 0.00867 ± 0.00041 0.00770 ± 0.00044 0.00835 ± 0.00048 0.00785 ± 0.00053 0.00654 ± 0.00058 0.00669 ± 0.00067

0.3448 0.00801 ± 0.00032 0.00716 ± 0.00038 0.00698 ± 0.00039 0.00758 ± 0.00043 0.00708 ± 0.00046 0.00829 ± 0.00051 0.00588 ± 0.00054 0.00591 ± 0.00060 0.00674 ± 0.00067 0.00681 ± 0.00076
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Table 15: Small-Angle X-ray Scattering intensities (in arbitrary units) as a function of the wavevector, q, for BSA in 1.0 mol·L−1

Na2SO4 aqueous solutions at pH = 6.3, at several protein concentrations, cp, (mg·mL−1).
q / Å−1 cp = 100.00 cp = 74.88 cp = 67.87 cp = 65.99 cp = 59.89 cp = 56.70 cp = 49.33 cp = 44.88 cp = 40.65 cp = 31.07

0.0142 0.388 ± 0.026 0.503 ± 0.042 0.519 ± 0.045 0.518 ± 0.046 0.569 ± 0.051 0.592 ± 0.052 0.605 ± 0.059 0.676 ± 0.066 0.724 ± 0.074 0.735 ± 0.038

0.0156 0.332 ± 0.018 0.491 ± 0.025 0.470 ± 0.027 0.507 ± 0.028 0.531 ± 0.031 0.563 ± 0.032 0.638 ± 0.036 0.638 ± 0.039 0.659 ± 0.044 0.704 ± 0.021

0.0171 0.343 ± 0.016 0.502 ± 0.021 0.501 ± 0.023 0.516 ± 0.023 0.563 ± 0.025 0.591 ± 0.027 0.647 ± 0.030 0.619 ± 0.032 0.635 ± 0.036 0.670 ± 0.017

0.0185 0.344 ± 0.014 0.476 ± 0.018 0.493 ± 0.020 0.516 ± 0.021 0.562 ± 0.023 0.533 ± 0.023 0.591 ± 0.026 0.555 ± 0.028 0.632 ± 0.031 0.646 ± 0.015

0.0199 0.352 ± 0.013 0.506 ± 0.017 0.488 ± 0.018 0.529 ± 0.019 0.566 ± 0.021 0.555 ± 0.021 0.539 ± 0.023 0.564 ± 0.026 0.611 ± 0.029 0.651 ± 0.014

0.0213 0.354 ± 0.012 0.484 ± 0.016 0.505 ± 0.017 0.504 ± 0.018 0.544 ± 0.019 0.564 ± 0.020 0.593 ± 0.022 0.584 ± 0.024 0.598 ± 0.026 0.622 ± 0.012

0.0228 0.340 ± 0.012 0.469 ± 0.014 0.488 ± 0.016 0.516 ± 0.017 0.520 ± 0.018 0.549 ± 0.018 0.553 ± 0.021 0.588 ± 0.022 0.583 ± 0.024 0.600 ± 0.011

0.0242 0.341 ± 0.011 0.477 ± 0.014 0.467 ± 0.015 0.478 ± 0.015 0.518 ± 0.016 0.524 ± 0.017 0.538 ± 0.019 0.561 ± 0.021 0.562 ± 0.022 0.593 ± 0.010

0.0256 0.343 ± 0.010 0.448 ± 0.013 0.488 ± 0.014 0.475 ± 0.014 0.507 ± 0.016 0.534 ± 0.017 0.543 ± 0.018 0.543 ± 0.019 0.555 ± 0.021 0.588 ± 0.010

0.0270 0.356 ± 0.010 0.465 ± 0.013 0.498 ± 0.014 0.481 ± 0.014 0.522 ± 0.015 0.505 ± 0.016 0.519 ± 0.017 0.537 ± 0.019 0.545 ± 0.021 0.566 ± 0.009

0.0284 0.335 ± 0.010 0.458 ± 0.012 0.473 ± 0.013 0.454 ± 0.013 0.484 ± 0.015 0.477 ± 0.015 0.510 ± 0.017 0.506 ± 0.018 0.538 ± 0.020 0.547 ± 0.009

0.0299 0.337 ± 0.009 0.444 ± 0.012 0.454 ± 0.013 0.463 ± 0.013 0.467 ± 0.014 0.472 ± 0.014 0.504 ± 0.016 0.489 ± 0.017 0.514 ± 0.019 0.545 ± 0.008

0.0320 0.337 ± 0.006 0.437 ± 0.008 0.428 ± 0.009 0.444 ± 0.009 0.456 ± 0.009 0.464 ± 0.010 0.486 ± 0.011 0.479 ± 0.011 0.476 ± 0.013 0.508 ± 0.006

0.0349 0.331 ± 0.006 0.418 ± 0.008 0.431 ± 0.008 0.424 ± 0.008 0.453 ± 0.009 0.446 ± 0.009 0.471 ± 0.010 0.471 ± 0.011 0.486 ± 0.012 0.504 ± 0.005

0.0377 0.315 ± 0.006 0.401 ± 0.007 0.419 ± 0.008 0.408 ± 0.008 0.430 ± 0.008 0.428 ± 0.009 0.455 ± 0.010 0.453 ± 0.010 0.475 ± 0.011 0.471 ± 0.005

0.0405 0.315 ± 0.005 0.365 ± 0.007 0.393 ± 0.007 0.407 ± 0.007 0.402 ± 0.008 0.397 ± 0.008 0.421 ± 0.009 0.422 ± 0.010 0.424 ± 0.011 0.440 ± 0.005

0.0434 0.300 ± 0.005 0.360 ± 0.006 0.384 ± 0.007 0.390 ± 0.007 0.394 ± 0.008 0.399 ± 0.008 0.398 ± 0.009 0.404 ± 0.009 0.395 ± 0.010 0.414 ± 0.005

0.0462 0.286 ± 0.005 0.336 ± 0.006 0.353 ± 0.007 0.348 ± 0.007 0.351 ± 0.007 0.364 ± 0.007 0.372 ± 0.008 0.369 ± 0.009 0.376 ± 0.010 0.378 ± 0.004

0.0491 0.284 ± 0.005 0.328 ± 0.006 0.346 ± 0.006 0.336 ± 0.006 0.333 ± 0.007 0.342 ± 0.007 0.367 ± 0.008 0.331 ± 0.008 0.344 ± 0.009 0.361 ± 0.004

0.0519 0.277 ± 0.004 0.317 ± 0.006 0.331 ± 0.006 0.321 ± 0.006 0.347 ± 0.007 0.330 ± 0.007 0.356 ± 0.008 0.341 ± 0.008 0.339 ± 0.009 0.356 ± 0.004

0.0548 0.259 ± 0.004 0.298 ± 0.005 0.309 ± 0.006 0.304 ± 0.006 0.312 ± 0.006 0.300 ± 0.006 0.311 ± 0.007 0.308 ± 0.007 0.302 ± 0.008 0.316 ± 0.004

0.0576 0.251 ± 0.004 0.281 ± 0.005 0.285 ± 0.005 0.285 ± 0.005 0.288 ± 0.006 0.285 ± 0.006 0.299 ± 0.007 0.280 ± 0.007 0.291 ± 0.008 0.296 ± 0.004

0.0605 0.233 ± 0.004 0.259 ± 0.005 0.271 ± 0.005 0.271 ± 0.005 0.258 ± 0.006 0.263 ± 0.006 0.284 ± 0.006 0.265 ± 0.007 0.263 ± 0.007 0.279 ± 0.004

0.0647 0.219 ± 0.003 0.239 ± 0.003 0.240 ± 0.003 0.237 ± 0.003 0.238 ± 0.004 0.243 ± 0.004 0.241 ± 0.004 0.241 ± 0.005 0.238 ± 0.005 0.241 ± 0.002

0.0704 0.193 ± 0.002 0.202 ± 0.003 0.203 ± 0.003 0.196 ± 0.003 0.207 ± 0.003 0.197 ± 0.003 0.213 ± 0.004 0.200 ± 0.004 0.203 ± 0.005 0.203 ± 0.002
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q / Å−1 cp = 100.00 cp = 74.88 cp = 67.87 cp = 65.99 cp = 59.89 cp = 56.70 cp = 49.33 cp = 44.88 cp = 40.65 cp = 31.07

0.0761 0.171 ± 0.002 0.171 ± 0.003 0.170 ± 0.003 0.173 ± 0.003 0.172 ± 0.003 0.173 ± 0.003 0.173 ± 0.004 0.176 ± 0.004 0.175 ± 0.004 0.171 ± 0.002

0.0818 0.141 ± 0.002 0.145 ± 0.002 0.144 ± 0.003 0.139 ± 0.003 0.144 ± 0.003 0.139 ± 0.003 0.140 ± 0.003 0.139 ± 0.004 0.140 ± 0.004 0.139 ± 0.002

0.0875 0.122 ± 0.002 0.117 ± 0.002 0.118 ± 0.002 0.118 ± 0.002 0.121 ± 0.003 0.117 ± 0.003 0.113 ± 0.003 0.115 ± 0.003 0.111 ± 0.004 0.116 ± 0.002

0.0932 0.0994 ± 0.0017 0.0969 ± 0.0021 0.0941 ± 0.0022 0.0949 ± 0.0023 0.0962 ± 0.0025 0.0964 ± 0.0026 0.0967 ± 0.0029 0.0937 ± 0.0031 0.0914 ± 0.0035 0.0941 ± 0.0016

0.0989 0.0770 ± 0.0016 0.0771 ± 0.0019 0.0789 ± 0.0021 0.0769 ± 0.0021 0.0745 ± 0.0023 0.0790 ± 0.0024 0.0741 ± 0.0027 0.0769 ± 0.0029 0.0778 ± 0.0033 0.0776 ± 0.0016

0.1074 0.0553 ± 0.0010 0.0549 ± 0.0012 0.0534 ± 0.0013 0.0537 ± 0.0014 0.0525 ± 0.0015 0.0511 ± 0.0016 0.0511 ± 0.0018 0.0547 ± 0.0019 0.0532 ± 0.0021 0.0535 ± 0.0010

0.1188 0.0326 ± 0.0009 0.0330 ± 0.0011 0.0346 ± 0.0012 0.0350 ± 0.0012 0.0348 ± 0.0013 0.0334 ± 0.0014 0.0362 ± 0.0016 0.0340 ± 0.0017 0.0368 ± 0.0020 0.0344 ± 0.0010

0.1302 0.0214 ± 0.0008 0.0238 ± 0.0010 0.0249 ± 0.0011 0.0248 ± 0.0011 0.0220 ± 0.0012 0.0267 ± 0.0013 0.0256 ± 0.0015 0.0247 ± 0.0016 0.0268 ± 0.0018 0.0264 ± 0.0009

0.1415 0.0159 ± 0.0007 0.0145 ± 0.0009 0.0156 ± 0.0010 0.0161 ± 0.0010 0.0148 ± 0.0011 0.0169 ± 0.0012 0.0165 ± 0.0014 0.0145 ± 0.0014 0.0164 ± 0.0017 0.0168 ± 0.0008

0.1529 0.0130 ± 0.0006 0.0140 ± 0.0008 0.0142 ± 0.0009 0.0144 ± 0.0010 0.0128 ± 0.0010 0.0136 ± 0.0011 0.0176 ± 0.0013 0.0141 ± 0.0014 0.0144 ± 0.0016 0.0156 ± 0.0008

0.1643 0.0114 ± 0.0006 0.0112 ± 0.0008 0.0112 ± 0.0009 0.0126 ± 0.0009 0.0112 ± 0.0010 0.0113 ± 0.0010 0.0120 ± 0.0012 0.0115 ± 0.0013 0.0126 ± 0.0015 0.0129 ± 0.0007

0.1757 0.0101 ± 0.0006 0.00978 ± 0.00075 0.00794 ± 0.00081 0.00960 ± 0.00084 0.0105 ± 0.0009 0.0111 ± 0.0010 0.0104 ± 0.0011 0.00883 ± 0.00120 0.00915 ± 0.00137 0.0108 ± 0.0007

0.1870 0.00700 ± 0.00054 0.00825 ± 0.00071 0.00982 ± 0.00078 0.00974 ± 0.00080 0.00993 ± 0.00089 0.00813 ± 0.00093 0.0106 ± 0.0011 0.00927 ± 0.00115 0.00964 ± 0.00131 0.00966 ± 0.00065

0.1984 0.00780 ± 0.00051 0.00695 ± 0.00068 0.00895 ± 0.00075 0.00871 ± 0.00077 0.00851 ± 0.00085 0.00689 ± 0.00088 0.00818 ± 0.00102 0.00890 ± 0.00111 0.00878 ± 0.00126 0.00832 ± 0.00063

0.2098 0.00582 ± 0.00049 0.00803 ± 0.00066 0.00539 ± 0.00072 0.00630 ± 0.00074 0.00577 ± 0.00082 0.00790 ± 0.00086 0.00534 ± 0.00098 0.00839 ± 0.00107 0.00415 ± 0.00121 0.00697 ± 0.00061

0.2212 0.00622 ± 0.00048 0.00447 ± 0.00063 0.00596 ± 0.00070 0.00472 ± 0.00072 0.00751 ± 0.00080 0.00445 ± 0.00083 0.00395 ± 0.00096 0.00386 ± 0.00104 0.00696 ± 0.00119 0.00543 ± 0.00059

0.2325 0.00472 ± 0.00047 0.00458 ± 0.00062 0.00620 ± 0.00069 0.00372 ± 0.00071 0.00478 ± 0.00078 0.00411 ± 0.00081 0.00486 ± 0.00094 0.00515 ± 0.00102 0.00442 ± 0.00116 0.00351 ± 0.00058

0.2439 0.00367 ± 0.00046 0.00499 ± 0.00061 0.00430 ± 0.00067 0.00496 ± 0.00069 0.00464 ± 0.00076 0.00339 ± 0.00080 0.00494 ± 0.00092 0.00533 ± 0.00101 0.00419 ± 0.00114 0.00451 ± 0.00057

0.2553 0.00398 ± 0.00046 0.00437 ± 0.00060 0.00368 ± 0.00066 0.00359 ± 0.00068 0.00305 ± 0.00075 0.00393 ± 0.00078 0.00306 ± 0.00090 0.00534 ± 0.00099 0.00453 ± 0.00112 0.00473 ± 0.00056

0.2667 0.00467 ± 0.00045 0.00644 ± 0.00060 0.00498 ± 0.00065 0.00544 ± 0.00067 0.00593 ± 0.00075 0.00521 ± 0.00078 0.00613 ± 0.00090 0.00531 ± 0.00097 0.00491 ± 0.00110 0.00580 ± 0.00055

0.2780 0.00554 ± 0.00045 0.00573 ± 0.00059 0.00475 ± 0.00064 0.00401 ± 0.00066 0.00415 ± 0.00073 0.00417 ± 0.00076 0.00529 ± 0.00089 0.00366 ± 0.00096 0.00445 ± 0.00109 0.00502 ± 0.00054

0.2894 0.00562 ± 0.00045 0.00517 ± 0.00057 0.00568 ± 0.00063 0.00529 ± 0.00065 0.00581 ± 0.00072 0.00701 ± 0.00076 0.00565 ± 0.00087 0.00447 ± 0.00094 0.00605 ± 0.00107 0.00594 ± 0.00054

0.3008 0.00667 ± 0.00044 0.00597 ± 0.00057 0.00663 ± 0.00063 0.00666 ± 0.00064 0.00596 ± 0.00071 0.00833 ± 0.00075 0.00514 ± 0.00085 0.00634 ± 0.00093 0.00636 ± 0.00106 0.00600 ± 0.00052

0.3122 0.00703 ± 0.00044 0.00725 ± 0.00056 0.00676 ± 0.00061 0.00824 ± 0.00064 0.00801 ± 0.00070 0.00807 ± 0.00073 0.00789 ± 0.00085 0.00862 ± 0.00091 0.00855 ± 0.00104 0.00745 ± 0.00052

0.3235 0.00775 ± 0.00043 0.00682 ± 0.00055 0.00732 ± 0.00060 0.00612 ± 0.00061 0.00637 ± 0.00068 0.00645 ± 0.00072 0.00677 ± 0.00082 0.00757 ± 0.00089 0.00698 ± 0.00102 0.00587 ± 0.00051

0.3349 0.00647 ± 0.00042 0.00550 ± 0.00053 0.00562 ± 0.00059 0.00573 ± 0.00061 0.00578 ± 0.00067 0.00501 ± 0.00069 0.00438 ± 0.00080 0.00544 ± 0.00087 0.00478 ± 0.00099 0.00437 ± 0.00049

0.3448 0.00700 ± 0.00047 0.00585 ± 0.00060 0.00506 ± 0.00066 0.00574 ± 0.00068 0.00549 ± 0.00075 0.00504 ± 0.00078 0.00532 ± 0.00091 0.00351 ± 0.00098 0.00354 ± 0.00112 0.00362 ± 0.00056
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Table 16: Small-Angle X-ray Scattering intensities (in arbitrary units) as a function of the wavevector, q, for BSA in 1.0 mol·L−1

NaCl aqueous solutions at pH = 3.4, at several protein concentrations, cp, (mg·mL−1).
q / Å−1 cp = 100.00 cp = 73.42 cp = 69.59 cp = 59.63 cp = 55.63 cp = 51.03 cp = 47.84 cp = 42.58 cp = 37.62 cp = 25.93

0.0142 1.47 ± 0.05 2.44 ± 0.07 2.45 ± 0.07 2.69 ± 0.08 2.89 ± 0.09 2.97 ± 0.09 3.11 ± 0.10 3.18 ± 0.11 3.42 ± 0.12 3.93 ± 0.15

0.0156 1.47 ± 0.03 2.37 ± 0.04 2.46 ± 0.04 2.62 ± 0.04 2.79 ± 0.05 2.85 ± 0.05 3.04 ± 0.05 3.11 ± 0.06 3.31 ± 0.06 3.82 ± 0.07

0.0171 1.47 ± 0.03 2.32 ± 0.03 2.41 ± 0.03 2.63 ± 0.04 2.76 ± 0.04 2.76 ± 0.04 2.90 ± 0.05 3.04 ± 0.05 3.10 ± 0.06 3.63 ± 0.06

0.0185 1.49 ± 0.03 2.35 ± 0.03 2.36 ± 0.03 2.57 ± 0.04 2.62 ± 0.04 2.81 ± 0.04 2.82 ± 0.04 2.93 ± 0.05 3.03 ± 0.05 3.51 ± 0.06

0.0199 1.51 ± 0.03 2.30 ± 0.03 2.35 ± 0.03 2.51 ± 0.03 2.65 ± 0.04 2.76 ± 0.04 2.80 ± 0.04 2.95 ± 0.04 3.12 ± 0.05 3.33 ± 0.05

0.0213 1.51 ± 0.03 2.25 ± 0.03 2.38 ± 0.03 2.48 ± 0.03 2.62 ± 0.03 2.69 ± 0.04 2.74 ± 0.04 2.91 ± 0.04 2.98 ± 0.05 3.17 ± 0.05

0.0228 1.49 ± 0.03 2.18 ± 0.03 2.31 ± 0.03 2.40 ± 0.03 2.55 ± 0.03 2.55 ± 0.03 2.62 ± 0.04 2.68 ± 0.04 2.86 ± 0.04 3.02 ± 0.04

0.0242 1.49 ± 0.02 2.14 ± 0.02 2.23 ± 0.03 2.32 ± 0.03 2.42 ± 0.03 2.43 ± 0.03 2.55 ± 0.03 2.59 ± 0.04 2.79 ± 0.04 2.88 ± 0.04

0.0256 1.50 ± 0.02 2.14 ± 0.02 2.14 ± 0.02 2.28 ± 0.03 2.36 ± 0.03 2.40 ± 0.03 2.45 ± 0.03 2.52 ± 0.03 2.63 ± 0.04 2.78 ± 0.04

0.0270 1.47 ± 0.02 2.10 ± 0.02 2.10 ± 0.02 2.24 ± 0.03 2.31 ± 0.03 2.37 ± 0.03 2.43 ± 0.03 2.50 ± 0.03 2.53 ± 0.04 2.72 ± 0.04

0.0284 1.42 ± 0.02 1.98 ± 0.02 2.04 ± 0.02 2.15 ± 0.02 2.25 ± 0.03 2.30 ± 0.03 2.34 ± 0.03 2.36 ± 0.03 2.45 ± 0.03 2.53 ± 0.03

0.0299 1.41 ± 0.02 1.97 ± 0.02 2.00 ± 0.02 2.07 ± 0.02 2.17 ± 0.03 2.28 ± 0.03 2.23 ± 0.03 2.31 ± 0.03 2.40 ± 0.03 2.41 ± 0.03

0.0320 1.41 ± 0.01 1.88 ± 0.01 1.89 ± 0.01 1.99 ± 0.02 2.07 ± 0.02 2.12 ± 0.02 2.16 ± 0.02 2.17 ± 0.02 2.21 ± 0.02 2.29 ± 0.02

0.0349 1.38 ± 0.01 1.78 ± 0.01 1.81 ± 0.01 1.89 ± 0.01 1.95 ± 0.02 1.97 ± 0.02 2.03 ± 0.02 2.00 ± 0.02 2.06 ± 0.02 2.01 ± 0.02

0.0377 1.31 ± 0.01 1.69 ± 0.01 1.70 ± 0.01 1.76 ± 0.01 1.81 ± 0.01 1.82 ± 0.01 1.84 ± 0.02 1.89 ± 0.02 1.87 ± 0.02 1.84 ± 0.02

0.0405 1.24 ± 0.01 1.56 ± 0.01 1.59 ± 0.01 1.60 ± 0.01 1.65 ± 0.01 1.65 ± 0.01 1.71 ± 0.02 1.68 ± 0.02 1.68 ± 0.02 1.61 ± 0.02

0.0434 1.21 ± 0.01 1.47 ± 0.01 1.47 ± 0.01 1.50 ± 0.01 1.55 ± 0.01 1.56 ± 0.01 1.57 ± 0.01 1.56 ± 0.01 1.52 ± 0.02 1.48 ± 0.02

0.0462 1.13 ± 0.01 1.35 ± 0.01 1.37 ± 0.01 1.38 ± 0.01 1.44 ± 0.01 1.43 ± 0.01 1.44 ± 0.01 1.42 ± 0.01 1.42 ± 0.01 1.33 ± 0.01

0.0491 1.08 ± 0.01 1.25 ± 0.01 1.26 ± 0.01 1.29 ± 0.01 1.33 ± 0.01 1.32 ± 0.01 1.32 ± 0.01 1.32 ± 0.01 1.31 ± 0.01 1.22 ± 0.01

0.0519 1.02 ± 0.01 1.17 ± 0.01 1.18 ± 0.01 1.19 ± 0.01 1.23 ± 0.01 1.21 ± 0.01 1.22 ± 0.01 1.20 ± 0.01 1.19 ± 0.01 1.12 ± 0.01

0.0548 0.968 ± 0.009 1.08 ± 0.01 1.08 ± 0.01 1.09 ± 0.01 1.10 ± 0.01 1.10 ± 0.01 1.10 ± 0.01 1.10 ± 0.01 1.07 ± 0.01 0.988 ± 0.011

0.0576 0.898 ± 0.008 0.996 ± 0.008 0.989 ± 0.008 0.991 ± 0.008 0.992 ± 0.009 1.01 ± 0.01 0.992 ± 0.010 0.972 ± 0.010 0.987 ± 0.011 0.918 ± 0.011

0.0605 0.847 ± 0.008 0.909 ± 0.007 0.912 ± 0.007 0.905 ± 0.008 0.915 ± 0.008 0.911 ± 0.009 0.900 ± 0.009 0.901 ± 0.010 0.882 ± 0.010 0.818 ± 0.010

0.0647 0.757 ± 0.005 0.789 ± 0.005 0.782 ± 0.005 0.787 ± 0.005 0.799 ± 0.005 0.790 ± 0.005 0.779 ± 0.006 0.761 ± 0.006 0.760 ± 0.007 0.703 ± 0.006

0.0704 0.633 ± 0.005 0.649 ± 0.004 0.651 ± 0.004 0.646 ± 0.004 0.639 ± 0.005 0.635 ± 0.005 0.642 ± 0.005 0.628 ± 0.005 0.613 ± 0.006 0.579 ± 0.006
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q / Å−1 cp = 100.00 cp = 73.42 cp = 69.59 cp = 59.63 cp = 55.63 cp = 51.03 cp = 47.84 cp = 42.58 cp = 37.62 cp = 25.93

0.0761 0.523 ± 0.004 0.523 ± 0.003 0.522 ± 0.004 0.517 ± 0.004 0.519 ± 0.004 0.518 ± 0.004 0.510 ± 0.004 0.505 ± 0.005 0.497 ± 0.005 0.462 ± 0.005

0.0818 0.423 ± 0.003 0.418 ± 0.003 0.422 ± 0.003 0.421 ± 0.003 0.417 ± 0.004 0.416 ± 0.004 0.413 ± 0.004 0.404 ± 0.004 0.400 ± 0.004 0.370 ± 0.004

0.0875 0.345 ± 0.003 0.330 ± 0.003 0.330 ± 0.003 0.325 ± 0.003 0.326 ± 0.003 0.327 ± 0.003 0.323 ± 0.003 0.312 ± 0.004 0.318 ± 0.004 0.305 ± 0.004

0.0932 0.269 ± 0.003 0.265 ± 0.002 0.260 ± 0.002 0.259 ± 0.003 0.256 ± 0.003 0.256 ± 0.003 0.259 ± 0.003 0.256 ± 0.003 0.261 ± 0.003 0.258 ± 0.004

0.0989 0.213 ± 0.002 0.208 ± 0.002 0.209 ± 0.002 0.207 ± 0.002 0.212 ± 0.002 0.205 ± 0.002 0.210 ± 0.003 0.208 ± 0.003 0.207 ± 0.003 0.217 ± 0.003

0.1074 0.145 ± 0.001 0.143 ± 0.001 0.145 ± 0.001 0.146 ± 0.001 0.146 ± 0.001 0.146 ± 0.001 0.148 ± 0.002 0.148 ± 0.002 0.150 ± 0.002 0.159 ± 0.002

0.1188 0.0922 ± 0.0011 0.0951 ± 0.0010 0.0953 ± 0.0010 0.0967 ± 0.0011 0.0989 ± 0.0012 0.0978 ± 0.0012 0.0996 ± 0.0013 0.103 ± 0.001 0.102 ± 0.002 0.112 ± 0.002

0.1302 0.0678 ± 0.0009 0.0692 ± 0.0008 0.0694 ± 0.0009 0.0716 ± 0.0009 0.0694 ± 0.0010 0.0718 ± 0.0011 0.0712 ± 0.0012 0.0757 ± 0.0013 0.0747 ± 0.0014 0.0783 ± 0.0016

0.1415 0.0508 ± 0.0008 0.0550 ± 0.0007 0.0554 ± 0.0008 0.0560 ± 0.0008 0.0549 ± 0.0009 0.0561 ± 0.0010 0.0562 ± 0.0010 0.0566 ± 0.0011 0.0578 ± 0.0012 0.0583 ± 0.0014

0.1529 0.0398 ± 0.0007 0.0436 ± 0.0007 0.0426 ± 0.0007 0.0425 ± 0.0008 0.0428 ± 0.0008 0.0427 ± 0.0009 0.0438 ± 0.0009 0.0453 ± 0.0010 0.0457 ± 0.0011 0.0416 ± 0.0013

0.1643 0.0317 ± 0.0006 0.0341 ± 0.0006 0.0328 ± 0.0006 0.0335 ± 0.0007 0.0340 ± 0.0007 0.0342 ± 0.0008 0.0344 ± 0.0009 0.0347 ± 0.0009 0.0331 ± 0.0010 0.0333 ± 0.0012

0.1757 0.0256 ± 0.0006 0.0262 ± 0.0005 0.0270 ± 0.0006 0.0260 ± 0.0006 0.0263 ± 0.0007 0.0268 ± 0.0007 0.0256 ± 0.0008 0.0247 ± 0.0008 0.0268 ± 0.0010 0.0267 ± 0.0011

0.1870 0.0204 ± 0.0005 0.0215 ± 0.0005 0.0210 ± 0.0005 0.0205 ± 0.0006 0.0209 ± 0.0006 0.0222 ± 0.0007 0.0207 ± 0.0007 0.0205 ± 0.0008 0.0204 ± 0.0009 0.0197 ± 0.0010

0.1984 0.0171 ± 0.0005 0.0161 ± 0.0005 0.0158 ± 0.0005 0.0169 ± 0.0005 0.0162 ± 0.0006 0.0151 ± 0.0006 0.0155 ± 0.0007 0.0154 ± 0.0007 0.0154 ± 0.0008 0.0140 ± 0.0010

0.2098 0.0141 ± 0.0005 0.0132 ± 0.0004 0.0141 ± 0.0005 0.0138 ± 0.0005 0.0137 ± 0.0006 0.0126 ± 0.0006 0.0131 ± 0.0006 0.0133 ± 0.0007 0.0147 ± 0.0008 0.0124 ± 0.0010

0.2212 0.0128 ± 0.0004 0.0115 ± 0.0004 0.0113 ± 0.0004 0.0113 ± 0.0005 0.0107 ± 0.0005 0.0116 ± 0.0006 0.0118 ± 0.0006 0.0110 ± 0.0007 0.0107 ± 0.0008 0.0125 ± 0.0009

0.2325 0.00999 ± 0.00040 0.00996 ± 0.00041 0.0105 ± 0.0004 0.0101 ± 0.0005 0.0101 ± 0.0005 0.00947 ± 0.00056 0.00903 ± 0.00061 0.0100 ± 0.0007 0.00925 ± 0.00076 0.00970 ± 0.00091

0.2439 0.00956 ± 0.00040 0.00873 ± 0.00039 0.00884 ± 0.00042 0.00871 ± 0.00047 0.00901 ± 0.00051 0.00964 ± 0.00055 0.00947 ± 0.00061 0.0100 ± 0.0007 0.00845 ± 0.00074 0.0109 ± 0.0009

0.2553 0.00882 ± 0.00039 0.00775 ± 0.00039 0.00796 ± 0.00041 0.00808 ± 0.00046 0.00864 ± 0.00051 0.00822 ± 0.00054 0.00826 ± 0.00059 0.00836 ± 0.00067 0.00850 ± 0.00074 0.00813 ± 0.00090

0.2667 0.00789 ± 0.00038 0.00752 ± 0.00038 0.00776 ± 0.00041 0.00804 ± 0.00046 0.00840 ± 0.00050 0.00737 ± 0.00053 0.00858 ± 0.00059 0.00839 ± 0.00066 0.00832 ± 0.00074 0.00653 ± 0.00088

0.2780 0.00870 ± 0.00038 0.00845 ± 0.00038 0.00898 ± 0.00041 0.00853 ± 0.00046 0.00856 ± 0.00050 0.00844 ± 0.00053 0.00905 ± 0.00059 0.00832 ± 0.00065 0.00892 ± 0.00072 0.00832 ± 0.00088

0.2894 0.00909 ± 0.00038 0.00924 ± 0.00039 0.00881 ± 0.00040 0.00864 ± 0.00045 0.00817 ± 0.00049 0.00810 ± 0.00053 0.00853 ± 0.00058 0.00825 ± 0.00064 0.00830 ± 0.00072 0.00910 ± 0.00088

0.3008 0.00904 ± 0.00038 0.00933 ± 0.00038 0.00872 ± 0.00040 0.00892 ± 0.00045 0.00903 ± 0.00049 0.00919 ± 0.00052 0.00908 ± 0.00058 0.00914 ± 0.00064 0.00778 ± 0.00071 0.00884 ± 0.00087

0.3122 0.00930 ± 0.00038 0.00921 ± 0.00038 0.00883 ± 0.00039 0.00917 ± 0.00044 0.00887 ± 0.00048 0.00886 ± 0.00051 0.00816 ± 0.00056 0.00853 ± 0.00063 0.00950 ± 0.00071 0.00821 ± 0.00085

0.3235 0.00832 ± 0.00037 0.00902 ± 0.00037 0.00935 ± 0.00039 0.00898 ± 0.00044 0.00934 ± 0.00048 0.00913 ± 0.00051 0.00932 ± 0.00056 0.00927 ± 0.00062 0.00893 ± 0.00069 0.00976 ± 0.00084

0.3349 0.00837 ± 0.00036 0.00831 ± 0.00036 0.00862 ± 0.00038 0.00818 ± 0.00043 0.00861 ± 0.00047 0.00886 ± 0.00050 0.00763 ± 0.00054 0.00791 ± 0.00060 0.00804 ± 0.00068 0.00781 ± 0.00083

0.3448 0.00813 ± 0.00041 0.00787 ± 0.00041 0.00722 ± 0.00043 0.00769 ± 0.00048 0.00693 ± 0.00053 0.00763 ± 0.00056 0.00787 ± 0.00063 0.00614 ± 0.00069 0.00703 ± 0.00077 0.00637 ± 0.00094
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APPENDIX H -- FITTED SAXS

INTENSITY DATA
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Figure 39: A) X-ray scattering intensity (in a.u., arbitrary units) of BSA in 1.0
mol·L−1 NaCl aqueous solution at pH=4.9 and 23oC. Open circles, experimental
data; continuous line, Equation (5.32) with ε calculated using Equation (5.38).
B) Calculated structure factor. Continuous line, Equations (5.14) and (5.32)
with ε calculated using Equation (5.38); dashed line, Hard-Sphere Percus-Yevick
solution.
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Figure 40: A) X-ray scattering intensity (in a.u., arbitrary units) of BSA in 1.0
mol·L−1 NaNO3 aqueous solution at pH=4.9 and 23oC. Open circles, experimental
data; continuous line, Equation (5.32) with ε calculated using Equation (5.38).
B) Calculated structure factor. Continuous line, Equations (5.14) and (5.32)
with ε calculated using Equation (5.38); dashed line, Hard-Sphere Percus-Yevick
solution.
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Figure 41: A) X-ray scattering intensity (in a.u., arbitrary units) of BSA in 1.0
mol·L−1 Na2SO4 aqueous solution at pH=4.9 and 23oC. Open circles, experimen-
tal data; continuous line, Equation (5.32) with ε calculated using Equation (5.38).
B) Calculated structure factor. Continuous line, Equations (5.14) and (5.32) with
ε calculated using Equation (5.38); dashed line, Hard-Sphere Percus-Yevick solu-
tion.
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Figure 42: A) X-ray scattering intensity (in a.u., arbitrary units) of BSA in 1.0
mol·L−1 NaCl aqueous solution at pH=6.3 and 23oC. Open circles, experimental
data; continuous line, Equation (5.32) with ε calculated using Equation (5.38).
B) Calculated structure factor. Continuous line, Equations (5.14) and (5.32)
with ε calculated using Equation (5.38); dashed line, Hard-Sphere Percus-Yevick
solution.
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Figure 43: A) X-ray scattering intensity (in a.u., arbitrary units) of BSA in 1.0
mol·L−1 NaNO3 aqueous solution at pH=6.3 and 23oC. Open circles, experimental
data; continuous line, Equation (5.32) with ε calculated using Equation (5.38).
B) Calculated structure factor. Continuous line, Equations (5.14) and (5.32)
with ε calculated using Equation (5.38); dashed line, Hard-Sphere Percus-Yevick
solution.
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Figure 44: A) X-ray scattering intensity (in a.u., arbitrary units) of BSA in 1.0
mol·L−1 Na2SO4 aqueous solution at pH=6.3 and 23oC. Open circles, experimen-
tal data; continuous line, Equation (5.32) with ε calculated using Equation (5.38).
B) Calculated structure factor. Continuous line, Equations (5.14) and (5.32) with
ε calculated using Equation (5.38); dashed line, Hard-Sphere Percus-Yevick solu-
tion.
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Figure 45: A) X-ray scattering intensity (in a.u., arbitrary units) of BSA in 1.0
mol·L−1 NaCl aqueous solution at pH=3.4 and 23oC. Open circles, experimental
data; continuous line, Equation (5.32) with ε calculated using Equation (5.38).
B) Calculated structure factor. Continuous line, Equations (5.14) and (5.32)
with ε calculated using Equation (5.38); dashed line, Hard-Sphere Percus-Yevick
solution.
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APPENDIX I -- FIGURES FOR MOLTEN

NACL SIMULATIONS

Figure 46: Initial FCC con�guration at the left side and �nal molten NaCl con-
�guration at the right side. Blue beads represents sodium ions and green beads
represents chloride.
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Figure 47: Viscosity of molten NaCl calculated from equilibrium molecular dy-
namics simulations using Green-Kubo relations at 1100 K. The inlet plot shows
the stree autocorrelation function.
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Figure 48: Eletric current autocorrelation function of molten NaCl calculated
from equilibrium molecular dynamics simulations at 1300 K. The inlet plot shows
the eletric conductivity using Green-Kubo relations.
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APPENDIX J -- PLOTS FOR

VISCOSITY AND

ELECTRIC

CONDUCTIVITY
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Figure 49: Viscosity of 0.05 mol·kg−1 sodium sulfate aqueous solution at 293.15
K. Red lines represent the standard deviation calculated by �ve di�erent initial
con�gurations. Continuous black line, average viscosity. Continuous green line,
�tted viscosity by Equation (7.15). Dotted line, experimental value (ISONO,
1984).
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Figure 50: Ionic conductivity of 0.05 mol·kg−1 sodium sulfate aqueous solution
at 293.15 K. Red lines represent the standard deviation calculated by �ve dif-
ferent initial con�gurations. Continuous black line, average ionic conductivity.
Continuous green line, �tted ionic conductivity by Equation (7.16). Dotted line,
experimental value (ISONO, 1984).
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APPENDIX K -- RELATION BETWEEN

THE MEAN

DIFFUSIVITY

COEFFICIENT AND

IONIC DIFFUSIVITIES

The mean di�usivity coe�cient, D, may be expressed as the harmonic mean

of the ionic di�usivities weighted by the stoichiometric coe�cients, and this ex-

pression may be rewritten as (PROBSTEIN, 1994):

D = D+

(
1− z+/z−

1− z+D+/z−D−

)
(K.1)

where D+ is the cation di�usivity, D− is the anion di�usivity, z+ is the cation

valence and z− is the anion valence.

To calculate the Nernst-Einstein conductivity in terms of the mean di�u-

sivity coe�cient, one may replace the summation in Nernst-Einstein expression

(URAHATA; RIBEIRO, 2006) for a parameter multiplied by the mean di�usivity

coe�cient: ∑
i

νiz
2
iDi = ν+z

2
+D+ + ν−z−D− = ζD (K.2)

where νi is the stoichiometric coe�cient of ion i and ζ is the new parameter which

relates the mean di�usivity coe�cient to the ionic di�usivities.
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Rearranging Equation (K.2), one has:

ν+z
2
+D+ + ν−z−D− = D+

(
ν+z

2
+ + ν−z

2
−
D−
D+

)
= ζD (K.3)

Comparing Equation (K.1) to Equation (K.3), one has that ζ is given by the

following relation:

ζ =

(
ν+z

2
+ + ν−z

2
−D−/D+

)(
1−z+/z−

1−z+D+/z−D−

) (K.4)

For the sake of simplicity, let us de�ne some parameters:

θ =
z+

z−
(K.5)

δ =
D+

D−
(K.6)

ν =
ν+

ν−
(K.7)

Therefore:

ζ = z2
+

(
1 +

1

νθ2δ

)(
1− θδ
1− θ

)
(K.8)

Or:

ζ = z2
+

(1 + νθ2δ) (1− θδ)
νθ2δ (1− θ)

(K.9)

Evidently, for a 1:1 salt:

ζ =
(1 + δ)2

2δ
(K.10)

It remains an issue, however, how to evaluate the value of parameter δ. As-

suming Stokes-Einstein law, this parameter could be given by the inverse ratio of

the Stokes radii:

δ =
D+

D−
=
r−
r+

(K.11)

Table 17 presents the values of Stokes radii for a series of monovalent ions
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obtained in the literature (PAU; BERG; MCMILLAN, 1990) and the resulting

value of δ and ζ for a variaty of 1:1 salts.

Table 17: Stokes radii for monovalent ions obtained in the literature (PAU;
BERG; MCMILLAN, 1990) and values of δ and ζ for alkali halides according
to Equations (K.11) and (K.10) respectively.

Salt r+ / Å r− / Å δ ζ

LiF 3.58 2.49 1.44 2.07

LiCl 3.58 1.81 1.98 2.24

LiBr 3.58 1.77 2.02 2.26

LiI 3.58 1.8 1.99 2.25

NaF 2.76 2.49 1.11 2.01

NaCl 2.76 1.81 1.52 2.09

NaBr 2.76 1.77 1.56 2.10

NaI 2.76 1.8 1.53 2.09

KF 1.88 2.49 0.76 2.04

KCl 1.88 1.81 1.04 2.00

KBr 1.88 1.77 1.06 2.00

KI 1.88 1.8 1.04 2.00

RbF 1.78 2.49 0.71 2.06

RbCl 1.78 1.81 0.98 2.00

RbBr 1.78 1.77 1.01 2.00

RbI 1.78 1.8 0.99 2.00

CsF 1.79 2.49 0.72 2.05

CsCl 1.79 1.81 0.99 2.00

CsBr 1.79 1.77 1.01 2.00

CsI 1.79 1.8 0.99 2.00


