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(Adapted by Dustin Nagel)

translated freely

”Whatever position you have in life, a very high

or lower social condition, have always a lot of

strength, determination and always do every-

thing with love and with faith in God that one

day you get there. Somehow you get there.”

(Ayrton Senna)

translated freely

”When a human being awakens to a great dream

about it and throws the full force of his soul, all

the universe conspires in your favor.”

(Johann Wolfgang von Goethe)

translated freely

”Stay hungry. Stay foolish.”

(Steward Brand)



ABSTRACT

The hybrid control concept is applied to the offloading operation by means of a Float-

ing, Production, Working, Storage and Offloading (FPWSO) vessel and a Shuttle Tanker

(ST). Both vessels are able to maintain their position and heading as a result of the Dy-

namic Positioning System (DPS). The vessels are in tandem configuration connected by

a hawser. The offloading operation lasts approximately 24 hours. During this period, the

sea condition may change and the drafts are being constantly altered. Hybrid controller is

designed to permit modification of the controller/observer parameters should a significant

sea state alteration and/or draft variation occur. The main goal of the controllers is to

maintain relative positioning between vessels in order to avoid dangerous proximity or

excessive hawser tension. With that in mind, a new control strategy is proposed based

on differential geometry that acts integrally in both vessels. Nonlinear observers based

on passivity are used to estimate position, velocity and external force ranging from calm

to extreme seas. The criterion for changing the controller/observer law is based on draft

and sea state. The draft is assumed to be known and sea state is estimated by track-

ing the peak-frequency of the first-order vessel motion spectrum. A perturbation-based

model is proposed to find the number of hybrid system controllers. The equivalence be-

tween the geometric control approach and the Lagrange Multiplier (LM) - based control

is demonstrated. Taking some assumptions as given, the equivalence between geometric

and PD-like controllers is regarded as having also been demonstrated. The performance

of the new strategy is assessed by means of numerical simulations and compared to a

Proportional-Derivative (PD)-like control. The results present a very good performance

as regards the proposed main goal. Result comparison of the geometric approach and the

PD-like control shows very similar behavior between geometric and PD-like controllers.

Keywords: dynamic positioning, geometric control, hybrid systems



RESUMO

O conceito de controle h́ıbrido é aplicado à operação de aĺıvio entre um FPWSO e um

navio aliviador. Ambos os navios mantêm suas posições e aproamentos pelo resultado

da ação do seu Sistema de Posicionamento Dinâmico (SPD). O aĺıvio dura cerca de 24

horas para ser conclúıdo. Durante este peŕıodo, o estado de mar pode se alterar e os

calados estão sendo constantemente alterados. Um controlador h́ıbrido é projetado para

permitir modificaccões dos parâmetros de controle/observação se alguma alteração sig-

nificante do estado de mar e/ou calado das embarcações ocorrer. O principal objetivo

dos controladores é manter o posicionamento relativo entre os navios com o intuito de

evitar perigosa proximidade ou excesso de tensão no cabo. Com isto em mente, uma nova

estratégia de controle que atue integradamente em ambos os navios é proposta baseda em

geometria diferencial. Observadores não lineares baseados em passividade são aplicados

para estimar a posição, a velocidade e as forças externas de mares calmos até extremos.

O critério para troca do controle/observação é baseado na variação do calado e no estado

de mar. O calado é assumido conhecido e o estado de mar é estimado pela frequência de

pico do espectro do movimento de primeira ordem dos navios. Um modelo de perturbação

é proposto para encontrar o número de controladores do sistema h́ıbrido. A equivalência

entre o controle geométrico e o controlador baseado em Multiplicadores de Lagrange é

demonstrada. Assumindo algumas hipósteses, a equivalência entre os controladores ge-

ométrico e o PD é também apresentada. O desempenho da nova estratégia é avaliada

por meio de simulações numéricas e comparada a um controlador PD. Os resultados ap-

resentam muito bom desempenho em função do objetivo proposto. A comparação entre a

abordagem geométrica e o controlador PD aponta um desempenho muito parecido entre

eles.

Palavras-chave: posicionamento dinâmico, controle geométrico, sistemas h́ıbridos
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Chapter 1

Introduction

1.1 General

Oil and gas play a strategic role in the economy of Brazil as they represent approximately 50%

of total global energy consumption. Brasil has been involved in oil and gas exploration since

1950. The latest finds are located in deep waters increasingly further from the coast. As a result

of this, the Brazilian offshore oil and gas industries are increasing activity. This new activity

involves the use of a huge number of ocean vehicles and stationary floating units.

Distance, harsh seas, requirements for environmental damage constraints, increasing operational

range and performance requirements, as well as the complexity of operations, have all challenged

engineers to design the most appropriate vessels and floating units.

Semi-submersibles and vessel-like stationary floating units such as FPSOs are used for exploiting

and storing oil and gas. Most of them are positioned by mooring lines. Certain units require

more than one vessel to complete some of their tasks. For instance, those units receive supplies

from auxiliary vessels and transfers oil to the shuttle tanker that transports it to the shore. The

main concern when two or more vessels operate together is to avoid collision. Figure 1.1 shows

a typical offloading operation from a FPSO to a shuttle tanker. At least one of these units

possesses DPS, which is responsible for ensuring safe operation.
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A DPS is a closed-loop control system that maintains vessel position and heading by means of

thruster action. Although in essence simple, its design presents some challenges. The vessel

dynamics mathematical model is multivariable, nonlinear and stochastic. Many vessels are

overactuated and require a specific control logic to define a demanded thrust actuator. Vessel

motion presents two distinct frequencies, low- and wave. The former is due to current, wind,

second order forces and thrust actuators, and the latter to first-order wave forces. The controller

should, in principle, suppress low-frequency motion only. Thus, the control loop needs a wave-

frequency filter to feed the controller with a noiseless position and heading feedback signals.

Figure 1.1: Offloading with DP shuttle tanker (TRELLEBORG, 2012)

Up to now, DPS design has been based on single vessel operation without considering other

vessel position. As a consequence, during an operation involving more than one vessel, the

vessel controller only takes its own position into account, without considering those of other

vessels.

A joint operation is more intricate when all vessels are controlled dynamically. In Brazil, of-

floading operations from a DP-FPWSO to a DP shuttle tanker have already been performed. To

improve both the safety of this kind of operation and control system performance, some authors

have investigated the application of cooperative control (LAPIERRE; SOETANTO; PASCOAL,

2003a; GHABCHELOO, 2007; IHLE, 2006). New system modeling to cooperative controllers

by the use of Lagrangian formalism (IHLE; JOUFFRY; FOSSEN, 2006; MORATELLI JR et

al., 2013) has also been investigated.

DPS observer and controller parameters are set up based on a given environmental condition
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and some vessel parameters. However, during an offloading operation, typically lasting about 24

hours, sea conditions can change dramatically and vessel draft constantly vary. Both variations

may materially affect vessel dynamical response. A new approach to dealing with these variations

is the use of supervisory control.

1.2 Literature Review

Dynamically positioned vessels first appeared in the 1960s. Proportional-Integral-Derivative

(PID) controllers with low-pass or notch filters were used to avoid wave-frequency motion coun-

teraction (FOSSEN, 1994). Subsequently, Balchen, Jenssen and Sælid (1976) proposed low-

frequency vessel motion estimation using the Kalman Filter (KF). This approach was extended

by Grimble, Patton and Wise (1980), Balchen, Jenssen and Sælid (1980) and Sælid, Jenssen

and Balchen (1983). However, the state estimator based on KF requires a linear model of the

vessel motion equations around a set of constant yaw angles. As a consequence, the tuning of

the control parameters is a time-consuming procedure and global stability can not be proved.

Fossen and Strand (1999) proposed a passive nonlinear observer for vessels to overcome the

linearization problem of a state estimator based on KF. This observer, in combination with

a controller based on backstepping methodology, was proposed by Aarset, Strand and Fossen

(1998), and Zakartchouk Jr and Morishita (2009). For the purposes of controlling DP vessels,

new control approaches other tahn PID controllers have been proposed: sliding mode controller

Tannuri, Donha and Pesce (2001), Tannuri (2002), Agostinho (2009), Tannuri et al. (2010);

H∝ (KATEBI et al., 1997; NAKAMURA; KAJIWARA, 1997; TANNURI; DONHA, 2000); and

adaptive controller (TANNURI; KUBOTA; PESCE, 2006).

In recent years, the theory of cooperative control has attracted the attention of researchers

around the world. This type of control allows elements, for instance cars in traffic, to exchange

information. A special case of cooperative control is the formation control where many elements

share the same objective of maintaining the relative formation. Observation of nature has been

a great source of study and development in the establishment of state of the art formation

control. For instance, the V-shaped formation of birds like ducks and geese reduces the animals’

energy consumption resulting in improved aerodynamics. In addition, the formation can lead
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to better communication and coordination. Some studies of attempts to reduce flight formation

drag have been based on observation of the birds in flight (BADGEROW; HANSWORTH, 1981;

HOERNER, 1958; WEIMERSKIRCH et al., 2001). Other animals, shoals of fish being an

example, also increase locomotive efficiency by changes in their formation. Vicsek et al. (1995)

applied some of these animal behavior rules in control system theory.

The use of formation control is widespread in spatial research (BEARD; LAWTON; HADAEGH,

2001; WANG; HADAEGH, 1996; REN; BEARD, 2004), aviation (PACHTER; D′AZZO; DAR-

GAN, 1994; PACHTER; D′AZZO; PROUD, 2001) and (GIULETTI; POLLINI; INNOCENTI,

2000), military tasks (BUZOGANY; PACHTER; D′AZZO, 1993), transportation, maritime area,

and robotics. General studies of the formation control can be found in Nijmeijer and Angelez

(2003), Spry and Hedrick (2004), Kumar, Leonard and Morse (2005) and Børhaug (2008). Fax

and Murray (2004) studied the stability of information flow with regard to the cooperative con-

trol of vehicles by use of a graph model. Girard and Hedrick (2003) proposed a surface sliding

control for vehicle formation control using hybrid formalism. Behavior models can be seen in

both Antonelli and Chiaverini (2004) and Stilwell and Bishop (2002).

As regards transportation on land, Sheikholeslam and Desoer (1992) studied decentralized con-

trol laws for highway congestion problems sourcing leader dynamics’ information and the dis-

tance between vehicles. Aguiar et al. (1995) studied autonomous mobile robots to understand

traffic control design. Bender (1991) studied Automated highway systems. The cooperative

box/pushing load problem was discussed by Brock, Montana and Ceranowics (1992).

In marine applications, formation control is applied in both icebreaker escort and coordinated

transportation (IHLE, 2006). Skjetne (2005) presented a maneuvering review including the

theoretical aspects concerning of control objectives. Ihle (2006), Ihle, Jouffry and Fossen (2005)

and Ihle, Jouffry and Fossen (2006) presented a path-following design for marine crafts using

a multibody model via Lagrange Multipliers. Encarnação and Pascoal (2001) proposed an

autonomous underwater vehicle obliged to track the motion of an autonomous surface craft.

Breivik (2010) presented a marine craft formation control scheme in order to track targets in

a leader-follower framework. Skjetne, Moi and Fossen (2002), Lapierre, Soetanto and Pascoal

(2003a), Lapierre, Soetanto and Pascoal (2003b) and Skjetne, Flakstad and Fossen (2003) have

all contributed marine formation control studies.
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Formation control application is associated with a multibody system comprising a collection

of subsystems (bodies) connected by some type of joint. A pioneer reference on multibody

dynamics was presented by Wittenburg (1977). The multibody concept has many applications

in the fields of aerospace exploration and robotics. Aircraft and robot equations of motion are

typically derived by applying either the Newton-Euler algorithm (BALAFOUTIS; PATEL, 1991;

FEARTHRSTONE, 1987; LUH; ZHENG, 1987; STEPANENKO; VUKOBRATOVIC, 1976) or

Lagrange′s equations (KAHN, 1969). Some applications are also based on Hamilton′s equations

(SOUZA, 2008).

Differential geometry has resulted in great innovations in the control of nonlinear mechanical sys-

tems. Sussmann (1987) presented the algebra of this theory based on Jacobi-Lie brackets which

describe the vectorial fields of the dynamics equations. Abraham and Marsden (1978), Arnold

(1989) and Sattinger and Weaver (1986) established a connection between mechanics and dif-

ferential geometry. This link is known as Geometric Mechanics. Spivak (1999), Marsden (2004)

carried out a deep analysis of differential geometry. Using the new tools based on differential

geometry, Isidori (1995) and Respondek (2002) developed techniques for nonlinear feedback lin-

earization of Single-Input-Single-Output (SISO) and Multiple-Input-Multiple-Output (MIMO)

systems. Many publications concerning geometric control of mechanical systems have appeared

int the last few years (SONTAG, 1998; SASTRY, 1999; JAKUBCZYK, 2001; TALMAN, 2007;

OLIVA, 2002; MONFORTE, 2002; BULLO; LEWIS, 2010).

It is interesting to apply the hybrid system concept where there is some variation in plant

operational conditions. A hybrid system is a dynamical system where discrete and continuous

variables interac. Initial hybrid model applications were specific to the needs of the proposed

problem., i.e, there was no overarching theory. Some proposals aiming to generalize the models

have been presented by (YE; MICHEL; ANTSAKLIS, 1995; SCHAFT; SCHUMACHER, 2000).

The first work on hybrid systems was presented by Witsenhausen (1966). A hybrid systems and

application overview can be found in Svakin and Evans (2002), Schaft and Schumacher (2000)

and Sun and Ge (1989). Some articles have presented a mnore general picture of hybrid systems,

such as Antsaklis (2000) and Davoren and Nerode (2000). A relevant thesis was presented by

Branicky (1995) where a wide discussion of modeling, analysis and control of hybrid systems
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was presented. Another significant contribution to the literature on hybrid dynamical systems

can be found in Goebel, Sanfelice and Teel (2012).

The study of hybrid systems has been applied to computational science in order to control

continuous processes (BAKKER et al., 1992; BENVENISTE; BERRY, 1991; HALBWACHS,

1993). Hybrid systems have been applied in process control, automated vehicles and highways

(VARAIYA, 1993) and corporate planning (NAYLOR, 1982; ROSENKRANZ, 1970). Hybrid

systems have also been investigated within biological and medical system contexts (AIHARA;

SUZUKI, 2000).

The supervisory control is a specific application based on hybrid theory. This control is respon-

sible for switching the hybrid system dynamic based on some type of estimator (HESPANHA,

1998; KOUTSOUKOS et al., 2000). Liberzon (2003) presented a significant review of the subject

of switching systems, including stability analysis and systems with large modeling uncertainty.

Switching between controllers can cause instability in some applications (LIBERZON; MORSE,

1999). Stability issues in hybrid dynamical systems are found in Decarlo et al. (2000), Michel and

Wang (1995), Or and Ames (2001), Sanfelice, Goebel and Teel (2007) and Ye, Michel and Hou

(1998). In marine applications, Smogeli, Sorensen and Fossen (2004) developed a hybrid con-

troller to control those thrusters that combine different operational loads. Dong (2005) proposed

a hybrid controller for vessels with dynamic positioning systems.

1.3 Objective of the Thesis

Consider a DP-FPWSO and a DP-shuttle tanker in tandem configuration during an offloading

operation. The objective is to propose a new control strategy by designing an integrated hybrid

controller for a multibody system consisting of both vessels. This means that the control law for

each DPS is defined by considering the dynamics of the whole system. The controller integration

is established by means of the geometric control theory where the control law is found via Input-

to-Output (I/O) exact linearization for Multiple-Input-Multiple-Output (MIMO).

A comprehensive time-varying low-frequency model for the 6 DOF multibody system (horizontal

motions of two vessels) is developed by applying Kirchhoff equations. The main concern of this
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model is to best express the draft influence on both vessel inertia and environmental forces and

moments. Controller design is facilitated by means of a simplified dynamical model.

Controller design is preceded by an analysis of some control approach alternatives. These alter-

natives based on geometric control, Lagrangian and conventional PD-like controller are analyt-

ically compared. As a result of this comparison, the equivalence between the Lagrangian based

and differential geometric approaches is proved when the Lagrange formalism constraint is equal

to the geometric control output. Furthermore, the similarity between the differential geometry

controller and the PD-like structure is demonstrated in the case of low-speed vessel motions and

the constant reference. For the purposes of observing and filtering, the wave-frequency vessel

motions are filtered and the system state vector is estimated by a nonlinear state observer where

the sea state is calm to moderate. In case of extreme seas, nonlinear observer for extreme seas

without wave-frequency model is applied.

The hybrid concept is used in the evaluation of performance degradation of both observer and

controller. This degradation occurs due to huge variations in draft vessel and changing sea

condition parameters during the offloading operation. Vessel drafts and sea condition parameters

need to be estimated in order to retune controller and observer parameters. This is not a gain

schedule problem since the nonlinear observer model has its structure modified as a function of

sea conditions (wave-frequency model or extreme sea observer).

Retuning only occurs in the case of a discrete variation in observer parameters. A perturbation

based algorithm is proposed to determine the number of draft ranges. Sea conditions are eval-

uated by the wave peak-frequency of the sea spectrum. As the on-board measurement of this

parameter is quite difficult, the peak-frequency of the wave-frequency vessel motions is estimated

through spectral analysis.

Assessment of hybrid controller performance is carried out by means of numerical simulations.

The main results analyzed are relative distance between vessels and hybrid controller perfor-

mance (switch between controllers). Results obtained from the PD-like controller are also pre-

sented for comparison purposes.
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1.4 Organization of the Text

Chapter 1 presents the main reasons for studying the control of two vessels during an offloading

operation. The literature review presents the state of the art as regards dynamic positioning

systems, geometric control, hybrid dynamics and multibody systems. Thesis objectives are

summarized in Section 1.3.

Chapter 2 describes the time-varying plant mathematical model. The model comprises the

kinematic and dynamic equations for low-frequency motions as well as a time-series for the

wave-frequency vessel motions. The models employed in the calculation of environmental forces

and moments are presented here.

Chapter 3 discusses the hybrid control concept’s hierarchical structure. The main goal is to

describe both the supervisory control operation and the hybrid concept elements, such as the

multi-estimator-based supervisor, switching logic and hysteresis logic.

Chapter 4 presents the well-known dynamic positioning system and its subsystems. The non-

linear observers to be used are here presented in detail. The control strategy for the offloading

operation between the FPWSO and the shuttle tanker is established. The geometric approach,

the Lagrange Multiplier-based controller and PD-like control are dealt with here. The equiva-

lence between geometric and Lagrangian strategies is demonstrated. On some assumptions, the

geometric and PD-like controllers are considered to have had their equivalence demonstrated.

The thrust allocation logic and the thruster dynamics are introduced in this section.

Chapter 5 presents the hybrid control concept applied to the control strategy discussed in Chap-

ter 4. The reference is made to the observer models based on sea conditions (wave-frequency

model and extreme sea). A discussion as to how best to determine the number of controllers in

the control set, by means of the perturbation method, can be found here. This is followed by

a presentation of how the wave-peak frequency tracker and draft survey monitoring are used in

supervisory control.

Chapter 6 presents the designed hybrid control results when used in Brazilian waters. Geometric

controller and PD-like performance is evaluated by means of the set-point and relative distance

change. Some short-term environmental scenarios are established for assessing hybrid controller
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performance when vessel drafts are constant. One long-term environmental scenario is used to

evaluate the control strategy performance for a complete offloading operation.

Final conclusions and suggestions for further research are presented in Chapter 7.
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Chapter 2

Ship Kinematics and Dynamics

Vessel motions can be described by 3-DOF3 with respect to global and/or local frames. Using

vessel kinematics and dynamics based on those 3-DOF, mathematical model is obtained for

specific purposes. Sørensen (2005) discusses two different purposes: plant model and control

model. The former model tries to approximate system dynamics as closely as possible to the

real system mechanics. In the latter model, some simplifications are assumed to facilitate control

design.

Chapter 2 presents plant model construction using the vessels’ kinematics and dynamics. The

resultant system dynamics is well-known and has been discussed by Fossen (1994), Lewandowski

(2004) and Sørensen (2005). However, the vessels intended to be modeled here have a certain

peculiarity. During offloading, their drafts will vary due to the oil transfer process. From a

mechanics perspective, the vessels are described as variable mass systems. Recently, variable

mass system mechanics has been the subject of considerable academic research. The dynamics

of variable mass systems is addressed by Irschik and Holl (2004),Pesce, Tannuri and Casetta

(2006), Pesce and Casetta (2007), Casetta (2008) and Pesce (2013).

The vessels’ mass (FPWSO and ST) is assumed to be time-dependent and their dynamics are

modeled using the Kirchhoff equation. The resultant dynamics is written as a unified model

regarding both vessels as a multibody system. This interpretation is proposed by Ihle (2006).

3Degrees of Freedom (DOF)
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2.1 Kinematics

Consider two vessels (FPWSO and shuttle tanker) in tandem configuration connected by a

hawser as presented in Figure 2.1. Vessel motions are described with respect to both global

and local frames. Kinematics equations are used to transform the body-fixed coordinates into

Earth-fixed coordinates or vice versa. There are three frames, one Earth-frame and two body

frames as follows:

Z 1 

X 1 

Y 1 

X 2 

Y 2 

Z 2 

u 1 

v 1 

v 2 

(surge) 

(sway) 

(yaw) r 1 

r 2 

u 2 

X E 

Y E 

Z E 

(Earth-fixed) 

K 

X E 

Y E 

K 

y 
i 

XY plane 

Figure 2.1: Reference frames for vessels

Earth-fixed reference frame: The Earth-fixed reference frame is written as XEYEZE , defined

as positively-oriented orthonormal and assumed to be inertial.

Body-fixed frames: Let X1Y1Z1 and X2Y2Z2 be the body-fixed frames for the FPWSO and

the shuttle tanker, fixed in the gravity center of each vessel, respectively. The longitudinal axes

X1 and X2 are directed from aft to fore. The transverse axes Y1 and Y2 are directed to port

side. The normal axes Z1 and Z2 to the X1Y1 and X2Y2 planes are directed from bottom to top.

The total global position and heading vector η ∈ R6 are defined as η = [ ηT1 ηT2 ]T , where
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ηi = [ xi yi ψi ]T with i = 1, 2 being the FPWSO and shuttle tanker, respectively, and xi, yi

and ψi being the horizontal positions and heading, respectively.

The total local velocity vector ν ∈ R6 is defined as ν = [ νT1 νT2 ]T , where νi = [ ui vi ri ]T

with ui, vi and ri being the surge and sway velocities and the yaw velocity, respectively. The

Euler angle transformation matrix J(ψ1,ψ2) ∈ R6x6 that transforms local velocity vectors into

the global velocity vectors is described as follows

η̇ = J(ψ1,ψ2)ν =

[
J1(ψ1) 03x3

03x3 J2(ψ2)

]
ν (2.1)

The transformation matrix J i(ψi) ∈ R3×3 of the special orthogonal group SO(3) is described

as

J i(ψi) =

 cψi sψi 0
−sψi cψi 0

0 0 1

 (2.2)

where c·=cos(·) and s·=sin(·).

2.2 Vessel Dynamics

The offloading operation is very slow taking 24h to complete. The vertical motion here is not

a dynamical response on the part of the vessel, but a quasi-static draft variation with a very

low rate. Hence, added inertia has been calculated by assuming it to be dependent on draft

only. This means that occasional temporal and draft variation influences were not considered

in its calculation. Hence, the kinetic energy of the systems can be written in quasi-coordinates

(MEIROVITCH, 1970; FOSSEN, 1994) as

T =
1

2
νTM(t)ν =

1

2
νT [MRB(t) +MA(t)]ν (2.3)

where T is the total kinetic energy of the vessels, M(t) ∈ R6×6 is the total inertia matrix of

systems, MRB(t) ∈ R6×6 is the inertia of the rigid body, MA(t) ∈ R6×6 is the added inertia
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matrix and t is the time. The rigid body inertia matrix is described as

MRB(t) =

[
MRB1(t) 03x3

03x3 MRB2(t)

]
(2.4)

MRBi(t) =

 mi(t) 0 −mi(t).ygi
0 mi(t) mi(t).xgi

−mi(t).ygi mi(t).xgi Izi(t)

 (2.5)

where MRBi(t) ∈ R3×3 is the rigid body inertia matrix, mi(t) and Izi(t) ∈ R being the rigid

body mass and yaw inertia of the rigid body, respectively. The variables xgi and ygi are the

longitudinal and transverse positions of the gravity center. The longitudinal center of the vessels

has a little variation so it is considered constant and fixed at the midship. Due to the ships’

symmetry, transverse position of the gravity center is considered to be at the centerline. The

added inertia matrix is described as

MA(t) =

[
MA1(t) 03x3

03x3 MA2(t)

]
(2.6)

MAi(t) =

 m11i(t) 0 0
0 m22i(t) m26i(t)
0 m62i(t) m66i(t)

 (2.7)

where MAi(t) ∈ R3×3 is the added inertia for the vessel, m11i(t), m22i(t) , m26i(t), m62i(t) and

m66i(t) are the added mass to surge, sway, sway-yaw coupled, yaw-sway coupled and yaw added

inertia, respectively. These variables depend on the motion frequency. Due to the fact that

DPS needs to act upon only the second-order effects, the added inertia matrix is assumed to

be calculated with vessel motion frequency ω → 0. For low velocities, m26i(t) is assumed to be

equal to m62i(t). To obtain ship dynamics, consider the following Kirchhoff equations

d

dt

(
∂T

∂νTi

)
+ ri ×

∂T

∂νTi
= [ Fxi Fyi ]T (2.8)

d

dt

(
∂T

∂ri

)
+ ri ×

∂T

∂ri
+ νTi ×

∂T

∂νTi
= Fψi

(2.9)

where νTi = [ xi yi ]T is the translational velocity vector. The variables Fxi , Fyi and Fψi
∈ R

are the surge and sway external forces and the yaw moment, respectively. Replacing (2.3) with

(2.8) and (2.9), considering a linear damping due to the relative velocity between current and



14

vessel, and neglecting terms of second-order yields

M(t)ν̇ + (ṀRB(t) +CRB(t))ν + (ṀA(t) +CA(t)(νr))νr = τ = τ e + τ h + τ c (2.10)

where CRB(t) and CA(t) ∈ R6×6 are the centripetal and Coriolis matrices of rigid body and

added inertia, respectively. The vector νr ∈ R6 is relative velocity vector. The external force

vector is τ = [ τT1 τT2 ]T ∈ R6 where τ i = [ Fxi Fyi Fψi
]T . The vectors τ e, τ h and τ c ∈

R6 are the environmental force and moment, the hawser force and moment and the local control

vectors, respectively. The centripetal and Coriolis matrices and the relative velocity vector are

defined as

CRB(t) =

[
CRB1(t) 03x3

03x3 CRB2(t)

]
(2.11)

CRBi(t) = −

 0 0 −mi(t)(xgi .ri + vi)
0 0 mi(t).ui

mi(t)(xgi .ri + vi) −mi(t).ui 0

 (2.12)

CA(t) =

[
CA1(t) 03x3

03x3 CA2(t)

]
(2.13)

CAi(t) = −

 0 0 (m22i(t)vi +m26i(t)ri)
0 0 −m11i(t)ui

−(m22i(t)vi +m26i(t)ri) m11i(t)ui 0

 (2.14)

νr = ν − νc (2.15)

where CRBi(t) and CAi(t) ∈ R3×3 and νc ∈ R6 are the centripetal and Coriolis rigid bodies

matrix, the centripetal and Coriolis added inertia matrix and the current vector, respectively.

Let us suppose that oil mass flow rate during offloading is time-invariant and that the waterline

plane of the vessels does not change with the drafts. Hence, the draft variation can be written

dhi/dt = ki, where ki is the offloading rate and hi(t) is the vessel draft. Thus, the time-derivative

of the rigid body and the added inertia matrices can be written as

ṀRBi(t) =
∂MRBi(t)

∂hi

dhi
dt

(2.16)
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ṀAi(t) =
∂MAi(t)

∂hi

dhi
dt

(2.17)

The partial derivatives in (2.16) and (2.17) can be found from the curves of the matrix elements

MRB(h) and MA(h) with respect to draft. These curves of the matrix elements are shown in

Appendix A.

The control model assumes that vessel motion velocities are very low. Thus, the centripetal and

Coriolis matrices can be neglected and a linear damping is assumed. The inertia time-derivative

and damping matrices are both assumed to be null. So, the control model is written as

M ν̇ +Dν = τ e + τ h + τ c (2.18)

D =

[
D1 03x3

03x3 D2

]
(2.19)

where D ∈ R6×6 is the linear damping matrix of the system. The matrix entries D1 and D2

are calculated as presented in Appendix A. It is pointed out that both the inertia and damping

matrices are assumed to be constant for some draft ranges.

Due to the low draft variation of the vessels, control model of the system with a constant matrix

is reasonable within a certain draft range. The matricesM andD are used by the hybrid control

to generate the control model for a specific state observer and control law. When positioning

error exceeds a certain predefined limit, the inertia and damping matrices are updated in observer

and control laws. Chapter 5 presents the hybrid concept applied to offloading operation.

2.3 Wave-Frequency Motion

The first-order horizontal vessel motions ηw ∈ R6x6 are simulated by the time realization of the

response spectra Sr derived from the cross spectrum. These motions are calculated using the

RAO (RAO) and sea spectrum (LEWIS, 1990). See details in Appendix C.
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2.4 Environmental and External Forces

The WMO (World Meteorological Organization) recommendations have been adopted. The

notation of the waves obeys the following orientation:

• Wind and wave direction indicates where the wind and wave come from (True North

origin; clockwise rotation).

• Current direction indicates flow direction (same North as before)

• North is associated with 0◦ direction and East with 90◦.

The environmental force and moment vector τ e ∈ R6 includes forces and moments that come

from the action of current, second-order wave effect and wind such as

τe = τcur + τwave + τwind (2.20)

where τ cur, τwave and τwind ∈ R6 are the current, second-order wave and wind force and moment

vectors, respectively. Despite the fact that the FPWSO is connected to a riser, the forces and

moments of this connection are not included in the model.

2.4.1 Current

The model of the forces and moments due to current is proposed by Leite et al. (1998). The

current force and moment model used here also considers the model that was extended from

Leite et al. (1998) by Simos et al. (2001) for the purposes of including terms of damping caused

by yaw. The current force and moment vector τcur ∈ R6 is written as

τcur = τsw + τd (2.21)

where τ sw and τ d ∈ R6 are the force and moment vectors due to the captive model and yaw

damping, respectively. The vector τ d is calculated using the model proposed by Simos et al.
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(2001). The forces and moments from the captive model are calculated according to

τsw = [ Xc1 Yc1 Nc1 Xc2 Yc2 Nc2 ]T (2.22)

Xci(αci) =
1

2
ρwh(t)LiC1i(αci)U

2
ci (2.23)

Yci(αci) =
1

2
ρwh(t)LiC2i(αci)U

2
ci (2.24)

Nci(αci) =
1

2
ρwh(t)LiC3i(αci)U

2
ci (2.25)

Uci = Uci .[cos(αci)~i+ sin(αci)~j] (2.26)

where Xci , Yci and Nci ∈ R and are longitudinal and transverse current forces and the moment

with respect to body-frame. The relative angle αci ∈ R is the angle between the current incidence

angle and the vessel heading. The variables Uci ∈ R, Uci ∈ R2, ρw and Li ∈ R are current

velocity, current velocity vector, water density and ship length. The current force and moment

coefficients C1i, C2i and C3i ∈ R are defined by Leite et al. (1998).

2.4.2 Wind

The wind force and moment vector τwind ∈ R6 is calculated in line with proposals made by

OCIMF (1977) according to

τwind = [ Xw1 Yw1 Nw1 Xw2 Yw2 Nw2 ]T (2.27)

Xwi =
1

2
ρairATi(t)CXi(γwi)U

2
wi

(2.28)

Ywi =
1

2
ρairALi(t)CY i(γwi)U

2
wi

(2.29)

Nwi =
1

2
ρairALi(t)CNi(γwi)U

2
wi

(2.30)

where Xwi , Ywi and Nwi R are the longitudinal and transverse wind forces and the moment with
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respect to body-frame. The relative angle γwi ∈ R is the angle between the wind incidence angle

and the vessel heading. The variables Uwi , ρair, ALi and ATi ∈ R are wind velocity, air density

and projected lateral and transverse areas. These areas are presented in Appendix A. The wind

force and moment coefficients CXi, CY i and CNi ∈ R are defined by OCIMF (1977).

2.4.3 Second-Order Wave Forces and Moments

The second-order wave forces and moment play an important role in the DP system. They

induce low-frequency vessel motions that need to be taken into account by the DP controller.

These forces and moments are composed of slow-drift and mean-drift forces and moments as well

as wave-drift damping effects (result of wave-current interaction). These effects are calculated

in accordance with Aranha and Fernandes (1995) and Aranha (1996).

2.4.4 Hawser Forces and Moments

Forces and moments resulting from the hawser connected between the vessels are estimated by

a catenary equation. In order to estimate this, horizontal distance is related to hawser tension

as follows (IRVINE, 1981)

d =
Hhl

EAh
+ 2

Hh

wh
sinh−1(

whl/2

Hh
) (2.31)

where d and Hh ∈ R are the horizontal distance between vessels and the horizontal tension

component, respectively. The variables wh and l ∈ R are the hawser weight per unit length and

hawser length, respectively. The Young modulus and the cross-section are the variables E and

Ah ∈ R, respectively.
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Chapter 3

Hybrid Control Concept

3.1 General

Hybrid systems are dynamical systems with discrete and continuous variables interacting. The

proposal is to use the hybrid controller, known as the switching control system (HESPANHA,

2002), in order to change the controller and the observer laws of two DP vessels. The switching

control monitors some continuous system variables, and commands a switcher that changes con-

troller by means of a discrete signal. For the offloading operation, sea state and draft variations

are used to switch controller parameters and observer models. To introduce hybrid control, the

basic concepts of switching systems are presented, including required system properties, hys-

teresis logic and stability issues. Important decisions to be made when designing the hybrid

controller are the number of controllers and observers that will be available to the switching

control. A perturbation model is proposed to address this controller and observer number issue.

3.2 Basic concepts

The switching control is a set of dynamical subsystems responsible for changing the controller

of a system when some important event occurs. The switching controller is composed of a
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set of controllers (known as the multi-controller) which is supervised by a superior controller

(supervisor) that compares the some estimates to the plant. A switching signal included in the

supervisor chooses the best controller to control the process. This idea is presented in Figure

3.1.

Figure 3.1: Hybrid control concept

The supervisor controller consists of estimators (multi-estimator) that estimates each output

of the n controllers plus observers. Each estimate is compared to the process output y. The

multi-estimator is a set that describes a family

M :=
⋃
p∈P

Mp (3.1)

Mp := {ẋp = Ap(xp,u,y),yp = Cp(p,xp,u,y) : p ∈P} (3.2)

where P is the set of estimators (E) and p is the number of the estimator. The state vector of

the model set is xp, yp is the estimated vector of the pth estimator, u is the control vector and

Ap and Cp are functions. The family of the estimators is M with Mp estimators. Controller

switching is performed by a switcher that receives the switching signal σ from the supervisory

control. Similarly to the multi-estimator, the controller set defines a family as

C :=
⋃
q∈Q

Cq (3.3)

Cq := {żq = Fq(zq,y),u = Gq(zq,y) : q ∈ Q} (3.4)
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where Q is the set of controllers and q is the number of the controller. The state vector of the

controller is zq with Fq and Gq being functions. The family of the controllers is C with Cq

controllers. There is a process switching signal ρ which determines the selected control model

in the supervisor. The switching signal σ from the supervisory control may be different from

the signal ρ. Hence, there is a mapping σ = χ(ρ) ∈ Q, ρ ∈ P. This means that the controller

number could be different from the observer number. This work assumes the mapping σ = ρ ∈

P ≡ Q which means that each ensuing pair is made up of one controller and one observer. The

formal definition of a switched system is presented as follows.

Definition 3.1 Switched system − (HESPANHA, 2002). The switched system includes the

process, controller set, and the estimator set

ẋ = Aσ(x,w) (3.5)

ep = Cp(x,w), ρ ∈P (3.6)

where x denotes the state of the process and w is the disturbance. The supervisor possesses

both process switching (PS) and switching logic (S) in order to generate the signal σ to switch

to the best controller. Switching logic prevents chattering (high frequency of σ changing) of the

switching signal. Process monitoring is presented in Figure 3.2, where yp is the output of the

estimator p, ep is the error of the estimator p and µp is the monitoring signal of the estimator

p.

Figure 3.2: Monitoring signal process
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3.3 Supervisory Properties

To guarantee correct switching between controllers, Hespanha (2002) presented two important

properties of the switching system: matching and detectability. The matching property means

there is an estimator with output yp that provides a good approximation of the output of the

process p. Detectability means that the switching system must be detectable with respect to ep

for each controller χ(p) ∈ Q. These properties are summarized as

Matching: a good approximation of yp needs to be provided by the multi-estimator, i.e., ep

needs to be small whenever the process Mp ∈ M .

Detectability: The error between the current and initial system states may be occasionally

small, as long as system detectability is guaranteed, no matter what its initial state. Each

estimator requires detectability related to the error estimator ep when a switching signal is fixed

at σ = χ(ρ) ∈ Q.

Figure 3.3: Injected system in cascade (HESPANHA,2002)

The signal σ is generated by the switching logic. The switching control needs to have other

properties such as small error and non-destabilization.

Small error: For a process switching signal ρ which satisfies σ = χ(ρ), the boundedness of the

error vector eρ must be guaranteed by the switching logic. The error vector eρ is the smallest

sub-vector of the error vector ep under any norm.

Non-destabilization: The system must be stable permanently in order to maintain detectabil-

ity. Switching stopping in finite time can be guaranteed by means of a scale-independent hystere-



23

sis switching logic. This logic can be applied for linear and nonlinear observers and controllers.

3.4 Hysteresis Switching Logic

The error between the output yp of the estimators and the system output y is evaluated to select

the best controller. The error vector ep is written as the difference between the estimate yp and

the output y. The best controller has the smallest element of the error vector. However, the error

vector can present with two or more of its entry close to each other. So, chattering can occur

because two or more controllers could be selected. The scale-independent hysteresis switching

logic guarantees that chattering will not occur and that the non-destabilization property is

maintained (HESPANHA, 2002). Scale-independent hysteresis means that the switching signal

will not change since the current monitoring signal µp will be less than others within certain

comparative scales. The hysteresis logic diagram is presented in Figure 3.4. The monitoring

signal vector µp is defined as follows

Definition 3.2 Monitoring Signal − (HESPANHA, 2002).

µ̇p = −λµp + γ(‖ep‖), p ∈P (3.7)

where λ denotes a constant non-negative forgetting factor, γ is a class K function (Lima (2009))

and ‖.‖ is any norm. The initial value of the monitoring signal is µ(0) > 0.

Figure 3.4: Scale-independent hysteresis switching logic (HESPANHA, 2002)
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For the purposes of introducing the switching logic, let the positive constant of the hysteresis

be h and consider the index of the minimum value of the µp that comes from arg min µp. The

logic operates in the following way: start by taking ρ = arg min µp and do σ = ρ. When

µρ <= (1 + h)µp is false for each p ∈ P, maintain σ = ρ, else, update the index ρ = arg min

µp and restart σ = ρ. Hence, in the next step, reset the algorithm. The inequation will be true

when some µρ is the lowest compared with each (1 +h)µp. More information about this process

can be found in (HESPANHA, 2002).

3.5 Stability Analysis

The Matching, Detectability, Small error and Non-destabilization properties need to be guaran-

teed for the application of the switching system. The Matching property can be obtained if the

applied observer can be proved stable. As regards the Detectability property, if the injected sys-

tem is proved to be stable, the switching system is detectable. The injected system is described

as follows

ẋ = Aρσ(x,v), τ q = Fρσ(x,v),yp = Cp(x), p ∈P (3.8)

where v = ep = yp - y is the input for the injected system. The control output is τ q with Aρσ

and Fρσ being functions for a pair ρ and σ. To prove the stability of the injected system, the

following theorem is taken into account.

Theorem 3.1 Certainty Equivalent Stabilization − (HESPANHA, 2002). Let the process be

detectable and take a fixed pair ρ = p ∈ P and σ = q ∈ Q. Then, if the injected system is

Input-to-State Stable (Input-to-State Stability (ISS)), the switched system will be detectable.

The scale-independent hysteresis switching logic ensures that non-destabilization and small error

properties can be guaranteed. More details can be found in (HESPANHA, 2002).
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3.6 Controller and Observer Numbers

The previous section presented some properties and conditions for using a control based on

hybrid concept. However, an important problem when designing the switching control is the

determination of the number of controllers to be included in the controller set. This number

depends on the system performance which can be affected by significant parameter. When

determining the number of controllers and observers, a criterion to establish parameter range is

required.

To determine the controller number, vessel dynamics is described as ẋ = f(t,x, ε) in the per-

turbation model, where ε is a small parameter related to draft variation. So, a function set from

the Taylor series is used to approximate the solution x(t, ε) as follows

x(t, ε) =

N−1∑
k=0

xk(t)ε
k + εNRx(t, ε) (3.9)

Comparing the response of the approximation of x(t, ε) to the response of x(t, 0), an error E is

defined as

E = max‖(
N−1∑
k=0

xk(t)ε
k + εNRx(t, ε))− x(t, 0)‖ (3.10)

Once the maximum error Emax is defined, the small variation ε is found and subsequently the

draft variation is determined. Appendix B presents this model in detail.

To determine the observer number, evaluation of the vessels’ wave-frequency motion is done

through calculation of the response motion spectrum. This analysis studies the cut-off frequency

ranges for the observers. Appendix C presents this analysis in detail.
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Chapter 4

Dynamic Positioning System

4.1 General

Dynamic Positioning Systems are closed-loop control systems that maintain vessel position and

heading by means of thrusters. The DPS is composed of the following main subsystems: con-

troller, observer, thrusters and sensor subsystem. The controller commands the thrusters in

order to counteract the environmental forces and moment and, as consequence, to maintain the

vessel set-point. The control law requires a noiseless estimates of vessel positioning and velocity.

These estimates are calculated by a state observer that receives the sensor measurement and

control vector. An allocation logic is used to distribute the thrust commanded by the controller

to the thrusters. Figure 4.1 illustrates this closed-loop control system and its main subsystems.

A new positioning strategy is here proposed to control two DP vessels in offloading operation.

The hybrid control concept is used to choose the best controller law and state observer in order

to improve the performance of the vessels’ positioning. Both nonlinear observers with wave-

frequency model and extreme seas are used. In the following section, these models are described

in a 6DOF system composed of two vessels. A control law based on the geometric theory is

applied to control the DP vessels. The DP control law obtained from the Lagrangian formalism

is presented and its equivalence to the geometric controller is demonstrated. PD-like control is
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also used and its performance is compared to geometric control performance. Assuming that

vessel velocity is low and set-point is constant, the similar performance between the PD-like

control and geometric approach is investigated.

Thrusters Vessel 

Sensor  
system 

Observer/ 
filter 

Controller 

Plant system DP control process 

Thruster 
allocation 
logic 

t tc u 

 
y 

+ + + - 

Environment 

 
y 

 
^ 

Set 
Point 

Noise 

+ + 

Figure 4.1: Block diagram for a dynamic positioning system

4.2 State Observers

The observer models are applied to DPS vessels in order to provide vessels’ velocity and posi-

tion estimates without disturbance or/and wave-frequency motion influence. Depending on the

dominating wave frequency of the sea condition, the wave-frequency motion is not required to

be filtered by the observer. External forces and moments are also important to be estimated by

observers in order to facilitate vessel through the addition of the feed-forward term to the con-

trol law. These external force and moment estimate can be done by a white noise or a Markov

process model. The following sections present two state observers applied here.
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4.2.1 Nonlinear Observer with Wave-frequency Vessel Motion

A nonlinear observer proposed by Fossen and Strand (1999) is considered. The plant model

(2.18) for this observer can be rewritten as

M ν̇ +Dν = τ c + JT (ψ)b (4.1)

where τ c ∈ R6 is the local control vector and τ c = J(ψ)Tu. In this model, the external forces

and moments are based on the Markov process as follows

ḃ = −T−1b+ Ψn (4.2)

where b ∈ R6 is the external force vector, n ∈ R6 is a zero-mean Gaussian white noise vector,

T ∈ R6×6 is a diagonal matrix of time constants and Ψ ∈ R6x6 is a diagonal scaling matrix.

In order to evaluate the wave-frequency vessel motion, a second-order model of the wave-induced

motion was proposed by Balchen, Jenssen and Sælid (1976) using harmonic oscillators. A

extension of this work was presented by Sælid, Jenssen and Balchen (1983) who included an

additional term for the damping. To describe this model, let hiw(s) be

hiw(s) =
σis

s2 + 2ςiω0is+ ω2
0i

(4.3)

where hiw(s) is the transfer function between a white noise signal and wave-frequency vessel

motion, ω0i is the dominating wave-frequency, ςi is the relative damping ratio and σi is a wave

intensity parameter. The indices i = 1, ..., 6 refer to FPWSO and shuttle tanker degrees of

freedom. The state model for 6DOF yields

[
ξ̇1

ξ̇2

]
=

[
06x6 I6x6

Ω21 Ω22

] [
ξ1

ξ2

]
+

[
06x6

Σ2

]
w (4.4)

ηw =
[

06x6 I6x6

] [ ξ1
ξ2

]
(4.5)

where ξ1 and ξ2 ∈ R6 are internal variable vectors, w ∈ R6 is a zero-mean Gaussian white noise

vector and ηw ∈ R6 is the wave-frequency vessel motion vector. The matrices Ω21, Ω22 and Σ2
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∈ R6x6 in (4.4) are written as

Ω21 = −diag{ ω2
01 ... ω2

06 } (4.6)

Ω22 = −2.diag{ ς1ω01 ... ς6ω06 } (4.7)

Σ2 = diag{ σ1 ... σ6 } (4.8)

The vessels’ position and heading measurement vector y ∈ R6 can be written as

y = η + ηw + d (4.9)

where d ∈ R6 is zero-mean Gaussian white measurement noise. To obtain the complete observer

model, the following assumptions are necessary (FOSSEN; STRAND, 1999)

A.1 - M =MT : the inertia matrix is symmetry

A.2 - n = w = 0 : estimation error drives the estimator states and those terms are omitted

A.3 - d = 0 : this term is small compared to first-order wave disturbance

A.4 - J(η) = J(y) : the heading is known with good accuracy

Under assumptions A.1 to A.4 and using (4.1) to (4.9), the complete observer model yields

M ν̇ +Dν = τ c + JT (y)b (4.10)

η̇ = J(y)ν (4.11)

ξ̇ = Ωξ (4.12)

η̇ = J(y)ν (4.13)

ḃ = −T−1b (4.14)

M ν̇ = −Dν + JT (y)b+ τ c (4.15)
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y = η + ηw = η + Γξ (4.16)

where Ω ∈ R12×12 and Γ ∈ R6×12 are written as follows

Ω =

[
06x6 I6x6

Ω21 Ω22

]
(4.17)

Γ =
[

06x6 I6x6

]
(4.18)

Using (4.10) - (4.16), the nonlinear observer is

˙̂
ξ = Ωξ̂ +K1.ỹ (4.19)

˙̂η = J(y)ν̂ +K2.ỹ (4.20)

˙̂
b = −T−1b̂+K3.ỹ (4.21)

M ˙̂ν = −Dν̂ + JT (y)b̂+ τ c + J(y)TK4ỹ (4.22)

ŷ = η̂ + Γξ̂ (4.23)

where ỹ = y - ŷ ∈ R6 is the estimator error, ξ̂ ∈ R12, η̂ and ν̂ ∈ R6. The hat symbol (ˆ) denotes

estimate vector. The matrices K3 and K4 ∈ R6×6 are diagonal positive and the error matrices

K1 ∈ R12×6 and K2 ∈ R6×6 are written as follows

K1 =



k11 0 0 0 0 0
0 k12 0 0 0 0
0 0 k13 0 0 0
0 0 0 k14 0 0
0 0 0 0 k15 0
0 0 0 0 0 k16

k21 0 0 0 0 0
0 k22 0 0 0 0
0 0 k23 0 0 0
0 0 0 k24 0 0
0 0 0 0 k25 0
0 0 0 0 0 k26



(4.24)



31

K2 =



k31 0 0 0 0 0
0 k32 0 0 0 0
0 0 k33 0 0 0
0 0 0 k34 0 0
0 0 0 0 k35 0
0 0 0 0 0 k36

 (4.25)

The entries of these matrices are calculated as (FOSSEN; STRAND, 1999)

k1i = −2ωci(ςni − ςi)
1

ω0i
(4.26)

k2i = 2ω0i(ςni − ςi) (4.27)

k3i = ωci (4.28)

where ςni is the damping factor and ωci is the filter cut-off frequency.

4.2.2 Nonlinear Observer for Extreme Seas

The nonlinear observer for extreme sea is presented by Sorensen, Strand and Nyberg (2002).

This model does not estimate the wave-frequency vessel motion. Hence, the measurement vector

is y = ηT = η + ηw ∈ R6. The extreme sea observer model is written as follows

˙̂ηT = J(y)ν̂T +K2T .ỹ (4.29)

˙̂
bT = −T−1b̂T +K3T .ỹ (4.30)

M ˙̂νT = −Dν̂T + JT (y)b̂T + τ c + J(y)TK4T .ỹ (4.31)

ŷ = η̂T (4.32)

where η̂T ∈ R6 is the total estimated motion, ν̂T and b̂T ∈ R6. The matrices K2T , K3T and

K4T ∈ R6×6 are similar to the nonlinear observer with wave-frequency model.
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4.3 Control Theory

4.3.1 Geometric Control Theory

4.3.1.1 Mathematical Tools

This section brings the mathematical tools applied to the geometric control. A briefly notion

about Differential Geometric and Geometric Mechanics is presented to write and discuss the DP

control laws.

Basic Concepts in Differential Geometry

The Differential Geometry is a theory composed of elements of topology, differential calculus

and linear algebra. The system dynamics in this context is based on the description of vector

fields that represent ordinary differential equations (ODE). The Differential Geometry tools

allow to associate the state space of the dynamical systems with a topological space. Here, some

important concepts are presented such as manifolds, vector field and Lie algebra.

Manifolds

Definition E.1 (GEMIGNANI, 1972) Let f be a function from a topological space X, p to a

space Y , q. The function f is said to be a homeomorphism if f is one-one, onto, and continuous,

and if f−1 is continuous.

For the definition of topological space, see Gemignani (1972). A coordinate transformation

Φ that represents Rn-real function on n variables is a diffeomorphism if Φ is invertible and

both the transformation and its inverse are smooth mappings. If the mapping is defined on

Rn, the diffeomorphism is global. If the mapping is defined on neighborhood of a point, the

diffeomorphism is local.

A manifold is a topological space where each p ∈ M with an open set U of p and an integer

number n ≥ 0 such that exits a homeomorphism Φ that parametrizes U to Rn (SPIVAK, 1999).

A coordinate chart on a manifold M is a pair (U,φ), where U is an open set of M and φ a
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homeomorphism of U onto an open set of Rn (ISIDORI, 1995). Two coordinate charts (U,φ)

and (V,ψ) are C∞-compatible if, whenever U ∩ V 6= 0, the coordinates transformation ψ ◦ φ−1

is a diffeomorphism, i.e., y(x) and x(y) are both C∞ maps (ISIDORI, 1995). A C∞ atlas on a

manifold M is a collection A = {(Ui,φi) : i ∈ I } of pairwise C∞-compatible coordinate charts,

with the property that
⋃

i∈I U i = M.. An atlas is complete if not properly contained in any

other atlas.

Definition E.2 (ISIDORI, 1995) A smooth or C∞ manifold is a manifold with a complete C∞

atlas.

A submanifold of a manifold M is a subset S which itself has the structure of a manifold, and

a inclusion map S→M satisfies certain properties. See Isidori (1995) for more details.

Vectorial and Tangent Spaces

Definition E.3 (ISIDORI, 1995): Let M be a smooth manifold. A tangent space to M at p,

written TpM, is the set of all tangent vectors at p.

Theorem E.1 (ISIDORI, 1995): Let M be a smooth manifold of dimension n. Let p be any

point of M. The tangent space TpM to M at p is a n-dimensional vector space over the field R.

If (U,φ) is a coordinate chart around p, then the set of tangent vectors ( ∂
∂φ1

)p, ..., (
∂
∂φn

)p form a

basis of TpM, where ( ∂
∂φn

)p is the directional derivative related to φn in p.

Definition E.4 (ISIDORI, 1995): Let M be a smooth manifold, of dimension n. A vector field

f on M is a mapping assigning to each point p ∈ M a tangent vector f(p) in TpM. A vector field

f is smooth if for each p ∈ M there exits a coordinate chart (U,φ) about p and n real-valued

smooth function f1, ... , fn defined on U such that, for all q ∈ U

fq =

n∑
i=1

fi(q)(
∂

∂φi
)q (4.33)

A tangent bundle TM is a 2n-dimensional manifold composed by tangent space union TpM for

each point p ∈ M

TM =
⋃
p∈M

TpM (4.34)
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A vectorial field f assigns f : M → TM : p → (p, vp). Similarly, a dual space to tangent space

TpM can be defined a cotangent space T∗M. The vectors into cotagent space are called covectors.

Once defined a point p on M, the space T∗pM has a basis dx1|p, ..., dxn|p. A cotangent bundle

T∗M is defined analogous to TM.

Let be M and N be two manifolds and a diffeomorfism f : M → N : m → f(m) = n for m ∈

M an n ∈ N. A tangent mapping is Tmf : TmM → Tf(m)N transforms vectors v ∈ TmM in u

∈ TpN . Figure 4.2 presents the spacial relationship between vector space and their mapping.

This concept is important to manipulate coordinate transformation and understand forces in

the Geometric Mechanics context.

Figure 4.2: Mapping between manifolds (SOUZA, 2008)
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Lie Algebra and Distributions

Let X ⊂ Rn be a manifold and f(x) and g(x) two vector fields with x on X. The Lie derivative

Lfg(x) is given by

Lfg(x) =
∂g

∂x
(x)f(x) (4.35)

This is the notion of the derivative of g along f . The notation Lkfg(x) means the kth Lie derivative

as follows

Lkfg(x) =
∂(Lk−1

f g)

∂x
f(x) (4.36)

The Lie bracket of f(x) on g(x) is another vector field on X defined as follows

[f, g](x) =
∂g

∂x
(x)f(x)− ∂f

∂x
(x)g(x) (4.37)

where ∂f/∂x and ∂g/∂x are the Jacobian matrices of f(x) and g(x). Similar to the Lie derivative,

adkfg(x) = [f, adk−1
f g](x) where ad0

fg(x) = g(x).

Let M be a manifold on Rn and f1, ..., fm be vector fields described by smooth functions on M .

These fields at a fixed point x span a vector space (a subspace of Rn) defined as

∆(x) = span{f1, ..., fm} (4.38)

where ∆(x) is a smooth distribution on M . A distribution is involutive if the Lie bracket [fi, fj ]

of any pair fi and fj with i 6= j and i, j = 1, ...,m belongs to ∆.

Geometric Mechanics

A configuration is a generalization of the system position and attitude in terms of differential

geometry. The configuration manifold Q with q elements has the velocity vectors of the system

within the tangent space TqQ. The total external force f is a mapping C∞ into the cotangent

space T ∗qQ. Figure 4.3 illustrates this configuration.
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Figure 4.3: Manifold of a configuration (SOUZA, 2008)

Dynamic systems with holonomic constraints without external forces have the constraint forces

perpendicular to the velocity vector (see Figure 4.4). This means that the distribution is inte-

grable in the sense of Frobenius theorem (BULLO; LEWIS, 2010; SOUZA, 2008). A constraint

of dynamical system is said to be holonomic or integrable if there is a real-valued function h(x)

(x understood as generalized coordinates of that system) such that the constraint can be rewrit-

ten as h(x) = k, where k is a constant. Thus, the system configuration is actually constrained

to be a submanifold of the system configuration manifold. This holonomic condition is equiv-

alent to the integrability of the Frobenius theorem (BLOCH et al., 2003). Hence, to find the

constraint force into the cotangent space is equivalent to resolve the Lagrangian−λ method of

the constrained dynamical system. More about this method can be found in Meirovitch (1970),

Lanczos (1986), Lima (2009).

Figure 4.4: Manifold with a constraint force (SOUZA, 2008)
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4.3.1.2 Multiple-Input- Multiple-Output Linearizarion

Consider the following system

ẋ(t) = f(x) +

m∑
i=1

gi(x)ui (4.39)

y1 = h1(x)
...

ym = hm(x)
(4.40)

where f(x) and gi(x) with i = 1, ...,m are smooth vector fields, hi(x) is a smooth function ∈

Rn. Let x(t) = [ x1(t), ..., xn(t) ]T be the state space vector, u(t) = [ u1(t), ..., um(t) ]T

be the control vector and y(t) = [ y1(t), ..., ym(t) ]T be the observation vector. Then, (4.39)

and (4.40) can be rewritten as

ẋ(t) = f(x) + g(x)u (4.41)

y = h(x) (4.42)

where g(x) is a n x m-matrix and h(x) is a m-vector. It is possible to find a control law u in

order to linearize the output y. This process is called Input-to-Output (I/O) exact linearization

for Multiple-Input-Multiple-Output (MIMO) (ISIDORI, 1995). The control law that linearizes

the system is

ui = αi(x) +

m∑
j=1

βij(x)vj (4.43)

where αi(x) and βij(x) for 1 ≤ i, j ≤ m are smooth functions ∈ Rn. The new control vector is

defined as v(t) = [ v1(t), ..., vm(t) ]T . Rewritten (4.43) in condensed way results

uG = α(x) + β(x)v (4.44)

where uG is the geometric control law. Substituting (4.44) into (4.41) yields

ẋ(t) = f(x) + g(x)α(x) + g(x)β(x)(v) (4.45)
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If some conditions are satisfied, for an initial state x◦ on M , there is a coordinate transformation

z = Φ(x) (section 4.3.1.1), a matrix A ∈ Rn×m and a matrix B ∈ Rn×m such that

[
∂Φ

∂x
(f(x) + g(x)α(x))

]
x=Φ−1(z)

= Az (4.46)

[
∂Φ

∂x
(g(x)β(x))

]
x=Φ−1(z)

= B (4.47)

where the rank[ B AB An−1B ] = n and Φi
k = Lk−1

f hi(x) for 1 ≤ k ≤ ri, 1 ≤ i ≤ m.

Hence, the linearized system is

ż = Az +Bv (4.48)

The new control vector v can be chosen as follows

v = −Kz (4.49)

where K ∈ R2m×2m is a gain matrix of feedback state. The functions α(x) and β(x) are found

as

α(x) = −A−1(x)b̄(x) (4.50)

β(x) = −A−1(x) (4.51)

where the matrices A(x) ∈ Rm×m and b̄(x) ∈ Rm are found as

A(x) =


Lg1L

r1−1
f h1(x) ... LgmL

r1−1
f h1(x)

Lg1L
r2−1
f h2(x) ... LgmL

r2−1
f h1(x)

... ... ...

Lg1L
rm−1
f h1(x) ... LgmL

rm−1
f h1(x)

 (4.52)

b̄(x) =


Lr1f h1(x)

Lr2f h2(x)

...
Lrmf hm(x)

 (4.53)

where ri ∈ Z with i = 1, ...,m is the relative degree. The relative degree is defined as
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Definition 5.1 (ISIDORI, 1995): A multivariable nonlinear system of the form (4.39) and (4.40)

has a (vector) relative degree { r1 ... rm } at a point x◦ if

(i) LgjL
k
fhi(x) = 0, for all 1 ≤ j ≤ m, for all k < ri − 1, for all i ≤ i ≤ m and for all x in a

neighborhood of x◦,

(ii) The matrix A(x) is nonsingular at x = x◦.

The transformation existence conditions and the exact linearization follow belllow.

Theorem 4.1 (ISIDORI, 1995): Suppose the matrix g(x◦) has rank m. The state space exact

linearization problem is solvable if an only if

(i) for each 0 ≤ i ≤ n− 1, the distribution ∆i has constant dimension near x◦;

(ii) the distribution ∆n−1 has dimension n;

(iii) for each 0 ≤ i ≤ n− 2, the distribution ∆i is involutive

The distribution is defined ∆i = span{adkfgj : 0 ≤ k ≤ i, 1 ≤ j ≤ m}. See definition of adkfgj

and ∆i in section 4.3.1.1.

Proposition 5.1 (ISIDORI, 1995) Suppose a system that has a (vector) relative degree { r1 ... rm }

at a point x◦. Then

r1 + ...+ rm ≤ n

Set, for 1 ≤ i ≤ m with Φi
ri(x) = Lri−1

f hi(x)

If r = r1 + ... + rm is strictly less than n, it is always possible to find n − r more functions

Φr+1(x), ...,Φn(x) such that mapping (see mapping in section 4.3.1.1)

Φ(x) = [Φ1
1(x), ...,Φ1

r1(x), ...,Φm
1 (x), ...,Φm

rm(x),Φr+1(x), ...,Φn(x)]T

has a Jacobian matrix which is nonsingular at x◦ and therefore qualifies as a local coordinates

transformation in a neighborhood of x◦.
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4.3.2 Lagrange Multiplier-based Controller

The Lagrange Multiplier to control crafts or vessels in formation is proposed by Ihle, Jouffry and

Fossen (2005), Ihle (2006), Ihle, Jouffry and Fossen (2006) and Moratelli Jr et al. (2013). The

idea is to use the constraint force determined by the Lagrange −λ method (MEIROVITCH, 1970;

LANCZOS, 1986) as the control law. In the context of the Classical Mechanics, the constraint

forces are reactive forces at joints between rigid bodies. Here, this force is understood as control

force that satisfies the constraint equals to zero.

To introduce the proposed control law, let Ti(η̇) be the kinetic energy of the vessels i = 1, 2 and

C (η) ∈ Rp be the constraint function vector where p is the number of constraints, respectively.

The total energy of the system is

L (η, η̇) =
2∑
i=1

Ti − λTC (η) (4.54)

where λ ∈ Rp is the Lagrange Multiplier and L (η, η̇) is the Lagrangian (MEIROVITCH, 1970;

LANCZOS, 1986). For DPS application, the potential energy is neglected and it can be deducted

from 4.54. The energy Ti(η̇) is written as

Ti(η̇) =
1

2
η̇TMiη̇ (4.55)

Let b be the only external forces and moment vector of the system. Applying the Euler-Lagrange

differential equations (MEIROVITCH, 1970; LANCZOS, 1986), the vessel dynamics can be

written as

Mηη̈ + (Dη − J(ψ1, ψ2)MJ(ψ1, ψ2)T J̇(ψ1, ψ2)J(ψ1, ψ2)T )η̇ = b−W (η)Tλ (4.56)

where W (η) ∈ Rm×m is the Jacobian matrix of the constraint C (η) with respect to η. The

matrix Mη = J(ψ1, ψ2)MJ(ψ1, ψ2)T ∈ R6×6 and the matrix Dη = J(ψ1, ψ2)DJ(ψ1, ψ2)T

∈ R6×6 are the matrices of inertia and Centripetal and Coriolis effects with respect to global

coordinates. The matrix D is found using the same assumptions of section 2.2 to determine the
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control model. (see the Appendix A). The control vector can be found as

uλ = −W (η)Tλ (4.57)

where uλ ∈ R6 is the control vector. Now, C̈ (η) can be found differentiating the constraint

twice with respect to time as follows

Ċ (η) = W (η,xr)η̇ = [0] (4.58)

The second time-derivative yields

C̈ (η) = Ẇ (η)η̇ +W (η)η̈ = [0] (4.59)

The constraint function acceleration can be stabilized by a feedback function using the constraint

and its first derivative as follows

C̈ (η) = −Kp.C (η)−Kd.Ċ (η) = [0] (4.60)

where Kp and Kd ∈ R6×6 are gain matrices. Now, making (4.60) equals to (4.59) and isolating

the term W (η)η̈ yields

W (η)η̈ = −(Ẇ (η)η̇ +Kp.C (η) +Kd.Ċ (η)) (4.61)

Now, substituting η̈ from (4.56) into (4.61), and isolating the constraint force term W Tλ, the

Lagrangian control law uλ = −W Tλ results

uλ = −b+ (Dη − JMJJ̇JT )η̇ −MηW
−1(Ẇ η̇ +Kp.C +Kd.Ċ ) (4.62)

4.3.3 Proportional-Derivative-like Controller

The PD-like control law written with respect to Earth-frame and calculated based on the esti-

mated variables is presented as

uPD = Kpê+Kd
˙̂e− b̂ (4.63)
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e = ηr − η̂ (4.64)

where uPD ∈ R6 is the control vector, e ∈ R6 is the positioning error vector and ηr ∈ R6 is the

vessel reference vector. The matrices Kp and Kd ∈ R6×6 are the proportional and derivative

control matrix. These matrices can be found from a pole allocation using the control model in

(4.1). These matrices result as

Kp = M .diag{ ω2
n1

... ω2
n6
} (4.65)

Kd = 2M .diag{ ςcn1
ωn1 ... ςcn6

ωn6 } −D (4.66)

where ςcni
and ωni with i = 1, ..., 6 are control parameters.

4.4 Dynamic Positioning Controllers

Three different control laws are presented in order to control the DP vessels carrying out the of-

floading operation. The Geometric controller is developed through Input-to-Output (I/O) exact

linearization for Multiple-Input- Multiple-Output (MIMO) system theory. This law integrates

both DP vessel controllers (FPWSO and shuttle tanker). The Lagrange Multiplier-based con-

troller proposed by Ihle (2006) is applied using a constraint function. The equivalence between

Lagrange Multiplier-based controller and geometric controller is presented. PD-like controller

is studied and this law does not control the vessels in the integrated way, i.e., no information

is exchanged between the vessels. Taking low speed of the vessel and constant reference, the

similar performance between geometric and PD-like controllers is demonstrated.

4.4.1 Relative Positioning

During the offloading operation, the relative positioning between the vessels needs to be main-

tained in order to avoid dangerous proximity or excessive hawser tension. To describe this relative

positioning, consider Figure 4.5 that illustrates the positioning between vessels based on their
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set-points. The vessels’ positioning is imposed by the relative distance between the FPWSO

stern and the ST bow. The bow of the shuttle tanker is aligned with FPWSO longitudinal axis.

FPWSO 
d0 

Y10 

L1 

G1 

P1 

ST 

L2 

P3 

Y20 

G2 

P2 

P3 

P2 

Y10 

Y20 

d0.sin(      ) Y10 

.sin(      ) Y20 L2/2 

.sin(      ) Y10 L1/2 

10 X 20 X - = .cos(      ) Y10 .cos(      ) Y20 L2/2 + 

10 Y 20 Y - = .sin(      ) Y10 .sin(      ) Y20 L2/2 + 

G2 (X20 ,Y20) 

Earth-frame 
E X 

E Y 

G1 (X10 ,Y10) 

(L1/2+d0) 

(L1/2+d0) 

Figure 4.5: Relative positioning between vessels

So, this relative positioning can be described as follows

X10 −X20 = (
L1

2
+ d0)cos(ψ10) +

L2

2
cos(ψ20) (4.67)

Y10 − Y20 = (
L1

2
+ d0)sin(ψ10) +

L2

2
sin(ψ20) (4.68)
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where L1 and L2 are the length of the FPWSO and ST, respectively. The variables X10, Y10,

ψ10, X20, Y20 and ψ20 are the vessels’ set-points and d0 is the reference distance. Once FPWSO

set-point is defined, the relative distance d0 can be used to determine the shuttle tanker set-point.

So, vessels’ set-point vector can be written as

η0 =



X10

Y10

ψ10

X20

Y20

ψ20

 =



X10

Y10

ψ10

X10 − (d0 + L1/2)cos(ψ10)− (L2/2)cos(ψ20)
Y10 − (d0 + L1/2)sin(ψ10)− (L2/2)sin(ψ20)

ψ20

 (4.69)

where η0 ∈ R6 is the set-point vector. In order to avoid abrupt input into the closed-loop control

system due to the set-point change, a linear dynamical system to change the set-point values is

implemented. Let the linear reference model be as follows

ż1r = z2r (4.70)

ż2r = A1z1r +A2z2r +A3z0 (4.71)

The variables z1r and z2r ∈ R5 are internal variables of the reference model. The relative set-

point vector is z0 = [ X10 Y10 ψ10 d0 ψ20 ]T . The matrices A1, A2 and A3 are defined

as

A1 = −A3 = −diag{ ω2
r1 ... ω2

r5 } (4.72)

A2 = −2.diag{ ςr1ωr1 ... ςr5ωr5 } (4.73)

The variables ωrnr
and ςnr with nr = 1...5 are parameters of the linear reference model. The

reference model (4.70) and (4.71) can be rewritten as

żr = Arzr +Brz̄0 (4.74)

yr = zr (4.75)

where zr = [ zT1r zT2r ]T ∈ R10 is the state-space vector of the reference model and yr ∈ R10 is
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the output vector. The vector z̄0 = [ 0T5x1 zT0 ]T ∈ R10 is the system input. The matrices Ar

∈ R10×10 and Br ∈ R10×5 are defined as

Ar =

[
05x5 I5x5

A1 A2

]
(4.76)

Br =

[
05x5

A3

]
(4.77)

The reference vector ηr ∈ R6 can be written using the z1r = [ X1r Y1r ψ1r dr ψ2r ]T vector

as follows

ηr =



X1r

Y1r

ψr
X2r

Y2r

ψ2r

 =



X1r

Y1r

ψ1r

X1r − (dr + L1/2)cos(ψ1r)− (L2/2)cos(ψ2r)
Y1r − (dr + L1/2)sin(ψ1r)− (L2/2)sin(ψ2r)

ψ2r

 (4.78)

Now, take the error vector e ∈ R6 for dynamic positioning systems written as

e = ηr − η (4.79)

Using the error vector (4.79), if the FPWSO moves out from its set-point, the shuttle tanker

maintains its positions and heading. However, a constraint can be written to maintain the

relative distance moving both vessels. This constraint is defined as

C (η, z1r) =



X1 −X1r

Y1 − Y1r

ψ1 − ψ1r

X2 −X1 + (d+ L1/2)cos(ψ1) + (L2/2)cos(ψ2)
Y2 − Y1 + (d+ L1/2)sin(ψ1) + (L2/2)sin(ψ2)

ψ2 − ψ2r

 = 0 (4.80)

where the constraint C (η, z1r) ∈ R6. This constraint imposes that FPWSO error vector is

calculated with its set-point and the ST reference depends on the actual FPWSO positions and

heading. Hence, if FPWSO leaves its set-point, the shuttle tanker controller acts in order to

maintain the distance between vessels. The opposite does not occur because the FPWSO can

not leave its set-point due to riser connection. The new control strategy proposal is to integrate

the control law action using the constraint vector.
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4.4.2 Geometric control for Dynamic Positioning Vessels

In the Geometric Mechanics context (section 4.3.1.1), the constraint force used to create a control

law (section 4.3.2) is a vector into the cotangent space of the system configuration (see section

4.3.1.1). In order to obtain this force, the linearizaton of the output y (4.42) is used to create

the control force uG (4.44) in the same cotangent space. Now, taking the vessel dynamics (4.56),

the reference model (4.74) and the constraint (4.80), a system can be written concisely as

ẋ = f(x) + g(x)u (4.81)

y = h(η, z1r) = C (η, z1r) (4.82)

where x = [ ηT z1r
T η̇T z2r

T ]T ∈ R22. The output y is equal to the constraint function.

The functions f(x) and g(x) are written as

f(x) =


f1(x)
f2(x)
f3(x)
f4(x)

 =


η̇
z1r

M−1
η

[
(−Dη + JMJT J̇JT )η̇ + b

]
A1z1r +A2z2r +A3z0

 (4.83)

g(x) =


06x1

05x1

M−1
η

05x1

 (4.84)

The order of the system (4.81) is n = 22 because it is composed of the vessel dynamics (6DOF

of order 2) and a linear reference model of order 10. If the second time-derivative of the output

(4.82) is done, it can be seen that the relative degree of the system is r = 12. Hence, the exact

linearization is not possible since r < n. The reason is the inclusion of the linear reference model

into the system model. Despite the fact that r < n, the Proposition 5.1 states that it is possible

to find a coordination transformation. A simple way to prove it is to assure the non-singularity

of A(x) matrix. This matrix can be calculated as

A(x) = LgLfh(x) = ∇Lfh(x)g = ∇(∇h.f)g (4.85)
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where ∇ is the gradient operator. Hence, ∇h is

∇h =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

−1 0 −(d+ L1
2 )sψ1 1 0 −L2

2 sψ2

0 −1 (d+ L1
2 )cψ1 0 1 L2

2 cψ2

0 0 0 0 0 1

0 −1 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 cψ1 0
0 0 0 sψ1 0
0 0 0 0 −1

06×11


(4.86)

The term Lfh(x) is

Lfh(x) = ∇h.f = ẏ =



Ẋ1 − Ẋ1r

Ẏ1 − Ẏ1r

ψ̇1 − ψ̇1r

Ẋ2 − Ẋ1 − (d+ L1/2)sψ1ψ̇1 + cψ1ḋ− L2/2sψ2ψ̇2

Ẏ2 − Ẏ1 + (d+ L1/2)cψ1ψ̇1 + sψ1ḋ+ L2/2cψ2ψ̇2

ψ̇2 − ψ̇2r


=

= [ W W r 06×6 06×5 ]

(4.87)

where W ∈ R6×6 is the Jacobian matrix of the y with respect to η and W r ∈ R6×5 is the

Jacobian matrix of the constraint y with respect to z1r . Now, the term LgLfh(x) = ∇Lfh(x)g

is required. To facilitate the reading, ∇Lfh(x) is divided into four parts related to each variable

in x as

∇Lfh(x) = [ ∇Lfh(x)η ∇Lfh(x)z1r ∇Lfh(x)η̇ ∇Lfh(x)z2r ] (4.88)

Hence,

∇Lfh(x)η = Ẇ =


03x3 03x3

0 0 −(L1/2 + d)c(ψ1)ψ̇1 − ḋs(ψ1)

0 0 −(L1/2 + d)s(ψ1)ψ̇1 + ḋc(ψ1)
0 0 0

0 0 −(L2/2)c(ψ2)ψ̇2

0 0 −(L2/2)s(ψ2)ψ̇2

0 0 0


(4.89)

∇Lfh(x)z1r = Ẇr =


03x3 03x2

03x3

−s(ψ1)ψ̇1 0

c(ψ1)ψ̇1 0
0 0

 (4.90)
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∇Lfh(x)η̇ = W =


I3x3 03x3

−1 0 −(L1/2 + d)s(ψ1)
0 −1 (L1/2 + d)c(ψ1)
0 0 0

1 0 −(L2/2)s(ψ2)
0 1 (L2/2)c(ψ2)
0 0 1

 (4.91)

∇Lfh(x)z2r = Wr =


−I3x3 03x2

03x3

c(ψ1) 0
s(ψ1) 0

0 −1

 (4.92)

Substituting (4.89) to (4.92) into (4.88) yields

∇Lfh(x) = [ Ẇ Ẇr W Wr ] (4.93)

Hence, calculating A(x) using (4.84) yields

A(x) = ∇Lfh(x)g = [ Ẇ Ẇr W Wr ]


06x1

05x1

M−1
η

05x1

 = WM−1
η (4.94)

The matrixMη = JMJT is non-singular because the rotation matrix has |J | = 1 and the inertia

matrix is positive-definitive. The term W in (4.91) is also nonsingular. The non-singularity of

A(x) for all x◦ ∈ R22 is proved because the term WM−1
η is non-singular (product of two non-

singular matrices) for all x◦ ∈ R22. Hence, the system has a coordinate transformation. To find

the control law, the term b̄(x) = L2
fh(x) = ∇Lfh.f (4.53) results

b̄(x) = L2
fh(x) = Ẇ (η, z1r)η̇ +W (η, z1r)f3(x) + Ẇ r(η, z1r)ż1r +W r(η, z1r)z̈1r (4.95)

Substituting f3(x) into (4.95) and calculating uG in (4.44) yields

uG = −b+ (Dη − JMJJ̇JT )η̇ −MηW
−1(Ẇ η̇ + Ẇ rż1r +W rz̈1r + v) (4.96)

where v is the new control vector. The new control vector is set as

v = Kp.C (η, z1r) +Kd.Ċ (η, z1r) (4.97)

where Kp and Kd ∈ R6×6 are gain matrices.
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4.4.3 Lagrange Multiplier-based Controller for Dynamic Posi-

tioning

Lagrangian control law is obtained using a constraint function C (η), as discussed in Section

4.3.2. The constraint proposed in Section 4.4.1 depends on vectors η and also z1r. To find the

uλ using the C (η, z1r), this constraint is differentiated twice with respect to time as follows

Ċ (η, z1r) = W (η, z1r)η̇ +W r(η, z1r)ż1r = [06×1] (4.98)

C̈ (η, z1r) = Ẇ (η, z1r)η̇ +W (η, z1r)η̈ + Ẇ r(η, z1r)ż1r +W r(η, z1r)z̈1r = [06×1] (4.99)

The constraint function acceleration C̈ (η, z1r) is stabilized by a feedback function as

C̈ (η, z1r) = −Kp.C (η, z1r)−Kd.Ċ (η, z1r) = [06×1] (4.100)

where Kp and Kd ∈ R6×6 are gain matrices. Doing (4.100) equals to (4.99), and isolating the

term W (η, z1r)η̈ yields

W (η, z1r)η̈ = −(Ẇ (η, z1r)η̇+ Ẇ r(η, z1r)ż1r +W r(η, z1r)z̈1r +Kp.C (η, z1r) +Kd.Ċ (η, z1r))
(4.101)

The reference and its derivatives are assumed to be known and that the matrix W (η, z1r)
−1

exists. Now, substituting η̈ from (4.56) into (4.101), and isolating the constraint force term

W Tλ, the control law uλ = −W Tλ results

uλ = −b+ (Dη − JMJJ̇JT )η̇ −MηW
−1(Ẇ η̇ + Ẇ rż1r +W rz̈1r +Kp.C +Kd.Ċ ) (4.102)

Using C (η, z1r), the Jacobian matrices W , Wr and their time derivatives result

W =


I3x3 03x3

−1 0 −(L1/2 + d)s(ψ1)
0 −1 (L1/2 + d)c(ψ1)
0 0 0

1 0 −(L2/2)s(ψ2)
0 1 (L2/2)c(ψ2)
0 0 1

 (4.103)
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Ẇ =


03x3 03x3

0 0 −(L1/2 + d)c(ψ1)ψ̇1 − ḋs(ψ1)

0 0 −(L1/2 + d)s(ψ1)ψ̇1 + ḋc(ψ1)
0 0 0

0 0 −(L2/2)c(ψ2)ψ̇2

0 0 −(L2/2)s(ψ2)ψ̇2

0 0 0

 (4.104)

Wr =


−I3x3 03x2

03x3

c(ψ1) 0
s(ψ1) 0

0 −1

 (4.105)

Ẇr =


03x3 03x2

03x3

−s(ψ1)ψ̇1 0

c(ψ1)ψ̇1 0
0 0

 (4.106)

Comparing this control law to the geometric control law uG, the constraint force from Lagrangian

multiplier-based controller is the same geometric control law since the matrices Kp and Kd are

equal to the matrices of the geometric control (for control vector v). Hence, if the constraint

of the Lagrangian Multiplier-based controller depends on the position and reference and the

geometric control law is obtained from a output equals to the constraint of the Lagrangian

Multiplier-based controller, these controllers are equivalent, i.e., uG ≡ uλ. To prove that, the

second-time derivative of the output is

ÿ = L2
fh(x) + LgLfh(x)u =

= Ẇ (η,x1r)η̇ +W (η,x1r)η̈ + Ẇ r(η,x1r)ẋr +W r(η,xr)ẍr

(4.107)

Hence, both control laws are an Input-to-Output linearization for the MIMO system presented.

In the LM-approach, the distance between the vessels is understood as a constraint that is

obeyed. As a result of feedback linearization, some nonlinear terms are canceled and the control

needs to meet the demanded forces and moment in order to satisfy the constraint. In terms of

Geometric Mechanics, the control law inserts a constraint force that maintains the system con-

figuration restricted into a submanifold. This result reflects the Frobenius integrability theorem.

Both control laws are identical, so the simulations in Chapter 6 present results with geometric

and PD-like controllers only.
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4.4.4 Conventional Error as Constraint

If the constraint function (system output) is equal to the error vector (4.108), geometric controller

will have the error dynamics stabilized by a feedback of this error vector and its derivative. To

show this result, take the error vector and the control model (2.18) with respect to Earth-frame

as

e = ηr − η (4.108)

Mηη̈ + (Dη − J(ψ1, ψ2)MJ(ψ1, ψ2)T J̇(ψ1, ψ2)J(ψ1, ψ2)T )η̇ = b+ u (4.109)

The Jacobian matrices of the error vector e = Ċ (η,xr) can be found as

W (η,ηr) = −I6×6 (4.110)

Wr(η,ηr) = I6×6 (4.111)

where W (η, ηr) ∈ R6×6 is the Jacobian matrix of the error vector with respect to η and

W r(η,ηr) ∈ R6×6 is the Jacobian matrix of the error vector with respect to ηr. The Jacobian

matrix derivatives are Ẇ = Ẇ r = 06×6.

Now, using the output linearization procedure (section 4.4.2) and calculating the geometric

control law in (4.96), it is possible to find the following control law

uG = uλ = −b+ (Dη − JMJJ̇JT )η̇ −MηW
−1(Ẇ η̇ + Ẇ rη̇r +W rη̈r + v) (4.112)

Substituting the Jacobian matrices into (4.112) yields

uG = uλ = −b+Mη(Dη − JMJJ̇JT )η̇ +Mη(η̈r + v) (4.113)

Hence, substituting the control law in (4.113) into (4.109) results

ë = −v = −Kpe−Kdė (4.114)

where v ∈ R6 is the new control vector, Kp and Kd ∈ R6×6 are diagonal matrices. This
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procedure linearizes the error dynamics using a static feedback linearization. Now, using the

transformation τ c = J(ψ)Tu, take (4.109) rewritten in body-frames coordinates as follows

Mν̇ +Dν = J(ψ1, ψ2)T )(b+ u) (4.115)

A PD-like controller is proposed as

uPD = Kpe+Kdė− b (4.116)

Kp = MJ(ψ1, ψ2)TKp (4.117)

Kd = MJ(ψ1, ψ2)TKd −DJ(ψ1, ψ2)T (4.118)

where Kp and Kd ∈ R6×6 are diagonal matrices. Calculating the second time-derivative of the

error vector and using (2.1) results

ė = η̇r − η̇ = η̇r − J(ψ1, ψ2)ν (4.119)

ë = η̈r − J̇(ψ1, ψ2)ν − J(ψ1, ψ2)ν̇ (4.120)

Substituting the control vector (4.116) into (4.115), collecting the term ν̇, and inserting it into

(4.120) yields

ë = η̈r − J̇(ψ1, ψ2)ν − J(ψ1, ψ2)M−1DJ(ψ1, ψ2)T η̇r −Kpe−Kdė (4.121)

Assuming constant reference, its time-derivative is null. The yaw velocity is assumed slow and

the term J̇(ψ1, ψ2)ν is considered null. Hence, the error dynamics in (4.121) can be approximate

as

ë ≈ −Kpe−Kdė (4.122)

The resulting error dynamics in (4.122) from a nonlinear PD-like controller is similar to the

linearized error dynamics in (4.114) from a feedback linearization procedure. Hence, it would

be expected similar behavior between the geometric and PD-like controller if the error vector e
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were used by both controllers.

4.5 Thrust Allocation

The control law u described in local coordinates can be obtained as

τ c = J(ψ)Tu (4.123)

The local control vector τ c ∈ R6 is divided into two vectors τ ci ∈ R3 for each vessel i. Once

the local control law τ ci is calculated by the controller, it is necessary to determine the thrust

control vector τ pi ∈ Rni to distribute the thrusts among the ni actuators. The relationship

between these vector is

τ ci = Bi.τpi (4.124)

In general, the vessels with DPS installed are overactuated and their actuators can be main

propellers, azimuth and tunnel thrusters. Then, the actuator configuration matrix Bi is

Bi =

 c(α1) . . . c(αj)

s(α1)
. . . s(αj)

−c(α1) ∗ y1 + s(α1) ∗ x1 . . . −c(αj) ∗ yj + s(αj) ∗ xj

 (4.125)

where αni is the thruster angle, xni and yni are the longitudinal and transverse positions of the

actuators. For tunnel thrusters, α = 90◦ and for main propellers α = 0◦. See details about

actuator configuration matrix in Tannuri (2002)). The thrust control vector can be determined

as

τ pi = Aiτ ci (4.126)

Ai = W
−1
i B

T
i (BiW

−1
i B

T
i )−1 (4.127)

where Ai ∈ R3×ni is the generalized inverse matrix, W i ∈ Rni×ni is the weighting diagonal
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matrix. The elements of the weighting diagonal matrix W i can be obtained from (GRANJA,

2009) as

wni×ni = 5.77
Pmaxni

Tmax2
ni

(4.128)

where wni×ni is the element of the weighting thruster matrix, Pmaxni is the maximum power

and Tmaxni is the maximum thrust. The saturation of the actuators is considered as

τ d =
1

2
(τmax + τmin − |τmax − τ p|+ |τ p − τmin|) (4.129)

where τ d = [ τTd1 τTd2
]T ∈ Rn1+n2 is the demanded thrust vector. The complete thrust

control force is τ p = [ τTp1 τTp2
]T ∈ Rn1+n2 . The vector of maximum thrust is τmax =

[ τTmax1 τTmax2
]T ∈ Rn1+n2 . The vector of minimum thrust is τmin = [ τTmin1

τTmin2
]T ∈

Rn1+n2 .

Once one of the actuators is saturated and there are actuators with available thrust to be

allocated, the saturated actuator is removed from the thruster configuration and the weighting

matrices, and the allocation logic is redone. This process continues until the demanded force

and moment are met or the rank of the thruster configuration be less than 3.

In practice, there is some time lag between the demanded control force τ d and the real thrust

τ p of the actuators. This lag is considered through the actuator dynamics as (FOSSEN, 1994)

τ̇ p = T d(τ p − τ d) (4.130)

where matrix T d ∈ R3×(n1+n2) is a diagonal matrix of time constants. Figure 4.6 presents a

block diagram that illustrates the thrust allocation with the actuator dynamics.

Figure 4.6: Block diagram for thrust allocation
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Chapter 5

Hybrid Concept applied to

Offloading Operation

5.1 Switching Controller based on Draft and Sea State

The switching control application requires the assessment of significant parameter range on

the system dynamics. In the case of DPS vessels involved in the offloading operations, the

parameters are the vessels’ draft and the peak-frequency of the wave-frequency vessel motions.

The former affects directly the vessels’ dynamics by changing their inertia matrices, and the

latter is one of the parameters for the definition of the cut-off frequency of the filter (estimator).

Dong (2005) proposed a hybrid concept for DP vessels and suggested the cut-off frequencies

for four operational ranges. A cross spectrum analysis is performed here in order to determine

peak-frequency ranges. In this analysis, vessel drafts, sea state and the angle of incidence of the

waves are all evaluated on the system, and the response spectra calculated, using the RAOs.

See Appendix C for details. The main conclusions from these analyses are:

1. Draft does not affect motion peak-frequency for a given sea state and wave angle of

incidence

2. The angle of incidence does not change the peak-frequency for a given draft and sea state
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3. For filtering purposes, the peak-frequency motions can be split into four ranges. These

ranges are very similar to those proposed by Dong (2005)

Draft alters the vessels’ inertia matrix. This matrix is used for tuning control parameters.

Therefore, draft variation impacts upon controller performance.

Assuming a maximum positioning error of 10% in the perturbation model, three draft ranges

are obtained (see Appendix B). Due to the fact that motion peak-frequency does not alter with

draft variation, those three draft ranges are associated with those four sea state ranges. So,

we define M :=
⋃
p∈P Mp with p = 1, ..., 12 and C :=

⋃
q∈Q Cq with q = 1, ..., 12 (three draft

ranges times the four sea state ranges). Once the number of estimators has been determined,

the hybrid concept applied to the offloading operation is presented as in Figure 5.1. Tables 5.1

and 5.2 present the sea state ranges and the draft ranges of each vessel, respectively.

Table 5.1: Reference sea states (DONG, 2005)

Sea State Sea State ωp [rad/s] Observer
Reference s Condition

1 Calm Seas > 0.79 Nonlinear observer with notch filter
2 Moderate Seas 0.79 - 0.67 Nonlinear observer with notch filter
3 High Seas 0.67-0.45 Nonlinear observer with notch filter
4 Extreme Seas < 0.45 Nonlinear observer for extreme seas

Table 5.2: Reference drafts for control model

Reference Shuttle tanker FPWSO
Draft k h [m] h [m]

1 8.00 21.00
2 12.48 18.21
3 17.50 15.42
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Figure 5.1: Hybrid concept applied to offloading operation
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As presented in Chapter 3, the mapping is σ = ρ and, as a consequence, P ≡ Q. Table 5.3

presents a mapping between the multi-estimator, the draft ranges and sea states for reference

purposes. To simplify the reference, the multi-estimator is denoted by p, the sea states ranges

are denoted by s = 1, ..., 4 as defined in Table 5.1, and draft ranges are denoted by k = 1, ..., 3

as defined in Table 5.2. To monitor sea state, the motion peak-frequency is assumed to be slow-

varying, i.e., ω̇p = 0 (DONG, 2005), and its estimate is calculated as presented in Section 5.4.

The offloading operation between DP vessels takes around 24h. Then, their drafts are assumed

to be slow-varying, i.e., ḣ ≈ 0, where h = [ h1 h2 ]T are the drafts for FPWSO and the shuttle

tanker, respectively.

Table 5.3: Mapping between supervisor and controller set

Multi-estimator Sea state Draft
p = q ranges s ranges k

1 1 1
2 2 1
3 3 1
4 4 1
5 1 2
6 2 2
7 3 2
8 4 2
9 1 3
10 2 3
11 3 3
12 4 3

The switching controller possesses a controller set based on the geometric control law and the

nonlinear observer. PD-like controller is also studied using the same observer. The switching

control model for the offloading operation is presented in the following sections. The multi-

estimator and the controller and observer sets that comprise the switching control are presented.

Finally, the peak-frequency tracker, draft survey calculation and supervisory tuning are all

discussed.



59

5.2 Nonlinear Observer Set and Multi-estimator

The observer set and multi-estimator for the hybrid control presented here are based on the

indices in Table 5.3.

5.2.1 Multi-estimator with Wave-Frequency Model

The nonlinear observer with wave-frequency motion model was proposed in Section 4.2.1. This

observer is applied to three of the four sea state ranges of the switching controller (s = 1, ..., 3).

So, nine estimators of the supervisory control are based on the nonlinear observer model (p =

{1, ..., 12} − {4, 8, 12}). Considering Section 4.2.1, an extended system model is written as

ξ̇ = Ωξ + Σw (5.1)

η̇ = J(ψ1,ψ2)ν (5.2)

ḃ = −T−1b+ Ψn (5.3)

Mkν̇ +Dkν = JT (ψ1,ψ2)b+ τ c (5.4)

ḣ = 02×1 (5.5)

ω̇p = 0 (5.6)

y =
[

(η + Γξ)T hT ωp
]T

(5.7)

where Mk and Dk denote the matrices calculated in draft range k. This model is similar to

the system model presented by Dong (2005) except for the inclusion of (5.5). Dong (2005) took

the peak-frequency to be slow-varying, i.e., ω̇p = 0. Here, the drafts are also assumed to be

slow-varying, i.e., ḣ = 0. Thus, the output vector is y ∈ R9 with the extended system model
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having draft vector h. A system can be expressed concisely using (5.1) to (5.7) as

ẋp = Apxp +Bqτ q +Epw (5.8)

y = Cpxp (5.9)

where the state vector is xp = [ ξT ηT bT νT hT ωp ]T ∈ R33 and the disturbance vector

is w = [ wT nT ]T ∈ R12. The control vector is τ q ∈ R6. The matrices Ap ∈ R33×33, Bq ∈

R33×6, Ep ∈ R33×12 and Cp ∈ R9×33 are written as

Ap =

[
Ω 012×21

021×12 ALF

]
(5.10)

Bq =

[
012×6

BLF

]
(5.11)

Ep =

[
Σ12×6 012×6

021×6 ELF

]
(5.12)

Cp =

 Γ I6×6 06×6 06×6 06×2 06×1

02×6 02×6 02×6 02×6 I2×2 02×1

01×6 01×6 01×6 01×6 01×2 1

 (5.13)

The matrices ALF ∈ R21×21, BLF ∈ R21×6
qi , ELF ∈ R21×6

q are written as

ALF =


06×6 06×6 J(ψ1, ψ2) 06×2 06×1

06×6 −T−1 06×6 06×2 06×1

06×6 06×6 −M−1
k Dk 06×2 06×1

02×6 02×6 02×6 I2×2 02×1

01×6 01×6 01×6 01×2 1

 (5.14)

BLF =


06×6

06×6

M−1
k

02×6

01×6

 (5.15)

ELF =


06×6

Ψ
06×6

02×6

01×6

 (5.16)
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This system model is used as the estimator model for the wave-frequency motion of the switching

control. So, the estimator is constructed similarly to the state observer as presented in Section

4.2.1. Considering (5.1) to (5.6), the state observer vector x̂p can be written as

˙̂xp = Apx̂p +Bqτ q +Kps(y− yp) (5.17)

yp = Cpx̂p (5.18)

where the state observer vector is x̂p =

[
ξ̂
T

η̂T b̂
T

ν̂T ĥ
T

ω̂p

]T
∈ R33. The vector

yp ∈ R9 is the output of the state observer of the process p (see Figure 5.1). The frequency

ω̂p is the peak-frequency spectrum obtained from the spectra analysis (see Section 5.4) and the

estimated draft vector ĥ is obtained from the draft survey calculation (see Section 5.5). Matrix

Kps ∈ R33×9 is written as

Kps =

[
K1s 012×2 012×1

KLFs 021×2 021×1

]
(5.19)

where K1s ∈ R12×6 and KLFs ∈ R21×6. Matrix KLFs ∈ R21×6 is written as

KLFs =


K2s

K3s

K4s

02×6

01×6

 (5.20)

with the matrices K2s , K3s and K4s ∈ R6×6 being presented in Section 4.2 and calculated as

presented by Fossen and Strand (1999). Each matrix with index s is calculated for sea state

range s.

5.2.2 Multi-estimator for Extreme Seas

The nonlinear observer for extreme seas was presented in Section 4.2.2. This model is applied to

one of the four sea state ranges of the switching control when s = 4. So, three estimators of the

supervisory control use this nonlinear observer model (p = {4, 8, 12}). Consider the following
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system model for extreme seas

η̇T = J(ψ1, ψ2)ν̂T (5.21)

ḃT = −T−1bT + Ψn (5.22)

Mkν̇T +DkνT = JT (ψ1,ψ2)bT + τ c (5.23)

ḣ = 02×1 (5.24)

ω̇p = 0 (5.25)

The output vector y ∈ R9 is written as

y =
[
ηTT hT ωp

]T
(5.26)

Similarly to the previous section, the model is concisely written as

ẋp = Apxp +Bqτ q +Epw (5.27)

where the vector xp = [ ηTT bTT νTT hT ωp ]T ∈ R21, Ap = ALF ∈ R21×21, Bp = BLF ∈

R21×21 in (5.15) and Ep = ELF ∈ R21×21. The disturbance vector is w = n ∈ R6. The system

model presented is the switching control estimator model for extreme seas. The switching control

estimator is constructed similarly to the state observer as presented in Section 4.2.2. Based on

(5.21) to (5.25), the state observer vector x̂p can be written as

˙̂xp = Apx̂p +Bqτ q +Kps(y− yp) (5.28)

yp = Cpx̂p (5.29)

where x̂p =

[
η̂TT b̂

T
T ν̂TT ĥ

T
ω̂p

]T
∈ R21. The matrix Cp ∈ R9×21 is written as

Cp =

 I6×6 06×6 06×6 06×2 06×1

02×6 02×6 02×6 I2×2 02×1

01×6 01×6 01×6 01×2 1

 (5.30)
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The matrices K2T s, K3T s and K4T s ∈ R6×6 that compose Kps are similar to the estimator

model for wave-frequency motion.

5.3 Controller Set

The geometric control law is used into the supervisory switching controller set. For the sake of

comparison, the PD-like control law is also studied. Both geometric and PD-like controllers are

determined for the vessels’ dynamic positioning systems in offloading operations, as presented

in Sections 4.4.2 and 4.4.4, respectively.

The current section describes both control laws employed when selecting the switching controller.

The control laws take into account the estimated values of positions and headings, and velocities

and external forces. For each controller, two state observers are considered, i.e., with and without

wave-frequency vessel motions.

5.3.1 Geometric Controller Set

In order to present the geometric control law for the nonlinear observer with the wave-frequency

model, the control law is indexed from (4.96) and yields

uGp = −b̂+ (Dη̂ − JMkJJ̇J
T ) ˙̂η −M η̂W

−1(Ẇ ˙̂η + Ẇ rẋr +W rẍr + vp) (5.31)

where uGp ∈ R6 is the control vector for p = {1, ..., 12} − {4, 8, 12}.

τ qi = J(y)TuGi = −J(y)T b̂+ (Dk −MkJ(y)J̇(y))ν̂−

−MkJ(y)−1W−1(ẆJ(y)ν + Ẇ rẋr +W rẍr + vi)

(5.32)

vi = Kpk .C (η̂,xr) +Kdk .Ċ (η̂,xr) (5.33)

The matrices Dη̂ and M η̂ are defined in Section 4.3.2. The matrices W , Ẇ , W r and Ẇ r

are defined in Section 4.3.2. The new control vector is vi ∈ R6. The positioning constraint is

C (η̂,xr) and is presented in (4.80).
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The gain matrices Kp ∈ and Kd ∈ R6×6 are defined as

Kpk = diag{ ω2
n1

... ω2
n6
} (5.34)

Kdk = 2.diag{ ςcn1
ωn1 ... ςcn6

ωn6 } (5.35)

where ςcni
and ωni are control parameters. For control laws with p = {4, 8, 12}, the geometric

law is presented as follows

τ qi = −J(y)T b̂T + (Dk −MkJ(y)J̇(y))ν̂T−

−MkJ(y)−1W−1(ẆJ(y)νT + Ẇ rẋr +W rẍr + vT i)

(5.36)

vT i = Kpk .C (η̂T ,xr) +Kdk .Ċ (η̂T ,xr) (5.37)

where the gain matrices Kp and Kd are the same as in (5.34) and (5.35), respectively. Other

matrices and the constraint in (5.36) and (5.37) are calculated for xpi for i = {4, 8, 12}.

5.3.2 The Proportional and Derivative Controller Set

The proportional and derivative controller with p = {1, ..., 12}−{4, 8, 12} is presented as follows

uPDi = Kpk ê+Kdk
˙̂e− b̂ (5.38)

τ qi = J(y)TuPDi (5.39)

where uPDi ∈ R6 is the control vector. The matrix Kpk ∈ R6×6 is the proportional control gain

matrix and Kdk ∈ R6×6 is the derivative control gain matrix defined as

Kpk = Mk.diag{ ω2
n1

... ω2
n6
} (5.40)

Kdk = 2.Mk.diag{ ςcn1
ωn1 ... ςcn6

ωn6 } −Dk (5.41)

where ςcni
and ωni are control parameters. The error vector and its time-derivative are written
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as

ê = [η̂ − ηr] (5.42)

˙̂e = [J(y)ν̂ − η̇r] (5.43)

where ê and ˙̂e ∈ R6. For the control laws for i = {4, 8, 12}, the PD-like control law is presented

as follows

uPDi = Kpk êT +Kdk
˙̂eT − b̂T (5.44)

where the gain matrices Kp and Kd are the same as in (5.40) and (5.41), respectively. The

error vector and its time-derivative are written using the estimates from the nonlinear observer

for extreme seas as follows

ê = [η̂T − ηr] (5.45)

˙̂e = [J(y)ν̂T − η̇r] (5.46)

5.4 Peak-Frequency Tracker

Vessel motion peak-frequency of the vessel motions is used to estimate the wave-frequency motion

in the measurement signal. This peak-frequency motion does not necessarily correspond to sea

spectrum peaks. However, the differences in values are negligible and can be ignored. This is

evaluated in Appendix C.

In order to estimate motion peak-frequency ωp, a spectrum estimate of the vessel motion is made

during the simulations. A fixed data (window of the motion is recorded and the motion spectra

of surge, sway and yaw of the vessels is evaluated. To improve spectrum analysis, a cascaded

high-pass frequency filter is applied to the motion measurement. This filter is given by

ψhf (s) =

nf∏ Tf .s

1 + Tf .s
(5.47)
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where ψhf (s) is the transfer function of the high-pass frequency filter, Tf is the cut-off high-

frequency and nf is the number of the filters in cascade. A more detailed analysis can be found

in Fossen (1994). Figure 5.47 presents the spectra of ST surge motion comparing cascaded

high-pass frequency filters with different orders.

Figure 5.2: Spectrum analysis of the Cascaded High-Pass Frequency Filter

Figure 5.47 shows that the higher the filter order, the lower the low-frequency peak which greatly

facilitates high frequency peak detection. During simulations, filter order is n = 10. The peak-

frequency is obtained from the average surge and sway peaks of both vessels. Yaw motion is

not included because, even applying the cascaded filter, the estimate of the frequency ωp is not

accurate enough.

5.5 Draft Survey Monitoring

Draft variation during offloading is taken into account by the supervisory control. The multi-

estimator uses vessel drafts to estimate the error vector epi of the process i. Vessel draft can be

calculated by a draft survey calculation since oil transfer flow between vessels is known. Hence,

if the draft is known during the offloading operation, the inertia properties can be estimated.

Here, the trim and heel are assumed to be null. See Appendix A for more details about inertia
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properties.

5.6 Supervisory Control Tuning

The chattering that can occur during the change of control law and state observer is avoided by

means of the switching logic hysteresis. The hysteresis parameter h needs to be chosen correctly

in order to neither freeze switching if the value h is too high, nor cause chattering if the value

h is too low. Böling, Seborg and Hespanha (2005) appropriately choose the forgetting factor λ

so as to avoid impulsive or slow behavior of µp. Previous simulations evinced positive results

for the scale-independent hysteresis switching logic µp = 1/10, hysteresis h = 20% and a data

window of 500s interval to generate motion spectra.
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Chapter 6

Simulation Results

6.1 General

Hybrid concept performance as applied to an offloading operation is evaluated through simulation

of some scenarios from Brazilian waters. A typical environmental scenario is presented in Figure

6.1. The current flows south (S) and its velocity range is 0.1-0.7m/s. This velocity range and

incidence angle represent 99% and 33% of the occurrence, respectively. The wind and waves

(local sea) come from the northeast direction (NE). This direction represents a little more than

30% of the direction occurrence.
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Figure 6.1: Typical environmental conditions for Brazilian basin
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Figure 6.1 also presents the significant wave height, wave-frequency peak and wind velocity

ranges. Due to the difference between the incidence angles of the wind/wave and current, a

convenient reference for the heading of the vessels is between 0◦ and 45◦. To analyze controller

performance under different environmental scenarios and references, five simulation cases are

considered as follows:

• Case 1: Analyze controller performance due to a change in the position reference;

• Case 2: Evaluate the positioning of the vessels due to the changes in their relative distance;

• Case 3: Evaluate the consequence, in terms of relative positioning, when an extra force

acts on the FPWSO only;

• Case 4: Test switching control in transitions from calm environmental scenarios to grad-

ually harshening;

• Case 5: Test switching control in transitions from harsh environmental scenarios to grad-

ually becoming calm;

• Case 6: Assess controller performance during a day-long operation when the environmental

scenario is harshening.

Both geometric controller and PD-like controller are considered. For the cases 1 to 5, the

controllers’ parameters are tuned to three different drafts (reference drafts from perturbation

model - see Figure 6.2). To evaluate the performance of these controllers, simulations are carried

out using constant drafts set for these reference drafts. The observers’ parameters are selected

by the supervisory control. The case 6 is a realistic scenario where the drafts vary and the

observer/controller parameters are automatically selected by the supervisory control.

Figure 6.2: Reference Draft for the vessels
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Table 6.1 and Table 6.2 present the references for the vessels and the parameters of the environ-

mental scenarios, respectively.

Table 6.1: Reference for simulations

Table 6.2: Scenarios for simulations

6.2 Case 1: Reference Change

This section presents simulation results that tests controller performance when the reference is

changed. The environmental scenario for these simulations is presented in Figure 6.3. The sea

state condition is kept constant and the observer parameters are selected by the supervisory

control and they are equal to the first range of the peak frequency motion (calm sea). The

heading references for FPWSO and the shuttle tanker are modified from 10◦ to 0◦. To maintain

the alignment with the FPWSO, the shuttle tanker has its reference changed.
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Figure 6.3: Environmental conditions and first maneuver

Geometric controller achieves the reference and maintains the vessels in their correct positions

and headings as presented in Figures 6.4. The relative distance is also maintained by the

controllers for each draft as seen in Figure 6.6. PD-like controller also achieves the reference and

maintains the vessels’ positioning and relative distance as presented in Figure 6.5.
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Figure 6.4: Positioning using Geometric Controller
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Figure 6.5: Positioning using PD-like Controller
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Figure 6.6: Distance between vessels

Estimates velocities are well-estimated by the nonlinear observer with wave-frequency model

because they converge to real values, with the exception of the estimated surge velocity of the

shuttle tanker as presented in Figures 6.7 and 6.8. As discussed in Appendix C, the surge

motion of the shuttle tanker can exhibit a bimodal spectrum response. The cut-off frequency of

the nonlinear observer is always tuned for the highest peak-frequency of the spectrum. So, the

second peak with the lowest energy amplitude could not be filtered properly. Consequently, some

wave-frequency motion appears in the surge control force of the shuttle tanker. The observer

filters the wave-frequency motion when final draft is set better than other drafts. Despite the

fact that the surge motion presents some wave-frequency influence, overall positioning is carried

out correctly.
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Figure 6.7: Vessel velocities using Geometric Controller
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Figure 6.8: Vessel velocities using PD-like Controller
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Figure 6.9: External forces using Geometric Controller

External forces estimates from Markov process converge to values approximating to the real

external forces in terms of magnitude and frequency as shown in Figures 6.9 and 6.10.
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Figure 6.10: External forces using PD-like Controller

The geometric control law is presented in Figure 6.11. PD-like control law (Figure 6.12) is

similar to this control law. Wave-frequency motion appears on surge control law of the shuttle

tanker as position estimate was not filtered properly. The performance of the controllers is good

because the matrices M and D are set for the draft simulated. When offloading is taking place,

the performance tends to deteriorate until the hybrid control switches the controller parameters.
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Figure 6.11: Control forces using Geometric Controller
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Figure 6.12: Control forces using PD-like Controller
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6.3 Case 2: Distance Change

The simulation results that tests controller performance when the distance between vessels is

changed are presented. The environmental scenario for these simulations is presented in Figure

6.13. Sea state condition is constant and the observer parameters are selected by the supervisory

control and they are equal to the fourth range of the peak frequency motion (extreme sea).

Distance between the vessels is altered from 150.0m to 200.0m.
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Figure 6.13: Environmental conditions and second maneuver

The geometric control law is presented in Figure 6.14. PD-like control law is similar to this

control law and it is presented in Figure 6.15. The relative distance is also maintained by the

controllers for each draft as seen in Figure 6.16. The shuttle tanker heading presents with a

different value from the heading set-point. This error occurs because the external forces and

moment on the vessel are close to maximum thruster capability.
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Figure 6.14: Positioning using Geometric Controller
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Figure 6.15: Positioning using PD-like Controller
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Figure 6.16: Distance between vessels

Vessel motions present the wave-frequency motion influence (Figures 6.14 and 6.15) as well as

the velocity estimates do it (Figures 6.17 and 6.18). However, the yaw velocities and headings

for both vessels do not to evince this frequency influence on yaw motion due to their high yaw

inertia mainly in the final draft case.
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Figure 6.17: Vessel velocities using Geometric Controller
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Figure 6.18: Vessel velocities using PD-like Controller

Both estimated external forces and moments (see Figures 6.19 and 6.20) and control laws (see

Figures 6.21 and 6.22) undergo wave-frequency influence. In spite of this wave-frequency mo-

tion influence and some control saturation, both geometric and PD-like controllers are able to

maintain positioning and the relative distance for each draft simulated.
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Figure 6.19: External forces using Geometric Controller
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Figure 6.20: External forces using PD-like Controller
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Figure 6.21: Control forces using Geometric Controller
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Figure 6.22: Control forces using PD-like Controller
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6.4 Case 3: Occurrence of an Extra Force

Although controllers’ performance has been very similar so far, when some event happens to

the FPWSO and does not occur with the shuttle tanker, a small difference can be found. For

instance, if a strong wind blast reaches the FPWSO and does not affect the shuttle tanker, some

movement of the FPWSO is to be expected. This can happen because the height of the FPWSO

and its exposed area to wind, with respect to water level, are both greater than those of shuttle

tanker. As discussed in Chapter 4, if the PD-like controller is applied with the error e, the

set-point of the shuttle tanker is not altered even if the FPWSO moves from its set-point. The

geometric controller is applied using the constraint as output and if the FPWSO moves from

her set-point, the ST also moves.

To evaluate this behavior, simulations with an additional force to the FPWSO are performed.

The environmental scenario for this simulation is presented in Figure 6.23. The sea state con-

dition is kept constant and the observer parameters are selected by the supervisory control and

they are equal to the first range of the peak frequency motion (calm sea). The extra force is

inserted in the interval of 1.500s to 2.500s.
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Figure 6.23: Environmental conditions and third maneuver

Vessels’ positioning are maintained for both controllers even after the extra force occurrence

appears or ceases as presented in Figures 6.24 and 6.25. The difference between the controllers
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Figure 6.24: Positioning using Geometric Controller

is the shuttle tanker positioning. As discussed, the geometric controllers acts upon the shuttle

tanker to maintain the relative distance and the PD-like controller does not act upon it.
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Figure 6.25: Positioning using PD-like Controller
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Figure 6.26: Distance between vessels

The simulations show that the distance error is small between both controllers’ results when the

extra force is inserted into it (peak after 1.500s) and the force ceases (peak around 2.500s). In

spite of this small error difference, the error amplitude is negligible and the controllers can be

consider similar.

Velocities are well-estimated by the nonlinear observer with wave-frequency model, with the

exception of the estimated surge velocity of the shuttle tanker as presented in Figures 6.27 and

6.28. This behavior is the same one discussed in Section 6.2. The nonlinear observers estimates

using the geometric controller present some estimated velocity peaks due to change in shuttle

tanker reference.
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Figure 6.27: Vessel velocities using Geometric Controller
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Figure 6.28: Vessel velocities using PD-like Controller
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Figure 6.29: External forces using Geometric Controller

Estimation of the external forces and moment depend on the control law considered. This

dependence is due to the shuttle tanker reference that is changed only in the case of PD-like

controller. So, an external force and moment difference can be found between the controllers as

presented in Figures 6.29 and 6.30.

Obviously, both controller have different actions that make the shuttle tanker moves in the case
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Figure 6.30: External forces using PD-like Controller

of geometric controller and do not move it in the case of the PD-like controller. Control forces

peaks appear in the ST geometric control forces as in Figure 6.31 that does not appear in the

ST PD-like control forces as presented in Figure 6.32. This occurs due to difference between the

geometric controller constraint and PD-like error.
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Figure 6.31: Control forces using Geometric Controller
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Figure 6.32: Control forces using PD-like Controller
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6.5 Case 4: Harshening Sea State

Simulations are carried out to evaluate the switching control when the sea state is harshening.

The environmental scenario for these simulations is presented in Figure 6.33. The direction of

the current and wind are kept constant. The direction of the waves and the significant wave

height Hs are also kept constant excepting the value of the peak period Tp. The peak period of

the waves varies from 4.5s to 15.0s. The switching signal σ and the estimated peak frequency

ω̂p are now calculated.
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Figure 6.33: Environmental conditions and forth maneuver

Vessels’ positioning and the relative distance are maintained for both controllers during the

simulation with the sea condition variation as presented in Figures 6.34, 6.35 and 6.36. Wave-

frequency motion influence on the position and heading estimates was expected due to the

nonlinear observer parameter changes.
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Figure 6.34: Positioning using Geometric Controller
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Figure 6.35: Positioning using PD-like Controller
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Figure 6.36: Distance between vessels

The velocity estimates made by the nonlinear observers are good because they converge to

real values as presented in Figures 6.37 and 6.38, even if its parameters are changed by the

switching controller. The wave-influence motion influence is filtered from the estimated velocities

as presented in those figures excepting for t > 3.500s.
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Figure 6.37: Vessel velocities using Geometric Controller
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Figure 6.38: Vessel velocities using PD-like Controller
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Figure 6.39: External forces using Geometric Controller

The external force estimates made by the nonlinear observer are also good as presented in Figures

6.39 and 6.40 in spite of some magnitude errors. The effect of the nonlinear observer for extreme

seas on the external force estimates can be seen in those figures for t > 3.500s.
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Figure 6.40: External forces using PD-like Controller
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Figure 6.41: Control forces using Geometric Controller

Geometric control law is very similar to PD-like control forces as presented in Figures 6.41 and

6.42.
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Figure 6.42: Control forces using PD-like Controller
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During these simulations, the estimated peak frequency of the motion spectrum is lose to real

values as presented in Figure 6.43. Hence, the switching control generates the switching signal σ,

correctly selecting the nonlinear observer associated with estimated peak frequency as presented

in Figure 6.43. Therefore, the estimates of the positions and headings for both vessels has filtered

the wave-frequency motion influence. Obviously, this filtering process does not happen when

the the nonlinear observer for extreme seas is selected (t > 3.500s).

The switching control takes 500s to change the nonlinear observer. This interval is the time

difference between the change of the peak period Tp and the change in the switching signal σ.

It is the maximum time in which the signal σ is updated because it is the length of the data

window for generating the motion spectrum of the vessels. Despite the delay in switching the

observer, the switching control changes the observer parameters correctly. Vessels’ positioning

are maintained in their set-points for both geometric and PD-like controllers, and for each draft

simulated.
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Figure 6.43: Peak Estimation and σ
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6.6 Case 5: Sea State Becoming Calm

The simulations are carried out to evaluate the switching control when the sea state is getting

calm are presented. The environmental scenario for these simulations is presented in Figure

6.44. The direction of the current and wind are kept constant. The direction of the waves and

the significant wave height Hs are also kept constant excepting the value of the peak period Tp.

The peak period of the waves varies from 15s to 4.5s. The switching signal σ and the estimated

peak frequency ω̂p are now calculated.
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Figure 6.44: Environmental condition and fifth maneuver

Vessels’ positioning and the relative distance are maintained for both controllers during the

simulation with the sea condition variation as presented in Figures 6.45, 6.46 and 6.47. As

the previous section, some wave-frequency motion influence was expected on the position and

heading estimates.
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Figure 6.45: Positioning using Geometric Controller
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Figure 6.46: Positioning using PD-like Controller
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Figure 6.47: Distance between vessels

The estimates made by the nonlinear observer are good as presented in Figures 6.48 and 6.49,

even if its parameters are changed by the switching controller. The wave-influence motion

filtering on the can be seen in those figures excepting for t < 500s.
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Figure 6.48: Vessel velocities using Geometric Controller
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Figure 6.49: Vessel velocities using PD-like Controller



119

Figure 6.50: External forces using Geometric Controller

The external force estimates made by the nonlinear observer are also good as presented in

Figures 6.50 and 6.51. The effect of the nonlinear observer for extreme seas on the external

force estimates can be seen in those figures for t < 500s.
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Figure 6.51: External forces using PD-like Controller
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Figure 6.52: Control forces using Geometric Controller

Geometric control law is very similar to PD-like control law as presented in Figures 6.41 and

6.42.
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Figure 6.53: Control forces using PD-like Controller
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During these simulations, the peak frequency of the motion spectrum is close to real values

as presented in Figure 6.54. Hence, the switching control generates the switching signal σ,

correctly selecting the nonlinear observer associated with estimated peak frequency as presented

in Figure 6.54. Therefore, the estimates of the positions and headings for both vessels has filtered

the wave-frequency influence. Obviously, this filtering process does not happen when the the

nonlinear observer for extreme seas is selected (t > 3.500s).

As discussed in the previous section, the switching control takes 500s to change the nonlinear

observer. The switching control changes the observer parameters correctly. Vessels’ positioning

are maintained in their set-points for both geometric and PD-like controllers, and for each draft

simulated.
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Figure 6.54: Peak Estimation and σ
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6.7 Case 6: Day-long Operation Simulation

A day-long simulation is carried out to evaluate the switching control for a complete offloading

operation. At simulation outset, the FPWSO has full draft and the shuttle tanker has ballast

draft. The environmental scenario is presented in Figure 6.55. Sea state is associated with the

wind similar to that to be found in Brazilian waters. In this simulation, sea state is harshening as

such waves and wind parameters are changing. Current velocity and direction are kept constant.
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Figure 6.55: Environmental conditions and sixth maneuver

The positioning of the vessels are maintained as desired by both controllers as presented in

Figures 6.56 and 6.57 (geometric controller) and Figures 6.58 and 6.59 (PD-like controller). The

relative distance between vessels is also maintained around 150m as presented in Figure 6.60.
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Figure 6.56: FPWSO positioning: geometric controller
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Figure 6.57: Shuttle tanker positioning: geometric controller
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Figure 6.58: FPWSO positioning: PD-like controller
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Figure 6.59: Shuttle tanker positioning: PD-like controller
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Figure 6.60: Distance between vessels
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The nonlinear observer filters the wave-frequency motion from the positions and heading for

both vessels (see Figure 6.57 to 6.60). The nonlinear observers for the wave-frequency model

are selected from t = 0h to t = 16h. The nonlinear observer for extreme seas is selected by the

supervisory controller when t > 16h. The velocities estimates are close to the real velocities as

presented in Figures 6.61 and fig:6.62 (geometric controller) and Figures 6.63 and 6.64 (PD-like

controller).
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Figure 6.61: FPWSO velocities: geometric controller
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Figure 6.62: Shuttle tanker velocities: geometric controller
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Figure 6.63: FPWSO velocities: PD-like controller
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Figure 6.64: Shuttle tanker velocities: PD-like controller
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Figure 6.65: FPWSO external forces: geometric controller

External force estimates converge to the real values as presented in Figures 6.65 and fig:6.66

(geometric controller) and Figures 6.67 and 6.68 (PD-like controller).
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Figure 6.66: Shuttle tanker external forces: geometric controller
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Figure 6.67: FPWSO external forces: PD-like controller
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Figure 6.68: Shuttle tanker external forces: PD-like controller
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Figure 6.69: FPWSO control forces: geometric controller

Control laws calculated by both controllers are very similar to each other as presented in Figures

6.69 and fig:6.70 (geometric controller) and Figures 6.71 and 6.72 (PD-like controller).
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Figure 6.70: Shuttle tanker control forces: geometric controller

As discussed in Chapter 4, the controllers can be considered similar and as well as the switching

controller.
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Figure 6.71: FPWSO control forces: PD-like controller



143

Figure 6.72: Shuttle tanker control forces: PD-like controller



144

The evolution of the sea state and the wind are presented in Figure 6.73. During the offloading

operation, the switching controller is monitoring the peak frequency of the motion spectrum.

The estimated peak frequency is close to the real peak frequency as presented in Figure 6.73.

Drafts vary during the simulation and are assumed to be known (see Figure 6.73). So, the

switching signal is switched to select the best observer/controller for the draft vector h and

peak frequency ωp pairing. The switching signal σ in Figure 6.73 is presented together with the

arrows that indicate the intervals where the three reference drafts and the four sea state ranges

can be found. Switching signal change is correct in accordance with Table 5.3. This means that

the best observer/controller is selected for the draft vector and peak frequency pairing. So, the

switching controller works as designed.
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6.8 Discussion and Conclusions

In the case of reference and the distance simulations, the geometric controller is able to maintain

vessel positions and headings with a similar degree of accuracy to that of the PD-like controller.

As discussed in Section 4.4.4, geometric control and PD-like controller performance are very

similar when the vessels move slowly and the reference is constant.

The main difference between the controllers is the inclusion of reference in the geometric control

law. However, the control laws is very similar because of slow vessel velocities and constant

reference.

A small difference in the performance of the controllers appears when some unexpected event

occurs for the FPWSO. In this case, the geometric controller moves the shuttle tanker and the

PD-like controller does not. This is so because the geometric control, with the linearized output

equal to the constraint, alters shuttle tanker set-point when the FPWSO leaves its set-point. The

PD-like controller has constant vessel set-point of the vessels constant and so does not control

the relative distance between the vessels as the geometric control does. Despite this difference,

the amplitude of that distance error is small and the controllers can be considered similar.

During simulations where sea conditions change constantly, the switching control chooses the

correct nonlinear observer. Hence, the switching control operates correctly. The simulations

present a maximum hanging lag of 500s. This delay is the data window formation spectrum

generating and, as such, the maximum time for updating the parameters of the nonlinear ob-

server. Data windows shorter than 500s are not enough to extract precise frequency motion

estimate from the motion spectrum. This is the case because the vessels have a high inertia and

their dynamics filter the wave-frequency motion to some extent.

Where the one day simulation is concerned, the switching control makes the correct nonlinear

observer and controller choices based on estimated peak frequency motion and the vessel drafts.

This switching meets maximum error criterion imposed by the perturbation model.

Nonlinear observer parameters are set for the highest peak frequency of the motion spectrum.

Some response spectra analyzed in Appendix C present with a bimodal response. Consequently,

for those periods of a day-long simulation when the bimodal response is present, the nonlinear
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observer is not able to filter both peak frequencies. This occurs because the bandwidth of

the filter does not include the second peak frequency and the observer does not suppress this

frequency appropriately. This problem could be resolved by means of a fourth-order wave-

frequency model whose bimodal response approximates the sea spectrum.
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Chapter 7

Final Conclusions and Further

Research

7.1 Final Conclusions

The main purpose of this work was to design a new integrated control strategy for the hybrid

system to act upon a multibody system consisting of two dynamically positioned vessels. The

vessels are the FPWSO and the shuttle tanker that carry out an offloading operation in tandem

configuration. This control strategy ensures vessels remain within a relative distance of each

other to avoid collision or excessive hawser tension. The hybrid controller takes into account

variations in vessel draft and vessel motion peak-frequency as they may influence controller

performance.

Integrated control making use of geometric theory for dynamically positioned vessels is feasible.

Establishing relative positioning is an intuitive way to generate a output system for the control

strategy. The geometric controller can be implemented by means of an output linearization

procedure. The idea is simple in spite of the sophisticated mathematics involved in the differ-

ential geometry. The switching control structure takes into account variations in some system

parameters. There is some difficulty to allow for in tuning switching logic parameters in order to

guarantee correct switching as there is no procedure to tune them, and they have been derived
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from previous numerical simulations.

When some major event, such as wind blast, impacts upon the FPWSO, it can lose its positioning

and the shuttle tanker will follow the FPWSO because of their integrated control law. However,

the same hybrid structure can take into account controllers with no integrated output which

would be selected in the case of a major event. Another important factor to be considered is

the availability of heading and position information. The integrated controller needs to have

the vessels’ position measurement and to send the command to the thrusters of both vessels in

real-time which, in practical terms, is a technical limitation.

7.2 Further Research

Suggestions for further research would include:

• The hybrid control presented assumes an initial FPWSO draft as this vessel can begin her

operation in different drafts. The hybrid control would be able to set a variety of initial

FPWSO drafts. This would result in an increased estimator number.

• Thruster saturation can be interpreted as a hybrid dynamical system with three different

dynamics: vessel dynamics in combination with thrust upper limit, intermediate (no sat-

uration) and thrust lower limit. The switching control could take into account these new

combined dynamics and, by means of the injected systems, system stability with thruster

saturation could be proved;

• The nonlinear observer model could be extended to consider a fourth-order wave-frequency

model in order to approximate a bimodal vessel motion spectrum;

• Side-by-side oil transfer could be controlled by hybrid and geometric means. Dynamics

can account for the low speed of both vessels and their relative distance is maintained by

the constraint geometric controller. Draft variation during oil transfer would be allowed

for the hybrid control approach;

• The hybrid controller could incorporate observer models that estimate both peak-wave-

frequency vessel motion and wave direction. Vessel set-point could be changed depending
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on wave direction;

• Should DPS damage, such as drive-off, drift-off or black-out occur, the hybrid control

would be able to take decoupled control laws into account;

• New constraints could be established to restrict maximum vessel deviation from set-point.

For instance, a maximum FPWSO radius could be assumed and a constraint could be

described by placing a logarithmic function into the geometric controller.
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Pura e Aplicada (IMPA), 2009.

LUH, J. Y. S.; ZHENG, Y. F. Constrained relations between two coordinated industrial robots

for motion control. International Journal of Robotics Research, v. 6, n. 3, p. 60–70, 1987.

MARSDEN, J. E. Lectures on Mechanics. Cambridge: Cambridge University, 2004. Draft

version.

MEIROVITCH, L. Methods of analytical dynamics. New York: Dover Publications, 1970.

MICHEL, A. N.; WANG, K. Qualitative theory of dynamical systems: The role of

stability preserving mappings. New York: Marcel Dekker Inc., 1995.



157

MONFORTE, J. C. Geometric, Control and Numerical Aspects of Nonholonomic Sys-

tems. Berlin: Springer, 2002. 235 p.

MORATELLI JR, . L. et al. Observer-lagrangian-based controller applied to two dynamically

controlled vessels. In: The 9th IFAC Conference on Control Applications in Marine

Systems (CAMS2013). Osaka: [s.n.], v. 9, n. 1, p. 274–279, September 2013.

NAKAMURA, M.; KAJIWARA, H. Control system design and model experiments on thruster

assisted mooring system. In: Proc. Seventh International Offshore and Polar Engineer-

ing Conference (ISOPE). p. 641–648, 1997.

NAYFEH, A. H. Introduction to Perturbation Techniques. Blacksburg: John Wiley and

Sons, 1981.

NAYLOR, T. Corporate strategy. Amsterdam: North-Holland, 1982.

NIJMEIJER, H.; ANGELEZ, A. R. Synchronization of Mechanical Systems (Nonlinear

Science). London: World Scientific Pub Co Inc, 2003.

OCIMF. Prediction of wind and current loads on vlccs. Oil Company International Marine

Forum, 1977.

OLIVA, W. M. Geometric Mechanics. New York: Springer, 2002. 272 p.

OR, Y.; AMES, A. D. Stability and completion of zeno equilibria in lagrangian hybrid systems.

IEEE Transactions on Automatic Control, v. 56, n. 6, p. 1322–1336, June 2001.

PACHTER, M. et al. Automatic formation flight control. Journal of Guidance, Control,

and Dynamics, v. 17, n. 6, p. 1380–1383, 1994.

PACHTER, M. et al. Tight formation control. Journal of Guidance, Control, and Dynam-

ics, v. 24, n. 2, p. 246–254, 2001.

PESCE, C. P. The application of lagrange equations to mechanical systems with mass explicity

dependent on position. Journal of Applied Mechanics, v. 70, p. 751–756, September 2013.

PESCE, C. P.; CASETTA, L. Variable mass systems dynamics in engineering mechanics educa-

tion. In: Proceedings of COBEM 2007 - 19th International Congress of Mechanical

Engineering. November 5-9 2007.



158

PESCE, C. P. et al. The lagrange equations for systems with mass varying explicity with posiiton:

Some applications to offshore engineering. Journal of the Brazilian Society of Mechanical

Sciences and Engineering, XXXVIII, n. 4, p. 496–504, October-December 2006.

REN, W.; BEARD, R. W. Formation feedback control for multiple spacecraft via virtual struc-

tures. In: IEEE Proceedings of Control Theory and Applications. v. 151, n. 3, p. 357–368,

2004.

RESPONDEK, W. Geometry of static and dynamic feedback. Trieste, Italy and and
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Glossary

Beam - Width of the hull.

Control model - Simplification with respect to the plant model in order to make easier the

control design.

Draft - Depth of the hull submerged.

Draft survey - Calculation of the weight of cargo loaded or unloaded to or from a ship from

measurements of changes in its displacement. The technique is based on Archimedes’

principle.

Dynamic positioning system - Control system applied to vessels in order to keep position

and heading under some reference by means of thruster and propellers exclusively.

FPWSO. - Floating, Production, Well intervation, Storage and Offloading unit is a vessel

used by the offshore oil and gas industry for the production, processing of

hydrocarbons and for storage of oil.

Geometric control - Control theory that applies differential geometry theory. Differential

geometry is a mathematical discipline that uses the techniques of differential calculus,

integral calculus, linear algebra and multilinear algebra to study problems in

geometry.

Heave - Vertical translation motion of the vessel.

Hybrid system - Dynamical system that has discrete and continuous variables interacting

between each other.

Lobe - Residue of the Fast Fourier Transform (FFT) that deteriorates the spectrum analysis.

Multibody system - System that consists of a collection of subsystems (bodies) connected

by some kind of joint.

Pitch - Angular motion around transversal vessel direction.
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Plant model - Dynamical model that tries to describe the system dynamics as close as

possible the real system mechanics.

RAO - Response Amplitude Operator (RAO) is a transfer function used to determine the

effect that a sea state will have upon the motion of a ship through the water.

Roll - Angular motion around longitudinal vessel direction.

Shuttle tanker - Vessel designed for oil transport from an offshore oil field as an alternative

to constructing oil pipelines.

Surge - Longitudinal translation motion of the vessel.

Sway - Transversal translation motion of the vessel.

Yaw - Angular motion around normal direction of the vessel′s XY plane.
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Appendix A

Ship Properties

This appendix presents the main dimensional properties of the vessels studied. These properties

are main dimensions, inertia, damping parameters, wet and wind areas and thruster configura-

tion.

A.1 Ship Dimensions and Thruster Propellers

The main dimensions of the vessels are presented in Table A.1.

Table A.1: Vessel Dimensions

Vessel LOA [m] LBP [m] B[m] D[m]
FPWSO 337,3 320,0 54,5 27,0
Shuttle tanker 269,0 258,0 46,0 24,4

The dimension LOA means the overall length of the vessel. The length between perpendiculars

is LBP . The beam is B. The variable D means the vessel depth. Both vessels have dynamic

positioning systems that are used to maintain their positions and headings by means of thrusters.

Their propulsive arrangements are presented in Figures A.1 and A.2 for the FPWSO and shuttle

tanker, respectively. Tables A.2 and A.3 present vessel propulsion and its characteristic.
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Figure A.1: FPWSO propulsive arrangement

Figure A.2: Shuttle tanker propulsive arrangement

Table A.2: FPWSO thruster characteristics

Thruster Power [kW] Tmin [kN] Tmax [kN] Px [m] Py [m]
Bow thruster 1030 -133 133 120 0
Bow thruster 1030 -133 133 110 0
Stern thruster 700 -89 89 100 0

Port bow azimuth 2420 0 400 90 15
Starboard bow azimuth 2420 0 400 90 -15

Port stern azimuth 3800 0 700 -90 15
Starboard stern azimuth 3800 0 700 -90 -15

Port twin propeller 6400 -730 1245 -166 0
Starboard twin propeller 6400 -730 1245 -166 0

The values Tmax, Tmin, Px and Py are the maximum and minimum thrust, the longitudinal

position of the thruster related to the midship and the transverse position of the thruster related

to the centerline, respectively.
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Table A.3: ST thruster characteristics

Thruster Power [kW] Tmin [kN] Tmax [kN] Px [m] Py [m]
Bow thruster 1910 -242 1910 120 0
Stern thruster 2380 -302 2380 -110 0

Bow azimuth thruster 2000 0 2000 110 0
Stern azimuth thruster 2000 0 2000 -85 0

Main propeller 18871 -832 188871 -120 0

A.2 Inertia and Damping Properties

The new strategy of control is proposed in order to study the offloading operation between the

FPWSO and the shuttle tanker. The proposal takes into account the draft variation during the

offloading. Hence, during the operation, the inertia properties vary and this variation needs to

be considered by the ship dynamics. The parameters that are modified are presented in the

following figures, except for the longitudinal center of gravity. This dimension does not change

significantly and the midship is assumed to be the position of the gravity center. Figures A.3 to

A.6 present some parameters used by ship dynamics model such as inertia of the rigid body and

the added inertia, wet area of the hull and projected area to the wind. The values presented in

these figures are approximations based on Sparano (2011) and the hull lines. It is assumed that

the ship has the trim and hell angles null during the offloading. This is possible since a load

plan be made for it.

The linear damping matrix Di is estimated by trials with scale models in basin tanks. That

matrix is found using

Di =

 Cd11 0 0
0 Cd22 Cd26

0 Cd62 Cd66

Awi (A.1)

where Awi is the hull wet area and the coefficients (for vessel i = 1,2 ) are known and equal to

Cd11 = 2.079, Cd22 = 114.384, Cd26 = Cd62 = 5.199 and Cd66 = 535.52.
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Figure A.3: Inertia of the rigid body of the vessels

Figure A.4: Added inertia of the vessels
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Appendix B

Perturbation Model for Vessels

The positioning performance of a DP vessel depends on the tuning of the control parameters.

The parameters of the controller are designed based on the inertia and damping properties of

the vessel. The performance of the controller is affected since these parameters have suffered a

high modification. The controller is well-known by its robustness and it is able to compensate

possible non-modeled effects or small variations of the parameters of the vessels used to deseign

the controller. However, when high variations of the design parameters occurs, the controller

can not compensate these variations and its performance is deteriorated. This damage can be

avoided if the parameter variation is known and the controller parameters could be changed

without causing instability.

The DP vessels (FPSWO and shuttle tanker) carrying out an offloading operation have their draft

modified due to the oil transfer. The controller is not able to compensate this variation in order

to maintain the performance of the positioning for all variation of the draft. So, the proposal is

to design a hybrid control that changes the parameters of the control when a significant change

of the vessel draft is identified.

To determine which draft variation affects the performance of the positioning, a perturbation

model for the closed-loop system (vessel and controller) is proposed. The idea is to evaluate the

response of a simplified model of the vessel dynamics due to the variation of a small variation.

This small variation ε is related is some extent with the variation of the draft. The modeling of
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the vessel properties related to the small variation ε is presented. In the following sections, the

perturbation method is presented and it is applied to the closed-loop system with the PD-like

controller.

B.1 Perturbation Method

The behavior of a dynamical system with a variable small parameter can be described as function

of that small parameter. In order to do analyze the influence of that parameter into the system

response, the Perturbation Method can be applied. This method approximates the system

response for a small perturbation ε with an error of the order O(ε). This theory is applied in

order to approximate the vessel dynamics response as function of the small parameter ε related

to the draft variation. This analysis will be helpful to evaluate the effect of the draft variation

into the dynamic positioning of the vessels in offloading operation. Hence, the main concepts

about Perturbation Method are presented.

Consider the system

ẋ = f(t, x, ε) (B.1)

where t ∈ R is the time on a interval [t0, t1], x D ∈ Rn is a state vector on a domain , ε ∈ R is a

small parameter in the interval [−ε0, ε0]. It is desired the solution of the (B.1) for the following

initial state

x(t0) = η(ε) (B.2)

where η is a function that depends on ε. The objective of the Perturbation Method is to evaluate

the ”smallness” of perturbation parameter ε and to construct valid approximate solutions for

sufficiently small ‖ε‖. The trivial solution of the (B.1) with initial condition (B.2) is given as

ẋ = f(t, x, 0), x(t0) = η0 (B.3)
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where η0 = η(0). It can be proved that (KHALIL, 2002)

‖x(t, ε)− x0(t)‖ ≤ k |ε| ,∀ |ε| < |ε1| , ∀t ∈ [t0, t1] (B.4)

The error is said to be of order O(ε) if (B.4) is satisfied. Let f and η be smooth functions with

continuous partial derivatives with respect to x and ε up to order N . A higher approximation

of x(t, ε) can be construct with a finite Taylor series as follows

x(t, ε) =

N−1∑
k=0

xk(t)ε
k + εNRx(t, ε) (B.5)

where Rx is a remainder term. Using the Taylor’s theorem, it can be proved the existence of a

finite Taylor series

η(ε) =
N−1∑
k=0

ηk(t)ε
k + εNRη(ε) (B.6)

Hence,

xk(t0) = ηk, k = 0, 1, 2, ..., N − 1 (B.7)

Including (B.5) into (B.1) yields

N−1∑
k=0

ẋk(t)ε
k + εN Ṙx(t, ε) = f(t, x(t, ε), ε) ≡ h(t, ε)

=

N−1∑
k=0

hk(t)ε
k + εNRh(t, ε)

(B.8)

where h(t, ε) are functions of Taylor series coefficients of x(t, ε). The coefficients of the Taylor

series x0, x1, ..., xN−1 are found from the expressions

ẋ0 = f(t, x0, 0), x0(t0) = η0 (B.9)

ẋk = A(t)xk + gk(t, x0(t), ..., xk−1(t)), xk(t0) = ηk (B.10)

where k = 1, ..., N − 1, A(t) is the Jacobian matrix of f and gk is a polynomial with time-
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dependent coefficients. Once found the terms x0, x1, ..., xN−1, the approximation error e can be

proved as follows (KHALIL, 2002)

e = x(t, ε)−
N−1∑
k=0

xk(t)ε
k = O(εN ) (B.11)

B.2 Applying Perturbation Model to Vessel Motion

The vessel properties such as inertia and damping are modified due to the draft variation. This

variation is presented in Appendix A. To evaluate how this variation affects vessel dynamics,

consider the vessel kinetics and simplified dynamics of one vessel as follows

η̇ = J(ψ)ν (B.12)

Mν̇ +Dν = J(ψ)T (b+ u) (B.13)

where M ∈ R3×3 is the inertia matrix and D ∈ R3×3 is the damping matrix. The J(ψ) ∈ R3×3

is the rotation matrix. The η ∈ R3 and the ν ∈ R3 are the vector of the position and velocity,

respectively. The ψ ∈ R is the heading of the vessel. The b ∈ R3 and u ∈ R3 are the vectors of

the external and the control forces and moment, respectively. Collecting ν̇ yields

ν̇ = −M−1Dν +M−1J(ψ)T (b+ u) (B.14)

The matrices M−1D and M−1 depend on the draft of the vessel. Hence, the elements of these

matrices can be written as a function of draft, i.e, M−1Dij(h) and M−1
ij (h), where the indexes

i = 1, ..., 3 and j = 1, ..., 3 ∈ N are the row and the column of the matrix and h ∈ R is the draft

of the vessel. These functions are not linear with respect to the draft h. However, they can be

linearized with respect to a small parameter defined as

ε = log10(
h

h0
) (B.15)

where ε ∈ R and the h0 ∈ R is the initial draft of the vessel when the offloading operation

starts. The function (B.15) is called a gauge function (NAYFEH, 1981). Now, the elements of
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the M−1Dij and M−1
ij can be written as

(M−1D)ij = (M−1
0 D0)ij + εk1ij (B.16)

M−1
ij = M−1

0ij
+ εk2ij (B.17)

where M−1
0ij

and (M−1
0 D0)ij are the values of these matrices for the initial draft and k1ij and

k2ij are constants for i = 1, ..., 3 and j = 1, ..., 3. So, the matrices M−1Dij and M−1
ij can be

written as follows

M−1D = M−1
0 D0 + ε.K1 (B.18)

M−1 = M−1
0 + ε.K2 (B.19)

where K1 and K2 ∈ R3×3 are matrices of constant elements. Substituting (B.18) and (B.19)

into (B.14) yields

ν̇ = (M−1
0 D0 + εK1)ν + (M−1

0 + εK2)J(ψ)T (b+ u) (B.20)

This perturbation model (B.20) is developed for one vessel, for instance, the FPWSO. The model

for the shuttle tanker is found from the same procedure as presented above. However, the rate

variation of the draft is different between the vessel, i.e., ε1 6= ε2, where ε1 and ε2 ∈ R are the

small parameter for the FPWSO and the shuttle tanker, respectively. However, it is possible to

write ε2 = c.ε1, where c is a constant, and the perturbation model for two vessels yields

ν̇ = (M−1
0 D0 + εK1)ν + (M−1

0 + εK2)J(ψ1, ψ2)T (b+ u) (B.21)

where M0 ∈ R6×6 is the inertia matrix and D0 ∈ R6×6 is the damping matrix in the initial

draft. The small parameter is ε = ε1. The J(ψ1, ψ2) ∈ R6×6 is the rotation matrix. The η ∈ R6

and the ν ∈ R6 are the vector of the positions and velocities, respectively. The ψ1 and ψ2 ∈ R

are the headings of the FPWSO and the shuttle tanker, respectively. The b ∈ R6 and u ∈ R6

are the vectors of the external and the control forces and moment, respectively.

To simplify the perturbation model, the vessel kinematics and dynamics are linearized around
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the point η0 = 06×1. So, the complete model yields

η̇ = ν (B.22)

ν̇ = (M−1
0 D0 + εK1)ν + (M−1

0 + εK2)(b+ u) (B.23)

Once known the vectors b and u, the perturbation model (B.23) presents the form ẋ = f(t,x, ε)

(B.1). So, it is possible to find an approximation of order N of x(t, ε) using (B.5) with an error

of the order O(εN ).

Now, the idea is to compare the response of the approximation of the x(t, ε) to the response of

the x(t, 0) for a input as a step . An error E of comparison is defined as

E = max‖(
N−1∑
k=0

xk(t)ε
k + εNRx(t, ε))− x(t, 0)‖ (B.24)

where x(t, ε) =
∑N−1

k=0 xk(t)ε
k + εNRx(t, ε) is the approximation (B.5). Once defined the maxi-

mum error Emax ∈ R, the small variation ε is found and so the draft variation.

B.3 Perturbation Model with the Control Law

Consider the PD-like control law written as

uPD = Kp(ηr − η)−Kdη̇ − b (B.25)

where uPD ∈ R6 is the control vector, ηr ∈ R6 is a constant input vector and the Kp ∈ R6×6

and Kd ∈ R6×6 are the matrix gain. The vector b is assumed to be known.

Substituting (B.25) into (B.23) yields

ν̇ = (M−1
0 D0 + εK1)ν + (M−1

0 + ε1K2)(Kp(ηr − η)−Kdη̇) (B.26)

The state vector is defined x = [ ηT νT ]T . As presented in previous section, the coefficients

of the Taylor series are found from substituting the approximation x(t, ε) into (B.22) and (B.25).
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Calcualting it with N = 3, the systems ẋk with k = 0, ..., N − 1 yield

K = 0

η̇10 = ν̇10 (B.27)

ν̇10 = −M−1
0 D0ν10 +M−1

0 [Kp(ηr − η10)−Kdν10] (B.28)

K = 1

η̇11 = ν̇11 (B.29)

ν̇11 = −M−1
0 D0ν11−K1ν10 +M−1

0 [−Kpη11 −Kdν11]+K2 [Kp(ηr − η10)−Kdν10] (B.30)

K = 2

η̇12 = ν̇12 (B.31)

ν̇12 = −M−1
0 D0ν12 −K1ν11 +M−1

0 [−Kpη12 −Kdν12] +K2 [−Kpη11 −Kdν11] (B.32)

So, integrating (B.27) to (B.32), the approximation of the x(t, ε) with N = 3 is found and the

small variation ε is determined once the Emax is defined.

B.4 Procedure for determining the Reference Drafts

The perturbation model for vessel dynamics is presented in the previous section. Now, the

procedure to find the number of the reference drafts is discussed. The vessels start the offloading

at the draft h0. For these drafts, the matrices K1 and K2 are calculated as presented in section

B.1. Also, the initial matrices M0 and D0 are found from h0. The parameters of the control

law are updated using these matrices of the inertia and damping.

Based on the perturbation model, consider the following procedure: integrate the approximations
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ẋk for k = 1, ..., N − 1. Find the small parameter ε for some error E ≤ Emax. Calculate the

new draft h1 and check if this draft is the final draft. If it is true, stop the procedure. In the

opposite, set h0 equal to h1 and redo the logic until the final draft. Figure B.1 summarizes this

procedure.

Start 

h0 

Set the matrices  

 and control law 

for h0  

Integrate 

xk  

k = 1, ... , N  

. 

Calculate 

 

hi = h0 .10  
e1  

Stop hi  ≥   hf 

Yes No 

h0  =   hi 

 

 

E ≤ Emax 

e1  Find        where 

Figure B.1: Procedure for finding the reference drafts

B.5 Results and Discussion

The procedure of the previous section is applied with error Emax equal to 5% and 10%. The initial

drafts of the vessels are 21.0m and 8.00 for the FPWSO and the shuttle tanker, respectively.

The final drafts are 15.42m and 17.5m. The initial displacements of the vessels are 261.057m3

and 88.848m3, and the final displacement are 213.494m3 and 150.720m3 for the FPWSO and

the shuttle tanker, respectively. The displacement of the vessels are different because during

the offloading operation the FPWSO extracts crude oil and transfer processed oil to the shuttle

tanker that just loads. The step input (maneuver) to evaluate the error is presented in Figure
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B.2. The results of the perturbation models are presented in Tables B.1 B.2 for error of 5% and

10%, respectively. The ∇ symbol means the displacement of the vessel.
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Figure B.2: Maneuver for perturbation model

As expected, a small error requires a high number of the reference drafts. The simulations

present a displacement variation almost constant for each step. For an error of 5%, the variation

is around 11.000m3 for the FPWSO and 14.000m3 for the shuttle tanker. The draft at the last

step is almost close to the final draft of the vessels. For an error of 10%, the variation is around

20.000m3 for the FPWSO and 26.000m3 for the shuttle tanker. The draft at the last step is a

little distant to the final draft of the vessels. However, the model is correct because if the next

step occurred, the draft would exceed the final draft.

Table B.1: Maximum error of 5% for finding the reference drafts

step H  [m³] var [m³] H  [m³] var [m³]

0 21,0 261.057 8,0 88.848

1 19,5 249.289 11.768 10,2 104.165 15.317

2 18,0 238.007 11.282 12,49 118.841 14.676

3 16,7 226.785 11.222 14,7 133.439 14.598

4 15,5 214.746 12.039 17,24 149.099 15.660

step H  [m³] var [m³] H  [m³] var [m³]

0 21,0 261.057 8,0 88.848

1 19,5 249.582 11.475 10,2 103.783 14.935

2 18,1 238.484 11.098 12,40 118.221 14.438

3 16,8 227.513 10.971 14,6 132.492 14.271

4 15,6 215.646 11.867 17,05 147.928 15.436

FPWSO SHUTTLE

P
D

G
EO

FPWSO SHUTTLE
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Table B.2: Maximum error of 10% for finding the reference drafts

step H [m]  [m³] var [m³] H  [m³] var [m³]

0 21,0 261.057 8,0 88.848

1 18,38 240.904 20.153 11,9 115.073 26.225

2 16,05 220.546 20.358 16 141.555 26.482

step H  [m³] var [m³] H  [m³] var [m³]

0 21,0 261.057 8,0 88.848

1 18,41 241.061 19.996 11,86 114.830 25.982

2 16,06 220.701 20.360 15,97 141.353 26.523

P
D

FPWSO SHUTTLE

FPWSO SHUTTLE

G
EO

Here, the error is assumed to be equal to 10% that is a reasonable variation for the positioning of

the DP vessels. So, the number of three controllers are enough to guarantee that maximum error.

However, the values of the reference drafts are a little modified. The reference drafts are set

initial draft, final draft and the intermediate draft between those values. It is possible because the

hybrid control switches the control law within the range of the draft initial to intermediate draft

and the intermediate draft to final draft. So, the maximum error never reaches the maximum

variation and the maximum error is respected. So, the reference drafts are 21.0m, 18.21m and

15.42m for the FPWSO and 8.0m, 12.48m and 17.5m for the shuttle tanker.
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Appendix C

Spectral Analysis

The hybrid concept applied to the offloading operation changes the nonlinear observer due to the

sea state change. That modification is based on the peak-frequency of the response spectrum of

the vessel first-order motion. In order to determinate which peak-frequency imposes significant

change under the vessel motion, a detailed cross spectral analysis is carried out. Based on that,

the number of the observers is determined.

C.1 Standard Spectrum

To evaluate the wave-frequency motion of the vessels, some sea spectra are generated based on

the Beaufort scale. The relationship between the mean values of wind speed for each sea state

and the wave height is used to generate sea spectra based on the Pierson-Moskowitz spectrum

standard. This spectrum is given by

S(ω) = Aω−5.e−Bω
−4

(C.1)

where S is the spectrum, ω is the frequency and the values A and B are equal to A = 8.1e−3.g2,

B = 0.74.( g
Vwind

)4, g and Vwind are the gravity acceleration and the wind velocity, respectively.
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The significant wave height can be found as (FOSSEN, 1994).

Hs = 0.21.
V 2
wind

g
(C.2)

where Hs is the significant wave height. The value of the constant B can be rewritten as

B =
3.11

H2
s

(C.3)

Taking the mean values of Vwind for each sea state, the parameters of the spectra are calculated

using (C.2) and (C.3). The modal frequency ωo and peak-period T0 of the spectrum are found

by

ω0 =
4

√
4B

5
(C.4)

T0 = 2π
4

√
5

2B
(C.5)

Hence, the parameters of the spectra are determined using (C.4) and (C.5). Table C.1 presents

the spectra for the cross spectral analysis. Figure C.1 presents the spectra of those table.

Table C.1: Considered spectra for cross analysis

Beaufort Description Wind Speed Wave Hs A B ω0 T0

Number (knots) height [m] [m] [rad/s] [s]
0 Calm 0-1 0 0 0.78 0 - -
1 Light air 2-3 0-0.1 0.05 0.78 1244 8.94 0.70
2 Light breeze 4-7 0.1-0.5 0.3 0.78 34.55 3.65 1.72
3 Gentle breeze 8-11 0.5-1.25 0.87 0.78 4.06 2.14 2.94
4 Moderate breeze 12-16 1.25-2.5 1.87 0.78 0.88 1.46 4.30
5 Fresh breeze 17-21 2.5-4.0 2.62 0.78 0.45 1.23 5.09
6 Strong breeze 22-27 4.0-6.0 5 0.78 0.12 0.89 7.03
7 Moderate gale 28-33 6.0-9.0 7.5 0.78 0.05 0.73 8.61
8 Fresh gale 34-40 9.0-14.0 11.5 0.78 0.02 0.59 10.66
9 Strong gale 41-48 < 14.0 14 0.78 0.01 0.53 11.76
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Figure C.1: Pierson-Moskowitz sea spectrum based on Beaufort scale

C.2 Response Amplitude Operator

The Response Amplitude Operators (RAO) are presented in Figures C.2 to C.13. The incidence

angles vary from 180◦ to 135◦. These angles are the operational variation angles for local sea

state. A comparison is presented for three ship drafts of the FPWSO and the shuttle tanker:

full draft, half draft and ballast condition. All RAO’s have similar form in terms of response in

period. This means they present the peak-frequency around the same value. However, they are

different in terms of amplitude. In special, some great amplitude of yaw motion for the shuttle

tanker is found in Figures C.7 and C.13, but the response in period is similar to the other drafts

and to the FPWSO response.



184

Figure C.2: Comparison between RAO for surge motion and 180◦ wave incidence

Figure C.3: Comparison between RAO for sway motion and 180◦ wave incidence
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Figure C.4: Comparison between RAO for yaw motion and 180◦ wave incidence

Figure C.5: Comparison between RAO for surge motion and 165◦ wave incidence

C.3 Ship Motion Spectrum

Once known the RAOs and the sea spectra, the response spectra of the wave-frequency motion

of the vessel is determined as

Sr(ω) = |RAO(ωβ)|2.S(ω) (C.6)



186

Figure C.6: Comparison between RAO for sway motion and 165◦ wave incidence

Figure C.7: Comparion between RAO for yaw motion and 165◦ wave incidence

where Sr is the response spectrum and β is the direction of the incident wave. Doing this

calculation for the sea spectra for sea state 4 to 8 with the RAO’s of the previous section,

the motion spectra for the vessels in surge, sway and yaw are obtained. Figures C.14 to C.23

present the cross spectrum analysis. In these figures, there is a comparison between the response
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Figure C.8: Comparion between RAO for surge motion and 150◦ wave incidence

Figure C.9: Comparison between RAO for sway motion and 150◦ wave incidence

as function of the draft and the wave incidence angle for both vessels.

For sea state code 4, the cross spectra have very low amplitude and ωp (peak frequency) around

1rad/s for both vessels. There is some bimodal response in 135◦ (Figure C.14), but still in high
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Figure C.10: Comparion between RAO for yaw motion and 150◦ wave incidence

Figure C.11: Comparison between RAO for surge motion and 135◦ wave incidence

frequency. Sea state code 5 response presents little amplitude and ωp between 0,6rad/s and

0,8rad/s. The wave incidence angle of 135◦ still shows bimodal response. Previous dynamical

simulations have shown that some high frequency induces high frequency action of the thrusters



189

Figure C.12: Comparison between RAO for sway motion and 135◦ wave incidence

Figure C.13: Comparison between RAO for yaw motion and 135◦ wave incidence

for this range. Hence, the first cut-off frequency is around 0.8 rad/s.

The sea state 6 response has a higher amplitude than sea state 5 and the ωp is a little more than

0.50rad/s. Due to the different amplitude between sea state code 5 and 6, some cross spectrum

analyzes were carried out to investigate the high-frequency within this range. They have shown
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that problems with filtering process have happened around ωp between 0,6rad/s and 0,7rad/s. A

simulation using a nonlinear observer with ωp = 0.7rad/s improved the thruster action filtering

the high-frequency of thruster action. Hence, the second cut-off frequency is around 0.7 rad/s.

The response of the sea states 7 and 8 have the peak-frequency ωp < 0.5rad/s. Sorensen, Strand

and Nyberg (2002) presented a study of a nonlinear observer for a shuttle tanker in extreme

seas. In this work, the filter was shown within the bandwidth of the controller and the filter was

no more necessary. Hence, the third-frequency of cut-off is around 0.5rad/s.

Dong (2005) presented a hybrid controller for a DP vessel in which the nonlinear observer pa-

rameters were modified due to the sea state variation. For ωp < 0.45rad/s, the author suggested

the use of the nonlinear observer for extreme seas. For high values of the ωp, the nonlinear

observer proposed by Fossen and Strand (1999) was applied. In fact, the values of the ωp used

by Dong (2005) were used in previous simulations for the offloading operation and the results

were very similar with the values found here by the cross spectral analysis. For convenience, the

cut-off frequency for the offloading operation is assumed to be these values from Dong (2005).

Table C.2 present these frequencies.

Some important facts need to be highlighted. The peak-frequency of the ship motion response

does not change significantly due to the draft variation from full load to ballast condition for both

vessels. Moreover, the peak-frequency also does not suffer the influence from the wave incidence

angle within the considered incidence angle range, expect for some bimodal responses. However,

these bimodal responses have the peak-frequency with higher energy around the wave peak-

frequency and, for control applications, does not affect the cut-off frequency that has already

chosen.

Table C.2: Nonlinear observer for offloading operation

Sea state ωp range [rad/s] Observer
Calm seas >0.79 Nonlinear with 1st order wave motion

Moderate seas 0.79-0.67 Nonlinear with 1st order wave motion
High seas 0.67-0.45 Nonlinear with 1st order wave motion

Extreme seas <0.4 Nonlinear for extreme seas
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Figure C.14: Ship Motion Spectrum for FPWSO based on Beaufort seacode 4

Figure C.15: Ship Motion Spectrum for ST based on Beaufort seacode 4
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Figure C.16: Ship Motion Spectrum for FPWSO based on Beaufort seacode 5

Figure C.17: Ship Motion Spectrum for ST based on Beaufort seacode 5
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Figure C.18: Ship Motion Spectrum for FPWSO based on Beaufort seacode 6

Figure C.19: Ship Motion Spectrum for ST based on Beaufort seacode 6
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Figure C.20: Ship Motion Spectrum for FPWSO based on Beaufort seacode 7

Figure C.21: Ship Motion Spectrum for ST based on Beaufort seacode 7
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Figure C.22: Ship Motion Spectrum for FPWSO based on Beaufort seacode 8

Figure C.23: Ship Motion Spectrum for ST based on Beaufort seacode 8
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