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RESUMO

Esta tese apresenta o desenvolvimento e aplicação de modelos de turbulência, transição

laminar-turbulenta e de interações fluido-estrutura ao escoamento externo em cilindro

ŕıgido estacionário e em vibrações induzidas por vórtices. Tais desenvolvimentos foram

realizados no código ReFRESCO, baseado em técnicas de dinâmica de fluidos computa-

cional (CFD). Realizou-se um estudo quanto ao desempenho do modelo k-ω SST em

extensa faixa de números de Reynolds, segundo o qual se identificaram as deficiências de

modelagem para este escoamento. A modelagem adaptativa às escalas (SAS) e o modelo

de transição por correlações locais (LCTM), ambos combinados ao SST, melhoraram a

aderência aos resultados experimentais para este escoamento, em uma contribuição orig-

inal deste trabalho. A aplicação de técnicas de verificação e validação possibilitou a

estimação de incertezas e erros para os modelos e números de Reynolds e também é iden-

tificada como outra contribuição deste trabalho. A combinação da modelagem em SST,

SAS e LCTM com movimentos impostos é realizada para números de Reynolds modera-

dos, diferentes frequências e amplitudes de vibração, algo que poucas publicações abordam

em detalhes. Com relação aos movimentos livres, este trabalho traz contribuições com a

aplicação dos modelos SST e SAS ao estudo de vibrações induzidas por vórtices em dois

graus de liberdade, baixa razão de massa e números de Reynolds moderados, mais altos do

que normalmente observados na literatura. Por fim, a investigação da importância relativa

de efeitos da turbulência aos casos de movimentos livres e impostos, com relação ao caso

de cilindro estacionário, comprovou a conjetura formulada na parte inicial deste trabalho,

no que tange à escolha do modelo de turbulência em determinadas aplicações. Tal escolha

mostrou-se menos decisiva no caso do cilindro em movimento imposto e ainda menos

nos movimentos livres, em comparação ao caso estacionário, uma vez que a resposta em

movimentos do corpo filtra grande parte dos efeitos turbulentos de ordem superior. Esta

observação mostra-se relevante, uma vez que pode permitir simplificações na modelagem

e aplicação de ferramentas de CFD em uma classe importante de projetos de engenharia.

Palavras-chave: CFD, modelos de turbulência, modelos de transição, interação fluido-

estrutura, cilindro ŕıgido





ABSTRACT

This thesis presents the development, implementation and application of turbulence and

laminar-turbulent transition models and fluid-structure capabilities to address the vortex-

shedding and vortex-induced vibrations of a rigid cylinder. These numerical developments

have been carried out in the computational fluid dynamics (CFD) code ReFRESCO. In the

current work, an investigation of the performance of the turbulence modeling with k-ω SST

in a broad range of Reynolds numbers is carried out identifying its modeling deficiencies for

this flow. The implementation and systematic application of the scale adaptive simulations

(SAS) and the local correlation transition model (LCTM), both combined with the SST,

have improved the agreement with experimental results for the cylinder flow, in a novel

contribution of this work. The application of verification and validation technique has

allowed the estimation of numerical errors and uncertainties for the different models.

That is also identified as a contribution of this thesis. The combination of SST modeling

with imposed motions is carried out as well as with the SAS and LCTM for moderate

Reynolds numbers, different vibration frequencies and amplitudes, which is considered

novel, as few publications address this issue in extent. Regarding the free-moving cylinder

capabilities, the present work brings contributions with the application of SST and SAS-

SST with free-moving cylinder for the study of VIV of two degrees-of-freedom, low mass

ratio and moderate Reynolds numbers, higher than commonly seen in the literature.

Finally, the investigation of the relative importance of turbulence effects on the free-

moving cylinder and the imposed-motions case, with respect to the fixed case is carried

out. A natural conjecture that has been raised early on this work and proved correct

is that, for engineering applications, the choice of turbulence modeling strategy is less

decisive when the cylinder is moving with prescribed motion and even less stringent, for

free motions as the body response filters most of the higher order turbulence effects. That

is a relevant observation as it might allow modeling simplifications and the application of

CFD tools to a range of engineering problems.

Keywords: CFD, turbulence models, transition models, fluid-structure interaction, rigid

cylinder
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URANS - Unsteady Reynolds Averaged Navier Stokes Equations

VIV - Vortex-Induced Vibrations



Contents

1 Introduction 37

1.1 Preliminary Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.1.1 Fixed Cylinder Flow . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.1.2 Moving Cylinder Flow . . . . . . . . . . . . . . . . . . . . . . . . . 40

1.2 Summarizing the Present Doctoral Work . . . . . . . . . . . . . . . . . . . 42

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

1.4 ReFRESCO and the Research Environment
Around the Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

1.5 Engineering Relevance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

1.6 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2 Finite Volume Code ReFRESCO 47

2.1 Unsteady Reynolds Averaged Navier-Stokes Equations in Inertial Reference
Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.2 URANS Equations in Non-Inertial Reference
Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.3 Geometry Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.4 Numerical Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.4.1 Unsteady Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.4.2 Gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.4.3 Convective Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.4.3.1 Upwind Differencing Scheme . . . . . . . . . . . . . . . . 58

2.4.3.2 QUICK Scheme . . . . . . . . . . . . . . . . . . . . . . . . 58

2.4.4 Diffusive Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60



2.4.5 Source and Pressure Terms . . . . . . . . . . . . . . . . . . . . . . . 61

2.5 Solution Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.5.1 Under Relaxation Procedure . . . . . . . . . . . . . . . . . . . . . . 63

2.5.2 Pressure-Correction Scheme . . . . . . . . . . . . . . . . . . . . . . 63

3 Turbulence Modeling 65

3.1 k − ω SST Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2 SST-SAS Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.2.1 A Discussion on the Scales . . . . . . . . . . . . . . . . . . . . . . . 70

3.2.2 Comparison with Other URANS Models . . . . . . . . . . . . . . . 71

3.3 Transition Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4 Fluid Structure Interaction 83

4.1 Dynamics of the Rigid Body . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2 Coupling of Fluid and Structure Equations . . . . . . . . . . . . . . . . . . 85

4.3 Weakly Coupled Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.4 Strongly Coupled Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.4.1 Implicit Adams-Bashforth-Moulton Scheme . . . . . . . . . . . . . 90

4.4.1.1 Predictor Step . . . . . . . . . . . . . . . . . . . . . . . . 90

4.4.1.2 Corrector Step . . . . . . . . . . . . . . . . . . . . . . . . 90

4.4.1.3 On the Error Estimation and the Evaluation Criteria . . . 91

5 Verification and Validation 93

5.1 Steady Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2 Unsteady Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.3 Experimental Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6 The Rigid Fixed Cylinder Flow - Traditional Modeling 101

6.1 Phenomenological Background of Flow Around Fixed Cylinder . . . . . . . 101

6.1.1 Steady Laminar Regime - Re < 49 . . . . . . . . . . . . . . . . . . 101



6.1.2 Laminar Vortex Shedding - 49 < Re . 194 . . . . . . . . . . . . . . 103

6.1.3 Wake-Transition Regime - 190 . Re < 260 . . . . . . . . . . . . . . 104

6.1.4 Increasing Disorder in the Fine-Scale Three Dimensionalities - 260 <
Re . 1, 000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.1.5 Shear-Layer Transition Regime - 1, 000 < Re < 200, 000 . . . . . . . 105

6.1.6 Critical Transition Regime - 200, 000 < Re . 500, 000 . . . . . . . . 106

6.1.7 Post-Critical Transition Regime - Re > 500, 000 . . . . . . . . . . . 107

6.2 Outline of the Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.3 Numerical Details and Grids . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.4 Solution Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.4.1 Iterative Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.4.2 Discretization and Uncertainty Studies . . . . . . . . . . . . . . . . 114

6.5 Forces and Flow Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.5.1 Steady Laminar Calculations . . . . . . . . . . . . . . . . . . . . . 118

6.5.2 Unsteady Laminar Calculations . . . . . . . . . . . . . . . . . . . . 121

6.5.3 Turbulent Regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.6 Experimental Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.7 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.8 Final Remarks of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . 132

7 The Rigid Fixed Cylinder Flow - Modern Modeling 137

7.1 Outline of the Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.2 Discretization Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.3 Scale Adaptive Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.3.1 Solution Verification . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.3.1.1 Iterative Convergence . . . . . . . . . . . . . . . . . . . . 140

7.3.1.2 Convergence Analysis . . . . . . . . . . . . . . . . . . . . 140

7.3.2 Improved Flow Prediction in Range II . . . . . . . . . . . . . . . . 142

7.4 Local Correlation Transition Model . . . . . . . . . . . . . . . . . . . . . . 150



7.4.1 Background Work for the LCTM . . . . . . . . . . . . . . . . . . . 150

7.4.2 Outline of the Calculations . . . . . . . . . . . . . . . . . . . . . . . 150

7.4.3 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.4.3.1 Iterative Convergence . . . . . . . . . . . . . . . . . . . . 151

7.4.3.2 Numerical Uncertainty . . . . . . . . . . . . . . . . . . . . 151

7.4.4 Improved Flow Prediction in Range III . . . . . . . . . . . . . . . . 153

7.4.5 Flow Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.4.6 Experimental Uncertainty . . . . . . . . . . . . . . . . . . . . . . . 158

7.4.7 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.5 Final Remarks of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . 159

8 Rigid Cylinder in 1 Degree-of-Freedom Imposed Motions 163

8.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

8.2 Description of the Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

8.3 Setup and Grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

8.4 Iterative Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

8.5 Results with Re = 10, 000 and A/D = 0.3 . . . . . . . . . . . . . . . . . . 170

8.6 Results with Re = 40, 000− 45, 000 and A/D = 0.5 . . . . . . . . . . . . . 178

8.7 Final Remarks of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . 187

9 Rigid Cylinder in 2 Degrees-of-Freedom Free Motions 189

9.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

9.2 Description of the Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

9.3 Setup and Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

9.4 Iterative Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

9.5 Decay Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

9.6 Vortex-Induced Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

9.7 Initial Branch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

9.8 Super Upper Branch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

9.9 Lower Branch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209



9.10 Final Remarks of this Chapter . . . . . . . . . . . . . . . . . . . . . . . . . 211

10 Conclusions 213

10.1 Main Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

10.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

References 219

Appendix A Investigation of the Properties of the LCTM in the Flat Plate
Flow 229

A.1 Calculation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

A.1.1 Description of Test-Cases . . . . . . . . . . . . . . . . . . . . . . . . 229

A.1.2 Domain and Boundary Conditions . . . . . . . . . . . . . . . . . . . 230

A.1.3 Grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

A.1.4 Numerical Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

A.2 Numerical Friction Line Study . . . . . . . . . . . . . . . . . . . . . . . . . 232

A.2.1 Iterative Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . 232

A.2.2 Order of Convergence and Uncertainty . . . . . . . . . . . . . . . . 232

A.2.3 Grid Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

A.2.4 Nominal Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

A.2.5 Influence of Inflow Turbulence . . . . . . . . . . . . . . . . . . . . . 240

A.3 ERCOFTAC calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

A.3.1 Setup and Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

A.3.2 Nominal Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

A.3.3 Analysis of the Flow Field . . . . . . . . . . . . . . . . . . . . . . . 246





Chapter 1

Introduction

1.1 Preliminary Aspects

1.1.1 Fixed Cylinder Flow

The flow around circular cylinder is considered as one of the canonical problems in fluid

mechanics, condensing a wide range of interesting aspects also observed in flows around

many other blunt bodies (WILLIAMSON, 1996; SARPKAYA, 2004).

The fixed cylinder flow was approached from the numerical perspective as of the late

60’s, primarily by making use of Finite Difference Methods (FDM) to study low Reynolds

numbers, see Takami & Keller (1969), Dennis & Chang (1970), Dennis (1973). As of the

80’s, not only FD methods were used (FORNBERG, 1980; FORNBERG, 1985) but also

Finite Element methods (FEM), such as Tuann & Olson (1978) and Spectral Elements

methods (SE) (NIEUWSTADT; KELLER, 1973), Finite Volume methods (FVM), such as

Braza, Chassaing & Minh (1986), all for relatively low Reynolds numbers. The 90’s have

brought some different techniques into use for this problem, such as Discrete Vortex meth-

ods (DVM), see Meneghini & Bearman (1993) and Lattice-Boltzmann methods (LBM),

see He & Doolen (1997). Also in that decade, the development of computer power made

it possible to reach higher Reynolds numbers, such as in Mittal, Kumar & Raghuvanshi

(1997), using FEM, and Henderson (1995), using SE methods.

Within the conventional CFD methods, all of which solving the Navier-Stokes equations,

a more important issue than the numerical approaches to discretize these equations (FD,

FE, FV methods) are the simplifications with respect to physical modeling and, foremost,

turbulence modeling. In Direct Numerical Simulation (DNS), all spatial and temporal

scales of turbulence are resolved. In theory, it is the only numerical method capable

37



38

of solving the cylinder problem in all of its scales. However, DNS calculations are ex-

tremely expensive, even for low and moderate Reynolds numbers and simple geometries.

Blackburn, Govardhan & Williamson (2000) have reported on the difficulties of doing

high Reynolds numbers computations with DNS. Conversely, Braza, Chassaing & Minh

(1990) have done two-dimensional calculations for the cylinder flow with Reynolds num-

bers ranging from 2, 000 to 10, 000. They have shown that the transition waves develop in

the separated shear layers leading to mixing layer eddies and concluding that the insta-

bility leading to mixing layer eddies has a two-dimensional origin. Dong & Karniadakis

(2005) have done three-dimensional calculations for the cylinder flow at an impressively

high Reynolds number of 10, 000.

The next step in turbulence modeling fidelity is a Large Eddy Simulation (LES) approach.

A growing amount of calculations has been reported using LES also for higher Reynolds

numbers and complex geometries, such as in With, Holdo & Huld (2003). The turbulence

scales simulated in free-shear layer zones are accurately captured, once appropriated time,

space discretization and numerical schemes which do not introduce filtering of these scales

are used. However, in LES, the treatment of turbulence close to the objects is usually

modeled (simplified, using sub-grid scale models or even wall functions) and not simulated

such as in DNS, with serious consequences for wall-bounded flows. That has been seen

in Singh & Mittal (2005), who have done two-dimensional LES calculations for a wide

range of Reynolds numbers, up to Re = 107. It is clear that the simplifications introduced

by subgrid models, two-dimensional computations and insufficient grid and time step

discretization cause drag coefficients to be up to 50% larger than experimental results.

From their results one infers that LES computations are accurate with the currently

feasible discretization at Reynolds numbers up to Re = 10, 000. It is therefore observed

that, in order to correctly capture the turbulent scales inside the boundary layers, the

computational costs for LES increase sharply, reaching similar needs as the ones for DNS

(VON KÁRMÁN INSTITUTE, 2008).

The Unsteady Reynolds Average Navier Stokes (URANS) methods, in which turbulence

spatial and time scales are averaged, modeled by turbulence models, and therefore not

simulated, is nowadays the engineering tool to address this problem.

The decomposition of the flow into mean and turbulent isolates the effects of the fluc-

tuations on the mean flow. However, the Reynolds stress tensor present in the averaged

equation has yielded the so-called closure problem. The Reynolds stress tensor is symmet-

ric and thus there are six new unknowns to the conservation equations. The elements of

the matrix diagonal are normal stresses (pressures) and they often contribute little to the

transport of mean momentum. On the other hand, the off-diagonal elements, the shear

stresses, are more important in the turbulent transport of momentum. It is important
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to notice at this point that the Reynolds stress tensor results from a manipulation of the

conservation equations that involves averaging. It rises as a more palatable way to see

the effects of turbulence on the flow. Nevertheless, it shall be stressed that turbulence is

the general solution of the Navier-Stokes equations as it is intrinsic of the velocity and

pressure responses.

With its simple geometry, the cylinder flow encompasses the issues cited above and even

more related to the evolution of the turbulent wake and shear layers, instabilities, transi-

tion, all changing appreciably with Reynolds numbers. The modeling simplification thus

brings important consequences to flow prediction with URANS. Traditional URANS cal-

culations for the cylinder flow have been performed in Vaz et al. (2007), Liu, Zheng &

Sung (1998), Ong et al. (2007), to cite a few. It has been observed that the current “tra-

ditional” URANS turbulence models are not sufficient to capture both qualitatively and

quantitatively all subtle characteristics of such an intricate type of flow. It is clear that

the main direction of research points to turbulence and transition modeling, as they are

the main shortcoming of most approaches for this type of flow.

Pengan (2010) have identified the monochromatic behavior of the traditional two-dimen-

sional modeling as one of the important issues that make comparison with experimental

results more troublesome in moderate Reynolds numbers. The cylinder flow displays im-

portant three-dimensional features throughout the pre-critical range influencing the loads

and other quantities. That was also explored by Vaz et al. (2007), Pengan (2010), Klaij

(2008) with SST, showing the limitations of the three-dimensional modeling with tradi-

tional modeling and identifying the need of better assessment of the three-dimensional

turbulent behavior within URANS. In the last years, different models have been devel-

oped with that objective, such as the Partially-Average Navier Stokes (PANS) equations

(GIRIMAJI, 2006), Detached Eddy Simulations (DES) (TRAVIN et al., 1999), Delayed

Detached Eddy Simulations (DDES) (SPALART et al., 2006) among others. Pereira,

Vaz & Eça (2014) present a comparison of RANS, SAS, DES and PANS models for the

backward facing step case, shedding light on some of their differences and capabilities.

The understanding and prediction of transition is a state-of-the-art research topic and,

to date, the most comprehensive prediction approach is based on the DNS, as only then

the fine scale disturbances that trigger the transition process are accurately captured. As

shall be discussed later on, a more engineering-oriented approach was developed based

on empirical approach, as proposed by Langtry & Menter (2009), Menter, Langtry &

Volker (2006). In this Local Correlation Transition Model (LCTM), a framework for

empirical correlations obtained from experiments is set and coupled with a turbulence

model in order to predict transition onset and length. In fact, Langtry & Menter (2009)

have shown results for different applications, including few results for the cylinder flow
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in the drag crisis region, but without assessment of numerical errors or much exploration

of modeling issues. Quite a reasonable improvement is observed compared to traditional

modeling.

1.1.2 Moving Cylinder Flow

As mentioned before, turbulence is a key player in the fixed cylinder-flow mechanics, as

well as in the case of moving cylinder. Several contributions are identified in the literature

in this issue, thus being quite a challenge to set a chronological line of contributions,

such as in the work done by Williamson & Govardhan (2004) and Gabbai & Benaroya

(2004). Gopalkrishnan (1993) and Sarpkaya (2004) have also thoroughly studied the

vortex-induced vibrations of a cylinder, however by means of imposed sinusoidal motions

bracketing the resonance range. They have reported on different Reynolds numbers,

wide ranges of vibration amplitudes and frequencies setting an important benchmark

for the study of vortex-induced vibrations and for the CFD calculations. It has been

recognized that the imposed motions studied did elucidate several issues related to VIV,

however the behavior of freely-moving two degrees-of-freedom VIV cannot be inferred

from the imposed motions case in every instance, as commented by Sarpkaya (2004). This

issue here is treated from a modeling perspective: the imposed motions results are seen

as the transition from fixed and freely-moving cylinder, with the complexity regarding

numerical models increasing, despite a constant and high level of physical complexity.

CFD calculations of forced vibrations have been done by Placzek, Sigrist & Hamdouni

(2009) using a two-dimensional approach with finite volume method discretization at a low

Reynolds number, exploring and characterizing the different flow and dynamic responses

in the locked and unlocked configurations of resonance. Blackburn & Henderson (1999)

have also studied wake structures and flow dynamics associated with two-dimensional

flows past cylinder in forced vibration at Re = 500. Dong & Karniadakis (2005) have

used direct numerical simulations employing a spectral method for Re = 10, 000 for a few

vibration frequencies, finding very good agreement with the experimental results from

Gopalkrishnan (1993).

As commented by Gabbai & Benaroya (2004), the issues to be considered in a numerical

method that aims at solving the VIV are the modeling of the flow field, modeling of the

structural vibration, modeling of the fluid-structure interaction (FSI) and data analysis.

Within the first issue, the approaches commented above can handle the calculations in

order to obtain the velocity and pressure fields, forces and moments upon the cylinder.

On the other hand, six degree-of-freedom rigid-body motions are calculated by means

of equations of motion based on conservation of linear and angular momentum, see e.g.
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Wilson, Carrica & Stern (2006), Bettle (2012), Leroyer (2004).

With regards to the reference frames, absolute (inertial) or relative (non-inertial) formu-

lations can be used. The Arbitrary Lagrangian-Eulerian method (ALE) or moving-grid

approach deals with the motions of the grid cells; see Hirt, Amsden & Cook (1997). The

nodes can move with the fluid (Lagrangian) or can be kept still (Eulerian). In fact, with

this approach, the grid nodes may be moved with an arbitrary velocity, commonly with

the cylinder velocity, as done by Mendes & Branco (1999), Marzouk (2011) and Nobari

& Naderan (2006). The coupling between these equations and the fluid equations can be

done weakly, at every time-step, or strongly, inside the non-linear fluid flow solution loop,

which is seen to be more stable but more expensive.

Regarding the numerical prediction of vortex-induced vibrations using CFD tools, a large

number of important works are found for elastically mounted cylinders of high mass ratios

(structural mass over displacement) with one degree-of-freedom and in smaller extent, for

low mass ratios and two degrees-of-freedom systems. Usually very low Reynolds numbers

are explored due to the difficulties inherent of full scale. Within the examples of low

Reynolds numbers one can cite the work of Carmo (2009), who has developed a numerical

method based on an Arbitrary Lagrangian-Eulerian approach that coupled the solution of

the structure equations with that of the flow to calculate one degree-of-freedom VIV. In

this case, a weakly coupled scheme was appropriate and reasonable results were obtained.

The final goal of the project was to study wake interference of two cylinders. Shiels,

Leonard & Roshko (2001) also explore one degree-of-freedom cylinder oscillations studying

sensitivity to different dynamic parameters, in particular the mass ratio, but in this case

the vibration amplitudes for low mass ratios did not reach high amplitudes as seen in

Jauvits & Williamson (2004). In a different line of work, Saltara (1999) has showed that

the discrete vortex method is not appropriate to simulate VIV at Re ≈ 10, 000 and used

instead a Fractional Step method with a finite volume approach, comparing the results

for one degree-of-freedom VIV with those of Khalak & Williamson (1996). Conversely,

Mittal & Kumar (2001) have used a finite-element formulation to study two degrees-of-

freedom VIV of light structures at similar Reynolds numbers as will be done in the present

study but at higher mass ratio in their case. They have not observed the super-upper

response branch in the results. Al-Jamal & Dalton (2004) have used two-dimensional and

three-dimensional large eddy simulations with a finite difference scheme to simulate free

vibrations of a cylinder at 8, 000 and low mass ratios concluding that the two-dimensional

representation of the flow was appropriate to simulate vortex-induced vibrations in their

case. Results with Reynolds numbers higher than Re = 10, 000, low mass ratio, two

degrees-of-freedom and URANS such as the ones proposed herein have not been observed

in the open literature.
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1.2 Summarizing the Present Doctoral Work

The applications of CFD tools in practical offshore engineering problems is restricted by

the required computational power, especially for complex flows and geometries. Solving

the flow equations without simplifications and in full scale is presently unfeasible. The

Reynolds Averaged Navier Stokes approach considerably reduces the computational power

due to the less stringent grid and time step requirements, but that comes at a price:

turbulence is modeled and not solved. That may be of higher order in many problems,

but it is of central importance for the cylinder flow problem.

Within the modeling issues related to the flow around cylinders in restrained condition,

under imposed motions and free to move, this doctoral work is mainly focused on the

modeling of turbulence, transition and fluid-structure interaction capabilities within the

Reynolds Averaged Navier Stokes approach.

The present work firstly brings an investigation of the performance of the traditional

turbulence modeling with k-ω SST (previously implemented in ReFRESCO) in a broad

range of Reynolds numbers encompassing most of the engineering applications. Deficien-

cies related to the traditional modeling are identified and more advanced turbulent and

transition models are implemented and used with the objective of improving the flow mod-

eling and force quantification in the range of turbulent Reynolds numbers. As commented

above, similar investigations have been carried out for the fixed cylinder flow with both

Scale Adaptive Simulations and the Local Correlation Transition Model. However, the

present work has reported the application of these modeling strategies to a larger number

of Reynolds numbers and in a more systematic manner, in order to better understand their

capabilities, limitations and range of validity. The application of a very important tool

has permeated this investigation permitting more sound conclusions regarding both tra-

ditional and more advanced modeling, namely the Verification and Validation technique.

This has allowed the estimation of numerical errors and uncertainties for the different

models and Reynolds numbers, in a novel contribution of this thesis.

Aiming at the development and application of a tool for engineering design and analysis,

the motions of a rigid body immersed in the flow field stands out as one of the important

issues approached herein. The combination of the traditional SST modeling under imposed

motions is carried out as well as with the SAS and LCTM at several moderate Reynolds

numbers, different vibration frequencies and amplitudes, results which have not been

published to date. Regarding the implementation and calculation of free-moving cylinder

capability, the present work brings novel contributions with the combination of SST and

SAS with free-moving cylinder for the study of VIV of two degrees-of-freedom, low mass

ratio and moderate Reynolds numbers, higher than commonly seen in the literature.
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A more practical issue related to this thesis that has been on its background is the investi-

gation of the relative importance of turbulence effects on the free-moving cylinder and the

imposed-motions case, with respect to the fixed case. A natural conjecture that has been

raised early in this work is that, for practical applications, the choice of turbulence mod-

eling strategy becomes less decisive when the cylinder is moving with prescribed motion

and even less, for free motions. Evidently, this applies from an engineering perspective,

i.e. mainly observing forces and response amplitudes and frequencies.

The above mentioned issues compose the background and motivation for the present the-

sis, in which the cylinder flow was used as the prototype-problem due to its relevance,

complexity and extensibility to several other types of flows in which turbulence and tran-

sition are major issues.

1.3 Objectives

The main objectives of this work are as follows: improve current turbulence and transi-

tion modeling by the development and application the state-of-the-art turbulence models

within the ReFRESCO framework for the fixed cylinder flow; apply modern Verification

and Validation techniques and establish the capabilities of URANS together with different

turbulence models; investigate modeling and numerical issues of fluid-structure coupling

of rigid cylinders and the performance of the investigated models in those cases; develop

mathematical and numerical models to handle rigid cylinder vibrations coupled with the

CFD code ReFRESCO for the study of vortex induced vibrations; study the coupling of

the state-of-the-art turbulence and transition models with structural solver for rigid body

motions; evaluate in practice which classes of turbulence models can be used in each type

of situation and how these models can be applied.

1.4 ReFRESCO and the Research Environment

Around the Code

ReFRESCO (REFRESCO, 2015) is a viscous-flow CFD code that solves multiphase (un-

steady) incompressible flows using the Navier-Stokes equations, complemented with tur-

bulence models, cavitation models and volume-fraction transport equations for different

phases. The equations are discretised using a finite-volume approach with cell-centered

collocated variables, in conservation form and a pressure-correction equation based on the

SIMPLE algorithm is used to ensure mass conservation.
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ReFRESCO stands for “Reliable and Fast Rans Equations Code for Ships and Construc-

tions Offshore”, and it is a spinoff from the FreSCo project started in 2005, together

with the Technical University of Hamburg-Harburg and HSVA. In 2009, the cooperation

ended and ReFRESCO was born then. Nowadays, several users and developers are con-

centrated at MARIN, Instituto Superior Técnico, University of São Paulo, University of

Southampton, Delft University of Technology, University of Twente, Chalmers University,

University of Groningen and Damen Shipyards.

This code has been chosen in this work for a few reasons, as follows: it is a CFD code

under constant development and at the core of the cooperation between the University

of São Paulo and MARIN, which provided a very positive environment for discussions

and learning, due to the interaction with the large group of developers; the code is also

applied for engineering purposes, but with a scientific rigour, thus creating an environment

in which academia meets practice providing an engineering perspective to the use of

CFD; the source code has been made totally available and could thus be installed in the

HPC (high-performance computing) cluster of the Numerical Offshore Tank (TPN) at the

University of São Paulo, allowing the work developed herein to be more directed to the

specific purposes than if a commercial code or a completely new code had been used or

implemented. That has also enabled the learning of issues related to high-performance

computing, parallel applications and programming in a large group of developers. It has

also been rewarding to observe that the applications developed in the current thesis are

present in ReFRESCO source code and several users have been working with them.

It should also be acknowledged that such a large number of numerically complex simula-

tions has only been possible due to the extensive use of the HPC clusters of TPN-USP and

of the Maritime Institute Research Netherlands (MARIN). The total amount of cluster-

hours used in the present work is estimated at over 3,600,000 hours, which makes the

previous points very clear.

1.5 Engineering Relevance

The flow about circular cylinder is one of the most important flows in fluid mechanics. It is

not only considered as a toy problem, but also of high practical important in itself as many

structures present similar geometric details. On the other hand the cylinder flow condenses

a wide range of interesting aspects also observed in flows around many other blunt bodies.

The interaction of boundary layer, separating free shear layers and wake shear give rise

to the vortex shedding phenomenon, three dimensional instabilities, laminar-turbulent

transition, vortex-induced vibrations and more. A great deal of modeling aspects must
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be quite well developed in a CFD code if one is to correctly capture the most important

features of this flow in different Reynolds numbers.

Observations and conclusions herein achieved are directly available to the study and

modeling of engineering problems including vortex-induced vibrations of risers and piles,

vortex-induced motions of floating platforms such as spars, monocolumns, semi-submersibles

and TLPs and the use of energy-harvesting devices.

1.6 Thesis Outline

This thesis is organized as described to reflect how the work was carried out but also

to explore the turbulence modeling and fluid structure interaction in different situations

and in a sequential manner: from the fixed body to the two degrees-of-freedom system

flows. Throughout the text, a very large amount of results are presented mostly to study

and demonstrate the capabilities, limitations and performance of the numerical tools

implemented and used for the cylinder flow in different conditions. It has been attempted

to maintain the main objectives clear at all parts of the text, which is the reason why some

of the results are explored in more depth than others. Moreover, due to the large amount

of results, flow visualizations and individual comments are made only when needed and

not uniformly, with a preference to explore integral quantities such as forces and response

amplitudes and frequencies. Moreover, conclusions are often drawn based on similar

responses observed in groups of calculations for the sake of generality.

The present Chapter discussed an overview of contributions from different researchers to

the issues touched by the present work. A more bibliographic approach is chosen for

conciseness. A more detailed review of chosen works is presented in each of the following

chapters, when the theoretical subsidies and literature results are needed, for discussions

or for comparison with the ones presented herein. However, prior to the chapters showing

results, the main theoretical aspects that permeate the entire thesis are presented.

Chapter 2 presents the mathematical and numerical formulation of the fluid equations

that constitutes the basis of the Finite Volume Code ReFRESCO, upon which the imple-

mentation of the new turbulence equations and fluid-structure capabilities for free motions

has been done. This description basically shows the status of the code prior to the devel-

opments of the present work. Chapter 3 presents the formulation of the turbulence and

transition models implemented for this work, together with a discussion on the capabilities

of each of these models in the scope of this thesis. Following the same lines, Chapter 4

shows the mathematical formulation and details of the numerical implementation of the

interaction between the solid and fluid domains which was done in this work. Finally, in
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Chapter 5 the basic theoretical aspects of the Verification and Validation activities that

were pursued in this work.

Following the Chapters presenting the theoretical aspects, Chapter 6 shows the application

of some of the previous issues to the flow around a fixed circular cylinder in a wide range

of Reynolds numbers with the traditional modeling adopted in the many engineering

applications. The capabilities and limitations of this modeling are investigated giving the

direction of the following steps. According to these observations, Chapter 7 presents the

application of the newly implemented state-of-the-art turbulence models for the cylinder

flow in the ranges in which a poor performance of the traditional models was observed

enhancing the flow prediction in these situations.

After a thorough investigation of the flow around the fixed cylinder focusing on the issue

of turbulence, Chapter 8 presents the results and comparison with original experiments

of one degree-of-freedom imposed motions to the rigid cylinder. The issue of turbulence

is now observed in comparison to its effects in a fixed cylinder, mainly with respect to

forces. In turn, Chapter 9 shows the results and studies concerning the implementation of

fluid-structure interaction capabilities in ReFRESCO for this thesis: the two-degrees-of-

freedom vibrations of the cylinder are studied and the turbulence modeling issue is again

observed in this case comparing it to the previous cases. Chapter 10 shows the conclusions

and perspectives of this work.



Chapter 2

Finite Volume Code ReFRESCO

This chapter presents the mathematical formulation of the fluid equations that

constitute the basis of the Code ReFRESCO. This code is used in this thesis

as a framework for the implementation of turbulence, transition models and

moving body capabilities.

2.1 Unsteady Reynolds Averaged Navier-Stokes Equa-

tions in Inertial Reference Frame

Consider the Navier-Stokes equations in inertial, fixed reference frame (x1, x2, x3) ≡
(x, y, z), for Newtonian fluid in incompressible flow1 written in differential form:

∂ρui
∂xi

= 0, (2.1)

∂ρui
∂t

+
∂ρuiuj
∂xj

= − ∂p

∂xi
+

∂

∂xj

[
µ

(
∂ui
∂xj

+
∂uj
∂xi

)]
. (2.2)

In these equations, fluid pressure, density and kinematic viscosity are, respectively, p, ρ, ν

and body forces and free surface effects are not considered.

The differential form showed above is somewhat more practical and concise than the

integral form, as far as notation goes. However, the numerical formulation of the fluid

equations is done here by employing the Finite Volume Method (FVM). Some preference

1Even though the problem at hand is incompressible and thus ρ is uniform and constant, option has
been made to keep ρ in the flow equations for completeness.
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is given to the differential form of the equations, but the integral form shall be presented

when appropriate. Hence, for the sake of completeness, consider a control volume V,

enclosed by the surface S, with outwards-pointing normal vector n and integrate these

equations in the referred control volume. By applying Gauss’ divergence theorem, one

obtains the integral form of these equations, here conveniently written in conservative

form:

∫
S

ρuinidS = 0, (2.3)

∂

∂t

∫
V

ρuidV +

∫
S

ρuiujnjdS =

∫
S

[
µ

(
∂ui
∂xj

+
∂uj
∂xi

)
ej − pei

]
· ndS, (2.4)

in which ei is the Cartesian unit vector in the direction of coordinate xi.

As discussed in Chapter 1, amongst the various approaches to solve equations 2.1 and 2.2,

URANS is an appropriate engineering approach as the computer power requirements are

less severe compared to DNS and LES. This approach is the basis of the mathematical

and numerical formulation of ReFRESCO, also being used herein.

The Reynolds average and fluctuation2 of a certain quantity φ(x, t) are written as

φ(x, t) = Φ(x, t) + φ′(x, t). (2.5)

By applying this concept to the flow variables one obtains:

ui(x, t) =Ui(x, t) + u′i(x, t),

p(x, t) =P (x, t) + p′(x, t). (2.6)

Equations 2.6 are then substituted into equation 2.1 and into eq. 2.2 to yield the Reynolds-

averaged equations of motion:

∂ρUi
∂xi

= 0, (2.7)

2By averaging, one can make use of three processes which, for this application, yield analogous results.
They can be spatial, time or ensemble average. The former two operate by choosing appropriate length
and time scales, respectively, so that the average flow does vary with respect to the chosen variable. In
those cases, the flow must be steady and/or homogeneous and isotropic. The latter averaging, however,
is a two-variable dependent quantity averaged by means of several samples of the desired quantity in that
flow. If the turbulent quantity is both stationary and homogeneous, the three averages are equal and the
process is ergodic.
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∂ρUi
∂t

+
∂

∂xj
(ρUiUj + ρu′iu

′
j) = −∂P

∂xi
+

∂

∂xj

[
µ

(
∂Ui
∂xj

+
∂Uj
∂xi

)]
. (2.8)

In the integral form, the same equations read:

∫
S

ρUinidS = 0, (2.9)

∂

∂t

∫
V

ρUidV +

∫
S

ρ(UiUj + u′iu
′
j)njdS =

∫
S

[
µ

(
∂Ui
∂xj

+
∂Uj
∂xi

)
ej − Pei

]
· ndS. (2.10)

By comparing the original and averaged equations, one notices firstly that the conservation

of mass has the mean velocity replacing the instantaneous velocity. That is because

the divergence of the fluctuating velocity is also zero. Furthermore, the new term in

equations 2.8 and 2.10, namely u′iu
′
j, is the specific Reynolds stress tensor and it gives the

distribution of the fluctuating stresses due to the fluid motion. In its most common form,

the Reynolds stress tensor is given by

τij = −ρu′iu′j. (2.11)

The closure within URANS is generally achieved by means of the eddy viscosity concept

introduced in the Boussinesq hypothesis:

τij = µt

(
∂Ui
∂xj

+
∂Uj
∂xi

)
− 2

3
ρδijk −

1

3
δij
∂Uk
∂xk

, (2.12)

in which k is the turbulent kinetic energy. For incompressible flow, the last term in equa-

tion 2.12 yields zero.

One of the main contributions of this thesis is the implementation, evaluation an improve-

ment of state-of-the-art turbulence modeling in order to more accurately predict complex

three-dimensional and transitional flows.

2.2 URANS Equations in Non-Inertial Reference

Frames

Derivation of the URANS equations in non-inertial reference frames will be shown below

with the purpose of doing moving body calculations in this thesis. Consider the inertial
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and non-inertial reference frames in figure 2.1. The non-inertial one is attached to the rigid

body, which displays arbitrary translational and rotational motion. Furthermore, XO is

the origin of the moving (translating and rotating) body-fixed reference frame. Consider

the motion of the particle at P and let its velocity be written as V. Hence, the position of

a fluid particle at P with body-referenced position x in the earth-fixed reference system

is defined as:

X = XO + x. (2.13)

The velocity and acceleration of the fluid particle seen by an observer at the inertial

reference system are:

U = UO + Ω ∧ x + V

DU

Dt
= a + 2Ω ∧V + AO + Ω̇ ∧ x + Ω ∧ [Ω ∧ x], (2.14)

in which one identifies Ug = UO+Ω∧x as the velocity of the body-fixed reference system.

In order to model a general rigid-body motion (translation and/or rotation) of one object

X 

Y 

Z 

I 
J 

K 

x 

y 

z 

i 

j 

k 

O 

X 

XO 

O’ 

x 

Ω 

P 

Earth-fixed observer sees fluid particle velocity as U 

  

Body-fixed observer sees fluid particle velocity as V 

  

Figure 2.1: Writing the fluid equations of motion in inertial and non-inertial coordinate
frames.

within URANS, three different main approaches are possible:
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• Relative-formulation, RFM, or body-forces-approach: the fluid transport equations

are written and solved in the moving or relative reference frame. Extra volumic

terms, or body-forces, have to be considered coming from equation 2.14;

• Absolute-formulation, AFM: the fluid transport equations are solved in the moving

reference frame but written in terms of absolute or inertial reference frame quantities;

• Moving-grid-formulation, MVG: the fluid transport equations are written and solved

in the earth-fixed reference frame. Due to the motion of the objects, the equations

are inherently unsteady, even for steady motions.

In the RFM formulation the conservation equations are rewritten as:

∂ρVi
∂xi

= 0, (2.15)

∂ρVi
∂t

+
∂

∂xj
(ρViVj) =

∂

∂xj

[
(µ+ µt)

(
∂Vi
∂xj

+
∂Vj
∂xi

)]
− ∂

∂xi

(
P +

2

3
ρk

)
− ρ[ẌOi + εijkΩ̇jxk + 2εijkΩjVk + εijkΩj(εijkΩixj)]. (2.16)

In integral form, the same equations are written:

∫
S

ρVini dS = 0, (2.17)

∂

∂t

∫
V

ρVidV +

∫
S

ρViVjnjdS =

∫
S

(µ+ µt)

(
∂Vi
∂xj

+
∂Vj
∂xi

)
ejnjdS

−
∫
V

∂

∂xj

(
P +

2

3
ρk

)
einidV

−
∫
V

ρ[ẌOi + εijkΩ̇jxk + 2εijkΩjVk + εijkΩj(εijkΩixj)]dV.

(2.18)

In this case, boundary conditions are usually defined in the body-fixed reference system.

In the AFM formulation the URANS equations are rewritten in differential form as:

∂ρ(Ui − Ugi)
∂xi

= 0, (2.19)
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∂ρUi
∂t

+
∂

∂xj
(ρUi(Uj − Ugj)) =

∂

∂xj

[
(µ+ µt)

(
∂Ui
∂xj

+
∂Uj
∂xi

)]
− ∂

∂xi

(
P +

2

3
ρk

)
− ρεijkΩjUk. (2.20)

In integral form, these equations are written:

∫
S

ρ(Ui − Ugi)ni dS = 0 (2.21)

∂

∂t

∫
V

ρUidV +

∫
S

ρUi(Uj − Ugj)njdS =

∫
S

(µ+ µt)

(
∂Ui
∂xj

+
∂Uj
∂xi

)
ejnjdS

−
∫
V

∂

∂xj

(
P +

2

3
ρk

)
einidV

−
∫
V

ρ(εijkΩjUk)dV. (2.22)

Notice that
∫
S
VgdS or

∂Vgi
∂xi

= 0, since rigid-body motions are dealt with herein. Also,

boundary-conditions may be defined both in body and earth-fixed reference system.

In the MVG formulation the URANS equations are rewritten as:

∂ρ(Ui − Ugi)
∂xi

= 0, (2.23)

∂ρUi
∂t

+
∂

∂xj
(ρUi(Uj − Ugj)) =

∂

∂xj

[
(µ+ µt)

(
∂Ui
∂xj

+
∂Uj
∂xi

)]
− ∂

∂xi

(
P +

2

3
ρk

)
.

In integral form, these equations are written:

∫
S

(Ui − Ugi)ni dS = 0, (2.24)

∂

∂t

∫
V

ρUidV +

∫
S

ρUi(Uj − Ugj)njdS =

∫
S

(µ+ µt)

(
∂Ui
∂xj

+
∂Uj
∂xi

)
ejnjdS

−
∫
V

∂

∂xj

(
P +

2

3
ρk

)
einidV,
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in which case, boundary conditions are always defined in the earth-fixed reference system.

The three approaches are equivalent in terms of their formulation and, if solved with the

same accuracy, should produce the same results. However, considering the nature of these

equations, their discretized forms are somewhat different.

Consider the momentum conservation equation in the relative formulation, equation 2.18.

The right hand side of that equation may result very large (in absolute sense) if the body

motions are large, thus impairing convergence, both in inner and outer loop procedures.

For that reason, this formulation is not used herein. An important issue to be considered at

this point is that one must also solve transport equations for the turbulent and transition

quantities and, in fact, any other transported quantity considering the AFM and MVG

approaches. This is done conveniently by simply changing the convection of the generic

variable φ from its original form written as:

∫
S

ρφUjnjdS, (2.25)

to the following one, which is valid for both AFM and MVG:

∫
S

ρφ(Uj − Ugj)njdS. (2.26)

It is worth noting that an arbitrary choice in favor of MVG approach has been made in

the applications of this thesis, since there is no fundamental difference in the MVG and

AFM when translational motion is considered.

2.3 Geometry Handling

The volume and the location of the center of each cell have to be determined for the

description of the domain. Moreover, for each of the faces, the area, the normal vector

and the center also have to be computed as showed below.

Each cell face has three or more vertices xl, (l = k, .., Nv), (Nv ≥ 3), and the face area

vector is found, after subdividing the face into Nv − 2 triangles, from the following sum:

Sf =
1

2

Nv∑
l=3

(xl−1 − x1)× (xl − x1). (2.27)

If the vertices are visited in clockwise sense when viewing the face from the cell center,
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Sf points out of the cell. The face area is the magnitude of this vector, Sf = |Sf |, while

the face unit normal vector is the unit vector in the direction of Sf :

nf =
Sf
|Sf |

, Sf = nf |Sf |. (2.28)

The face center is taken as the average of the centers of each triangle, weighted by the

area of the triangle:

xf =

(
1

Nv − 2

)∑Nv
l=3[(xl−1 − x1)× (xl − x1)]1

3
[xl + xl−1 + x1]∑Nv

l=3[(xl−1 − x1)× (xl − x1)]
(2.29)

The cell volume is obtained by using Gauss’ theorem:

∆V =
1

3

Nf∑
i=1

xfi · Sfi , (2.30)

where Nf is the number of cell faces. The location of the cell center is chosen as the

average of the face centers:

xc =
1

Nf

Nf∑
i=1

xfi . (2.31)

2.4 Numerical Discretization

Taking advantage of the similarity of transport equations for different variables, Re-

FRESCO uses the same framework to discretize the equations and solve for the different

flow variables (velocities, turbulent quantities, energy etc). The general transport equa-

tion is written in integral form as (PATANKAR, 1980):

∂

∂t

∫
V

(ρφ)dV +

∫
S

φUjnj dS =

∫
S

(
Γ
∂ui
∂xj

ej

)
· n dS +

∫
V

qφdV, (2.32)

in which n in the normal vector, Γ is a diffusive coefficient and qφ is a source or sink term.

In this general equation, the first and second terms on the left-hand side are the unsteady

and convective terms, respectively. The first and second terms on the right-hand side are

respectively the diffusive and source/sink terms.

ReFRESCO uses a collocated approach, thus all flow variables are defined in cell centers

and interpolation practices are used when face values are needed as showed below.
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The volume integrals of quantities φ are calculated as:

∫
V

φdV ≈ φc∆V, (2.33)

in which φc is the value of φ at the cell center. The surface integrals are approximated as:

∫
S

φdS ≈
Nf∑
i=1

φfiSfi , (2.34)

in which φfi is the variable value in the cell face center and Sfi is the cell face area.

The following sections will address the numerical tools to deal with each of the transport

equation terms.

2.4.1 Unsteady Term

The time derivative of a conserved variable φ in an invariant control volume V is as

follows:

∂

∂t

∫
V

(ρφ)dV. (2.35)

Discretization of this term in the applications showed in this thesis is done by means of

an second-order, implicit, three-time-level backwards approximation:

∂

∂t

∫
V

(ρφ)dV ≈ [1.5(ρcφc∆V )n − 2.0(ρcφc∆V )n−1 + 0.5(ρcφc∆V )n−2]/∆t, (2.36)

in which n is the time level, ∆t is the time step, ∆V is the control volume, and φc is the

variable value in the volume center.

2.4.2 Gradients

Gradients of variables are also needed in the conservation equations. Gauss’ Theorem is

applied to derive the expression for the gradient of φ at the cell center3:

(∇φ)c ≈
1

∆V

Nf∑
i=1

φfiSfi . (2.37)

3The vector notation for ∂φ
∂xj

, ∇φ, is here used as it is somewhat more practical.
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As seen above, gradients at face centers are needed in the discretization of some terms.

A few comments in that regard will be made in what follows, but first some preliminary

definitions are needed: each cell face has two neighboring cell centers, denoted here by

the indices c1 and c2 (unless it is a face on the domain boundary; the center of the virtual

cell is then assumed to be the face center).

The distance vector between the cell centers is:

d = xc2 − xc1 , (2.38)

with magnitude

d = |xc2 − xc1 |, (2.39)

while the distances between cell and face centers are denoted as:

d1 = |xf − xc1| , d2 = |xf − xc2 |. (2.40)

Based on these distances, one defines an interpolation coefficient as

α =
d2

d1 + d2

. (2.41)

Notice that due to the choice of the center of virtual cells to be the face center, these

distances have a special interpretation for boundary faces: d1 = d; d2 = 0.

Furthermore one defines an eccentricity vector, being the vector from the point obtained

by orthogonal projection of xf on the line connecting the two cell centers to the face

center xf itself (see figure 2.2), as:

e = xf − [αxc1 + (1− α)xc2 ] . (2.42)
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Figure 2.2: Eccentricity vector.

The gradient of φ in the face center is computed from:

(∇φ)f = α∇φc1 + (1− α)∇φc2 . (2.43)

Along similar lines, the face value of φ can be derived from:

φf = αφc1 + (1− α)φc2 , (2.44)

and when needed the eccentricity correction is added:

φf = αφc1 + (1− α)φc2 +∇φf · e . (2.45)

2.4.3 Convective Term

The convective term in the general transport equation reads:

∫
S

φUjnj dS =

∫
S

φ (U · n) dS, (2.46)
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which can be discretized following a face cell approach as:

Nf∑
i=1

(Ufi · Sfi)φfi =

Nf∑
i=1

qφfi , (2.47)

in which qφfi is the the flux of the quantity φ in the face i. As commented above, a collocated

approach is used and thus the face values ought to be related to the cell center values and

that is achieved by means of interpolation practices. In the calculations showed in this

thesis, two types of interpolation practices are applied, namely the upwind differencing

scheme and the Quadratic Upstream Interpolation for Convective Kinematics (QUICK),

see Ferziger & Peric (2002), Leonard (1979).

2.4.3.1 Upwind Differencing Scheme

For each cell face i (the index is here abandoned) the convection flux qφf is then:

(Uf · Sf )φcu, (2.48)

where φcu is the value of φ at the cell center on the upstream side of the face. It is thus

a first order scheme.

First-order discretization for turbulence and transition equations is preferred in this thesis

(except for the SST-SAS model as discussed further ahead) as the increased diffusion (eddy

viscosity) generally represents dominant contribution to the momentum equations only

inside boundary layers; incidentally, it is precisely near walls that second-order discretiza-

tion of the convection terms of turbulence and transition equations cause convergence

problems, specially for the turbulent dissipation variable (ω), as shall be discussed later.

Therefore, by using first-order discretization, convergence problems are avoided, but not

at a cost of lowering the general accuracy of the solution. This argument has proven

reasonable as calculated grid convergence is normally close to the theoretical one, as shall

be presented in some results of this thesis.

2.4.3.2 QUICK Scheme

The QUICK scheme is applied in this thesis for the momentum equations and also for the

turbulence equations, when the SST-SAS is used. When applying QUICK, besides using

the variable values on both sides of a face, the gradient of that variable on the upstream



59

side of the face is also used. Therefore, at this point, the upstream and downstream cells

to each face have to be determined.

Identifying the cell center on the upstream side of the face with the index cu and the

cell center on the downstream side with cd and let the parameter s be defined along the

straight line between the cell centers xcu and xcd:

s =
|x− xcu|
|xcd − xcu|

. (2.49)

Then, the quadratic function φ(s) along that line is:

φ(s) = a s2 + b s+ c, (2.50)

while the first derivative is:

dφ

ds
(s) = ∇φ(s) · (xcd − xcu) = 2a s+ b.

With the three conditions:

φ(0) = φcu, (2.51)

φ(1) = φcd, (2.52)

dφ

ds
(0) = (∇φ)cu · (xcd − xcu). (2.53)

the coefficients a, b and c are solved, yielding:

a = φcd − φcu − (∇φ)cu · (xcd − xcu), (2.54)

b = (∇φ)cu · (xcd − xcu), (2.55)

c = φcu, (2.56)

so that:

φ(s) = φcu + s2(φcd − φcu) + s(1− s) [∇φcu · (xcd − xcu)] . (2.57)

Let sf denote the value of s where the line between the cell centers intersects the cell

face, then the value of φ at the intersection point is given by the expression above with s

replaced by sf :

φf = φcu + s2
f (φcd − φcu) + sf (1− sf ) [∇φcu · (xcd − xcu)] . (2.58)
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Quadratic interpolation may result in overshoots, particularly when jumps in the variable

φ are encountered. Therefore a flux limiter was necessary to make sure that wiggles in

the solution are avoided. The reader is referred to the work of Leonard (1979) for the

background of such flux-limiting schemes.

The idea behind the limiting criteria is simple, in that it only prevents the variable value

in the face to undershoot/overshoot the range defined by the upstream and downstream

cell centers. If that happens, then the limiter can change the approximation from QUICK

to Upwind, taking the value of the upstream center.

The convection term of the momentum equations is non-linear due to the velocity: U(U ·
n). This issue is dealt with by means of the Picard linearization, which is taking an

explicit contribution from the previous iteration, i.e. the mass flux (U · n) on the face is

taken from the previous iteration.

2.4.4 Diffusive Term

The diffusion flux in the generic equation reads:

∫
S

Γ(
∂φ

∂xj
)ej · n dS =

∫
S

Γ∇φ · n dS, (2.59)

which is approximated as:

Nf∑
i=1

Γfi (∇φ)fi · Sfi . (2.60)

The tensor ∇φ can be interpolated to cell faces as in the convection scheme. However,

the face value ∇φf depends on ∇φ at neighbor cell centers, which in turn depends on

φ values at cell faces etc, making a large stencil. In order to avoid that, the approach

proposed by Ferziger & Peric (2002) is adopted, which consists in splitting the the flux

into an implicit part and a deferred correction (i.e. from the previous iteration), showed

inside the box in the equation below:

∇φf · Sf =
φc2 − φc1

d
|Sf |+ ∇φf ·

(
Sf −

d

d
|Sf |

)
. (2.61)
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2.4.5 Source and Pressure Terms

The source terms for the momentum equations or for any transport equation can be

written in an integral form for an arbitrary scalar φ as:

Qφ =

∫
V

qφ dV, (2.62)

which can be discretized simply at the center of the cell c as:

Qφ
c ≈ qφc∆V. (2.63)

For the pressure term in the momentum equations, a conservative approach is considered

and the pressure term is considered as a surface force:

Qp = −
∫
S

pniei dS = −
∫
S

pI · n dS. (2.64)

The discretization form is then:

Qp
c ≈ −

Nf∑
i=1

pfI · Sf , (2.65)

in which pf is interpolated from the cell values.

2.5 Solution Process

In ReFRESCO, the conservation equations are solved in a segregated manner, i.e., in spite

of being coupled equations, they are solved individually for each variable assuming the

others as known and then an iteration procedure restores the coupling of the equations,

by satisfying all the equations within certain tolerances, which are quantified by means

of residuals.

In particular, the pressure-velocity coupling is dealt with by an iterative method based

on the Semi-Implicit Method for Pressure Linked Equations (SIMPLE) (FERZIGER;

PERIC, 2002; PATANKAR, 1980). The SIMPLE and some of its variants were firstly

developed for application with staggered configuration, but in ReFRESCO, the discretiza-

tion scheme is collocated. Spurious pressure oscillations are avoided by means of intro-

ducing a correction to the velocity fluxes at the cell faces, the so-called pressure weighted

interpolation, see Ferziger & Peric (2002).
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When the convective and source terms are non-linear, they are linearized by means of the

Picard method, see Ferziger & Peric (2002). In that manner, linear systems are derived

from each transport equation nested within the outer loops. Moreover, for unsteady com-

putations, the iteration process is to be performed within each time step. The schematic

process is showed below.

initialization

do (time loop)

increment t

do (outer loop)

solve the momentum equations with guesses or values from

previous iteration

do (inner loop)

solve linear system of equations

enddo (inner loop)

solve the poisson pressure equation

do (inner loop)

solve linear system of equations

enddo (inner loop)

correct velocity field

solve turbulence model equations

do (inner loop)

solve linear system of equations

enddo (inner loop)

solve transition model equations (when needed)

do (inner loop)

solve linear system of equations

enddo (inner loop)

enddo (outer loop)

enddo (time loop)

As seen above, there are three levels of loops: a time loop, an outer loop and the in-

ner loops. The time loop occurs in the unsteady calculations and when finished, time

is incremented. Within the outer loop, all of the equations will be solved and once all

conservation equations are satisfied within some tolerance, the outer loops are finished

and the next time loop starts. Finally, the inner loops take place when solving each of the

matrix system which result from the discretization of the equations for each component.

There are several choices of solvers available in the code, but in this thesis, the linear sys-

tems are first pre-conditioned and solved iteratively by a method based on the conjugate

gradient method, see Ferziger & Peric (2002). The pre-conditioning of the linear systems

is done with the objective of replacing the original system with one that presents the same

solution, but a smaller condition number, κ = λmax/λmin, in which λmax and λmin are,
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respectively, the largest and smallest matrix eigenvalues.

The momentum equations are pre-conditioned by block-Jacobi’s method and solved by

the Generalized Minimum Residual method; the pressure equation is pre-conditioned by

block-Jacobi’s method and solved by the conjugate gradient method; the turbulence and

transition equations are pre-conditioned by block-Jacobi’s method and solved by the Gen-

eralized Minimum Residual method. These methods are showed in Balay et al. (2013)

and Ferziger & Peric (2002).

In the following sections some details are presented on the discretization of the differ-

ent terms in the transport equations, alternating between tensor and vector notation,

whenever one or the other is more convenient.

2.5.1 Under Relaxation Procedure

Within the outer loops an under relaxation of the newly calculated variables is usually

applied in order to smooth the variation from the previously to the newly calculated

variable. For some flow property φ, the following expression is used:

φ = φold + β(φnew − φold), (2.66)

in which β is the under-relaxation parameter varying between 0 and 1.

2.5.2 Pressure-Correction Scheme

The pressure-correction scheme is obtained by the steps to follow. First the momentum

equations are solved in a segregated manner, assuming the pressure to be known, yielding

a predictor for the velocity field, which is not divergence free, however. With this pre-

liminary velocity field the Poisson equation for the pressure is solved, and with the new

pressure a correction on the velocity is made so that it satisfies the continuity equation.

This process is repeated until convergence criteria on the residuals of the equations is

satisfied.

Let the velocity field resulting from the first step be denoted as U∗. The second step
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involves the solution of the Poisson equation for the pressure4:

∇ · (∇p) = −∇ ·
{
∇ · (ρUU)−∇Γ · ∇φ

}
. (2.67)

By writing p = pn−1 + p′, the contribution related to pn−1 can be subtracted from the

original Poisson equation and the resulting equation for p′ be simplified to yield:

∇ · ∇p′ = −∇ ·U∗. (2.68)

Integration for a cell volume using Gauss’ theorem gives the relation:

∫
S

∇p′ · n dS = −
∫
S

U∗ · n dS, (2.69)

which is discretized as

Nf∑
i=1

∇p′f · Sf = −
Nf∑
i=1

U∗f · Sf , (2.70)

Finally the velocity field is updated with:

U = U∗ − ∆V

Auc
(∇p′ −∇p′), (2.71)

where Auc is a coefficient obtained from the discretization of the momentum equation and

∇p′ is a pressure weighted interpolation correction.

The elements showed above are combined with the turbulence modeling aspects of the

following Chapter to support large part of the work presented herein.

4This Poisson equation can be obtained by taking the divergence of the momentum equations and
combining it with the continuity equation (FERZIGER; PERIC, 2002).



Chapter 3

Turbulence Modeling

This chapter presents the formulation and details of the turbulence models im-

plemented for the applications developed in this doctoral work. The details of

the implementation as done within the framework of ReFRESCO and discus-

sion concerning the capabilities of the models are carried out aiming at their

application to the cylinder flow problem.

3.1 k − ω SST Model

In its original version, Menter (1994) developed this turbulence model based on two trans-

port equations, one for the turbulent kinetic energy, k, and one transport equation for the

dissipation per unit kinetic energy, ω. The Shear Stress Transport (SST) model is similar

to Menter’s Baseline model (BSL). The BSL model was based on Wilcox’s k − ω formu-

lation in the near wall region and on the standard k − ε model (LAUNDER; SHARMA,

1974) in the outer wake region and in free shear layers. The SST additionally includes

modifications to the eddy viscosity. Furthermore, Menter, Kuntz & Langtry (2003) fur-

ther improved it by again changing the definition of the eddy viscosity, limiters and model

constants, modifications implemented in ReFRESCO during this work.

The equation for transport of turbulent kinetic energy, k, is given by:

∂ρk

∂t
+

∂

∂xj
(ρUjk) = Pk − β∗ρωk +

∂

∂xj

[
(µ+ σkµt)

∂k

∂xj

]
. (3.1)

In this equation, the production term is Pk = µtS
2 − µt 2

3

(
∂Uk
∂xk

)2

− ρk 2
3

(
∂Uk
∂xk

)2

, in which

S2 = SijSij and Sij = 1
2

(
∂Ui
∂xj

+
∂Uj
∂xi

)
. For incompressible flow, the two latter terms of the

65
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production vanish. It is worth noting that a realizability condition limiting the growth

of turbulence in stagnation regions is advisable: P̃k = min(Pk, 20β∗kω) for k-ω SST 1994

and P̃k = min(Pk, 10β∗kω) for k-ω SST 2003.

The equation for transport of turbulent frequency, ω, is:

∂ρω

∂t
+

∂

∂xj

[
ρUjω − (µ+ σωµt)

∂ω

∂xj

]
= γρΩ2 − βρω2 + 2(1− F1)

ρσw2

ω

∂k

∂xj

∂ω

∂xj
, (3.2)

where Ω2 = 2ΩijΩij and Ωij = 1
2

(
∂Ui
∂xj
− ∂Uj

∂xi

)
. The auxiliary function F1 seen in equa-

tion 3.2 makes the transition between the k− ω original model and the k− ε, connecting

the shear areas and the free-stream areas:

F1 = tanh [min[max(2
√
k

0.09dω
, 500ν
d2ω

), 4ρσw2κ
CDkωd2

]]4,

β∗ = 0.09, κ = 0.41,
(3.3)

in which d is the distance from the nearest grid point to the wall and the term CDkω is

defined in k − ω SST 1994 as:

CDkω = max(
2ρσw2

ω

∂k

∂xj

∂ω

∂xj
, 1× 10−20), (3.4)

whereas, in k − ω SST 2003, it is defined differently:

CDkω = max(
2ρσw2

ω

∂k

∂xj

∂ω

∂xj
, 1× 10−10). (3.5)

The coefficients β, γ, σk and σw provide the transition between the original Wilcox’s k−ω
model (WILCOX, 1988), denoted by 1, and the k−εmodel (LAUNDER; SHARMA, 1974),

denoted by 2:

φ = F1φ1 + (1− F1)φ2, φ = {β, γ, σk, σw}, (3.6)

with the coefficients being:

σk1 = 0.85, σω1 = 0.50, β1 = 0.075,
σk2 = 1.00, σω2 = 0.856, β2 = 0.0828.

(3.7)

The constant γ is defined in k − ω SST 1994 as:

γ1 = β1/β∗ − σω1K
2/
√
β∗ = 0.553,

γ2 = β2/β∗ − σω2K
2/
√
β∗ = 0.4404,

(3.8)
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whereas, for the k − ω SST 2003:

γ1 = β1/β∗ − σω1K
2/
√
β∗ = 0.556,

γ2 = β2/β∗ − σω2K
2/
√
β∗ = 0.4400.

(3.9)

The eddy viscosity in k − ω SST 1994 is determined by:

µt =
ρa1k

max(a1ω,ΩF2)
, a1 = 0.31. (3.10)

The auxiliary function F2 is defined using the wall distance d:

F2 = tanh [max(2

√
k

0.09dω
,
500ν

d2ω
)]2. (3.11)

In the latter version k − ω SST 2003, the eddy viscosity is defined differently:

µt =
ρa1k

max(a1ω, SF2)
, a1 = 0.31, (3.12)

in which S =
√

2SijSij replaces Ω in the previous definition.

In order to initialize and set the inflow values for the turbulent quantities in ReFRESCO,

the values are set for eddy viscosity by means of a relation with laminar viscosity:

f = µt/µ, (3.13)

because it is easier to relate to that than to kinetic energy itself. The quantities are then

imposed by setting f or µt/µ and computing k and ω using dimensional considerations:

k = fν × 10
Uref
Lref

, (3.14)

and:

ω = 10Uref/Lref . (3.15)

Furthermore, the following conditions hold on the wall:

k = 0, ω = 10
6ν

β
d2. (3.16)

In these equations, Uref and Lref are reference values. The ω boundary condition usually

causes convergence problems in the convective term, where the face values are needed.

Flux limiters are important for that issue and, furthermore, it has been observed that y+

has to be small (of the order 1 − 0.1 for the asymptotic trend of ω to be captured (see
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also Eça & Hoekstra (2008)).

This model has been widely applied due to the good performance in adverse pressure

gradients and is known not to be largely sensitive to far-field turbulence values. The

improvements brought by the k-ω SST compared to the previous ones within RANS have

predicated its use together with the modern hybrid models such as PANS, DES, DDES,

SAS and the LCTM showed below.

3.2 SST-SAS Model

The concept of Scale-Adaptive Simulations (SAS) arises from the need to improve the

modeling with regards to the turbulent scales. In this class of models, the first transport

equation still treats turbulent kinetic energy, but the second transported variable is now

directly related to the integral length scale, calculated form the two-point correlation

tensor, Rij = u
′
iu
′
j, measured in two different places which span the field at time t:

L(x, t) =
3

16

∫ ∞
0

Rii(x, t; r)

k(x, t)
dr. (3.17)

Rotta (see Wilcox (1993)) was the first to formulate a transport equation for the variable

kL. However, despite the somewhat superior theoretical content of this model, it did not

really succeed in its original form, since it could not comply with the logarithmic law on

the wall without further adjustments. It was not until about 30 years later that this model

was revisited by Menter & Egorov (2004), Menter, Langtry & Volker (2006), Menter &

Egorov (2010), in which the authors argument that in Rotta’s model, a second deriva-

tive term from the Taylor expansion of kL did not vanish for inhomogeneous turbulence.

Therefore, Menter and co-workers kept that term in the derivation of the equations and

the boundary layer solution then followed the logarithmic law without any adjustments.

In fact, Menter enthusiastically argues in favor of the SAS-based models, pointing out

some features that make them more suitable than the commonly used RANS models.

Firstly, he points out that the only input from the flow to the turbulence equations is the

flow strain, S =
√

2SijSij, which has dimension 1/T and thus could not carry enough in-

formation to yield two output scales. Therefore, in the new model, another input is used,

namely the length scale is included in the source term of the second transport equation.

In fact, Menter & Egorov (2010) analyze the traditional two-equations models and con-

clude that the integral length scale produced is L ∼
√
k/ω. This means that the maximum

length of eddies formed in a turbulent flow calculated with standard two-equations models
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is proportional to the thickness of the shear layer itself. Menter arguments that this is

appropriate for steady shear flows, but not unsteady ones, as it damps the larger resolved

scales.

One of the most interesting features brought by the SAS model is its ability to adjust the

local flow scales. That is only achieved due to the additional source term in the transport

equation for the second scale which relies on higher derivatives of the velocity, besides

strain rate or vorticity. Egorov & Menter (2008) showed the adaptation of the concept

inherent of the SAS to the k − ω SST turbulence model. Firstly, the transformation of ω

to
√
kL is done as follows:

ω =
k

c
1/4
µ

√
kL

. (3.18)

Therefore, applying the chain rule:

Dω

Dt
=

1

c
1/4
µ

(
1

kL

Dk

Dt
− k

(kL)2

D(kL)

Dt

)
. (3.19)

This was introduced by Egorov & Menter (2008), Menter & Egorov (2010) into the k−ω
SST 2003 model. The equations for k and ω are derived as:

∂ρk

∂t
+

∂

∂xj
(ρUjk − (µ+ σkµt)

∂k

∂xj
) = Pk − β∗ρωk,

∂ρω

∂t
+

∂

∂xj
(ρUjω) = Pw − βρω2 +

∂

∂xj

[
(µ+ σωµt)

∂ω

∂xj

]
+ 2ρ (1− F1)

σw2

ω

∂k

∂xj

∂ω

∂xj

+ρmax

[
ζ2S

2

(
L

LvK

)2

− 2
2k

σΦ

max

(
1

ω2

∂ω

∂xj

∂ω

∂xj
,

1

k2

∂k

∂xj

∂k

∂xj

)
, 0

]
,

(3.20)

in which one notices that: i) the first equation is unchanged from the SST 2003 model

and ii) in order to recover the performance of SST model in boundary layers, the SAS

model was reformulated as an additional term to the ω equation, QSAS, not disturbing the

boundary layer performance of the SST, but allowing the SAS performance in unsteady

situation. Moreover, the term Lvk introduced above is a generalization of the von Kármán

length of boundary layer formulation to three-dimensional flows. It represents a natural
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length scale for the flow. It is defined as:

LvK = κ

∣∣∣∣∣∣
√

2SijSij√
∂2Ui
∂x2k

∂2Ui
∂x2j

∣∣∣∣∣∣ . (3.21)

3.2.1 A Discussion on the Scales

From the model formulation, the Scale Adaptive Simulations allows one to determine the

turbulent scales directly from Eq. 3.18 and the term QSAS takes not only the shear strain,

but also the natural length scale, thus diffusion does not play a role in determining the

local scales. Hence, it arrives (MENTER; EGOROV, 2010):

L =

√
ζ1 − ζ3/c

3/4
µ

ζ2

LvK . (3.22)

This means that the maximum order of magnitude of the turbulent scales will adjust to

the von Kármán length scale (L ∼ LvK). Restating the conclusions so far:

• The two equation models normally solve one transport equation for the turbulent

kinetic energy and another for the second scale, providing closure;

• The second scale is normally chosen as the dissipation or some variation of that,

producing an inconsistency as, at this point, turbulence is less important than vis-

cous dissipation. More physically consistent, closure should be obtained by using

the integral (turbulent) length scale;

• For the usual two-equation models, the maximum integral length scale that is pre-

dicted in a shear flow is of the order of magnitude of the shear layer thickness:

L ∼ δ. This happens because there is only one physical input in the source terms of

the turbulent equations, thus diffusion plays a role in determining the output scales;

• On the other hand, models based on the SAS concept predict turbulent length scales

of down to the order of magnitude of the natural length scale, represented by the

von Kármán length scale, L ∼ LvK . This is because the turbulent equations now

present two input scales (the strain and another based on higher derivatives - von

Kármán scale), thus the source terms determine both scales.
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3.2.2 Comparison with Other URANS Models

Some question that might be raised are the following: What is the fundamental difference

between the usual two-equation models and the SAS-based models and why do they re-

spond organically in different manners?

In order to try to answer those questions, it is useful to first take a step back and discuss

a more fundamental question regarding the very nature of the URANS equations. As

stated by Menter & Egorov (2010), there are mainly two schools of thought regarding the

URANS approach: for the first, there is a separation of scales and URANS averages out

all turbulent fluctuations and resolves only frequencies far lower than those of the tur-

bulent fluctuations, which typically result from the variations in geometry or boundary

conditions. For the other, URANS means application of turbulence models, derived based

on the forming arguments of RANS, to the unsteady simulations, independent of the res-

olution content. The difference is subtle, but it will be more clear with the discussion to

follow.

Revisiting the fundamental difference between equation 3.2 and the second of equa-

tions 3.20, the source terms of the former only contains an input from the flow field

in the shear strain, S. For the latter, the QSAS term actually contain not only the strain,

but also an information regarding the local scale, LvK , which contains a higher derivative

of velocities. Therefore, there is more information available in the source term of the

latter than in the former. Now, as a result, in order to get closure from the turbulence

equations (two turbulent scales should be determined), the diffusion term in equations 3.2

has to play a role, since convection is less important inside the logarithmic layer. Because

of that, the scales that were resolved by the averaged momentum equations are actually

damped and the effective length scale predicted by the model is limited by the thickness

of the turbulent layer, due to the diffusion term. On the other hand, as equations 3.20

do present enough input to determine the two output scales, adjusting to the scales that

the momentum equations actually resolved. Yet another question that might be raised

concerns the reason why the von Kármán length scale is the appropriate additional term

in the length scale equation. In constant shear, the turbulent frequency is constant in the

shear layer and proportional to the shear strain, thus different eddies can merge and, in

the limit, the eddies can grow to infinity. For nonhomogeneous shear, the shear strain is

no longer constant, varying in the shear layer as S = S(y) (y is the distance from the

wall) and so does the turbulent frequency: ω = ω(y). Therefore, eddies with different

frequencies can no longer merge and thus the eddies are limited in size. Their size de-

pends, in first order, on the shear strain and its variation, which is in turn given by the

von Kármán length scale, LvK .
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Therefore, SAS models are able to adjust the inherent scales of the flow because diffusive

term does not play a role in determining the length scale produced in the second equation;

contrary to that, the additional QSAS is able to produce that in the shear layer. Further-

more, and most importantly, the RANS equations are able to reproduce the scales of the

flow, of course, up to a certain frequency, but the usual models normally damp those

scales, returning the shear layer scale instead. That is why one can only observe the very

low frequencies, which are mostly associated with variation of geometry and boundary

conditions. Moreover, expanding this concept to the unsteady calculations, some impor-

tant part of the turbulent spectrum should also be possible to calculate, since the SAS

model allows adjustment to local scales and the break-up of eddies into smaller ones is

merely a result of the interaction between non-linear convection term and the viscous one.

Finally, perhaps a more philosophical issue can be raised concerning the different schools

of thought. Following the author’s line of thought, the URANS equations combined with

the usual turbulence models may have followed a path which did not favor it so much,

precisely because of its fundamental flaws: the inconsistency in the turbulent scales and

its inability to adjust to the local flow. This means that the biggest problems attributed

to URANS would actually reside in the poor turbulence modeling. Of course, there is also

a very important issue slightly overlooked here and there is the fact that, as Bradshaw

stated, turbulence is a solution of the Navier-Stokes equations, which are strongly non-

linear, especially when the perturbing parameter, Reynolds numbers, are high. Hence, one

cannot really decouple turbulence from the mean equations. That is indeed a drawback.

Nevertheless, even the averaged equations are still non-linear, so one should still expect

an important amount of non-linear behavior up to some frequencies. That is why it is

possible to observe instabilities in all directions of the flow with SAS models.

In summary, regarding the SAS models:

• They are based on the modeling of a second mechanical scale in the source terms in

addition to the strain rate tensor or vorticity tensor;

• Provide RANS solutions in stable flow regions;

• Allow break-up of turbulent structures for unstable flow;

• Provide better damping of high-frequency resolved content;

• Contrary to other models such as DES and LES, the previous features are achieved

without explicit dependency on the grid or time-step other than the physical one.
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3.3 Transition Modeling

The transition from laminar to turbulent flow is a process in which a series of events

drives an initially laminar flow to the fully turbulent state. These events are essentially

triggered by small perturbations with characteristic lengths and amplitudes which, as in

a nonlinear mechanical system, can be amplified or damped.

In boundary layer flows, the primary instability is known as Tollmien-Schlichting waves.

These waves are essentially two-dimensional and are superimposed onto the laminar flow as

of the so-called indifference Reynolds number, which features the begining of the transition

process. This phenomenon can be shown by linearizing the equations of motion (leading

to the Orr-Sommerfeld equations) and analyzing their stability.

The secondary instability is, on the other hand, three-dimensional because three dimen-

sional waves are superimposed onto the flow downstream. This instability leads to the

formation of Λ-structures, after which turbulent spots appear giving rise to fully turbulent

flow.

Figure 3.1: Sketch representing the stages of transition (SCHLICHTING H., 2000).

The transition phenomenon described above is characteristic of boundary layers flow devel-

oping about a solid wall with small curvature and low inflow turbulence levels. Therefore

this transition is more gradual and soft and thus called natural. In natural transition,

one sees the developing of the events above described, namely the two-dimensional insta-

bilities, followed by three-dimensional ones, the appearance of turbulent spots and finally

full turbulence.

The flow can also be more largely disturbed triggering a more abrupt transition process.
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When this abrupt transition occurs, the first events are bypassed, thus the name bypass

transition. Bypass transition can be triggered by large free-stream turbulence, yielding

transition from namely laminar flow to a flow with some turbulent spots and fully turbu-

lent downstream. Figure 3.1 depicts this process.

Transition is also influenced by separated flows, such as flows with recirculation regions.

Laminar boundary-layer separates under the influence of pressure gradient, which causes

transition to develop in the separated shear layer.

The prediction of transitional flows is a topic, as transition itself, in the edge of knowledge.

There is a lot of research being carried out about it. The following approaches are some

of the ones used nowadays:

• Only full Direct-Numerical-Simulations (DNS) can predict correctly all types of

transitions. The computational demands are still nowadays impossible for industry

purposes;

• Large Eddy Simulations with subgrid-scale modelling are an interesting option to

DNS, but some transitional flows are not well computed and computations are still

expensive;

• Parabolized stability equations and the en method are used, with good results, for

natural transition parallel flows, such as wing flows. They rely on calibration with

experimental data from wind tunnels, mostly;

• Empirical correlations rely on the experimental data regarding the Reynolds num-

bers for each transitional flow. If used with RANS models, only after this local

Reynolds number, the turbulence modelling is activated;

• The Local Correlation Transition Modeling (LCTM) is based on transport equations

forming a framework in which empirical correlations can be used in order to control

the boundary layer quantities, such as turbulent kinetic energy.

In the present work, the LCTM presented by Langtry & Menter (2009) is used in the

framework of ReFRESCO. As Menter, Langtry & Volker (2006) mention, the cornerstone

of this approach is that the concept of strain rate Reynolds number can provide the

connection between the transition onset Reynolds number and empirical correlations to

obtain the local boundary-layer quantities. Thus, the integration of the boundary-layer

velocity profile is avoided when determining the onset of transition. This complies with

the general idea of forming a local-based model, thus dispensing non-local operations.
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The strain rate Reynolds number is defined as:

Rev =
ρd2

µ
S. (3.23)

In order to broaden the applicability of the model to different types of flows, Langtry &

Menter (2009) have scaled Rev in a Blasius boundary layer such that, at its maximum, it

reaches unity. The scaling is performed by means of the Reynolds momentum thickness,

Reθ, that is, the Reynolds number calculated with the momentum thickness θ. The

relation between the Reynolds numbers is then written as:

Reθ =
max(Rev)

2.193
. (3.24)

It is shown by Langtry & Menter (2009) that, for moderate pressure gradients, the differ-

ence between the actual Reynolds momentum thickness and the strain rate Reynolds is

less than 10% and thus the scaling is valid, furthermore because most of the experimental

available data on transition falls in this range. For strongly adverse pressure gradients,

the difference can be quite large, but this can even work in favor of the model, since it

can better capture separation-induced transition.

The idea behind this procedure is to make it possible to use the experimental data on a

common basis, but also because there is a physical relation between strain rate Reynolds

and the growth of the disturbances in the boundary layer, leading to turbulent flow. The

use of the strain rate Reynolds number combined with experimental transition correla-

tions and transport equations comprises the main idea of the model. The transported

quantities are the intermittency factor, γ, which is models the local laminar/turbulent

state of the flow and the transition onset momentum thickness Reynolds number, R̃eθt,

which is a non-local quantity that, by means of the transport equation can be calculated

locally.

Furthermore, it ties the empirical correlation (which is given in terms of Reynolds mo-

mentum thickness) to the onset criteria in the intermittency equation, allowing for general

geometries.

In Langtry & Menter (2009), the intermittency is coupled to the k-ω SST-1994 turbu-

lence model (MENTER, 1994), however coupling with k-ω SST-2003 is done herein. The

intermittency function works together with the k-equation production term, increasing

downstream of the transition point, which is determined based on the relation between

strain rate and transition momentum thickness Reynolds number. In what follows, the

equations and correlations as derived by Langtry & Menter (2009) are presented and
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therefore, only the most important parts are described.

The intermittency transport equation reads:

∂(ργ)

∂t
+

∂

∂xj
(ρUjγ) = Pγ − Eγ +

∂

∂xj

[
(
µt
σf

+ µ)
∂γ

∂xj

]
. (3.25)

The production term, Pγ is the production of γ that works with two empirical correlations:

the first correlation determines the transition onset (regulating where γ increases) and the

second determines the transition length regulating the intensity of the production. The

term Eγ determines the destruction of γ (or relaminarization). It is relevant to note that

such correlations are determined from flat plate experiments, hence other applications

with geometries very dissimilar to that ought to be analyzed carefully, as done here for

the fixed and moving cylinder.

The production term is calculated as:

Pγ = Flengthca1ρS[γFonset]
0.5(1− ce1γ), (3.26)

in which Flength is the empirical correlation that controls the transition length and Fonset,

the transition onset location.

The destruction/relaminarization is defined as:

Eγ = ca2ρΩγFturb(ce2γ − 1), (3.27)

in which Ω is the absolute vorticity, Ω =
√

2ΩijΩij and Fturb is employed to disable the

destruction term outside a laminar boundary layer or in the viscous sublayer. It is defined

as:

Fturb = e−(
RT
4

)4 , (3.28)

where:

RT =
ρk

µω
. (3.29)
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The following functions control the transition onset:

Fonset1 = Rev
2.193Reθc

,

Fonset2 = min(max(Fonset1, F
4
onset1), 2.0), (3.30)

Fonset3 = max(1− (RT
2.5

)3, 0),

Fonset = max(Fonset2 − Fonset3, 0).

The variable Reθc is the critical Reynolds number where intermittency first rises, which

happens upstream of the transition Reynolds number R̃eθt. The difference between them

is obtained from an empirical correlation.

Based on experimental results for flat plate, the following correlations for Flength are

sought:

Flength =



[398.189 · 10−1 + (−119.270 · 10−4)R̃eθt + (−132.567 · 10−6)R̃e
2
θt],

(R̃eθt < 400)

[263.404 + (−123.939 · 10−2)R̃eθt + (194.548 · 10−5)R̃e
2
θt + (−101.695 · 10−8)R̃e

3
θt],

(400 ≤ R̃eθt < 596)

[0.5− (R̃eθt − 596.0) · 3.0 · 10−4],

(596 ≤ R̃eθt < 1200)

[0.3188],

(1200 ≤ R̃eθt)

(3.31)

Langtry & Menter (2009) argue that, in certain cases, R̃eθt will decrease to very small

values shortly after transition, causing a local increase in the source term of the intermit-

tency equation, causing in turn a sharp and unphysical increase in skin friction. In order

to avoid that, Flength is forced to return to its maximum value in the viscous sublayer:

Fsublayer = e−(Rω
0.4

)2 , (3.32)

Rω =
ρd2ω

500µ
, (3.33)

Flength = Flength(1− Fsublayer) + 40.0 · Fsublayer. (3.34)
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Finally, the correlations for Reθc as function of R̃eθt are:

Reθc =


[R̃eθt − (396.035 · 10−2 + (−120.656 · 10−4)R̃eθt + (868.230 · 10−6)R̃e

2
θt+

(−696.506 · 10−9)R̃e
3
θt + (174.105 · 10−12)R̃e

4
θt)], R̃eθt ≤ 1870

[R̃eθt − (593.11 + (R̃eθt − 1870.0) · 0.482)], R̃eθt > 1870
(3.35)

The constants for the intermittency equation are:

ce1 = 1.0, ca1 = 2.0, ce2 = 50, ca2 = 0.06, σf = 1.0. (3.36)

Separation-induced transition is achieved by means of the following modification to the

intermittency:

γsep = min(s1 max[0, (
Rev

3.235Reθc
)− 1]Freattach, 2)Fθt, (3.37)

Freattach = e−(
RT
20

)4 , (3.38)

γeff = max(γ, γsep), (3.39)

s1 = 2. (3.40)

The boundary condition of γ is zero normal flux at the walls and γ = 1 elsewhere.

The experimental data for transition correlate the Reynolds number at the transition

onset, Reθt to some variables of the flow in the free-stream, which configures a non-local

operation. Thus the idea behind the second transport equation is to transform the non-

local correlations Reθ (which are functions of free-stream quantities) into local variables,

R̃eθt. These are then used to calculate transition length and the critical Reynolds number,

Reθc at every location of the flow so that the intermittency equation can be solved. Thus,

the following transport equation for the transition momentum thickness Reynolds number,

R̃eθt is proposed:

∂(ρR̃eθt)

∂t
+

∂

∂xj
(ρUjR̃eθt) = Pθt +

∂

∂xj
[(µ+ µt)

∂R̃eθt
∂xj

], (3.41)

in which Pθt is the production term.
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The production term, Pθt, is calculated as:

Pθt = cθt
ρ

t
(Reθt − R̃eθt)(1.0− Fθt), (3.42)

and t is a time scale:

t =
500µ

ρU2
. (3.43)

Outside of the boundary layer, the production term forces R̃eθt to match the local value of

Reθt calculated from the empirical correlations of the latter with some other variables of

the flow. These will be presented ahead. Furthermore, the blending function Fθt is applied

to turn off the production term inside the boundary layer and allow R̃eθt to diffuse in from

the free-stream. This blending function is zero in the free-stream and one in the boundary

layer. It is defined as:

Fθt = min(max(Fwake · e−( d
δ

)4 , 1.0− (
γ − 1/ce2

1.0− 1/ce2
)2), 1.0) (3.44)

The following variables are also calculated:

θBL =
R̃eθtµ

ρU∞
, δBL =

15

2
θBL, δ =

50Ωd

U
, (3.45)

Reω =
ρωd2

µ
, (3.46)

Fwake = e−(Reω
105

)2 . (3.47)

Equation 3.47 ensures that the blending function is inactive in wake zones. Finally, the

constants to these equations are:

Cθt = 0.03, σθt = 2.0. (3.48)

The boundary condition for R̃eθt at the walls is zero flux and in the inlet, should be

calculated from the empirical correlations for transition onset showed below. The following

parameters are nedeed:

λθ =
ρθ2

µ

dU

ds
, (3.49)
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where U =
√∑3

i=1 u
2
i and dU

ds
is the streamwise direction derivative of U , which will is

calculated applying the chain rule. The turbulence intensity is:

Tu = 100

√
2k/3

U
. (3.50)

The empirical correlations for transition onset are defined as follows:Reθt = [1173.51− 589.428Tu+ 0.2196
Tu2

]F (λθ), Tu ≤ 1.3

Reθt = 331.50[Tu− 0.5658]−0.671F (λθ), Tu > 1.3
(3.51)

and F (λθ) = 1− [−12.986λθ − 123.66λ2 − 405.689λ3
θ]e
−[Tu

1.5
]1.5 , λθ ≤ 0

F (λθ) = 1 + 0.275[1− e[−35.0λθ]]e−[Tu
0.5

], λθ > 0
(3.52)

Moreover, the following limiters are applied:

−0.1 ≤ λθ ≤ 0.1, Tu ≥ 0.027, Reθt ≥ 20. (3.53)

Equations 3.51-3.52 have to be solved iteratively as λθ depends on θt.

The transition model interacts with the k-ω SST 2003 model as follows:

∂(ρk)

∂t
+

∂

∂xj
(ρUjk) = P̃k − D̃k +

∂

∂xj
[(µ+ σkµt)

∂k

∂xj
], (3.54)

in which

P̃k = γeffPk, D̃k = min(max(γeff , 0.1), 1.0)Dk, (3.55)

Ry =
ρd
√
k

µ
, F3 = e−(

Ry
120

)8 , F1 = max(F1orig, F3). (3.56)

The parameters Pk and Dk in equation 3.54 and F1orig, in equation 3.56 are the original

ones proposed by Menter (1994). One notices, therefore, that when the LCTM is consid-

ered, there are two additional transport equations which are added to the momentum and

turbulence equations in a grand total of seven transport equations being solved simulta-

neously. This will evidently lead to more difficult iterative and overall convergence.

The theoretical elements showed in this Chapter are the basis of the turbulence models

used in this work and their application for the stationary cylinder and the coupling with
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the moving cylinder are an important part of the contributions presented herein.
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Chapter 4

Fluid Structure Interaction

This chapter shows the mathematical formulation and details of the numer-

ical implementation of the interaction between the solid and fluid domains.

The detailed approach for handling body motions in the URANS/ReFRESCO

framework is presented, which is one of the contributions of the present work

4.1 Dynamics of the Rigid Body

The dynamic equations for the rigid body enables one to describe the attitude of the body

subjected to external loads. The following external forces are considered: hydrodynamic

forces, herein calculated with ReFRESCO, FH; the linear mechanical restoring forces,

FK; and the linear viscous (Coulomb-type) mechanical damping forces, FC.

In general, the dynamic equations can either be formulated in inertial, earth-fixed or non-

inertial, body-fixed reference systems, with advantages and disadvantages pertaining to

each alternative. Writing the equations in inertial frame system dispenses the additional

non-inertial contributions to the equations of motion as well as dispensing transformation

between coordinate systems. On the other hand, a major disadvantage of writing the

equations in global system is that moments and products of inertia are then function of

time as the body changes the attitude and thus have to be recalculated. In any case,

the equations are formulated by using energy considerations, e.g. Lagrange or Hamilton

formulations, or by means of Newton’s second law, arriving at equations for up to six

degrees-of-freedom:

Mr̈ = FT, (4.1)

83
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in which M is a mass matrix which is here constant, r̈ is a state vector and FT is the

total generalized forces vector.

In the non-inertial system formulation, an inertial generalized forces vector, FI must be

included in the right-hand side of equation 4.1 to yield:

Mr̈ = Fext − FI. (4.2)

In the present case, the interest falls upon two degrees-of-freedom (DOF) motions, that

is, motions transverse and aligned with the flow direction. In this situation, it follows

that the inertial and non-inertial formulations coalesce because FI ≡ 0. For that reason,

implementation and use of the inertial-frame formulation has been carried out as showed

below. Nevertheless, Bettle (2012), Leroyer (2004) and others have shown that, for gen-

eral six degrees-of-freedom motions, the non-inertial reference frame formulation is more

convenient and normally constitutes the preferred choice.

In the inertial reference frame associated with two DOF systems, the equation 4.1 can be

written for the center of gravity of the body, G, resulting in the following mass matrix:

M =

[
m 0
0 m

]
, (4.3)

and the state vector:

r =
{
XG, YG

}T
. (4.4)

The total force then corresponds to FH, FK and FC:

FT = FH + FC + FK. (4.5)

The restoring and damping forces are respectively written as:

FC = −Cṙ, (4.6)

FK = −Kr. (4.7)

The dynamic equations are then rewritten as:

Mr̈ = FH −Cṙ−Kr, (4.8)

in which the terms of the damping and stiffness matrices are positive. These equations

form a second-order non-linear initial value problem (IVP). It is non-linear because the
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hydrodynamic forces, FH , keep a non-linear relation with ṙ, which evidently cannot be ex-

plicitly derived as they are obtained through the solution of the Navier-Stokes equations.

That non-linear, two-way coupled relation is the core of the fluid-structure interactions

herein studied and their solution strategies constitute one of the great issues of this re-

search.

In order to solve the IVP by means of traditional methods, let us reduce the order of the

differential equations to one by writing:

κ̇ =M−1(FH −Cṙ−Kr) (4.9)

ṙ =κ, (4.10)

in which M is assumed non singular.

These equations are conveniently combined as:

y = { κ r }T , (4.11)

and

h = { M−1(FH −Cṙ−Kr) κ }T . (4.12)

4.2 Coupling of Fluid and Structure Equations

The information exchanged between the fluid and the solid domains basically consist on

the loads exerted on the cylinder by the fluids and on the body velocity, fed back into the

fluid domain equations iteratively upon solution of the problem.

The hydrodynamic loads are calculated as follows:

Fi =

∫
SB

(
−Pni + µ(

∂Ui
∂xj

+
∂Uj
∂xi

)

)
dS, (4.13)

Mi =

∫
SB

(εijkdjFk)dS, (4.14)

in which d is the distance vector from the surface point where force is applied to the pole

about which the moment is calculated and SB is the body surface.
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The grid velocity is calculated as showed in Chapter 2:

Ug = UO + Ω ∧ x, (4.15)

in which the translation velocity is identified as UO and the rotation velocity, as Ω ∧ x.

Different coupling schemes have been developed for CFD calculations of VIV of rigid

cylinders. Weakly or loosely coupled schemes have shown robust for this application

and have been largely applied, such as in Carmo (2009). In this type of scheme, body

motion is coupled with the flow solver in the time-step level, thus generally requiring fine

time steps for convergence of the equations. Furthermore, in this case, both explicit and

implicit time integration methods can be used to solve the dynamics of the rigid body,

with similar performance for small time steps. Conversely, strong or tight schemes were

also developed and constitute a necessary choice when mass ratios are low and in cases

when the added mass causes instabilities, see Leroyer (2004), Bettle (2012). In this case,

implicit schemes are normally used due to the nesting of iterative rigid body motions with

the iterative flow solution. During the course of this research, both weakly and strongly

coupled schemes have been developed, with very similar results. In spite of somewhat

more costly calculations for the strongly coupled one, it has been chosen due to greater

robustness. Nevertheless, both methods shall be presented herein.

4.3 Weakly Coupled Scheme

In the weakly coupled scheme, the communication between fluid and structure is done at
the time step level. In the work carried out for this thesis, this was carried out either with
the explicit second-order Runge-Kutta (RK) scheme, or with the implicit second-order
Adams-Bashforth-Moulton (ABM) scheme. In either case, the schematic solution process
becomes:

initialization

do (time loop)

increment t

solve equations of motion of the solid domain

calculate grid velocity

update grid position

update velocity field and boundary conditions

do (outer loop)

solve the momentum equations

do (inner loop)

solve linear system of equations

enddo (inner loop)
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solve the pressure Poisson equation

do (inner loop)

solve linear system of equations

enddo (inner loop)

correct velocity field

solve turbulence model equations

do (inner loop)

solve linear system of equations

enddo (inner loop)

solve transition model equations (when required)

do (inner loop)

solve linear system of equations

enddo (inner loop)

enddo (outer loop)

enddo (time loop)

In the explicit Runge-Kutta Scheme, figure 4.1, the structural solver gets as input the

hydrodynamic force and moment and the structural response at time level n in order

to calculate the structural response at the time level n + 1. The calculated structural

velocity (which is, in fact the grid velocity) is then updated in the field solution before

the outer loop begins. This explicit scheme normally requires smaller time steps than an

implicit one, however, it is found that the necessary time steps required for stability of

the structural solver are normally not lower than the required by the flow solver for a

reasonable accuracy and time-discretization independent solutions.

Figure 4.1: Fluid-structure coupling with explicit weak Rung-Kutta coupling scheme.

In the implicit predictor-corrector scheme, figure 4.2, the communication between fluid

and structure solvers is also done at the time step level, i.e. the time loop. For this reason,

it is still regarded as a weak coupling. However, as it is implicit and iterative within the

structural solver, it is more stable than Runge-Kutta, for the same order of accuracy. At

the time level n the predictor scheme produces an estimate of the solution at the time

level n + 1 based on fluid and structure solutions at two time levels (n, n − 1). Then

the corrector step iterates to derive the solution at time level n + 1 with the structural

solutions at time levels n + 1, n. Notice that the fluid solution at the time level n + 1 is

not included, since it has not been yet calculated. Hence, this scheme is implicit in terms
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of the structural solver, but not with respect to the fluid solver, which is the reason why

it is still regarded as weakly coupled.

 

Figure 4.2: Fluid-structure coupling with implicit weak Adams-Bashforth-Mouton cou-

pling scheme.

4.4 Strongly Coupled Scheme

Leroyer (2004) and Bettle (2012) have discussed the stability of the coupling methods with
regards to the structural mass and added mass. It has been shown that when the ratio
between added mass and structural mass is larger than one, instability problems might
occur due to the build-up of numerical error in the iterative procedure. The strongly
coupled approach adopted herein showed to be a remedy for this situation and stability was
unconditionally achieved by applying this approach. The strongly coupled scheme used
here is based on the second-order Adams-Bashforth-Mouton scheme1, but differently from
the weak coupling, the communication is done at the time loop level with the predictor
and at the outer loop level with the corrector, as the schematic procedure below shows.

initialization

do (time loop)

increment t

solve equations for the solid domain with predictor Adams-Bashforth

scheme

calculate grid velocity

update grid position

update velocity field and boundary conditions

do (outer loop)

solve the momentum equations

do (inner loop)

solve linear system of equations

enddo (inner loop)

solve the pressure Poisson equation

do (inner loop)

1It is worth noting that the order of the method used for solving the dynamics of the rigid body
need not be of higher order than two since the global order of convergence is limited by the flow domain
discretization.
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solve linear system of equations

enddo (inner loop)

correct velocity field

solve turbulence model equations

do (inner loop)

solve linear system of equations

enddo (inner loop)

solve transition model equations (when required)

do (inner loop)

solve linear system of equations

enddo (inner loop)

solve equations for the solid domain with corrector Adams-Moulton

scheme

calculate grid velocity

update grid position

update velocity field and boundary conditions

enddo (outer loop)

enddo (time loop)

Figure 4.3 shows the schematic procedure of the strongly coupled solution. This scheme

includes the flow field solution at time level n+1, which is the reason why it is also implicit

for the fluid solver and therefore, strongly coupled. Note that this procedure is not the

same done by Bettle (2012), in which a more expensive strongly coupled procedure is

done, namely with the outer loops nested within the predictor-corrector scheme. In that

case, each correction loop of the structural equation requires a new set of outer iterations.

On the other hand, in the present approach it might happen that too large a correction

for each outer loop is imposed. However, an efficient remedy is an implicit-explicit under-

relaxation procedure in which the velocity corrections are more mildly updated.

Figure 4.3: Fluid-structure coupling with implicit strong Adams-Bashforth-Moulton cou-

pling scheme.
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4.4.1 Implicit Adams-Bashforth-Moulton Scheme

Restating the matrix equation 4.10 to be solved in the form expressed by Butcher (2000):

ẏ = h(t, ẏ) (4.16)

The multi-step method herein applied is based on the Adams-Bashforth-Moulton scheme.

The Adams-Bashforth part is the explicit predictor (P) step, in which an initial value is

provided for the function h at n+ 1, followed by evaluation (E) and correction (C) steps

based on Adams-Moulton scheme. This type of method is referred to as P (EC)k, in which

k is the number of iterations required for certain convergence level.

4.4.1.1 Predictor Step

The predictor step in this scheme provides an initial guess for the step n + 1 to be used

at the corrector step. It is an explicit second-order Adams-Bashforth which takes the

following form:

y0
n+1 = yn +

h

2
(3Fn − 1Fn−1), (4.17)

in which the F values are evaluations of ẏ in previous steps and with the local error E =
5
12
h3F

′′
(BUTCHER, 2000). This procedure is stable, but the stability of the corrector

is more more relevant than that of the predictor. As commented by Bettle (2012), the

largest influence of the predictor step is on the number of steps it takes for the corrector

to converge to the solution and thus the accuracy is determined by the corrector step.

4.4.1.2 Corrector Step

The corrector step is based on an Adams-Moulton procedure as follows:

ykn+1 = yn +
h

2
(1Fn+1 + 1Fn), (4.18)

with the local error E = − 1
12
h3F

′′
(BUTCHER, 2000), which is smaller than the local

error of the predictor step, showing that the accuracy of the Adams-Moulton is higher

than the Adams-Bashforth. The Adams-Moulton method is also stable, as a consequence

of Dahlquist’s barrier theorem, according to which linear multi-step methods can only be

A-stable with order up to second. Since this method depends on previous calculations, it is

not self-starting, therefore, it was combined with the first-order explicit Adams-Bashforth
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scheme for the initial time step.

4.4.1.3 On the Error Estimation and the Evaluation Criteria

One of the interesting characteristics of linear multi-step methods is that they allow

for the error estimation in each time step. This can be accomplished using the local

truncation errors of both predictor and corrector calculations to arrive at the following

type of expression:

y(tn+1)− ykn+1 ≈ C(ykn+1 − yk−1
n+1), (4.19)

in which C is a constant. With this error estimation, the evaluation step is based on the

following criteria:

yk+1
n+1 − ykn+1

yk+1
n+1

< 10−6. (4.20)

The predictor-corrector algorithm outlined above is equivalent to performing a fixed point

iteration for the solution of the nonlinear equations on yn+1. This iteration is rather slow,

since the rate of convergence is only linear in the neighborhood of the solution (BETTLE,

2012). Furthermore, the convergence of this iterative procedure imposes a condition on

the time step used in the calculations, therefore requiring that it is small enough not

only for stability of the integration scheme itself but also for the convergence of this

procedure. Nevertheless, for the calculations presented in this thesis, the requirement of

very refined time steps due to the flow solver has been observed. Due to that requirement,

any conditions on low time steps for the solution of rigid body equations have been

automatically satisfied.

This Chapter presented the theoretical aspects of the fluid-structure capabilities developed

in this thesis and applied to the moving body calculations showed further ahead. The

systematic application of these models together with different turbulence models within

URANS is a contribution of this work.
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Chapter 5

Verification and Validation

This chapter presents the basic theoretical aspects of the Verification and Vali-

dation activities that were applied in this thesis. Herein, the procedures used to

estimate the uncertainties for steady and unsteady calculations as well as the

procedure used for the estimation of the experimental uncertainty are described.

A validation procedure is also proposed. This activity is very rarely done in

such extent in publications available in the literature and this constitutes other

contribution of this thesis.

In the early years of the development of CFD, it was an achievement already to demon-

strate the ability to address the problems using numerical solutions. However, in many

current applications of CFD it is no longer enough to produce a “solution”. The credibil-

ity of the simulations must be established with Verification and Validation (V&V), which

are distinct activities. Verification is a purely mathematical exercise consisting of two

parts: 1) Code Verification, intending to demonstrate by error evaluation the correctness

of the code that contains the algorithm to solve a given mathematical model; 2) Solution

Verification, attempting to estimate the error/uncertainty of a given numerical solution,

for which, in general, the exact solution is unknown. Validation is a science/engineering

activity meant to show that the selected model is a good representation of the “reality”.

This means that Verification deals with numerical (and coding) errors, whereas Validation

is related to modeling errors. Also Validation can only be done after Verification.

Solution verification is the major issue in the current work, and it is done in order to

assess the real numerical errors of the turbulence models for the cylinder problem. This

means that one must keep all errors: round-off, iterative and discretization errors un-

der tight control, and if possible, quantified. In order to use V&V modern techniques

(AAIA-GUIDE, 1998; EÇA; VAZ; HOEKSTRA, 2010) and following the ASME standard
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(ASME-GUIDE, 2008) numerical solutions in a grid and time-step asymptotic range have

also to be reached.

This is almost never done by the CFD community, and one can see a great deal of papers

in the literature where coarse grids and coarse time-steps are used together with all kinds

of turbulence models in order to assess the accuracy of the calculations. This approach

sometimes called “engineering approach” is dangerous since the conclusions cannot be

easily translated even for very similar problems, it is very much code dependent and not

model dependent and the results are obtained due to error cancelation. Here this approach

will not be followed, but rather a “scientific approach”, where first verification studies are

performed, asymptotic range reached in space and in time, numerical uncertainties esti-

mated based on the method presented by Eça (2009), Eça, Vaz & Hoekstra (2010) and

only afterwards the best numerical results will be compared with the experiments and

validation can be carried out.

For Validation, one also needs the experimental uncertainty to be quantified, an activity

rarely done for the cylinder case. For this purpose, data has been collected in the liter-

ature and from experiments obtained from collaboration with other researchers so that

uncertainties relying on the standard deviation of all experimental results for the same

condition are calculated.

Considering the three types of numerical errors, the round-off error is essentially dictated

by machine precision and for most calculations, double-precision suffices to minimize them

(EÇA, 2009). The iterative error arises from the non-linearity of the system of equations

solved for the flow quantities. An attractive way of evaluating this error is the infinity

norm of the residuals:

L∞(φ) = max(|res(φ)/Aiφi|), 1 ≤ i ≤ NT , (5.1)

in which NT is the total number of nodes in the grid, φ is one of the unknowns of the Navier

Stokes equations and Ai is the diagonal coefficient in the system matrix that multiplies

φi.

Although this type of norm might result in a poor estimate of iterative error for some

flows, in this work it is assumed that the iterative error evaluated by its infinity norm is a

few orders of magnitude smaller than the discretization error and thus the infinity norm

shall be used herein.

The discretization error is considered the largest error amongst the three above mentioned.

Equations 5.2 and 5.3, which are based on Richardson extrapolation, are used to perform
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the error estimation for the steady and unsteady problems:

δRE = φi − φ0 = αxh
px
i , (5.2)

δRE = φi − φ0 = αxh
px
i + αtτ

pt
i . (5.3)

In these equations, hi and τi are the typical cell size and time step in the calculations,

px and pt are, respectively, the observed orders of accuracy of the space and time dis-

cretization, and αx and αt are constants of the expansion and φ0 is the estimated exact

solution. Hence, in the former case, three unknowns must be determined and, in the

latter, five unknowns should be calculated requiring, at least, three and five data points,

respectively. Notice that the unsteady problems require calculations with different time

steps and grids.

As CFD results may be quite noisy, a robust way to evaluate the error is to perform more

than three (or five) calculations and solve equation 5.2 or 5.3 in the least-squares sense,

which lead to sets of non-linear equations that might be solved by a shooting method,

such as Newton’s method. This procedure is applied assuming that: (1) iterative and

round-off errors are negligible compared to the discretization error and (2) the data show

asymptotic monotonic convergence. The latter condition is mandatory if one is to con-

sistently use Richardson Extrapolation to estimate the error, as stressed by Eça (2009).

In both steady and unsteady computations, the goal in this uncertainty analysis is to

estimate with 95% of confidence:

φi − U(φi) ≤ φexact ≤ φi + U(φi), (5.4)

in which U(φi) is the uncertainty obtained from the estimated discretization error.

The steady and unsteady cases will be presented separately below, in order to show the

procedure more clearly.

5.1 Steady Analysis

As commented above, in order to perform the uncertainty analysis in the data resulting

from steady computations, one should determine the apparent convergence order of the

results. This is achieved by determining px in equation 5.2 from the least-squares fit.

If px > 0, there is apparent monotonic convergence, otherwise, apparent monotonic di-
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vergence. If there is no px that fits the data, p′x should be determined from the fit to

φ′i = |φi+1 − φi| to determine oscillatory convergence, p′x > 0, or divergence, p′x < 0. If it

is not possible to determine px or p′x, oscillatory convergence is assumed.

As the only possibility of using Richardson extrapolation is with monotonic convergence,

one must determine other error estimator for the other possibilities. The suggestion made

by Eça (2009) is adopted and the maximum difference between the available solutions is

used:

∆M = (φi)max − (φi)min, 1 ≤ i ≤ NT . (5.5)

When the theoretical order of the space discretization is two, then following Eça (2009),

if the apparent convergence order is monotonic, 0.95 < px < 2.05, the Grid Convergence

Index is used (AAIA-GUIDE, 1998), applying the safety factor of 1.25:

U(φi) = 1.25δRE + σ, (5.6)

in which σ is the standard deviation of the least-squares fit. If px ≤ 0.95, the Richardson-

based estimation tends to be over-conservative, thus the error estimator is taken as:

U(φi) = min(1.25δRE + σ, 1.25∆M). (5.7)

If super-convergence is observed, px > 2.05, the Richardson-based estimated is unreliable.

However, Eça (2009) arguments that, in most cases, this is not real but a consequence of

numerical shortcomings. Thus, the theoretical order of convergence replaces the calculated

apparent order of convergence and the least-squares fit is performed once more, yielding

δ∗RE. Then the uncertainty is determined as:

U(φi) = max(1.25δ∗RE + σ∗, 1.25∆M), (5.8)

in which σ∗ is the newly determined standard deviation of the fit.

Finally, if monotonic convergence is not observed, the estimation is penalized by a factor

of 3:

U(φi) = 3∆M . (5.9)
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5.2 Unsteady Analysis

In the unsteady case, the analysis performed is somewhat different as one must estimate

the error by dealing with equation 5.3. As done before for the steady calculations, one

must determine the apparent orders of convergence of space and time discretization and

the standard deviation, σ, of the fit. Let p be the order of convergence of time or space

discretization (p replaces px or pt), then if p > 0, there is apparent monotonic convergence;

otherwise, if p < 0, apparent monotonic divergence. If there is no value p that fits the

data, there might be oscillatory convergence/divergence.

The standard deviation of the fit should be compared to the mean change of data:

∆φ =
max|φi − φj|

nd − 1
. (5.10)

where nd is the number of data points.

As commented above, the estimated error depends on wether the results show apparent

monotonic convergence or not. If the data does not show apparent monotonic convergence

or not all of the data is in the asymptotic range, one might use different apparent orders

of convergence in time and space or also define a modified error estimator that does not

assume monotonic convergence:

δ′ = φi − φ0 = αx1hi + αx2h
2
i + αt1τi + αt2τ

2
i . (5.11)

Once again, the discussion is restricted to the present case, in which the theoretical dis-

cretization is at most second-order, both in time and in space1. Then, if the observed

order of convergence is monotonic, with p between 0.5 and 2.1, a safety factor Fs = 1.25

is assumed, otherwise Fs = 3.0.

Furthermore, one must compare the calculated value of the standard deviation of the fit,

σ and the mean change of data, ∆φ in order to determine if the noise level in the data is

too high, thus making the estimated uncertainty unreliable. In this case, the estimated

uncertainty should be penalized by a safety factor Fs = 3.0. Therefore, if σ < ∆φ:

U(φi) = 1.25δ + σ + |φi − φfit|, (5.12)

1Overall order of convergence might be lowered when QUICK with limiters or first order interpolation
locally decrease the order of the approximation.
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otherwise, if σ ≥ ∆φ:

U(φi) = 3
σ

∆φ

(δ + σ + |φi − φfit|). (5.13)

In equations 5.12 and 5.13, φfit is the value of the dependent variable obtained from the

least-squares fit at (hi, τi) and δ is the chosen error estimator given by |φi − φfit|.

5.3 Experimental Uncertainty

In order to make a consistent validation procedure, one must also determine the uncertain-

ties in the experimental data. However, it is quite rare to see experimental uncertainties

in publications, thus one should attempt to obtain some estimation of these uncertainties

from the experimental data at hand. For that, one should firstly obtain the mean values

of the samples, ζ, and the standard deviation of the same sample, s. These will be the

estimators of the mean value, µ, and standard deviation, σ, of a hypothetical infinite set

of experiments, for which case, gaussian distribution is assumed. Thus, we should obtain

same range around ζ in which the real mean value should be located, with some confidence

level, 1− α.

The experimental data that we will be able to present in this and in the following sections

is somewhat scarce. Therefore, in order to keep the amplitudes of the confidence interval

(CI) at a reasonably small level, the confidence level has been set at 90%. Therefore, the

standard deviation and variation coefficients of the experimental sample are calculated by

using the relations:

s =

√∑n
i=1(ζi − ζ)2

n− 1
, c = s/ζ, (5.14)

in which n is the number of results, ζi is the i − th result and ζ is the mean value. The

amplitude of the CI, UD, is calculated using:

P (ζ − UD ≤ µ ≤ ζ + UD) = 90%. (5.15)

The amplitude UD is calculated by the relation:

UD = tn−1,α/2s/
√
n, (5.16)

in which n is the number of data points in the sample, and tn−1,α/2 is the Student-t
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distribution value at n− 1 and α/2, which is given in several references, such as in Neto

(2005).

5.4 Validation

According to Eça, Vaz & Hoekstra (2010), the aim of Validation is to estimate the mod-

eling error of a mathematical model compared to a set of experimental data, which rep-

resents the physical model.

Once validation is carried out, one can say that the model/code is valid for that particular

problem and conditions2. The procedure proposed by ASME-Guide (2008) is based on

the comparison of the quantities,

Uval =
√
U2
num + U2

input + U2
D, (5.17)

and

E = S −D. (5.18)

In equations 5.17 and 5.18, Unum is the numerical uncertainty estimated for a certain quan-

tity, equation 5.4; Uinput is the uncertainty of the parameter inputs (which are considered

negligible for the present exercise); UD is the experimental uncertainty, equation 5.16; S

is the numerical prediction of the parameter value; and D is the experimental value. The

comparison between Uval and E may lead to two possibilities:

- |E| >> Uval means that the comparison is poor most likely because the modeling

errors are of most importance;

- |E| < Uval means that the solution is within the noise imposed by the different

sources of uncertainty. In this case, if |E| is small enough, then the solution is vali-

dated with the experiment at Uval precision. Otherwise, the quality of the numerical

solution and/or the experiment should be improved for a better comparison.

The theoretical elements and procedures presented in this Chapter were used in this thesis

to estimate numerical uncertainties and orders of convergence, mainly for the stationary

cylinder application presented further ahead.

2It is worth noting that a CFD code cannot be validated: solution validation is the correct concept.
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Chapter 6

The Rigid Fixed Cylinder Flow -

Traditional Modeling

In this chapter, the flow around a fixed circular cylinder will be approached

from steady laminar to unsteady turbulent regimes. Computations for Reynolds

numbers ranging from 1 to 5 × 105 will be presented. Two-dimensional setup

combined with k − ω SST is applied, in an approach called herein as “tradi-

tional”. The numerical details will be discussed together with the discretization,

verification and validation analyses.

The objectives of this chapter are i) to delineate the capabilities of traditional

turbulence modeling; ii) assess the numerical and modeling errors of the ap-

proach; iii) consolidate the knowledge of traditional RANS-modeling for the

cylinder flow in a wide range of Reynolds numbers, but more importantly in

the drag-crisis region, which is important for several practical applications.

6.1 Phenomenological Background of Flow Around

Fixed Cylinder

6.1.1 Steady Laminar Regime - Re < 49

Experiments and computations presented in the literature show that the flow around a

fixed circular cylinder is approximately steady and two-dimensional for Reynolds numbers

up to Re ≈ 49 (WILLIAMSON, 1996; HENDERSON, 1995).

For very low Reynolds number, up to about Re ≈ 5, the boundary layer is attached and
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Figure 6.1: The steady wake behind the cylinder for Re < 49 (WILLIAMSON, 1996).

the streamlines resemble those of an ideal fluid flow. However, the pressure and velocity

distributions are very different from that case. In fact, in this flow, also known as creeping

flow, the viscous effects are very important. When Re > 5, the boundary layer separates

from the surface of the cylinder and the wake is known to present a steady recirculation

region of two symmetrical vortices, as depicted in figure 6.1.

The drag force is aligned with the flow direction and is defined in general as (HENDER-

SON, 1995):

FD = e1

∮
[−Pn + µ(∇v +∇vT )n]ds, (6.1)

where n is the outward-pointing vector normal to the cylinder surface; e1 is a unit-vector

aligned with the fluid velocity upstream of the cylinder.

The lift force is in general defined as (HENDERSON, 1995):

FL = e2

∮
[−Pn + µ(∇v +∇vT )n]ds. (6.2)

The drag coefficient is defined as:

CD =
‖FD‖

1
2
ρDLV 2

∞
, (6.3)

whereas the lift coefficient is defined as:

CL =
‖FL‖

1
2
ρDLV 2

∞
. (6.4)

Throughout the text, references will also be maid to RMS (root mean square) of the lift
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coefficient, which is calculated as the standard deviation of the lift coefficient time trace

(since its average is zero and the trace, ergodic).

In the steady laminar range, as the boundary-layer separation point transits downstream

on the cylinder surface, the drag force decreases, as well as the suction coefficient and at

Re ≈ 49 the flow radically changes, as seen below.

6.1.2 Laminar Vortex Shedding - 49 < Re . 194

For Re > 49, instabilities in the recirculation bubble downstream of the cylinder drive the

flow to reach a stable limit cycle oscillation with the Strouhal frequency, fs = StU/D, in

which vortices are shed in the wake. This was found to be a manifestation of a Hopf-type

bifurcation, in an analogy between the flow field and a dynamic system.

The Laminar Vortex Shedding persists in the range of approximately 50 < Re < 194.

In this range, the flow is still basically laminar and two-dimensional, in spite of three-

dimensional instabilities that eventually trigger the transition to turbulence. Also in this

range, variation of the base suction with Reynolds numbers sharply deviates in its trend

from the steady wake regime, showing the tendency to increase (HENDERSON, 1995).

Furthermore, the drag forces tend to decrease and, consistently, the separation point

moves downstream.

Almost purely periodical wake oscillations are to be expected as seen in figure 6.2.

 

Figure 6.2: The laminar and two-dimensional vortex shedding at Re = 150

(WILLIAMSON, 1996).
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6.1.3 Wake-Transition Regime - 190 . Re < 260

In this range, the wake is the first of the shear layers that goes through transition to

turbulent state. This is clearly seen by two discontinuities in the wake formation as Re is

increased. This is noticeable both in the variation of Strouhal number and base suction

with Re, being named mode A discontinuity, Re ≈ 180− 194, and mode B discontinuity,

Re ≈ 230− 250, see figure 6.3. In both cases, stream-wise vortical structures are present,

making the flow pattern three-dimensional.

The two-dimensional computations showed here disregard this three-dimensional charac-

ter, however it seems acceptable when analyzing the forces and shedding frequencies, as

shall be seen later on.

 

Figure 6.3: Flow pictures showing mode A on the left frame and mode B on the right one.

Mode B is marked by finer structures and smaller wave length than in mode A. Pictures

taken from Williamson (1996).

In this range, base suction and Strouhal frequency tend to increase, but with a lower level

than could be extrapolated from the laminar shedding regime. Braza, Chassaing & Minh

(1986) have found a weak instability of the shear layers next to the separation point and

Williamson (1996) has reported small vortices in the separating shear layer in another

instability of the wake.
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6.1.4 Increasing Disorder in the Fine-Scale Three Dimensional-

ities - 260 < Re . 1, 000

In this range, one notices that the streamwise vortical structures that increase the three-

dimensionality of the flow becomes finer in scale and gradually more disordered, causing

reduction in the base suction, two-dimensional Reynolds stresses, drag forces and forma-

tion region (WILLIAMSON, 1996). At this point, in spite of instabilities that might be

attributed to transitional features, the flow is still essentially laminar in the shear layers

and near wake.

6.1.5 Shear-Layer Transition Regime - 1, 000 < Re < 200, 000

Williamson (1996), Singh & Mittal (2005) have identified the range 1, 000 < Re < 200, 000

as the Shear-Layer Transition Regime. In this regime, the base suction increases and the

formation length of the mean recirculation region decreases. An increase in drag is ob-

served while the point of laminar-turbulent transition in the separating shear layers moves

upstream . These trends take place with the developing instability of the separating shear

layers. As commented by Williamson (1996), the shear layer vortices amalgamate in the

near wake, as seen in figure 6.4.

Figure 6.5 shows a schematic representation of the boundary layer in the pre-critical

region, at Re = 20, 000. The boundary layer goes through laminar boundary layer sepa-

ration, triggering laminar-turbulent transition downstream.

 

Figure 6.4: Particle Image Velocimetry measurements of the shear layer vortices showing

the flow at Re = 10, 000. Picture taken from Williamson (1996).
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Figure 6.5: Pre-critical Reynolds numbers flow (BASU, 1985). Laminar separation takes

place upstream of the transition.

6.1.6 Critical Transition Regime - 200, 000 < Re . 500, 000

In the Critical Transition Regime, approximately 200, 000 < Re < 500, 000, base suction

and drag decrease sharply, mainly associated with the separation-reattachment bubble,

which energizes the boundary layer making it separate further downstream and causing

a narrower wake than there was so far, see figure 6.6. This region is commonly known as

the drag crisis region.

 

Figure 6.6: Transitional Reynolds numbers flow (BASU, 1985). Separation-reattachment

bubble causes turbulent separation downstream compared to lower Reynolds numbers.
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6.1.7 Post-Critical Transition Regime - Re > 500, 000

As Reynolds number is increased above 500, 000, the post-critical regime is reached, in

which the boundary layer itself becomes turbulent, and the wake remains narrow. The

drag coefficients increase slightly above the values in the drag crisis as well as the Strouhal

number. Figure 6.7 depicts the transition taking place upstream of separation.

 

Figure 6.7: Post critical Reynolds numbers flow (BASU, 1985). The transition takes place

upstream of separation causing the formation of a narrow wake and low drag coefficients.

The phenomenological background showed above is relevant for the following sections and

remainder of the thesis, as it subsidizes the analysis of great part of the calculations that

were carried out.

6.2 Outline of the Calculations

The calculations with smooth fixed cylinder presented in this Chapter were carried out

at Reynolds numbers from Re = 5 to Re = 500, 000, thus ranging from steady laminar to

the end of the critical regime. This Chapter presents the results with the approach herein

named “traditional modeling”.

Two-dimensional laminar steady and unsteady calculations are done for Re = 5; 10; 20;

30; 40; 50; 100; 200. The k-ω SST turbulence model (MENTER, 1994) is used for the tur-

bulent Reynolds numbers, 1, 000; 10, 000; 100, 000; 500, 000. These results are considered

as the numerical benchmark since this model is the industry standard. Conversely, the

following Chapter will present improved results obtained with more modern turbulence

and transition models.

It has been discussed (PEREIRA; VAZ; EÇA, 2015) that two dimensional calculations can
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indeed disregard relevant effects of three dimensional span-wise communication. While

this is sound, the following points are raised as counterpoint. As one of the main ob-

jectives that has permeated this work is to map the capabilities of different turbulence

models and modeling techniques, it is worth exploring the two-dimensional calculations

since they represent a more common approach in engineering applications due to the lesser

required computational time and power compared to three-dimensional calculations. In

that regard, a relevant practical fact is also mentioned: the grid resolution necessary in

the span-wise direction to capture the relevant three dimensional dynamics that influence

loads and vortex dynamics is quite large, thus increasing computational load and time to

levels unfeasible for the number of calculations showed herein. Finally, it is pointed out

that in the drag crisis region, which concentrates large portion of the engineering appli-

cations, the two-dimensional calculations showed quite appropriate, as loads are strongly

influenced by the transition location in the boundary layer, that in turn revealed quite

well predicted by the two-dimensional approach.

Tables 6.1 and 6.2 show, respectively, the details of the finest grids used for steady and un-

steady calculations. For both sets of steady and unsteady laminar calculations, the same

grids were used, as they were fine enough for the largest Reynolds number, Re = 200.

The five grids used had from 6,992 to 27,360 cells. Table 6.3 shows the details of the

finest grids for the turbulent calculations done with k-ω SST. In these turbulent cases,

from three to five grids were used in total for uncertainty estimation and the grids ranged

from 213,750 to 586,264 cells. Table 6.4 shows the number of time steps at each shedding

cycle period for the coarsest and finest laminar and turbulent calculations.

Table 6.1: Details of the finest grids used in the steady laminar calculations.

Re Number of Cells Circumferential Cells y+
max

5 27,360 608 0.02

10 27,360 608 0.0002

20 27,360 608 0.0003

30 27,360 608 0.0003

40 27,360 608 0.11

50 27,360 608 0.1
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Table 6.2: Details of the finest grids used for the unsteady laminar calculations.

Re Number of Cells Circumferential Cells y+
max

100 27,360 608 0.47

200 27,360 608 0.81

Table 6.3: Details of the finest grids used for the turbulent calculations.

Re Number of Cells Circumferential Cells y+
max

1,000 213,750 1,900 0.97

10,000 542,944 2,432 0.36

100,000 542,944 2,432 0.85

500,000 586,264 2,888 0.74

Table 6.4: Time discretization for the unsteady laminar and turbulent calculations. The
largest and smallest number of point per cycle used for the calculations are indicated

Re Time Steps per Shedding Cycle
100 10-50
200 10-50

1,000 8-200
10,000 10-240
100,000 20-240
500,000 40-240

6.3 Numerical Details and Grids

A rectangular domain is used, as shown in figure 6.8, which also presents the boundary

conditions and the grid layout used in the calculations.

Regarding the size of the domain, the sensitivity analysis done by Pengan (2010) is used,

which confirmed that it is appropriate to set the inlet and lateral boundaries 10D away
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Figure 6.8: Grid and domain used in the calculations.

from the cylinder axis whereas the outlet boundary can be located 20D away from the

cylinder.1 For the two-dimensional calculations showed in this chapter, there is one cell

in the z-direction. The grids are structured, with the vicinity of the cylinder made with

an O-grid, in order to refine the boundary layer and wake zones.

The shapes seen in fig. 6.9 are typical of the refinement method which consists in avoiding

the emergence of hanging nodes, thus improving the quality of the mesh, so-called nested

refinement. The intermediate grids between the finest and the coarsest one are build by

interpolation. In all the results with the finest grids showed in this thesis, y+ ≤ 1 in the

nodes adjacent to the cylinder, assuring that the first nodes were well inside the viscous

sub-layer and thus dispensing wall functions, an essential condition for the calculation of

the cylinder flow (EÇA et al., 2015). The aspect ratio of the near-wall cells is up to ca. 5

in all grids, ensuring that x+ is also very low.

1The influence of the domain size is expected to decrease with increasing Reynolds numbers, due to
stronger convection.
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Figure 6.9: Detail of the mesh close to the cylinder. The shapes seen are typical of a

nested-refinement technique.

In the two-dimensional calculations showed in the present chapter, four to six grids were

used in each Reynolds numbers, with the number of cells ranging from approximately

7, 000 to 586, 264 cells.

The finest grid and time step for each Reynolds number were evidently the ones of interest

for analysis, but the results obtained with the coarser grids and time steps were useful

to carry out the convergence analysis and derive the numerical uncertainties for the two-

dimensional calculations.

It is worth pointing out that the two dimensional calculations showed in this chapter

took from a few days (with the coarse discretization and lowest Reynolds numbers) up

to several weeks in the TPN HPC cluster when the finest calculations were done due to

the adopted strict convergence criteria presented further ahead. Normally, the unsteady

laminar calculations were carried with up to 16 cores, whereas the turbulent calculations

were usually carried out with up to 64 cores (2.8GHz clock speed and 3GB of RAM per

core).

The boundary conditions of the equations solved are defined on physical rather than

mathematical grounds, as presented in figure 6.8. The following boundary conditions are

applied in the calculations presented herein:

- Wall: Non-slip condition applies on the wall boundary. The velocities are taken as

equal to the wall velocity, i.e. zero for the stationary cylinder (Dirichlet condition);

- Symmetry: When a symmetry boundary condition applies, the convective fluxes

of all quantities are zero on that boundary, as well as the normal gradients of the

velocity components parallel to the symmetry plane and of the scalar quantities

(mixed Dirichlet/Neumann conditions);
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- Inlet boundary: Here the velocity and turbulent quantities distribution are specified

with Dirichlet boundary condition; pressure is extrapolated from the interior solution

(zeroth-order extrapolation - Neumann condition); This combination is referred to

as inflow condition;

- Outlet boundary: The outlet boundary condition should be positioned far enough

from the cylinder in such a way that the pressure modes decay and that the flow

solution near the cylinder is not influenced by the position of the outlet. That

being the case, one out of two conditions may be applied in the outlet: the so-called

outflow boundary condition, in which velocities, turbulent quantities and pressure

are extrapolated (zeroth-order is used for developed flow - Neumann-type condition);

or a pressure boundary condition can be enforced, in which the pressure is fixed and

the other variables are extrapolated. It is worth mentioning that the absolute value

of pressure is unimportant, since the incompressible Navier-Stokes equations deal

with the variations of pressure, thus both conditions should have the same effect

if the boundary is positioned far enough downstream of the body. The former is

enforced in all the fixed cylinder calculations, whereas the latter, for the moving

cylinder calculations presented further ahead;

- Initial conditions: The initial velocity field is assumed uniform with magnitude equal

to the current velocity. Likewise, the turbulent quantities are uniform, deduced from

a laminar initial field (µt/µ = 0.01).

6.4 Solution Verification

As mentioned above, results for several Reynolds numbers will be showed. In each case

four to six grids and three to six time steps, with total of seven to twenty five calculations

at each Reynolds number. In spite of such a large number of calculations, only one value

for each Reynolds number (corresponding to the finest grid and time step) is presented and

the other results are used for the convergence analysis and uncertainty estimation of CDavg

(average drag coefficient). Moreover, the parameters showed for analyses and comparisons

are mainly CDavg, St (Strouhal number) and CLrms (RMS of the lift coefficient).

6.4.1 Iterative Convergence

The iterative convergence criteria has been set low enough in all cases so that the iterative

error was always at least two orders of magnitude lower than the discretization errors. In

the steady calculations, the iterative convergence criteria was defined as L∞ ≤ 10−12 for all
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equations, as the example in figure 6.10 shows. The criteria for the unsteady calculations,

both laminar and turbulent, was L∞ < 10−6 for all residuals in each time step, as the

example in figure 6.11 shows.
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Figure 6.10: Infinity and RMS norms for evaluating the residuals of the flow quantities in

the case Re = 40.
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Figure 6.11: Infinity and RMS norms for evaluating the residuals of the flow quantities

in the case Re = 1 × 105. (a) Velocities and pressure. (b) Turbulent kinetic energy

and turbulent frequency. Illustration of the worst iterative convergence obtained for all

calculations of the present work.

The results of the fixed cylinder calculations showed herein were found to be very sensitive

to the residuals. At times, preliminary calculations with less strict criteria did result in

drag coefficients closer to the experiments than the ones with more strict residuals control.

In fact, Eça et al. (2014) have shown that the calculated loads and pressure distribution

are highly sensitive to the iterative errors attained at the end of each time loop and the

average drag coefficient can vary up to 10% with different iterative criteria. It was also
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concluded that the usual “three orders of magnitude”of residual drop might be insufficient

to achieve results free from iterative errors.

6.4.2 Discretization and Uncertainty Studies

Regarding the time discretization, the time steps were chosen in such a way that limit,

or steady-state, cyclic solutions were reached and at least ten cycles could be analyzed in

order to obtain reliable statistics. Furthermore, the Strouhal number is calculated from

the peak of the power spectrum density of the lift coefficient time trace.

In the following plots, the time steps have been identified by:

ti/tmin = ∆ti/(∆t)min, (6.5)

in which (∆t)min is the finest time step used in the calculations and ∆ti is the time step

used in the analyzed calculation. This way, the finest time step to be looked at has the

value ti/tmin = 1 and the others, larger than one.

On the other hand, the grid parameter is h = 1/
√
Ncells as the calculations are two-

dimensional. Therefore, the grid is identified by:

hi/hmin =

√
(Ncells)max

(Ncells)i
, (6.6)

in which (Ncells)max is the finest grid and (Ncells)i is the case under analysis. Once again,

the finest grid is identified by hi/hmin = 1, and the others, larger than one.

In general, integral quantities, such as the drag coefficient, tend to present smaller uncer-

tainties than local quantities, such as angle of boundary layer separation. The reason is

that exact geometrical similarity is not always achieved and interpolation between grids

may lead to some noise in the data. Despite indication of good discretization (for instance,

large number of cells in the boundary layers and low y+), it is usually necessary in cases

with large uncertainty to use very refined grids or time steps for a correct uncertainty

estimation.

Some examples of the calculated surface fits for the investigated flow parameters and

different Reynolds numbers are presented below. In these graphs, the flow parameters

are plotted for each calculation as function of grid and time parameters. The size of the

blocks give a visual indication of the level of uncertainty.
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The example in figure 6.12 shows the surface fit for the Strouhal number for Re = 100,

which presents convergence orders of p = 1.0 for space and p = 1.6 for time.

The plot in figure 6.13 shows that the uncertainty of drag coefficient for Re = 200 is very

low with the finest discretization because the fit presents good quality and the data points

are all inside the asymptotic convergence range.

Figure 6.12: Surface fit for St and Re = 100. The size of the blocks indicate the uncer-

tainty of each data point. The convergence orders are p = 1.0 for space and p = 1.6 for

time.

Table 6.5 summarizes the uncertainties for the laminar calculations. There is very low

uncertainty overall for the steady calculations whereas, somewhat higher for the unsteady

laminar case.
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Figure 6.13: Surface fit for CDavg and Re = 200. The size of the blocks indicate the
uncertainty of each data point. The convergence orders are p = 2.0 for space and p = 1.4
for time.

Table 6.5: Uncertainty estimation for the laminar calculations.

Re 5 10 20 30 40 50 100 200

U(CDavg)(%) 0.01 0.02 0.02 0.02 0.04 0.02 3.38 2.72

Considering the uncertainty quantification for the turbulent simulations, figure 6.14 shows

the calculated surface that fits the Re = 1 × 103 data for the average drag coefficient.

All of the data is in the monotonic convergence range, which results in a very good sur-

face fit (low standard deviation over mean data change) and with decreasing uncertainty

as grid or time step are refined. On the other hand, an interesting behavior occurs for

Re = 5× 105: close inspection of the results showed that oscillatory convergence of St is

verified, particularly for the time discretization, as figure 6.15 shows.
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Table 6.6 shows the uncertainties calculated from the turbulent data. The uncertainties

are somewhat higher than in the laminar calculations, reflecting the increasing complexity

of the phenomenon with the onset of turbulence.

Figure 6.14: Drag coefficient calculations for Re = 1×103. The size of the blocks indicate
the uncertainty of each data point. In this case, the order of convergence of time and
space are, respectively, p = 1.5 and p = 1.7.
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Figure 6.15: Time step refinement for the calculation of Strouhal numbers for Re = 5×105.
Oscillatory behavior is identified in this case.
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Table 6.6: Uncertainty estimation for the turbulent calculations.

Re 1, 000 10, 000 100, 000 500, 000

U(CDavg)(%) 4.62 3.19 3.08 13.03

In order to complement this discussion, it is worth noting that, as Rosetti, Vaz & Fujarra

(2012) have showed, the uncertainty of the Strouhal number is the most troublesome

quantity to determine, which shows that the refinement has to be very fine to capture the

“exact” value that the code can provide.

Figure 6.16 presents the sensitivity of the drag coefficient results to the variation of the

number of cells and time steps for four Reynolds numbers.
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Figure 6.16: Sensitivity of the drag coefficient to different space and time discretizations
for turbulent range. (a) Different grids with the finest time steps. (b) Different time step
discretization with the finest grid.

6.5 Forces and Flow Analysis

6.5.1 Steady Laminar Calculations

Figure 6.17 presents the calculated drag coefficients compared with the experimental re-

sults for the steady laminar computations. In these results, the differences between nu-

merical and experimental results are small and the graphical comparison of the results

with their uncertainties shows that the present results can be considered quite accurate.
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Figure 6.17: Drag coefficient results from laminar calculations. Experimental data from

Schlichting H. (2000), ESDU (1985). The label “Experiments” denotes the average exper-

imental values and the uncertainty bars are calculated both for the experiments and for

the calculations.

The field plots with normalized velocities are presented in figure 6.18, with the purpose

of showing the narrowing of the wake and increase of the recirculation bubble when the

Reynolds number is increased in the steady laminar regime.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.18: Field plots of normalized velocity. (a) Re = 5. (b) Re = 10. (c) Re = 20.
(d) Re = 30. (e) Re = 40. g) Re = 50.
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6.5.2 Unsteady Laminar Calculations

Figure 6.19 presents the calculated drag coefficients compared with the experimental re-

sults for Re = 100 and Re = 200: the uncertainties in the drag coefficients are rather

small and the agreement with the experimental trend is remarkable.
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Figure 6.19: Drag coefficient results from laminar calculations. Experiments from

Schlichting H. (2000), ESDU (1985). The label “Experiments” denote the average ex-

perimental values and the error bars are calculated both for the experiments and for the

calculations.

Figure 6.20 presents the Strouhal frequencies (in nondimensional form, Strouhal number),

calculated by means of the peak-energy frequency of the power spectral density obtained

from the lift force. There is a fair agreement with the experimental trend from Norberg

(2003).

Figure 6.21 shows an example of time traces of the force coefficients for Re = 100,

in which high regularity is seen and a prominent peak energy is found. The Strouhal

number calculated is St = 0.1998 and twice that frequency is seen in the drag trace,

reflecting the fact that the shedding cycle in the longitudinal direction is comprised of

each shed vortice, whereas two vortices form each transverse cycle. In fact, as discussed

in Rosetti, Vaz & Fujarra (2012), the differences between calculated and experimental

Strouhal numbers and base pressure can be explained by the onset of the three-dimensional

wake transition regime. In that issue, Williamson (1996) has identified that the mode A

instability comprising vortex loops and streamwise vortex pairs affect the base suction and

Strouhal frequency, driving smaller values than might be expected from extrapolation form



122

20 40 50 100 200 500 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Re

S
t

 

 

Norberg(2003) − Exp.
ReFRESCO Unsteady Laminar 2D

Figure 6.20: Strouhal number results from laminar calculations. Experimental formulas
from Norberg (2003).

the steady laminar regime. The present modeling fails to capture such physical behavior.

The increasing instabilities and three-dimensional nature of the flow tend to influence

the flow in such a way to make the comparisons increasingly worse at higher Reynolds

numbers and prior to the drag crisis.

In Figure 6.22, the same procedure is done with the time traces of separation angles,

corroborating the peak-energy frequency (Strouhal number), but showing also some small

energy in the second harmonic. Braza, Chassaing & Minh (1986) have found similar

behavior in their simulations, which was related with weak instability of the shear layer

next to the separation, associated with the formation of a“secondary eddy”adjacent to the

separation point. This eddy appeared with the frequency of the second harmonic, at twice

the frequency of shedding of main vortices (Strouhal frequency). As Reynolds number

rises, the secondary vortices tend to become more pronounced. Eventually the secondary

eddies merge with the main ones in the near wake, being convected downstream.

Evidently, the calculation of the global force filters higher harmonics, so they can hardly

be noticed in the time traces of forces, masking the deficiency of the modeling. The

relative deviations from the experimental trend are smaller than ≈ 10% (Re = 200).
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Figure 6.21: Drag and lift time traces and power spectrum densities from calculation with

finest grid and time step for Re = 100. Only steady-state portion is used for the statistics.
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Figure 6.22: Time traces of separation angles and power spectrum densities from calcu-

lations with finest grid and time step for Re = 200. Both upper and lower separation

angles are shown. Only steady-state portion is used for the statistics.

The field plot with normalized velocities presented in figure 6.23 shows variations consis-

tent with the experimental observation, namely the vortex-shedding process and a more
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subtle narrowing of the wake, associated with lower drag.

(a) (b)

Figure 6.23: Field plots of normalized velocity at the point of largest lift coefficient. (a)

Re = 100. (b) Re = 200.

6.5.3 Turbulent Regime

Figure 6.24 presents the drag coefficients for Re = 1, 000; 10, 000; 100, 000; 500, 000. The

comparison with the experimental results is much less successful in this case than in the

laminar calculations. Relative differences between experiments and calculations reach val-

ues as high as ca. 45% for Re = 1× 103. Moreover, the uncertainties are not as large as

to justify the differences on account of the discretization errors, which means that the dif-

ferences between experiments and calculations showed herein are due to modeling errors.

Figure 6.25 shows the Strouhal numbers in the calculations, compared with experimental

formulas derived from a large number of experiments. Better agreement is found, with

differences up to ca. 36%, for Re = 1× 105.

It is worthwhile to observe the time traces of separation angles, figures 6.26 and 6.27,

for Re = 1, 000 and Re = 10, 000, respectively. One notes the presence of quite energetic

higher harmonics, which are associated with the instabilities already seen for Re = 200.

In fact, for Re > 1000, not only the secondary vortices are developed, but indeed a trail

of small eddies that merge with the larger ones in the shear layers. Also in figures 6.26

and 6.27, one sees that the variation of the boundary-layer separation point is not sym-

metrical relatively to the mean value in steady-state. This interesting feature, enhanced in

higher Reynolds numbers, is due to the two different dynamic positions (BRAZA; CHAS-

SAING; MINH, 1986). During one cycle, when the separation angle is at its lowest value,

there is an alternating vortex near the separation point, whereas in the highest value of

the separation point, it encounters strongly convective flow.

Figure 6.28 shows the calculated RMS of lift coefficients compared to the experimental

results from Norberg (2003). Very poor agreement is observed, especially for Re = 1, 000
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Figure 6.24: Drag coefficient results from turbulent calculations. Experiments from
Schlichting H. (2000), ESDU (1985), Franzini et al. (2012), Achenbach & Heinecke (1981)
and from MARIN. The label “Experiments” denotes the average experimental values and
the error bars are calculated both for the experiments and for the calculations.

and Re = 10, 000. In fact, the lift coefficient time traces were always very regular in the

present calculations, therefore, the RMS is in practice linearly dependent on the lift coef-

ficient amplitude. Moreover, it has been seen that the lift variation in the calculations is

mainly due to the von Kármán-type vortex-shedding, i.e., shedding of very coherent and

strong vortices, hence the regular traces and high amplitudes. It has also been discussed

that the experimental results, especially for Re = 1, 000 − 100, 000, displays a strong

three-dimensional character, from which one expects low regularity and lower amplitude

of the lift traces and, hence, lower RMS value. The same spread behavior for the lift RMS

is observed in different calculations and even experiments (NORBERG, 2003) indicating

very high uncertainty in this quantity.
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Figure 6.25: Strouhal number results from turbulent calculations. Experimental formulas
from Norberg (2003).
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Figure 6.26: Time traces of separation angles for Re = 1, 000 with finest grid and time

step. Only steady-state portion is used for the statistics.
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Figure 6.27: Time traces of separation angles for Re = 10, 000 with finest grid and time

step. Only steady-state portion is used for the statistics.
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Figure 6.28: Strouhal number results from turbulent calculations. Experimental formulas
from Norberg (2003).

Figure 6.29 shows the vorticity distributions for the turbulent calculations. Firstly, it is

interesting to notice the secondary, smaller, vorticity cores adjacent to the cylinder wall

in its upper part (in red) for Re = 1, 000 and Re = 10, 000, figure 6.29 (a) and (b), as
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commented before. Also, close examination of figure 6.29 (c) and (d) will show small

eddies in the back of the cylinder, which will eventually merge with the larger ones. In all

cases, the vortex cores show regions with constant colors. In these regions, the vorticity

is nearly constant, showing that this fluid mass is rotating as a block as the vortices are

convected in the wake. As Reynolds numbers increase, the size of these regions decrease,

showing that the vortices become less coherent.

Figure 6.30 shows some streamlines of the flow in one particular instant. It is possible

to see again the formation of the secondary structures, besides the strong main vortices.

When the saddle structures are formed, the vortices detach from the shear layer and are

convected in the wake.

(a) (b)

(c) (d)

Figure 6.29: Field plots of normalized vorticity, ωD/Uref at the point of largest lift

coefficient. (a) Re = 1, 000. (b) Re = 10, 000. (c) Re = 100, 000. (d) Re = 500, 000.
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(a) (b)

(c) (d)

Figure 6.30: Field plots showing streamlines at the point of largest lift coefficient. (a)

Re = 1, 000. (b) Re = 10, 000. (c) Re = 100, 000. (d) Re = 500, 000.

Further interesting features are observed in figure 6.31, which presents the normalized

eddy viscosity. It is noticed that, as Reynolds numbers increase, the turbulence increases

and plays larger and larger role in the overall nature of the flow. As a simplified manner

of identifying the laminar-turbulent transition, one can compare the parts of the flow in

which νt < ν and νt > ν. For the latter, it means that the flow is fully turbulent, whereas,

for the former, it either means that the flow is laminar or transitional. It is not possible

to clearly identify the transition length, however, it is possible to verify that the onset

of turbulence is shifting upstream as Re is increased. It is interesting to observe that

the onset of turbulence is downstream of the cylinder for Re = 1, 000 and Re = 10, 000.

Conversely, for Re = 100, 000 and Re = 500, 000, the strong turbulent behavior is very

close to the cylinder, showing that not only the wake but also the shear layers are mostly

turbulent. It is most important to notice that no transition modeling other than the

turbulence model itself is present.
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(a) (b)

(c) (d)

Figure 6.31: Field plots of normalized eddy viscosity, νt/ν at the point of largest lift

coefficient. (a) Re = 1, 000. (b) Re = 10, 000. (c) Re = 100, 000. (d) Re = 500, 000.
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6.6 Experimental Uncertainty

In order to proceed with a consistent validation procedure, the experimental uncertainties

must also be determined. As it is quite rare to see experimental uncertainties in publi-

cations, the uncertainties estimation was conducted applying the procedure based on the

Student-t distribution outlined in Chapter 5. Table 6.7 shows the experimental uncer-

tainties for the drag coefficients in the steady laminar, unsteady laminar and turbulent

ranges.

Table 6.7: Uncertainty estimation of the experimental drag coefficients by means of the

standard deviations and variation coefficients, with a 90% level of confidence.

Re s c(%) CDavg UD UD/CDavg(%)

5 0.77 17.00 4.54 3.44 75.87

10 0.10 3.38 2.93 0.44 15.08

20 0.005 0.24 2.10 0.02 1.05

30 0.02 0.94 1.88 0.079 4.20

40 0.02 1.22 1.74 0.09 5.45

50 0.01 0.43 1.63 0.03 1.93

100 0.01 0.97 1.41 0.06 4.34

200 0.004 0.27 1.31 0.02 1.20

1,000 0.01 0.85 0.99 0.04 3.81

10,000 0.07 6.08 1.11 0.11 10.24

100,000 0.04 3.30 1.23 0.05 3.89

500,000 0.11 30.04 0.37 0.13 35.34

6.7 Validation

Table 6.8 shows the results for the validation exercise concerning drag coefficients. In

the laminar range, given that there were few experimental points for good experimental

uncertainty estimation, one can consider that the results are validated, since either |E| <
Uval or Uval > |E| by a small amount, mainly due to the larger experimental uncertainty.

Also, the relative differences between the calculated and experimental values are so small

that this is justified. However, for the turbulent calculations, the results are evidently

not validated, since either |E| >> Uval or experimental uncertainty overestimates the
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validation uncertainty.

Table 6.8: Validation results for drag coefficients.

Re Uval E Validated?
5 3.441 -0.09 Yes
10 0.44 0.12 Yes
20 0.02 0.04 Yes
30 0.08 -0.06 Yes
40 0.11 -0.13 Yes
50 0.03 -0.03 Yes
100 0.08 0.03 Yes
200 0.05 0.06 Yes

1× 103 0.08 0.44 No
1× 104 0.12 0.41 No
1× 105 0.06 0.39 No
5× 105 0.15 0.21 No

6.8 Final Remarks of the Chapter

A few comments can be made regarding the above results. Firstly, as stressed by Mit-

tal & Balachandar (1995), Singh & Mittal (2005), beyond Re > 200 the flow undergoes

three-dimensional transitional instabilities, hence the two-dimensional computations tend

to poorly represent the phenomena. The two-dimensional computations overestimate the

drag and base suction due to a higher level of Reynolds stresses, which result in a shorter

formation length behind the bluff body. More accurate modeling taking into account the

important three-dimensional effects is addressed in the present work, as presented in the

following Chapter.

Furthermore, in the cylinder-flow problem, very subtle aspects of laminar-turbulent tran-

sition play a crucial role and its improved modeling is required in the present context for

a better agreement with the experiments. As a result of deficient transition-modeling, it

is not possible to reproduce faithfully the instabilities of the shear layers and the correct

separation point, in summary, the intricate interaction between free-shear layers, bound-

ary layers and wake. That issue has been addressed in the present work and that shall be

presented in the following Chapter.

In spite of several shortcomings of the k-ω SST turbulence model in two-dimensional

modeling, it is reassuring to find that many features of the flow indeed were captured

by this approach. Firstly, the overall trends of all parameters were well captured, in-
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cluding the qualitative behavior seen near the critical Reynolds numbers, which suggests

that the drag crisis is mainly two-dimensional, as observed by Singh & Mittal (2005).

Also, the qualitative aspects of the flow field and aspects such as the bifurcation of the

Navier-Stokes equations leading to vortex-shedding, or also the secondary vortices asso-

ciated with instabilities of the shear layer next to the separation. The evolution of the

wake as Re is increased is also well represented, with its narrowing up to the drag crisis

and shedding of less coherent vortices. Finally, in a qualitative manner, the evolution

of the laminar-turbulent transition which is in fact reproduced by the k − ω SST model

somewhat earlier than in reality in terms of Reynolds number.

Table 6.9 presents a summary of the herein presented in tabular form. Figures 6.32, 6.33

and 6.34 show a summary of, respectively, the drag and RMS of lift coefficients and

Strouhal numbers presented in this chapter in comparison with experimental results.

Table 6.9: Summary of numerical results for the cases presented herein.

Re CDavg CLRMS St

5 4.44 - -

10 3.05 - -

20 2.18 - -

30 1.82 - -

40 1.61 - -

50 1.48 - -

100 1.38 0.23 0.17

200 1.38 0.50 0.20

1, 000 1.41 0.87 0.23

10, 000 1.52 1.12 0.24

100, 000 0.84 0.43 0.25

500, 000 0.58 0.22 0.28
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Figure 6.32: Drag coefficient results from the complete range of calculations. Experiments
from Schlichting H. (2000), ESDU (1985), Franzini et al. (2012), Achenbach & Heinecke
(1981) and from MARIN.
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Figure 6.33: Drag coefficient results from the complete range of calculations. Experiments
from Norberg (2003).
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Figure 6.34: Drag coefficient results from the complete range of calculations. Experiments
from Norberg (2003).
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Chapter 7

The Rigid Fixed Cylinder Flow -

Modern Modeling

This chapter presents the improvements brought about by the new turbulence

models implemented in ReFRESCO for the cylinder flow problem. Computa-

tions for Reynolds numbers ranging from 1, 000 to 7.57×105 will be presented.

Three-dimensional and two-dimensional setups are respectively combined with

Scale Adaptive Simulations and Local Correlation Transition Model. The nu-

merical details and discretization studies are presented together with discussion

regarding the improvements in flow prediction achieved by the new turbulence

and transition models.

The objectives of this chapter are i) to delineate the capabilities of these state-

of-the-art turbulence models for this problem; ii) systematically compare the

results with the traditional modeling on a common basis; iii) consolidate the

knowledge of these modern URANS models for the cylinder flow.

7.1 Outline of the Calculations

The calculations with smooth fixed cylinder showed in this Chapter were carried out at

Reynolds numbers from Re = 1, 000 to Re = 757, 000, comprising the turbulent regime.

Three main ranges are identified bearing in mind the capabilities of the turbulence mod-

els and the force quantification as their main quantitative aspect: range I comprises the

laminar range, from Re = 1 up to Re = 200 (analyzed in the previous Chapter); range II

ranges from Re = 1, 000 up to ca. Re = 100, 000, in which the three-dimensional effects

and instabilities play an important role in determining the loads; and finally the range

137
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III, from ca. Re = 100, 000 up to Re = 757, 000, in which boundary layer transition is

the crucial aspect that determine the flow character and the forces.

In order to improve the computations and quantitative predictions obtained with the tra-

ditional modeling in range II, the newly implemented Scale Adaptive Simulation model

is applied at Re = 1, 000; 3, 900; 20, 000; 63, 100; 100, 000. In range III, the Local Corre-

lation Transition Model is used at Re = 126, 000; 252,000; 315,000; 506,000; 757,000.

7.2 Discretization Details

The domain outline and boundary conditions used in the calculations presented in this

chapter are the same as used in chapter 6 being repeated here for convenience. Regarding

the size of the domain, the inlet and lateral boundaries 10D away from the cylinder axis

and the outlet boundary can be located 20D away from the cylinder. Figure 7.1 summa-

rizes the calculation domain, the boundary conditions and the grid layout used in the two

and three-dimensional calculations.

For the three-dimensional calculations done with the SST-SAS, the domain is four diam-

eters long in the span-wise direction, whereas for the two-dimensional calculations there

is only one cell in this direction. As for the results shown in chapter 6, the intermediate

grids between the finest and the coarsest one are build by interpolation and for all the

results with the finest grids, y+ ≤ 1 in the nodes adjacent to the cylinder. The aspect

ratio of these cells in the tangential direction has been kept low, up to ca. 5, so that x+ is

also low. For the three-dimensional calculations done with SAS, grids from 6, 048, 950 to

18, 558, 208 cells are used, being generated by extrusion from fine two-dimensional ones,

in which either 25 or 32 layers of cells were generated in the z-direction, thus dictating

higher z+ values than for x+ and y+ due to clear limitation in grid sizes.

In the two-dimensional calculations with LCTM, four to six grids were used in each

Reynolds numbers, with the number of cells ranging from approximately 469, 376 (coars-

est grid for Re = 63, 100) to 1, 780, 832 cells (finest grid for Re = 757, 000). The y+ and

x+ values are kept the same as previously.

The finest grid and time step for each Reynolds number were evidently the ones of in-

terest for analysis, but the results obtained with the coarser grids and time steps were

useful to carry out the convergence analysis and derive the numerical uncertainties for the

two-dimensional calculations.

It is worth pointing out that the two dimensional calculations showed in this chapter took
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Figure 7.1: Grid and domain used in the calculations.

from a few weeks (with the coarse discretization) up to several weeks in the HPC cluster

when the finest calculations were done due to the adopted strict convergence criteria. The

three dimensional calculations took up to 5-6 months in the same cluster.

7.3 Scale Adaptive Simulations

Previous studies with ReFRESCO (VAZ et al., 2007; PENGAN, 2010; KLAIJ, 2008) have

shown small differences between two-dimensional and three-dimensional calculations with

k-ω SST for Reynolds numbers between Re = 104 and Re = 105.

Conversely, Pereira, Vaz & Eça (2015) have shown that for a lower Reynolds number

(Re = 3, 900), there are differences between two-dimensional and three-dimensional mod-

eling with the same model. The same work also shows some variations due to changing

boundary conditions from symmetry to cyclic at the top and bottom boundaries, but with

a smaller extent. It has been argued that the observed behavior is associated in a lesser

extent with turbulent fluctuations than with low frequency three-dimensional large-scale

fluctuations. In that publication, the average drag coefficient with two-dimensional calcu-

lations is CDavg = 1.642, whereas three-dimensional calculation produced CDavg = 1.258

with symmetry boundary conditions on the top and bottom boundaries and CDavg = 1.206

with cyclic boundary condition (the two latter with the same grid). A difference of ca.

25% from two-dimensional to three-dimensional modeling is thus observed, whereas the

change in boundary condition produced a change of ca. 4%.
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These observations combined with the analysis conducted in range II, which indicated that

the physics is particularly sensitive to three-dimensional nature of the flow, motivated the

implementation of the SST-SAS model. This model was applied as it is based on the SST

and improves its modeling with little additional computational costs compared with 3D

SST.

It is also worth noting that the traditional SST behavior is observed for the SST-SAS

model with two-dimensional or steady state calculations and also for grids which are not

very refined, which explains the convenient choice made herein. This section shows the re-

sults obtained with the three-dimensional calculations with the Scale Adaptive Simulation

model implemented in ReFRESCO for this thesis.

7.3.1 Solution Verification

7.3.1.1 Iterative Convergence

Regarding iterative convergence criteria, normalized residuals of all quantities in the in-

finity norm below 10−4, i.e. L∞ < 10−4, as the example in figure 7.2 shows. Convergence

to such levels is troublesome, mainly due to the very extended calculation times as the

momentum equations in the z-direction are also solved.

7.3.1.2 Convergence Analysis

A convergence analysis has been conducted for the SAS calculations based on different

time steps and grids. As calculations lasted for several weeks, the convergence analyses

were not done for all the Reynolds numbers, but instead in groups: for Re = 1, 000 and

Re = 3, 900, the analysis was done at Re = 3, 900; for Re = 20, 000, Re = 63, 100 and

Re = 100, 000, at Re = 100, 000.

Figure 7.3 shows this sensitivity analysis. Apparently, for such finely discretized grids

there is lower sensitivity than for the time steps. It has been noticed that the time-

step refinement greatly increases the resolution of turbulent structures and thus the force

results. Tables 7.1 and 7.2 show, respectively, the characteristics of the finest grids and

time steps used for the SAS calculations. As commented above, these three-dimensional

grids were constructed by extrusion from two-dimensional grids and the finest grids had

32 layers of cells in the z-direction.
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Figure 7.2: Infinity and RMS norms for evaluating the residuals of the flow quantities
in the case Re = 6.31 × 104. (a) Velocities and pressure. (b) Turbulent kinetic energy
and turbulent frequency. Illustration of typical iterative convergence obtained for three-
dimensional calculations.

Table 7.1: Details of the finest grids used for the turbulent calculations.

Re Number of Cells Circumferential Cells y+
max

1,000 12,439,296 2,219 0.38

3,900 12,439,296 2,219 1.01

20,000 18,558,208 2,900 0.1

63,100 18,558,208 2,900 1.09

100,000 18,558,208 2,900 1.21
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Figure 7.3: Convergence studies for the SAS calculations at Re = 3, 900 and Re =
100, 000. The different lines represent calculations done with the same grids and the
finest time steps are denoted by ti/tmin = 1.

Table 7.2: Finest time discretization for the SAS calculations.

Re Time Steps per Shedding Cycle

1,000 300

3,900 140

20,000 250

63,100 500

100,000 495

7.3.2 Improved Flow Prediction in Range II

Figures 7.4 and 7.5 show the time traces of drag and lift coefficients and their power

spectra for, respectively, Re = 20, 000 and Re = 100, 000. A decrease in the regularity is

seen in the higher Reynolds number, reflecting the higher level of turbulent behavior. The

strongest peaks in both cases correspond to the Strouhal frequencies and some energy is

spread near those frequencies in both cases.
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The improvement in drag coefficient prediction is seen in figure 7.6, which shows the coeffi-

cients for Re = 1, 000;Re = 3, 900;Re = 20, 000;Re = 63, 100;Re = 100, 000. The results

are improved when compared to the two-dimensional SST results, but the comparison is

still not satisfactory for Re = 1, 000 and for Re = 100, 000. For the latter, it is observed

that boundary-layer transition plays a role as it is nearly at the critical transition region.

The SAS model shows nearly as poor performance in this Reynolds number as the two-

dimensional SST and more advanced models, as the LES, DES, PANS etc. In fact, small

improvements have been reached at the Reynolds numbers where boundary layer transi-

tion is decisive, as seen in Catalano et al. (2003), Sampaio & Coutinho (2000), Tremblay

(2001).

It seems that the instabilities observed in the final portion of the shear-layer transition

regime are not properly captured due to low grid resolution near the wall and, even due to

the application of wall functions. Figure 7.6 also shows a less “smoothed” trend compared

to SST.

The RMS values of the lift coefficients are presented in figure 7.7, in which similar behavior

is observed: less correlated vortices cause weaker vortices and thus lift forces, decreasing

the RMS to smaller values than in the two-dimensional calculations.

In that sense, there is an important difference between results with two-dimensional SST

and three-dimensional SST-SAS, nearly 50% decrease in the Reynolds numbers between

Re = 3, 900 and Re = 20, 000, in much better comparison with the experiments in that

range. This behavior has also been mentioned in Carmo et al. (2012) and Shur et al.

(2005): the very low observed experimental lift amplitudes, down to CL ≈ 0.25, are quite

difficult to match with applying different turbulence approaches. This situation is critical

when laminar separation takes place and when large portion of the shear layer is laminar;

as Reynolds numbers increase, the agreement with experimental lift coefficients is much

better and even two-dimensional simulations become increasingly better compared to the

experimental values.

The Strouhal numbers are presented in figure 7.8, in which a small improvement is seen

compared to the two-dimensional calculations, which already showed a fair agreement

with the experimental trends.



144

0 20 40 60 80 100
0

0.5

1

1.5

2

C
D

1 2 3 4 5

10
−5

10
0

  f
x
 =0.40

P
S

D

0 20 40 60 80 100

−2

−1

0

1

2

tU
ref

/D

C
L

1 2 3 4 5

10
−5

10
0

f

  St =0.20

P
S

D
Figure 7.4: Drag and lift time traces and power spectrum densities from calculation with

finest grid and time step for Re = 20, 000 with three-dimensional SST-SAS. The steady-

state portion is used for the statistics.
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Figure 7.5: Drag and lift time traces and power spectrum densities from calculation with

finest grid and time step for Re = 100, 000 with three-dimensional SST-SAS. The steady-

state portion is used for the statistics.
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Figure 7.6: Drag coefficients from calculations with three-dimensional SST-SAS compared

to two-dimensional SST results and experiments from Schlichting H. (2000), ESDU (1985),

Franzini et al. (2012), Achenbach & Heinecke (1981) and from MARIN.
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Figure 7.7: Strouhal number results from three-dimensional SST-SAS and two-

dimensional SST models. Experimental values from Norberg (2003).
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Figure 7.8: Strouhal numbers from calculations with three-dimensional SST-SAS com-

pared to two-dimensional SST results and experiments from Norberg (2003).

Figure 7.9 shows a comparison of flow fields obtained with ReFRESCO using two-dimen-

sional SST (PEREIRA; VAZ; EÇA, 2015), three-dimensional SST (PEREIRA; VAZ;

EÇA, 2015) and three dimensional SST-SAS for Re = 3, 9001. In these plots, Q-criterion

isosurfaces (Q = 1
2
(W 2 − S2)/‖[S]‖2 = 0.2, 0.5, 1.0) colored with nondimensional stream-

wise velocity is shown. Obviously, the two-dimensional calculation in the first plot present

prismatic flow structures in the span-wise direction, thus very different from the three-

dimensional results.

The second plot shows that even the three-dimensional calculation done with the SST al-

ready enables the solver to capture quite a few three-dimensional structures, whereas the

SST-SAS calculation shown in the third plot presents somewhat finer three-dimensional

structures and larger variation of the flow velocity in the depicted isosurfaces.

The practical aspect of these results is that there should be an improvement of the calcu-

lated flow quantities due to the enhancement of the flow calculation.

In fact, for the two-dimensional calculation, Pereira, Vaz & Eça (2015) reported for their

finest grid CDavg = 1.642; for the three-dimensional calculation, Pereira, Vaz & Eça (2015)

reported the value CDavg = 1.309 with the finest grid; for the results presented herein with

SST-SAS, a value of CDavg = 1.14 was obtained showing an improved comparison with

the experimental value of figure 7.6, CDavg = 0.99.

1As commented above, Pereira, Vaz & Eça (2015) have also reported on the differences between
different boundary conditions for the top and bottom boundaries, however for the sake of this analysis,
only the results obtained with symmetry conditions are presented.
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(a)

(b)

(c)

Figure 7.9: Q criterion isosurfaces (Q = 1
2
(W 2 − S2)/‖[S]‖2 = 0.2, 0.5, 1.0) colored with

nondimensional longitudinal velocity for calculations at Re = 3, 900 with ReFRESCO. (a)

Two-dimensional calculations with SST model extracted from Pereira, Vaz & Eça (2015).

(b) Three-dimensional calculations with SST model extracted from Pereira, Vaz & Eça

(2015). (c) Present SST-SAS calculations.
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Figures 7.10 and 7.11 show Q-criterion isosurfaces colored by nondimensional eddy vis-

cosity and turbulence intensity, respectively for Re = 3, 900 and Re = 20, 000. In the

former, one notices low turbulence intensity and eddy viscosity values whereas, in the

latter, the turbulence intensity and eddy viscosity near the body is much larger, indicat-

ing that transition moved upstream from wake, as commented above. Moreover, finer

and more three-dimensional flow structures are observed in the larger Reynolds number.

It is further interesting to notice in both figures that one can relate eddy viscosity and

turbulence intensity according to the colors: the practical rule of relating normalized eddy

viscosities above 10 to high turbulence seems a fair approximation in these cases.

Figure 7.12 shows the activation of the nondimensional SST-SAS term in equation 3.20,

QSAS for Re = 20, 000 and Re = 20, 000. Finer structures are seen in the latter due

to the more developed turbulence and smaller turbulent scales. Also, much larger eddy

viscosity is observed, again due to the larger Reynolds number. As commented by Carmo

et al. (2012), SAS term acts lowering the eddy viscosity in those regions, thus decreasing

dissipation and allowing the smaller scales to develop.

(a) (b)

Figure 7.10: Q-criterion iso-surfaces (Q = 1
2
(W 2 − S2)/‖[S]‖2 = 0.2, 0.5, 1.0) for

Re = 3, 900: (a) colored by turbulence intensity and (b) colored by nondimensional eddy

viscosity.
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(a) (b)

Figure 7.11: Q-criterion iso-surfaces (Q = 1
2
(W 2 − S2)/‖[S]‖2 = 0.2, 0.5, 1.0) for

Re = 20, 000: (a) colored by turbulence intensity and (b) colored by nondimensional

eddy viscosity.

(a) (b)

Figure 7.12: Activation of the SST-SAS term in equation 3.20, QSAS. Iso-surfaces with

(QSASD
2/U2

ref = 0.2, 0.5, 1.0) colored by nondimensional eddy viscosity for: (a) Re =

20, 000 and (b) Re = 100, 000.
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7.4 Local Correlation Transition Model

This section presents the improvements on the prediction of the flow achieved by using

the LCTM, in comparison with the benchmark results obtained with SST in range III. As

pointed out above, in this range boundary layer transition is a crucial aspect of the flow,

strongly influencing the drag loads and upbringing a larger two-dimensional character to

the flow. The modeling is thus two-dimensional, in a similar fashion as done with the

SST.

7.4.1 Background Work for the LCTM

An extensive investigation of the implementation and performance of the LCTM for the

flat-plate flow over a wide range of Reynolds numbers has been done prior to the cylinder

application and that is described in Appendix A. As it is for a different application,

the contents of that study are not included herein in detail, but the main findings and

conclusions are important for the present work.

It has been concluded in that study that uncertainties are somewhat higher than using only

the SST model without the LCTM. This issue has showed true for the present application

as well, driving grids and time steps to be much finer than in the calculations in Chapter 6,

especially for the uncertainty estimation. Also, it has been noticed in Appendix A that

fine tangential discretization is needed for the correct estimation of transition onset and

length.

In the present work, a very fine discretization of the near wall region has been achieved

by means of the nested refinement technique. One could also improve the refinement with

stretching towards known separation or transition regions in the cylinder, but that would

require a grids specific for each case with changing stretching factors and would result in

a different research direction, therefore, was not pursued in this work.

7.4.2 Outline of the Calculations

Calculations with the LCTM were done for the following Reynolds numbers in range III:

Re = 126, 000; 252, 000; 315, 000; 506, 000; 757, 000.

Three grids combined with three time steps were used for the calculations in each Reynolds

numbers, with the number of cells ranging from approximately 1, 195, 800 to 1, 780, 000

cells (the grids are constructed from the ones used before). The finest grids and time
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steps were used to obtain the results showed in the sequel. The results obtained with the

coarser grids and time steps were useful to perform the uncertainty analysis and derive

the numerical uncertainties showed later.

The details of the finest grids and time steps used in the calculations are showed in

table 7.3.

As done in the previous sections, initialization of turbulence is done by setting the eddy

viscosity as 1% of the laminar viscosity at the inflow boundary (very low values) and field.

Table 7.3: Details of the finest grids and the number of time steps in each shedding cycle
used for the calculations.

Re Number of Cells y+ Steps/Shedding Cycle
128, 000 1,195,746 0.18 393
252, 000 1,542,800 0.26 329
315, 000 1,542,800 0.30 791
506, 000 1,780,832 0.46 984
757, 000 1,780,832 0.81 984

7.4.3 Verification

7.4.3.1 Iterative Convergence

Round-off and iterative errors ought to be kept to a minimum when applying the approach

to estimate uncertainty, in order to isolate discretization errors from the former ones.

Round-off errors are minimized by using double precision. Regarding iterative errors,

the transition model normally causes iterative convergence to be quite difficult. Bearing

upon this fact, the following criteria was set: for momentum, pressure and turbulence

equations, Linf < 10−5 and, for transition equations, Linf < 10−3 as showed in the

example of figure 7.13.

7.4.3.2 Numerical Uncertainty

The grid convergence and uncertainty properties of the calculations done with the LCTM

are analyzed focusing on the drag coefficient CD.

Table 7.4 shows, for each Reynolds number, the average drag coefficients (CDavg) in the
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Figure 7.13: Infinity and RMS norms for evaluating the residuals of the flow quantities
in the case Re = 757, 000 with the finest grid. (a) Velocities and pressure. (b) Turbulent
kinetic energy (k), turbulent frequency (ω), intermittency factor γ and the correlation
Reθt. Typical iterative convergence obtained for the calculations of the present work.

finest calculations (at least ten cycles are used to define it, in which highly regular traces

were found for the forces).

The uncertainties are under 10% upbringing that the values showed herein are at most up

to near 10% from the “exact” solution that the mathematical model is able to obtain, with

a 95% probability (which is the confidence level of the uncertainty estimation procedure).
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Figure 7.14 shows the grid and time-step convergence characteristics of the drag coefficient

for Re = 757, 000. Second order convergence in time is observed, whereas first order in

space is noticed.

Table 7.4: Uncertainty estimation and order of convergence for the calculations.

Re CDavg U(CDavg)(%) px pt
128, 000 1.12 3.5 1 2
252, 000 0.89 6.1 2 1
315, 000 0.75 9.6 2 1
506, 000 0.52 2.1 2 2
757, 000 0.40 6.7 1.1 0.8

Figure 7.14: Example of grid and time step convergence of drag coefficients for Re =
128, 000 calculated with LCTM. The space convergence order is px = 1.0, whereas con-
vergence order in time is pt = 2.0.

7.4.4 Improved Flow Prediction in Range III

In this section, the improvements on the prediction of the flow achieved by using the

LCTM coupled with SST are presented for range III.

Figure 7.15 shows an example of the drag and lift coefficients traces and power spectra, in

which a noteworthy similarity is noticed in the regularity of the solution when compared

to the previous two-dimensional SST results. In fact, as shall be seen below, the LCTM
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mainly changes transition location, without strongly altering the character of the solution

compared to SST.

Figure 7.16 shows the drag coefficients calculated with the LCTM, in comparison with

results obtained with SST, and experimental results. Note that experimental and numeri-

cal uncertainties with SST are calculated at Reynolds numbers similar to the ones showed

herein, for which a V&V exercise has been presented above.

In particular, figure 7.16 shows that there is much better agreement between LCTM and

experiments than between SST and the same experimental value, owing to the better

prediction of transitional characteristics of the flow in the drag crisis region. It seems

that SST tends to smooth out the drag coefficient curve and its values drop at around

Re = 10, 000, whereas the LCTM results remain at high values up to nearly Re = 100, 000,

presenting a much sharper dip of the drag coefficients curve than with the SST.

The improvement of drag prediction in the drag crisis region occurs due to an improvement

in predicting the transition onset and length. More accurate prediction of the transition

improves the prediction of boundary layer separation, a crucial aspect in cylinder flow

dynamics, as most of the drag load is due to pressure forces.

It has been shown above that, using the SST (and most of the traditional turbulence

models) the cylinder wake, shear layers and boundary layer turn turbulent at least one

order of magnitude earlier in terms of Reynolds number than what is seen in the experi-

ments. That is natural, since the SST was developed to deal with fully turbulent and not

transitional flows.

Figure 7.17 shows the RMS of the lift coefficients calculated with the LCTM in compar-

ison with the SST results and experimental values from Norberg (2003). There is not a

clear improvement of the results compared to experiments at the lowest Reynolds number,

Re = 126, 000, with the LCTM over SST, whereas for the higher Reynolds numbers the

agreement is better.

It seems that the lift coefficient is better predicted by the three-dimensional methods

than two-dimensional and transition influences the drag loads more heavily than the lift.

Figure 7.18 presents the Strouhal numbers obtained from the lift time traces calculated

with the LCTM in comparison with the SST results showed before.
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Figure 7.15: Drag and lift time traces and power spectrum densities from calculation with

finest grid and time step for Re = 757, 000 with two-dimensional LCTM. The steady-state

portion is used for the statistics.
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Figure 7.16: Drag coefficients for the present calculations with the LCTM in comparison

with experiments from Schlichting H. (2000), ESDU (1985), Achenbach & Heinecke (1981),

kindly contributed by MARIN and with previous numerical results shown in this thesis.
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Figure 7.17: RMS of lift coefficients for the present calculations with the LCTM compared

with experiments from Norberg (2003) and with previous numerical results shown in this

thesis.
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Figure 7.18: Strouhal numbers for the present calculations with the LCTM compared

with experiments from Norberg (2003) and with previous numerical results shown in this

thesis.
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7.4.5 Flow Analysis

Figure 7.19 shows field plots for the finest calculation with Re = 128, 000: the non-

dimensional eddy viscosity is presented on the left-hand side and the intermittency on the

right. The lower figures show a closer look of the transition regions of the top ones. The

average separation angle measured counterclockwise from the back has been determined

as θsep = 92.00, whereas roughly at 90 degrees, the intermittency reaches 1.0 within the

boundary layer turning it turbulent downstream.

In fact, boundary layer separation triggers separation-induced transition in this case. It

is not a fortuitous event: separation-induced transition is present in the modeling by

construction.

On the other hand, figure 7.20 shows the same plots for Re = 757, 000. According to

Williamson (1996) that is where the drag coefficients increase again, thus being a post-

critical Reynolds number. In this case, transition takes place upstream of separation and

that occurs downstream of the separation points for lower, pre-critical Reynolds numbers.

For that reason, the wake is narrower and the drag coefficients are lower.

Figure 7.19: Field plots of normalized eddy viscosity and intermittency for Re = 128, 000.
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Figure 7.20: Field plots of normalized eddy viscosity and intermittency for Re = 757, 000.

7.4.6 Experimental Uncertainty

The experimental uncertainties for the calculated Reynolds numbers are presented in

table 7.5. They are derived from the cloud of experimental points in figure 7.16. These

estimations are done as discussed in Chapter 5.

Table 7.5: Uncertainty estimation for the experiments

Re s c(%) CDavg UD UD/CDavg(%)
128, 000 0.06 4.81 1.18 0.07 5.66
252, 000 0.17 17.22 0.97 0.20 20.26
315, 000 0.39 68.62 0.57 0.37 65.43
506, 000 0.11 30.04 0.37 0.13 35.34
757, 000 0.14 43.51 0.32 0.11 35.80

7.4.7 Validation

A solution validation exercise was also done for the calculations with the LCTM accord-

ing to the theory developed in chapter 5. Table 7.6 presents the results of this exercise.
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According to the validation criteria the results are validated with the experiments (with

some amount of flexibility for Re = 506, 000). Evidently, in this drag crisis region, the

experimental points are highly spread and that is most likely due to different experimental

conditions concerning inflow turbulence values, slightly different cylinder surface rough-

ness and others. These differences, as small as they might be, can strongly influence the

drag loads in this highly sensitive region. That reflects on the large experimental uncer-

tainties seen, and therefore, in the validation results. Despite of that remark, considering

the validation exercise done accordingly, one can consider that the approach is valid for

the calculation of drag loads in this range of Reynolds numbers for practical applications.

Table 7.6: Validation exercise done for the calculations

Re Uval E Validated?
128, 000 0.08 0.06 Yes
252, 000 0.21 0.08 Yes
315, 000 0.39 0.18 Yes
506, 000 0.13 0.15 Yes
757, 000 0.12 0.08 Yes

7.5 Final Remarks of the Chapter

The turbulent range has been divided into two ranges according to the main flow features

and bearing in mind modeling aspects. Range II is from Re = 1, 000 to ca. Re = 100, 000,

in which three-dimensional effects and instabilities play an important role in determining

the loads; in range III, from Re = 100; 000 up to Re = 757, 000, the boundary layer

transition is the crucial aspects that determine the flow character and the forces.

This chapter reported on the use of the three-dimensional k-ω SST-SAS in range II, in

which an improvement on the force calculation is seen compared to the previous two-

dimensional calculations done with SST. The calculated flow field in that range displays

structures that are not fine enough thus causing too large forces due to overly coherent

vortices and eddies. In fact, this is an issue related to the flow structures being resolved

(which are too large) and those being simulated (which, for k-ω SST are related to the

boundary layer thickness and thus too large in comparison to reality). The SST-SAS nat-

urally improves the turbulent flow scales modeling by using a local scale (the von Kármán

scale) in a way that the local scales are smaller. It is only natural that energy is more

broad-banded and the loads decrease.
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Regarding flow modeling in range III, where transition plays an essential role, it has been

noticed in the present study that the inclusion of the two additional transport equations

(for γ and Reθt) impacts negatively on the iterative converge of the calculations, specially

comparing to the calculations done with the SST model. Large calculation times are to be

expected for that reason. The LCTM is quite sensitive to space and time discretization,

thus requiring highly refined grids near the wall, with both fine normal and tangential

discretization. Regarding the former, y+ < 1 should be enforced. By means of requiring

low iterative and round-off errors, the discretization errors were estimated and uncertain-

ties of up to near 10% are achieved. The calculation results with fine grids and time steps

showed that there is much more reasonable comparison with the experimental results and

overall trends, in terms of drag loads, than seen before with URANS for these Reynolds

numbers. It has been shown that SST seems to smooth out the drag coefficient curve and

its values drop at around Re = 10, 000, whereas the LCTM results remain at high values

up to Re = 128, 000, presenting a much sharper dip of the drag coefficients curve than

with the SST. That is an important qualitative improvement due to and improvement

in predicting the transition onset and length. More accurate prediction of the transition

improves the prediction of boundary layer separation, a crucial aspect in cylinder flow

dynamics, since most of the drag load is due to pressure. The drag coefficient values

are also much better predicted when compared to the experimental trends. In order to

consolidate the comparison, a validation exercise has been done, in which experimental

and numerical uncertainties are considered, with the result that the results are validated

with the experiments.

In order to summarize the results presented in this chapter, tables 7.7 and 7.8 show respec-

tively the results obtained with the SST-SAS and with LCTM. Conversely, figure 7.21,

figure 7.22 and figure 7.23 show respectively the drag coefficients, RMS of lift coefficients

and Strouhal numbers calculated with the more advanced turbulence models in compari-

son with previous results and experimental ones.

Table 7.7: Summary of numerical results obtained with the finest grids and three-

dimensional SST-SAS.

Re CDavg CLRMS St

1,000 1.25 0.65 0.22

3,900 1.14 0.52 0.21

20,000 1.28 0.66 0.22

63,100 1.13 0.66 0.22

100,000 0.93 0.50 0.25
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Table 7.8: Summary of numerical results obtained with the finest grids and two-

dimensional LCTM.

Re CDavg CLRMS St

128,000 1.34 1.07 0.27

252,000 0.89 0.44 0.20

315,000 0.76 0.23 0.27

506,000 0.52 0.37 0.31

757,000 0.39 0.23 0.34
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Figure 7.21: Drag coefficient results from the complete range of calculations. Experiments

from Schlichting H. (2000), ESDU (1985), Franzini et al. (2012), Achenbach & Heinecke

(1981) and from MARIN.
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Figure 7.22: RMS of lift coefficient results from the complete range of calculations. Ex-
periments from Norberg (2003).
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Figure 7.23: Strouhal number results from the complete range of calculations. Experi-
ments from Norberg (2003).



Chapter 8

Rigid Cylinder in 1

Degree-of-Freedom Imposed Motions

This chapter will show the numerical study of one degree-of-freedom imposed

motions to the rigid cylinder. The experimental results are comprised of bench-

mark data from Gopalkrishnan (1993), Sarpkaya (2004) and original experi-

ments carried out at the Maritime Research Institute Netherlands - MARIN.

The main objectives are: i) to assess the capabilities of the traditional and the

more advanced turbulence and transition models used together with the mov-

ing body capabilities developed in this thesis; ii) to investigate the appropriate

modeling strategies for this problem.

8.1 Background

Forced sinusoidal oscillations have been studied by several researchers with the objective

of predicting free vortex-induced vibrations. It is well accepted (SARPKAYA, 2004) that

free and forced vibrations are different in their character. In free oscillations, “the motion

is driven internally by the wake at an average frequency”, dictated by the past and present

state of the flow and motion. In the forced vibrations, the frequency and amplitude are

precisely driven, in such a way that the nature of the VIVs is regularized and the wake

states are largely influenced by the regular motions, despite some irregularity is still seen.

The amplitude and frequency of oscillation dictate whether the wake response is locked-in,

in which the motions control the wake and a state of resonance is observed. Conversely,

in the unlocked state, the wake response is more irregular and the frequency content is

widespread.
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The motions described by the cylinder at the imposed frequency ω̃i (the tilde indicates

dimensional frequencies) are defined as:

y(t) = A sin(ω̃it). (8.1)

The lift force in the state of lock-in may be written as (PLACZEK; SIGRIST; HAM-

DOUNI, 2009):

FL = FLi sin(ω̃it+ φi) + FLs sin(ω̃st+ φs), (8.2)

in which ω̃s is the Strouhal frequency, FLS is the lift force amplitude due to vortex shedding

and FLi, due to the imposed motion. The quantity φi is the phase shift between lift force

due to imposed motions and imposed motions, whereas φs is the phase shift between

vortex-shedding forces and motions. The lift coefficient is written as:

CL =
FL

1
2
ρLDU2

= CLi sin(ω̃it+ φi) + CLs sin(ω̃st+ φs). (8.3)

Other frequency components may be present in the force response, but as stated by

Gopalkrishnan (1993), the interest lies in the locked-in response of the wake, in which

no power transfer between body and fluid takes place at frequencies other than the im-

posed motion frequency. Regarding the lock-in or “wake capture” issue, Gopalkrishnan

(1993) has advanced on the work of other researchers and clearly identified it. As he

stated it, “when the externally imposed cylinder oscillation frequency (or structural natu-

ral frequency, in the case of free oscillations) comes within a certain range of the Strouhal

shedding frequency, there is an apparent breakdown of the Strouhal relation”. In that situ-

ation, the shedding frequency collapses onto the imposed (or natural structural frequency,

in free motions) and “this is commonly accompanied by increased vortex strength, in-

creased correlation length, and a reduction of random irregularities in the vortex-induced

forces”. Gopalkrishnan also noted that the transition between lock-in and nonlock-in state

takes place continuously, but very rapidly and even chaotic response can occur at the lock-

in boundaries. The lock-in region is characterized in terms of the reduced velocity:

UR = UTi/D, (8.4)

in which U is the inflow velocity, Ti is the imposed motion period and D is the cylinder

diameter.

Considering the lift coefficient due to the imposed motion only (that is, the part of the

lift force with frequency ω̃i), the lift coefficient in phase with velocity and acceleration
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are, respectively:

CLv = CLi sinφi, (8.5)

and

CLa = −CLi cosφi. (8.6)

The lift coefficient in phase with velocity determines the damping or exciting effect: when

positive there is excitation, that is, a positive energy transfer from the fluid to the body;

when negative, there is damping, with energy transfer in the opposite direction. Con-

versely, the lift coefficient in phase with acceleration determines the inertial added mass

force. In this case, negative CLa denotes positive added mass and vice versa. As in

Gopalkrishnan (1993), the coefficients presented in this chapter, CLv and CLa are the

negative of the ones presented in Sarpkaya (2004), Cdh and Cmh, derived from Morison’s

equation.

In order to derive CLv and CLa from the calculations, two analyses procedures were imple-

mented. The first method is based on the Hilbert Transform of the transverse displacement

y(t) and the lift force FL(t), respectively expressed as:

H (y(t)) = ay(t)e
jφy(t), (8.7)

and

H (F (t)) = aF (t)ejφF (t), (8.8)

in which ay(t) and aF (t) are respectively the time-dependent displacement and force am-

plitudes and φy(t) and φF (t) are the time-dependent displacement and force phase angles.

The phase between the force and displacement is expressed as φF (t) − φy(t) = φ. By

filtering the lift force bracketing the imposed frequency, a regular trace is obtained, from

which the lift amplitude is obtained. Equations 8.5 and 8.6 are then used to obtain CLv

and CLa.

The results from this method are compared to another method in which the lift coefficients

in phase with velocity and acceleration are directly calculated from the expressions:

CLv =

√
2

Ti

< CL(t), ẏ(t) >√
< ẏ(t), ẏ(t) >

, (8.9)
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and

CLa =

√
2

Ti

< CL(t), ÿ(t) >√
< ÿ(t), ÿ(t) >

, (8.10)

in which < · > denotes the inner product operator, Ti is the period of the imposed motion.

This time domain approach has the advantage that no filtering of the forces is necessary

due to the calculation of the inner products. In all cases presented here, both methods

were used ensuring consistent results.

8.2 Description of the Cases

Three sets of calculations with two-dimensional k-ω SST, two-dimensional SST-LCTM

and three-dimensional SST-SAS were conducted and will be presented in this chapter. In

all cases, experimental data was used in order to support the analyses and conclusions.

The first calculation set was done to reproduce part of the experiments conducted by

Gopalkrishnan (1993). In that work, the tests were conducted to measure loads on the

cylinder under imposed motions transverse to the incoming flow with Re = 10, 000, several

motion amplitudes and a wide range of reduced velocities (or, conversely, frequencies) in

and out of the lock-in region. In particular, the calculations showed for this thesis, the

imposed motion non-dimensional amplitude is A/D = 0.3 in the range 3 < UR < 10.

For the second calculation set, interest lies upon a higher Reynolds number, Re = 40, 000−
45, 000, with two different sets of data: firstly, data contributed by MARIN, in which

transverse imposed motions are done with A/D = 0.5, Re = 40, 500 and 3 < UR <

8; finally, the experimental set presented by Sarpkaya (2004) was explored, with Re =

45, 000, A/D = 0.5 and 3 < UR < 10.

8.3 Setup and Grids

Figure 8.1 shows the grid layout and boundary conditions used in the calculations pre-

sented herein. In the present calculations, the circular domain was chosen after some

preliminary tests done with the rectangular domain (used in the fixed cylinder calcula-

tions) showed artificial pressure oscillations at the edges, which influenced the calculations.

The circular domain and grid showed in figure 8.1 ensures that this does not occur with

the imposed motion calculations. Due to different domain outline, the boundary condi-



167

tions are also different for the present calculations.

The dimensions are also different from the fixed cylinder calculations: a domain radius of

20D (D is the cylinder diameter) was found appropriate as smaller domain sized could

influence the results. Furthermore, 13D is the length in the span-wise direction.

Regarding the boundary conditions, at the top and bottom boundaries, symmetry con-

dition is enforced. On the other hand, the inflow represents 38% of the circumference,

whereas a pressure boundary condition is enforced at the remaining part of the domain.

BCPressure/Inlet 

Figure 8.1: Setup and grid layout used in the calculations with imposed motion.

The grids used for the imposed motions calculations are geometrically similar, generated

from each other using different base size elements with the same topology.

A sensitivity analysis applying the SST has been done with the grids to reach results inde-

pendent from discretization for the lowest reduced velocities (yielding the largest relative

flow velocity). For the two-dimensional calculations, grids analyzed ranged from 202,732

to 777,446 cells, where only the finest grid and time step were used for the calculation

of all reduced velocities, table 8.1. Similarly, for the three-dimensional calculations, grids

with 2,490,120 and 4,061,961 cells were analyzed with the different time steps for the

lowest reduced velocity with the third set (SARPKAYA, 2004) (Re = 45, 000) and that

grid was used for the other reduced velocities, see table 8.2. Figure 8.2 summarizes the
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convergence study for both two-dimensional and three-dimensional studies.

As mentioned in the previous Chapter, the two-dimensional calculations took from a few

weeks to up to two months with the same hardware as before, which is somewhat faster

than seen for the fixed cylinder. This has been normal since, with imposed motions,

the numerical transient behavior dissipates much earlier in this case. For the three-

dimensional calculations, computational times have been up to near three months with

the largest grids and finest time steps.

Table 8.1: Details of the finest grids used for the two-dimensional imposed motions cal-

culations (y+ values showed are for SST).

Re Num. of Cells Circ. Cells Steps/Cycle y+
max Calculation Set

10,000 632,678 550 200 1.11 1 (GOPALKRISHNAN, 1993)

40,500 777,446 608 134 1.52 2 (MARIN)

45,000 777,446 608 260 1.21 3 (SARPKAYA, 2004)

Table 8.2: Details of the finest grids used for the three-dimensional imposed motions
calculations with SST-SAS.

Re Num. of Cells Circ. Cells Steps/Cycle y+
max Calculation Set

10,000 4,061,961 432 200 0.11 1 (GOPALKRISHNAN, 1993)
40,500 4,061,961 432 300 1.12 2 (MARIN)
45,000 4,061,961 432 260 0.97 3 (SARPKAYA, 2004)
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Figure 8.2: Grid and time step convergence analysis for the imposed motion calculations.
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8.4 Iterative Convergence

Figures 8.3 and 8.4 show typical iterative convergence histories found in the present cal-

culations, however more noisy iterative convergence has been noticed in some instances,

requiring a large number of outer loops. The criteria for all quantities was L∞ < 10−4,

both for two-dimensional and three-dimensional calculations.
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Figure 8.3: Typical velocity and pressure residuals for the calculations with imposed mo-

tions using two-dimensional k-ω SST. Results for UR = 4.0 in the first set of experiments

(GOPALKRISHNAN, 1993).
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Figure 8.4: Typical turbulent quantities residuals for the calculations with imposed mo-

tions using two-dimensional k-ω SST. Results for UR = 4.0 in the first set of experiments

(GOPALKRISHNAN, 1993).
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8.5 Results with Re = 10, 000 and A/D = 0.3

In this set of calculations, the numerical results from the calculations were compared with

the experimental results from Gopalkrishnan (1993). In his work, he noted that the wake

capture region (for a fixed Reynolds number) varies with A/D and, for A/D = 0.3, this

region is comprehended between UR = 4.5 and UR = 5.9.

In order to characterize the responses in and out of the lock-in region, close analysis is

done for the results for UR = 3.0 (prior to the lock-in region), UR = 10.0 (after the lock-in

region) and UR = 5.0 (in the lock-in region) calculated with two-dimensional k-ω SST,

two-dimensional Local Correlation Transition Model and three-dimensional Scale Adap-

tive Simulations.

Figure 8.5 shows the motion and lift traces for UR = 3.0 (thus prior to the wake capture

region) and figure 8.6 shows the lift and drag time traces for the same reduced velocity,

both calculated with SST. Some irregularity in the forces is noticeable, which also reflects

on the frequency content of the time traces. However, the peak energy frequency of the

lift corresponds to the imposed motion frequency (this term shall be omitted henceforth

being replaced by “imposed motion frequency” or “imposed frequency” for conciseness),

f = f̃iD/U = 0.33, in spite of high energy associated with the vortex-shedding frequency,

fs = f̃sD/U = 0.16.

The drag loads present even richer frequency content and appreciable higher harmonics

of the shedding frequency, fs, are noticed. It is instructive to recall that the conventional

vortex street is comprised of two vortices shed per oscillation cycle, causing the drag to

oscillate at twice the vortex-shedding frequency, 2fs. Interestingly enough, one notices

higher energy associated with fs than with 2fs. Appreciable energy is also perceived at

the harmonics at 3fs, 4fs and 5fs. Gopalkrishnan (1993) reported energetic drag response

(for A/D = 0.75 and A/D = 1.20, thus higher than the present) at 2fi, while fi had little

energy. In the present calculation for UR = 3.0, fi = 2fs and thus 2fi = 4fs and the same

pattern is observed.

Furthermore, analyzing the study done by Williamson & Roshko (1988), in which the

vortex patterns are determined in the plot of A/D over fs/fi (in fact, they derive fs as-

suming St = 0.2, resulting fs = 0.2), for the present case (A/D = 0.3 and St/fi = 0.61),

the expected vortex pattern is the C-mode, meaning that “near the cylinder we have the

2S or P+S modes, but the smaller vortices coalesce (...) immediately behind the body”.

This is consistent with strong fs energy and the observed higher harmonics.
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Figure 8.5: Imposed motion and lift coefficient traces with UR = 3.0 and two-dimensional
SST for the first set of experiments (GOPALKRISHNAN, 1993).
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Figure 8.6: Drag and lift time traces on the cylinder with UR = 3.0 and two-dimensional
SST for the first set of experiments (GOPALKRISHNAN, 1993).

Figure 8.7 shows the velocity field aligned with the flow direction at the minimum point

of the lift force, in which the small structures mentioned by Williamson & Roshko (1988)

are observed. Figure 8.8 shows the imposed motion traces and lift coefficients for the

case with UR = 10.0, thus also out of the lock-in range. Conversely, figure 8.9 shows the

drag and lift coefficients and their spectra. The imposed nondimensional frequency for

this calculation is fi = 0.1, however the observed shedding frequency is fs = 0.218, as

seen from the lift spectrum. The drag spectrum, on the other hand, shows low energy in

a wide frequency range, indicating that no definite pattern is markedly present, as also
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noted by Gopalkrishnan (1993) for high imposed motion periods.

Figure 8.7: Nondimensional instantaneous velocity in the near wake of oscillating cylinder
at UR = 3.0 and two-dimensional SST for the first set of experiments (GOPALKRISH-
NAN, 1993). Taken from the point of minimum lift coefficient.
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Figure 8.8: Imposed motion and lift coefficient traces with UR = 10.0 and two-dimensional

SST for the first set of experiments (GOPALKRISHNAN, 1993).
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Figure 8.9: Drag and lift time traces on the cylinder with UR = 10.0 and two-dimensional

SST for the first set of experiments (GOPALKRISHNAN, 1993).

Figure 8.10, in which the x-velocity is presented, also shows that is difficult to define

the vortex-shedding pattern, as identified by Williamson & Roshko (1988). In this case,

St/fi = 2.0, which falls into the region where Williamson could not define a vortical

pattern.

Figure 8.10: Nondimensional instantaneous velocity in the near wake of oscillating cylinder

at UR = 10.0 and two-dimensional SST for the first set of experiments (GOPALKRISH-

NAN, 1993). Taken from the point of minimum lift coefficient.
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Moving to the lock-in region, figure 8.11 shows the nondimensional motion and lift co-

efficient traces for UR = 5.0, in which the imposed motion frequency is fi ≈ fs = 0.2.

The lift trace is markedly regular as a response to the imposed motions as the wake is in

resonance.

Figure 8.12 shows the lift and drag coefficients for UR = 5.0 and their spectra, corrobo-

rating that both lift and drag are very regular and the peak frequencies correspond to the

shedding frequency and double its value in the aligned direction.

Figure 8.13 shows the velocity in the x-direction. The 2S pattern is clearly seen, as

predicted by Gopalkrishnan (1993).
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Figure 8.11: Imposed motion and lift coefficient traces with UR = 5.0 and two-dimensional
SST for the first set of experiments (GOPALKRISHNAN, 1993).

It is instructive to compare the present results with the ones presented in Placzek, Sigrist

& Hamdouni (2009), in which similar calculations are done, although the latter was done

for lower Reynolds number, Re = 100. In particular, the present unlocked cases UR = 3.0

and UR = 10.0 are similar to the cases F = fi/fs = 1.50 and F = 0.50, respectively.

On the other hand, the locked configuration UR = 5.0 corresponds to F = 0.90 and

F = 1.10 in Placzek, Sigrist & Hamdouni (2009). Interestingly, in both results and the

ones in Placzek, Sigrist & Hamdouni (2009) the same behavior is observed: for UR = 3.0

(similar to F = 1.50), the lift peaks at fi (peak frequency response equal to the imposed

motion frequency); for UR = 10.0 (similar to F = 0.50), the lift peaks at 2fi (peak

response frequency equal to double the imposed motion frequency, which is equal to the

shedding frequency); for UR = 5.0, similar to F = 0.90 and F = 1.10, the response

frequency equals both imposed and shedding frequency as resonance is reached.
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Figure 8.12: Drag and lift time traces on the cylinder with UR = 5.0 and two-dimensional
SST for the first set of experiments (GOPALKRISHNAN, 1993).

Figure 8.13: Nondimensional instantaneous velocity in the near wake of oscillating cylinder
at UR = 5.0 and two-dimensional SST for the first set of experiments (GOPALKRISH-
NAN, 1993). Taken from the point of minimum lift coefficient.

Figure 8.14 shows the drag coefficients from the experiments in comparison with the

calculated for the models k-ω SST (two-dimensional), the LCTM (two-dimensional) and

the SST-SAS (three-dimensional).

There is much better comparison between the numerical and experimental results than

for the fixed cylinder at the same Reynolds number. It is likely that inertial effects due

to cylinder motion are better captured in the simulations, than the turbulence-related
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issues described above. Furthermore, small differences in the drag results are seen among

different turbulence models for this case.

Likewise, there is good agreement between numerical and experimental results of the lift

coefficients in phase with velocity and acceleration, respectively presented in figures 8.15

and 8.16, particularly in the resonance region, mainly due to more coherent and strong

vortices, which cause stronger vortex-induced loads.

In the CLv results, figure 8.15, the positive values denote positive transfer of energy from

the fluid to the cylinder, thus amplifying its free motions. The results thus indicate that

between UR ≈ 5.0 and UR ≈ 8.0, excitation would indeed take place and high vibration

amplitude would be observed.

One also notices that the peak energy of the numerical results occurs at UR = 5.50,

instead of UR = 6.00, as seen in the experiments. Small shifts of the resonance peaks

from the natural Strouhal frequency of f = 0.20 (or UR = 5.0) both in the experiments

and in calculations are mainly due to lift coefficient magnitudes and phase shifts, which

are highly sensitive to the flow conditions.

The CLa results, figure 8.15, show an abrupt variation of the lift coefficient in phase with

acceleration in the resonance region. It is also relevant to mention that these results did

not show a large difference when comparing the behavior of the three turbulence models,

as the results are similar overall. Indeed, even analyzing the CLv and CLa coefficients,

which are known to be extremely sensitive to flow conditions, the same trends are observed

as well as similar quantitative behavior.
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Figure 8.14: Drag coefficients for the calculations compared to Gopalkrishnan (1993).
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Figure 8.15: Lift coefficients in phase with velocity for the calculations compared to
Gopalkrishnan (1993).
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Figure 8.16: Lift coefficients in phase with acceleration for the calculations compared to
Gopalkrishnan (1993).

8.6 Results with Re = 40, 000− 45, 000 and A/D = 0.5

In this second set of calculations, higher Reynolds numbers are explored, ca. Re = 40, 000,

and higher imposed motion amplitude, A/D = 0.5. These are the conditions of the exper-

imental results contributed by MARIN (in this case, Re = 40, 500) and the ones presented

in Sarpkaya (2004), with Re = 45, 000.

In order to compare the behavior of the two-dimensional SST and three-dimensional

SST-SAS, figures 8.17, 8.18 and 8.19 show lift coefficients and imposed motion traces

for UR = 4.50, UR = 10.0 and UR = 5.50, again with the former two conditions in the

unlocked and the latter in the locked regions.

For UR = 4.50, there is a fair comparison between the traces from SST and SAS, with

slightly lower amplitudes by the SAS. Close inspection will also show small difference in

phase between the forces and motion, which reflect on different phase shifts resulting in

different cofficients, as showed below.

A different behavior is observed for UR = 10.0, for which the SAS displays lower ampli-

tudes and more irregular behavior than for SST (in spite of not displaying single-frequency

behavior, the SST solution is quite regular). A more regular behavior is observed for

UR = 5.50, which is in the resonance region.
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Figure 8.20 shows the drag coefficients from calculations and MARIN experiments con-

ducted in different years at the same conditions (Reynolds numbers, amplitude and fre-

quencies). The calculations are done with the two-dimensional k-ω SST, two-dimensional

LCTM and the three-dimensional SAS. There is poor comparison between the experiments

and the k-ω SST and LCTM calculations, unlike the results obtained in the Gopalkrishnan

(1993) set. The SST-SAS results show better agreement with the experimental values.

The amplification of the drag in the resonance region is captured with the SST, although

not the amplitudes. For UR > 6.0, the drag coefficient decreases in the experiments and

that is not seen in the SST or LCTM calculations, only with the SAS results.

As observed by Gopalkrishnan (1993), the correlation of shed vortices decreases outside

of the lock-in region with an increased importance of instabilities in the unlocked configu-

ration and that is more prominent for larger imposed motion amplitudes. By making use

of that argument, it is evident that the two-dimensional calculations with the k-ω SST

and LCTM are not able to capture those features.

The Scale Adaptive Simulations, on the other hand, improve the drag predictions due to

improved physical modeling that includes three-dimensional effects.
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Figure 8.17: Lift time traces from calculations with two-dimensional SST and three-

dimensional SST-SAS for UR = 4.50 and the conditions of Sarpkaya (2004).
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Figure 8.18: Lift time traces from calculations with two-dimensional SST and three-

dimensional SST-SAS for UR = 10.0 and the conditions of Sarpkaya (2004).
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Figure 8.19: Lift time traces from calculations with two-dimensional SST and three-

dimensional SST-SAS for UR = 5.50 and the conditions of Sarpkaya (2004).

Figures 8.21 and 8.22 show the comparison of numerical and experimental results for lift

coefficients in phase with velocity from MARIN and Sarpkaya (2004), respectively. Inter-

estingly, both plots show that the two-dimensional k-ω SST results display a fair compar-

ison with the experimental data within the resonance region whereas there is much worse

comparison out of the lock-in range, especially for Sarpkaya (2004). The same observation

done above on the improvements achieved with SAS results for both MARIN and Sarp-

kaya’s experimental values. Figures 8.23 and 8.24 show the comparison of numerical and

experimental of lift coefficients in phase with acceleration from MARIN and from Sarp-

kaya (2004), respectively. Interestingly, the differences between experiments and results
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Figure 8.20: Drag coefficients for the calculations compared to the results from MARIN.

with two-dimensional k-ω SST are much smaller than seen for the lift coefficients in phase

with velocity.

As mentioned before, the lift coefficient in phase with acceleration is related to added mass,

so there is a portion which corresponds to inertial fluid effects and a portion corresponding

to viscous and turbulent contributions (evidently in a non-linear relation (SARPKAYA,

2004)).

It seems clear from the previous results that the URANS approach displays no difficulty

in capturing inertial effects very precisely, whereas viscous effects remains the largest chal-

lenge.

As for the lift in phase with acceleration, in both figure 8.23 and 8.24, there is good

comparison of the results, especially in the lock-in range. There are very small difference

between SST and LCTM results, whereas SAS generally agrees better with the exper-

iments. In order to further illustrate the differences in response in and out of the

lock-in regions, figures 8.25 and 8.26 show the imposed motion and lift coefficient traces

from MARIN experiments for UR = 5.43 and UR = 7.80, respectively. The lift coefficient

traces are filtered retaining f < 8 Hz in order to remove high frequency noise, such as the

carriage vibration.

The lift traces for UR = 5.43, thus within the lock-in range, are more regular and narrow-

banded than for UR = 7.80.
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Figure 8.21: Lift coefficients in phase with velocity for the calculations compared to
MARIN data.
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Figure 8.22: Lift coefficients in phase with velocity for the calculations compared to
Sarpkaya (2004) data.

It is also interesting to notice that the magnitude of the lift coefficients is larger for

UR = 5.43 than for UR = 7.80, reflecting larger coherence and stronger vortices in the
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Figure 8.23: Lift coefficients in phase with acceleration for the calculations compared to
MARIN data.
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Figure 8.24: Lift coefficients in phase with acceleration for the calculations compared to
Sarpkaya (2004) data.

former case. Moreover, it is pointed out that the small amplitude lift loads incur in larger

measurement errors, thus the experimental values in unlocked configurations tend to carry
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larger errors.

In order to illustrate some of the differences observed between two-dimensional SST and

three-dimensional SAS results, figures 8.27 and 8.28 show slices of non-dimensional vor-

ticity in the span-wise direction respectively for UR = 3.50 and for UR = 5.50 comparing

the two-dimensional SST with the three-dimensional SAS caculations. In the results at

UR = 3.50, the SST result shows the shedding of more correlated vortices.

Furthermore, it is possible to note in the SAS result that the streamlines are three-

dimensional behind the cylinder (as they leave the horizontal plane) and the wake oscil-

lation is stronger in the SST.

Conversely, in the results for UR = 5.50, the differences are less marked. However, one

still notices stronger vortices in the two-dimensional solution, leading to larger amplitudes

as seen in the traces of figure 8.19.

It is furthermore interesting to observe that some three-dimensionality in the shedding of

vortices is observed in figure 8.29, in which two superimposed slices of vorticity contours

(mid-span and at a distance of 5% of the cylinder span from the top) display some dif-

ferences in the timing of the shed vortices, which in turn cause differences in the overall

phase. For the resonant case, such differences were hardly noticed.
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Figure 8.25: MARIN experimental time traces of imposed motions (in red) and measured

lift coefficient(in blue) filtered retaining f < 8Hz for UR = 5.43. The imposed motion

frequency in this case is f = 0.20 Hz and the force trace is filtered to remove the carriage

vibration and other high frequency noise.
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Figure 8.26: MARIN experimental time traces of imposed motions (in red) and measured

lift coefficient(in blue) filtered retaining f < 8Hz for UR = 7.80. The imposed motion

frequency in this case is f = 0.14 Hz and the force trace is filtered to remove the carriage

vibration and other high frequency noise.

(a) (b)

Figure 8.27: Non-dimensional vorticity and streamlines in the z-direction at the point of

maximum lift coefficient with UR = 3.50 for the Sarpkaya (2004) set of calculations. (a)

Calculations with two-dimensional SST. (b) Calculations with three-dimensional SST-SAS

(slice taken from mid-span).
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(a) (b)

Figure 8.28: Non-dimensional vorticity and streamlines in the z-direction at the point of

maximum lift coefficient with UR = 5.50 for the Sarpkaya (2004) set of calculations. (a)

Calculations with two-dimensional SST. (b) Calculations with three-dimensional SST-SAS

(slice taken from mid-span).

Figure 8.29: Line contours of vorticity in the z-direction at the point of maximum lift

coefficient with UR = 3.50 for the Sarpkaya (2004) set of calculations. Two superimposed

slices (mid-span, in black, and at a distance of 5% of the cylinder length from the top

boundary, in red) are showed from calculation done with three-dimensional SST-SAS.



187

8.7 Final Remarks of the Chapter

This chapter has shown the application of sinusoidally imposed motions in the transverse

direction of the flow with the use of two-dimensional k-ω SST, two-dimensional LCTM

coupled with k-ω SST and three-dimensional k-ω SST-SAS in comparison with experi-

mental benchmark data from Gopalkrishnan (1993), Sarpkaya (2004) and experimental

data from MARIN.

The range of Reynolds numbers considered in these calculations spans Re = 10, 000 to

Re = 45, 000, thus in the pre-critical range. It is then natural that transition is not rel-

evant as the Reynolds numbers are low. Consequently, the results obtained with LCTM

and SST are quite similar, evidencing that the LCTM did not substantially change the

flow character predicted by SST.

Conversely, the comparison between two-dimensional k-ω SST and three-dimensional k-

ω SST-SAS must take into account another interesting issue. The behavior within the

locked region is somewhat distinct from the unlocked range. In the locked region, a reso-

nant behavior takes place, in which flow structures are more correlated and coherent, thus

stronger vortices are formed. On the other hand, in the unlocked region, there is more

irregular force. For this reason, both two-dimensional SST and three-dimensional SST-

SAS perform similarly in the locked region, where more coherent flow is observed. In the

unlocked region, the increasing irregular behavior associated with more three-dimensional

flow is naturally better predicted by SST-SAS than SST, thus force prediction agrees

better with experimental results for SST-SAS than for SST.

The following Chapter will present results for the free motions of the rigid cylinder in two

degrees of freedom, in which the trend identified in the present Chapter is more marked,

namely that the different models perform similarly, particulary in the resonant region.
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Chapter 9

Rigid Cylinder in 2

Degrees-of-Freedom Free Motions

This chapter shows the studies and results concerning the implementation of

free rigid-body motion capability developed in ReFRESCO for this thesis. In

particular, the two degrees-of-freedom vibrations of a rigid cylinder with low

mass ratio are studied over a range of reduced velocities. The main objectives

are: i) to study the numerical approach and physics involved; ii) to study the

behavior of different turbulence models with free body-motions.

The numerical results are compared with experimental results from Jauvits &

Williamson (2004) and from Franzini (2013).

The coupling of state-of-the-art turbulence models and a free-moving body is

an original contributions of this thesis.

9.1 Background

Following the structure adopted in this thesis, the implementation of the free rigid cylinder

motions in two degrees-of-freedom within the framework of ReFRESCO will be bench-

marked against experimental results.

In particular, the low mass ratio experiments from Jauvits & Williamson (2004) and from

Franzini (2013) are used herein. In these experiments, single cylinders free to oscillate in

two degrees-of-freedom is tested over a wide range of reduced velocities, spanning UR ≈ 3.0

up to UR ≈ 14.0.

Jauvits & Williamson (2004) have shown that the two degrees-of-freedom (motion in the
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transverse and in-line directions) behavior is quite similar compared to the one degree-

of-freedom case (motion only in the transverse direction) for m∗ > 6.0: in-line response

is negligible for most reduced velocities and the transverse direction response is similar

to that of one degree-of-freedom cylinder (KHALAK; WILLIAMSON, 1996; KHALAK;

WILLIAMSON, 1997). The one degree-of-freedom behavior is featured by the initial, up-

per and lower branches of vibration response showed in figure 9.1 reproduced from Jauvits

& Williamson (2004). Khalak & Williamson (1996), Khalak & Williamson (1997) have

showed that the initial branch is associated to the 2S shedding mode (two single vortices

shed each cycle), whereas the upper and lower branches, to the 2P mode (two pairs of

vortices shed each cycle). The two peaks within the in-line resonance range correspond

to the SS and AS shedding modes, in which one notes the shedding of a symmetric and

an asymmetric pair of vortices, respectively.

Figure 9.1: Nondimensional transverse (A∗Y ) and in-line (A∗X) responses and transverse

response frequency (f ∗Y ) over reduced velocity (U∗) for m∗ = 7.0, Re = 2000− 11000 and

(m∗+Ca)ζ = 0.0117. The black symbols correspond to Y-only case and the white, to XY

motions (JAUVITS; WILLIAMSON, 2004).
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Conversely, Jauvits & Williamson (2004), Pesce & Fujarra (2005), Fujarra et al. (2001),

Williamson & Jauvits (2004) among others have more recently reported that the behavior

observed for m∗ < 6.0 is markedly different compared to m∗ > 6.0: initial, super-upper

and lower branches are now observed. Similarly to high mass ratio case, the initial branch

is featured by the 2S mode (two single vortices shed each cycle) and the SS and AS modes

are present. Much larger transverse vibrations are observed in the super-upper branch

(instead of an upper branch) associated with the shedding pattern 2T, featured by two

triplets of vortices in each vibration cycle. The lower branch is associated with the 2P

mode (shedding of two pairs of vortices each cycle).

Figure 9.2 show the transverse and in-line amplitudes and vibration frequencies for the

case with m∗ = 2.6 from Jauvits & Williamson (2004). The very distinct response in the

super-upper branch is associated with the resonance of the transverse degree-of-freedom,

marked by fY /fn ≈ 1.0.

Figure 9.2: Nondimensional transverse (A∗Y ) and in-line (A∗X) responses and transverse

response frequency (f ∗Y ) over reduced velocity (U∗) for m∗ = 2.60, Re = 1000 − 15000

and (m∗ + Ca)ζ = 0.013 (JAUVITS; WILLIAMSON, 2004).
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9.2 Description of the Cases

Two sets of calculations were conducted, namely using the two-dimensional k-ω SST

and three-dimensional k-ω SST-SAS. In both sets of calculations, the dynamic setup is

based on the experiments reported in Jauvits & Williamson (2004) and Franzini (2013).

Table 9.1 shows the dynamic setup in the experiments and present calculations.

Indeed, the mass ratio m∗ and (m∗ + Cpot
a )ζ are both very low in these cases and it is

known that this situation might cause numerical problems as the system might be “too

light” and large motions take place.

Leroyer (2004) and Bettle (2012) have noted that a Lipschitz condition must be met for

stability of the iterative solution process. In their work, the authors comment that the

large values of added-mass are the primary cause of such instabilities. They also point out

a remedy related to using a relaxation factors blending accelerations values from different

iterations. A pseudo added-mass approach can similarly be devised, in such a way that

these values vanish upon convergence. In this work, however, the strongly coupled implicit

approach has been adopted so that no stability problems were encountered and this has

not been necessary.

Moreover, the predictor-corrector scheme nested within the outer loops has been updated

at each 10 outer loops or less, and the dynamic equation convergence criteria is set to

10−6, which is typically achieved with two or three predictor iterations.

It is important to note that the computational burden added to the calculations is mostly

due to updating the flow field within the outer loops, however, it is still less costly than

the procedure implemented in Bettle (2012), in which the outer loops are nested within

the predictor corrector scheme and not the contrary as done herein.

Table 9.1: Details of the dynamic setup in the experiments reported in Jauvits &

Williamson (2004), Franzini (2013) and the dynamic properties of the system considered

herein.

Source L/D Re m∗ (m∗ + Cpota )ζ

(JAUVITS; WILLIAMSON, 2004) 10-7.5 1,000-15,000 2.6 0.013

(FRANZINI, 2013) 13 3,000-15,000 2.6 0.031

Present work 13 4,000-19,000 2.6 0.032
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In the results showed herein, the reduced velocity is calculated as:

UR =
Uref
fnyD

, (9.1)

in which fny is the natural transverse frequency and D is the cylinder diameter.

The maximum displacement amplitudes are defined as:

(A/D)max =
Amax − Amin

2D
. (9.2)

9.3 Setup and Discretization

Figure 9.3 shows the grid layout and boundary conditions used in the calculations pre-

sented herein. In a similar way, for the imposed motions cases, the top and bottom

boundaries correspond to symmetry condition, the farfield boundary is composed of an

inflow condition (38% of the circumference) and a pressure outflow boundary condition

for the remainder of the far-field boundary.

Moreover, the far-field boundary is located at a distance of 20D from the cylinder axis,

ensuring that there is negligible influence in the flow near the cylinder. The length in the

span-wise is 13D, hence an aspect ratio of 13 is chosen for the calculations.

The grids are the same used for the imposed motions calculations at Re = 45, 000 pre-

sented in Chapter 8, as the Reynolds numbers showed in the present exercise are similar

but smaller than those for the imposed cylinder case (in the present case, the maximum

Reynolds number tested is Re = 14, 000 and in that case is Re = 45, 000). It is worth not-

ing that two-dimensional and three-dimensional calculations are done herein, respectively

using the k-ω SST and k-ω SST-SAS.
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BCPressure/Inlet 

Figure 9.3: Setup and grid layout used in the calculations with two degree-of-freedom

motions.

Table 9.2 and 9.3 present the details of the grid and time steps used in a sensitivity

analysis respectively for the two dimensional k-ω SST and three-dimensional k-ω SST-

SAS calculations. The convergence of transverse and in-line amplitudes as a function of

time step refinement is oscillatory in both cases but relative variations smaller than 5%

is noticed for the transverse amplitudes. It was concluded that using Thydro/∆t = 540

(Thydro = D/U) is appropriate for both two-dimensional and three-dimensional calcu-

lations. Very similar computational times have been required to the imposed motion

calculations: for the two-dimensional calculations, up to two months in the HPC cluster.

For the three-dimensional calculations, computational times have been up to near three

months with the finest discretization.

Table 9.2: Details of the grid and sensitivity analysis for the two-dimensional k-ω SST
calculations.

Num. of cells Circ. cells Time steps/Nat. freq. Thydro/∆t y+
max ymax/D xmax/D

608 540 1288 0.04 1.38 0.34
777,446 608 270 644 0.07 1.41 0.45

608 180 429 0.07 1.22 0.28
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Table 9.3: Details of the grid and sensitivity analysis for the three-dimensional k-ω SST-

SAS calculations.

Num. of cells Circ. cells Time steps/Nat. freq. Thydro/∆t y+
max ymax/D xmax/D

432 600 1400 0.90 1.26 0.34

4,061,916 432 540 1288 0.92 1.05 0.31

432 270 644 0.84 0.85 0.30

9.4 Iterative Convergence

Figure 9.4 and 9.5 show typical iterative convergence of the calculations. The criteria is set

at L∞ < 10−4. As done for the imposed motion calculations, the criteria for all quantities

is defined as L∞ < 10−4, both for two-dimensional and three-dimensional calculations

respectively done with k-ω SST and k-ω SST-SAS. As commented above, the criteria

for the predictor-corrector scheme is 10−6, which adds little burden to the computational

process.
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Figure 9.4: Typical iterative convergence for the velocity and pressure.
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Figure 9.5: Typical iterative convergence for the turbulent quantities.

9.5 Decay Analysis

Decay analyses are carried out with the two-dimensional k-ω SST and the three-dimensional

k-ω SST-SAS calculations to ensure that the dynamic properties of the system are appro-

priately modeled and to obtain natural period and damping values. The decay is modelled

by the following equation:

mÿ + cẏ + ky = 0, (9.3)

in which the damping coefficient is defined as:

ζ =
c

2Mtotalωn
, (9.4)

in which Mtotal includes structural and added mass and ωn is the natural frequency of

vibration in the transverse direction.

In these calculations, initial uniform velocity field with U = 0.0001m/s is applied and an

initial displacement of 0.5D is given and the system is left to decay. The natural period and

damping are calculated by means of standard decay analysis method (CHAKRABARTI,

1994).

Table 9.4 shows the natural frequencies and damping values obtained in the decay analysis

for the two-dimensional and three-dimensional calculations, whereas figure 9.6 shows the

time traces. Negligible difference is observed.
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Table 9.4: Natural periods and damping values for the two-dimensional and three-

dimensional calculations.

Case Natural frequency (Hz) ζlinear

k-ω SST 2D 0.037 0.8%

k-ω SST-SAS 3D 0.037 0.9%
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Figure 9.6: Time traces of the transverse motions in the decay calculations. (a) two-

dimensional calculations with k-ω SST. (b) three-dimensional calculations with k-ω SST-

SAS.
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9.6 Vortex-Induced Vibrations

Figure 9.7 shows the transverse and in-line non-dimensional amplitudes of vibration from

the calculations done with two-dimensional k-ω SST and three-dimensional k-ω SST-SAS

compared to the results from Jauvits & Williamson (2004), Franzini (2013).

Regarding the in-line motions, similar behavior is observed for the calculations and for

the experiments. The in-line resonance near UR ≈ 3.0 is observed as well as the high am-

plitude response reaching x/D ≈ 0.4, due to coupling with the transverse motions. There

is no discernible difference in the behavior between the results from the two models.

Regarding the amplitudes in the transverse motions, the calculations with both SST and

SST-SAS capture the experimental trends: amplitudes in the initial, super upper branches

agree well with the experimental results, although the SST-SAS response shows earlier

transition from the super-upper to lower branch than SST and slightly lower peak am-

plitude. The amplitudes in the lower branch are somewhat higher than observed in the

experiments for both sets of calculations.

It is quite interesting to observe that not only the trends, but also the very high level of

amplitudes over y/D = 1.0 are captured in both cases, indicating that the performance of

both models is similar over the complete range of reduced velocities. Note also that the

Reynolds numbers in these calculations are ranging Re ≈ 1, 000− 10, 000, in which it has

been shown that it is quite troublesome to capture the experimental force measurements

in the fixed cylinder (Chapters 6 and 7).

Conversely, for Re = 10, 000, the imposed motion calculations showed in Chapter 8 that

the agreement between the results with different turbulence models and experiments from

Gopalkrishnan (1993) was better than seen for the fixed cylinder case, due to the imposed

motion effects. The results showed in this Chapter display further improvements in the

agreement between numerical results, mainly in terms of amplitudes.

In the real environment, the structure response filters the wide turbulent spectrum, in

such a way that the high energy frequencies influence the motions and flow details such

as instabilities and small scale turbulence are relatively less important compared to the

fixed cylinder case. It is also important to note in this regard that cylinder forces are

much more sensitive to those aspects than cylinder motions, which is more relevant in the

resonance range.

Figure 9.8 shows the ratio between transverse vibration frequencies and transverse natu-

ral frequency over the reduced velocities. The range UR = 2.0 − 4.0 corresponds to the
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initial branch. One notes one point for UR = 2.5, in which fy/Fny ≈ 1.0, characteristic

of indefinite excitation amplitude, due to a weak vortex shedding. A few other points at

higher reduced velocities display fy/fny ≈ 0.5, which corresponds to the initial branch

behavior, with high in-line response at twice the natural vibration frequency.

For higher reduced velocities, a stronger synchronization behavior is noticed with fy/fny

slightly lower than 1.0 in the calculations with both turbulence models and in the exper-

iments. That interesting behavior of vibration frequency was pointed out by Khalak &

Williamson (1997): the vibration frequency follows neither the Strouhal frequency nor the

natural frequency fny remaining slightly below it, in a clear difference between the exper-

imental results with low and high mass ratio as, in the latter, the frequency locks onto

the natural frequency. It is only near UR = 7.5 that fy/fny ≈ 1.0 for the two-dimensional

SST, which corresponds to the peak amplitude response, see figure 9.7. For the same re-

duced velocity, the result of the three-dimensional calculation with SST-SAS has shifted

to the lower branch with fy/fny > 1.0 and lower response amplitude. The response in the

lower branch is marked by fy/fny > 1.0, with increasing values that tend more closely to

a linear relation between frequency and reduced velocity.
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Figure 9.7: Non-dimensional amplitudes over reduced velocity of two degrees-of-freedom

free oscillating cylinder compared to Franzini (2013) and Jauvits & Williamson (2004).
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over reduced velocity for two degrees-of-freedom free oscillating cylinder compared to

Franzini (2013) and Jauvits & Williamson (2004).

The average drag coefficients over reduced velocities are presented in figure 9.9. A fair

comparison between the two-dimensional SST and experiments is seen, somewhat closer

than that of the three-dimensional SST-SAS results. For both cases, however, the results

are slightly over-predicted in the lower branch.

From a phenomenological perspective, as discussed by Khalak & Williamson (1997), there

is a massive increase of the average drag coefficient magnitude compared to the fixed cylin-

der case, both in experiments and in the present calculations.

From the experimental standpoint, the average drag coefficient showed in Chapter 6 is

CDavg = 1.1 for Re = 10, 000, whereas in the experiments in Franzini (2013), CDavg = 3.5

for UR = 7.5 and Re ≈ 10, 000, thus three-times the stationary value. Conversely, the

two-dimensional SST value for the fixed cylinder is CDavg = 1.5 and for the moving cylin-

der, CDavg = 3.0, in a two-fold increase. This is mainly due to the resonant behavior in

the transverse direction. Similarly, figure 9.10 and 9.11 respectively show the RMS of the

drag and lift over reduced velocities from the calculations and experiments.

A large amplification of the fluctuations in the drag forces is noticed both in the exper-

imental and numerical results with a peak at UR ≈ 6.5, thus somewhat below the peak

amplitude response at UR = 7.5.

Results with both turbulence models follow the experimental trends and fairly agree in



201

quantitative terms for the drag RMS. The RMS of lift coefficients peaks at UR ≈ 5.0, near

the transition from the initial to the supper upper branch, in which large lift fluctuations

are seen.
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Figure 9.9: Average drag coefficients over reduced velocity for the two degrees-of-freedom

free oscillating cylinder compared to the experimental results in Franzini (2013) and Jau-

vits & Williamson (2004).
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Figure 9.10: RMS of drag coefficients over reduced velocity for the two degrees-of-freedom

free oscillating cylinder compared to the experimental results in Franzini (2013).
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Figure 9.11: RMS of lift coefficients for the two degrees-of-freedom free oscillating cylinder

over reduced velocity compared to the experimental results in Franzini (2013) and Jauvits

& Williamson (2004).

The added mass coefficient results that will be discussed and presented herein pertain

the total hydrodynamic force in phase with acceleration as commonly done in offshore

engineering. This issue has been much discussed in the literature, for instance by Sarpkaya

(2001), Williamson & Govardhan (2004). The former has shown that the viscous and

inertia forces do not operate independently and it is not possible to divide the time-

dependent force into an inviscid inertial force and a viscous force, both for longitudinal and

transverse forces, meaning that the added mass coefficients showed herein are composed

of both inertial and viscous parts in a non-linear relation. Sarpkaya stated that “the

creation, convection, and diffusion of vorticity affect both components of the force, because

the unsteady flow is neither a juxtaposition of steady-flow states nor a juxtaposition of

impulsively started unsteady-flow states”. That means that it is generally not correct

to assert that the added mass reflects only the inertial or potential flow content of the

flow. In order to calculate the added mass, the procedure applied herein is adapted from

Fujarra & Pesce (2002):

z[FL]

z[y]
= maω

2 − icvω, (9.5)

in which z[·] is the Fourier transform of the time signature. In this frequency domain ap-

proach, the added mass is determined for each frequency band and the added mass results

showed herein correspond to the peak-energy frequency of the transverse displacement.
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Figure 9.12 shows the added mass coefficients calculated by means of equation 9.5 in com-

parison with the experimental results from Franzini (2013). For low reduced velocities,

the added mass tends to large values, which can be seen in a didactic manner as a large

virtual mass that the accelerating system has to pull.

The calculations are somewhat spread in that region reflecting a weakly synchronized

force due to vortex shedding, in turn meaning that the transverse motions are not pre-

dominantly determined by vortex shedding.

As reduced velocity is increased, the added mass decreases and an abrupt change is seen

from the initial to the super-upper branch at UR ≈ 4.0. In the super-upper branch,

4.0 < UR < 7.5, the added mass coefficients vary between Ca = 4.0 and Ca = 0 and

the experimental trend and values are closely followed by calculations with both two-

dimensional SST and three-dimensional SST-SAS. The zero-crossing added mass is nearly

at UR = 7.5, indicating the resonant peak response. For UR > 7.5, there is an asymptotic

behavior of the added mass coefficients towards Ca = −1, which is characteristic of lin-

ear dynamic systems excited with frequencies much larger than their natural frequencies

(CUNHA, 2005).

An interesting conclusion can be drawn from the results showed previously: there are very

small differences in all the results showed with the two-dimensional and three-dimensional

calculations done with k-ω SST and k-ω SST-SAS, respectively, as observed in the exam-

ple of figure 9.13, which shows comparisons between forces and motions with these two

models. This is consistent with the argument that the small scale flow details such as

small scale turbulent eddies and non-isotropic effects are less relevant for the free-moving

cylinder than for the fixed cylinder.

In the following sections, the dynamic and flow behavior will be more closely analyzed in

each of the response branches.
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free oscillating cylinder compared to the experimental results in Franzini (2013).
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9.7 Initial Branch

Figure 9.14 shows the time traces of in-line and transverse response and their power spec-

tra, whereas figure 9.15 shows the drag and lift coefficients with their spectra. A quite

irregular behavior of the in-line response and drag coefficients is noticed reflecting on

spread power spectra. Nevertheless, the magnitude of the fluctuations is quite small in

both motions and drag forces, as also noticed in the experiments.

The transverse results, conversely, are more regular, however remaining at low amplitudes.

The peak energy non-dimensional frequency of the lift coefficients and transverse vibra-

tions is f = fdimD/V , so it can be directly compared to Strouhal number, St. In this

case, the peak energy frequency is f = 0.19, which is very near the experimental value for

the stationary cylinder St = 0.2, for Re = 5, 400. That means that the Strouhal relation

is followed in this case, a result already shown in figure 9.8 and in the experimental re-

sults from Jauvits & Williamson (2004) and Franzini (2013). Moreover, the in-inline peak

frequency corresponds to twice the transverse peak energy frequency, which takes place

due to the fact that one in-line cycle is comprised of the shedding of one vortex and two,

for transverse direction.

80 100 120 140 160
0

0.05

0.1

0.15

0.2

A
x/D

0 1 2
0

1

2

3

4
x 10

−3

P
S

D

80 100 120 140 160
−1

−0.5

0

0.5

1

tU
ref

/D

A
y/D

0 1 2
0

0.1

0.2

0.3

0.4

P
S

D

f

f=0.37

f=0.19

Figure 9.14: Time signatures of non-dimensional in-line and transverse motions and power

spectra for UR = 4.0 with the two-dimensional k-ω SST. The frequencies are made non-

dimensional by multiplication with D/V .
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Figure 9.15: Time signatures of drag and lift coefficients and power spectra for UR =

4.0 with the two-dimensional k-ω SST. The frequencies are made non-dimensional by

multiplication with D/V .

The non-dimensional z-vorticity is presented in figure 9.16, in which the 2S mode is evident

as one pair of vortices is shed each cycle, similarly to the von Kármán vortex street.

Figure 9.16: Non-dimensional z-vorticity at the instant of minimum transverse displace-

ment for UR = 4.0 calculated with the two-dimensional k-ω SST.
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9.8 Super Upper Branch

Within the super-upper branch, the both in-line and transverse amplitudes are larger than

in the initial branch, as seen in figure 9.17, as well as the drag and lift forces showed in

figure 9.18.

The in-line motion results and drag coefficients show large fluctuations and somewhat

irregular behavior. The transverse motions are quite regular and with a very well defined

frequency f = 0.13, thus below the Strouhal number St = 0.2.

The lift time trace displays large energy at the same frequency f = 0.13, but also dis-

cernible energy at three-times the shedding frequency, which Jauvits & Williamson (2004)

found to be related to the 2T mode (two triplets of vortices are shed in each cycle). Fig-

ure 9.19 shows the non-dimensional vorticity at the minimum displacement instant, in

which it is possible to identify the 2T shedding mode, with three vortices shed each half

cycle.
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Figure 9.17: Time signatures of non-dimensional in-line and transverse motions and power

spectra for UR = 7.5 with the two-dimensional k-ω SST. The frequencies are made non-

dimensional by multiplication with D/V .
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7.5 with the two-dimensional k-ω SST. The frequencies are made non-dimensional by

multiplication with D/V .

Figure 9.19: Non-dimensional z-vorticity at the instant of minimum transverse displace-

ment for UR = 7.5 calculated with the two-dimensional k-ω SST.
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9.9 Lower Branch

In the lower branch, small in-line and transverse motion amplitudes are seen in figure 9.20.

Figure 9.21 shows the drag and lift coefficients and power spectra. The in-line vibration

and drag loads show small fluctuations and amplitudes, whereas the transverse motion

display irregular and low-amplitude motions, in spite of regular lift trace. The transverse

motion frequency is at f = 0.14, thus lower than what the Strouhal relation would indicate.

Figure 9.22 shows the shedding pattern in the lower branch, namely the 2P mode, with

two pairs of vortices shed each cycle.
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Figure 9.20: Time signatures of non-dimensional in-line and transverse motions and power

spectra for UR = 13.0 with the two-dimensional k-ω SST. The frequencies are made non-
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Figure 9.21: Time signatures of drag and lift coefficients and power spectra for UR =

13.0 with the two-dimensional k-ω SST. The frequencies are made non-dimensional by

multiplication with D/V .

Figure 9.22: Non-dimensional z-vorticity at the instant of minimum transverse displace-
ment for UR = 13.0 calculated with the two-dimensional k-ω SST.
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9.10 Final Remarks of this Chapter

The calculations presented herein concern the two degrees-of-freedom vortex-induced vi-

brations of a cylinder with m∗ = 2.6 and Re = 4, 000− 19, 000.

Previous studies in the literature have usually showed high mass-ratio structures, one

degree-of-freedom systems and very low Reynolds. Few publications have presented con-

ditions such as the ones showed herein and none has been found which was compared to

the benchmark results of Jauvits & Williamson (2004), Franzini (2013). These results are

quite different compared to high mass ratio structures.

Differently from the cases analyzed in the previous chapters, here the main quantities

that characterize response are the in-line and response amplitudes, instead of forces. The

turbulence models used in these calculations are the two-dimensional k-ω SST and three-

dimensional k-ω SST-SAS. LCTM has not been shown as, for these Reynolds numbers,

no transitional behavior is observed as demonstrated in the previous chapter.

It is quite interesting to observe that there are small differences in terms of motions when

comparing the results obtained with SST and SST-SAS. That has been attributed to the

fact that, both in the experiments and calculations, a filtering of the forces takes place and

the body mainly responds in frequencies which are, in fact, captured in the calculations.

That is the main reason why the comparison with experiments has gradually improved

from a fixed to a free moving cylinder.
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Chapter 10

Conclusions

In this chapter, a summary of the achievements is made and main conclusions

are discussed. Future work, improvements and new directions of research in

the present context are also proposed.

10.1 Main Conclusions

The flow about circular cylinder is one of the most important ones in fluid mechanics.

It is not only considered as a toy problem, but also of high practical important in itself

as many structures present similar geometric details. Engineering applications including

risers, piles, floating platforms such as spars, monocolumns, semi-submersibles and TLP’s

are examples that display cylindrical structures and are applications for which the sub-

ject studied in this thesis might be relevant. In that sense, it is also worth mentioning

devices applied to harvest clean energy, such as VIVACE (BERNITSAS et al., 2009),

for which the issues touched in the present work are important. On the other hand the

cylinder flow condenses a wide range of interesting aspects also observed in flows around

many other blunt bodies. The interaction of boundary layer, separating free shear layers

and wake gives rise to the vortex shedding phenomenon, three-dimensional instabilities,

laminar-turbulent transition, vortex-induced vibrations and more. A great deal of mod-

eling aspects must be quite well developed in a CFD code, if one is to correctly capture

the most important features of this flow at different Reynolds numbers.

The present doctoral work is mainly focused on the modeling of turbulence and fluid-

structure interaction capabilities within the Reynolds Average Navier Stokes approach

for application to the flow around cylinders in restrained condition, under imposed mo-

tions and free to move.
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In particular, the modeling, implementation, and applications have been done within the

framework of ReFRESCO. The contribution of the present doctoral work was on the

modeling, implementation and application of the state-of-the-art turbulence models k-ω

SST-SAS, Local Correlation Transition Model and of coupling of rigid body equations of

motion with the flow solver for free body motion calculations.

From a more general perspective, this doctoral work has been focused on understanding

the capabilities and limitations of the traditional engineering modeling for this problem,

identifying and improving modeling aspects by means of the use of new turbulence and

transition models. This has been mainly pursued for the fixed cylinder case, which can be

considered the most challenging case of this thesis. Furthermore, the relevance of turbu-

lence modeling and other issues for the case of cylinder under imposed motions have been

studied, as well as for the free moving cylinder, reaching observations and conclusions

that apply to the modeling of other engineering flows.

A systematic approach has been taken to build credibility onto the CFD calculations by

means of doing grid and time step sensitivity studies, strict iterative convergence control

and verification and validation procedures, when possible.

The fixed cylinder flow has been herein divided into three ranges, according to the most

important modeling features identified in each range. In range I, from Re = 1 to Re = 200

the flow is laminar and the modeling applied herein, namely two-dimensional steady and

unsteady calculations, showed appropriate. In range II, from Re = 1, 000 to Re = 63, 100,

three-dimensional effects and instabilities play an important role in determining the loads.

The two-dimensional modeling cause an over-prediction of drag and lift loads due to higher

level of Reynolds stresses, more coherent and strong vortices and inaccurate boundary

layer separation prediction. In range III, the subtle aspects of laminar-turbulent transi-

tion play a crucial role and its improved modeling is required. As a result of deficient

transition-modeling, it is not possible to faithfully reproduce the instabilities of the shear

layers and the correct separation point, in summary, the intricate interaction between

free-shear layers, boundary layers and wake.

In spite of these shortcomings, the overall trends of all parameters were well captured, in-

cluding the qualitative behavior seen near the critical Reynolds numbers, which suggested

that the drag crisis is mainly two-dimensional, as recognized by Singh & Mittal (2005).

Also, the qualitative aspects of the flow field and aspects such as the bifurcation of the

Navier-Stokes equations leading to vortex-shedding, or also the secondary vortices asso-

ciated with instabilities of the shear layer next to the separation.

The evolution of the wake as Reynolds number is increased is also well represented, with
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its narrowing up to the drag crisis and shedding of less coherent vortices. Also, in a

qualitative manner, the evolution of the laminar-turbulent transition which is in fact re-

produced by the SST model somewhat earlier than in reality in terms of Reynolds number.

The Scale Adaptive Simulations have improved the modeling in range II. This model nat-

urally improves the turbulent flow scales modeling by using a local scale (the von Kármán

scale) in a way that the local scales are smaller allowing break-up of larger structures to

smaller ones. It is only natural that energy is more broad-banded and the loads decrease.

The Local Correlation Transition Model has been applied in range III. In that region,

transition plays an essential role and thus such modeling seems appropriate. It is neces-

sary to notice that the extensive application of this model for the cylinder flow is indeed

increasing the range of applications of the model, as the correlations (which in fact contain

the information on the physics of the flow) were devised from flat plate flow.

It is reassuring to notice that the calculation results revealed much more reasonable com-

parison with the experimental results and overall trends, in terms of drag loads, than seen

before with URANS for these Reynolds numbers.

It has been shown that SST seems to smooth out the drag coefficient curve and its values

drop at around Re = 10, 000, whereas the LCTM results remain at high values up to

nearly Re = 100, 000, presenting a much sharper dip of the drag coefficients curve than

with the SST. That is an important qualitative improvement due to a more accurate

prediction of the transition onset and length. More accurate prediction of the transition

improves the prediction of boundary layer separation, a crucial aspect in cylinder flow

dynamics, since most of the drag load is due to pressure. The drag coefficient values are

also much better predicted when compared to the experimental trends.

The evaluation of the fluid-structure interaction between fluid and cylinder with imposed

sinusoidal motions has been studied with the application of two-dimensional k-ω SST

and LCTM and the three-dimensional k-ω SST-SAS. Due to low Reynolds number flows,

transition did not play an important role and thus the LCTM results showed very similar

to those with the SST.

Conversely, the comparison between two-dimensional SST and three-dimensional SST-

SAS revealed interesting issues. Within the locked region, a resonant behavior takes

place, with flow structures more correlated and coherent, with stronger vortices and nar-

row banded force spectrum.

In the unlocked region, however, the energy is more spread, causing more irregular force

(also in the experiments). Thus, both two-dimensional SST and three-dimensional SST-
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SAS perform similarly in the locked region, with forces similarly predicted and in good

agreement with experiments. In the unlocked region, the increasing irregular behavior

associated with more three-dimensional flow is better predicted by SST-SAS than SST,

thus force prediction agrees better with experimental results for SST-SAS.

The two-degrees of freedom vortex induced vibrations of a cylinder with low mass ratio

feature as main quantities that characterize response the in-line and response amplitudes.

The turbulence models used in these calculations are the two-dimensional k-ω SST and

three-dimensional k-ω SST-SAS. LCTM has not been shown as, for these Reynolds num-

bers, no transitional behavior is observed as demonstrated in imposed motion results.

It is quite interesting to observe that there are small differences in terms of motions when

comparing the results obtained with SST and SST-SAS. That has been attributed to the

fact that, both in the experiments and calculation a filtering of the forces takes place

and the body mainly responds in frequencies which are captured by the calculations. As

mentioned, that is the main reason why the comparison with experiments has gradually

improved from a fixed to a free-moving cylinder and this observation is of paramount

importance considering that such simplifications in the flow modeling for engineering ap-

plications can be made without excessively harming the responses.

The overview of the results showed in this thesis also permit some more practical conclu-

sions, drawn below.

The turbulence modeling showed decisive for the fixed cylinder flow. The three-dimensional

structures, instabilities and turbulent eddies determine flow separation and strongly influ-

ence on the drag and lift loads. A more broad-banded spectrum is seen on the forces and

not only the frequencies associated to vortex-shedding. The force calculation is naturally

very sensitive to the effects of turbulence in the flow.

For the imposed motions, the small-scale flow details such as small-scale turbulent eddies

and non-isotropic effects are less relevant than for the fixed cylinder due to a more corre-

lated flow, which forms due to the motions, mainly within the resonance range.

For the free-moving cylinder, both in the experiments and calculation, a filtering of the

forces takes place and the body mainly responds in frequencies which are captured by the

calculations. That is the main reason why the comparison with experiments has gradually

improved from a fixed to a free moving cylinder.
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10.2 Perspectives

The scope of this work has been defined covering a reasonably wide range of issues, from

the implementation and testing of turbulence models and body-moving capabilities to the

study of the complex cylinder flow. Thus a number of further activities and side investi-

gations identified during the course of this work were left aside (and a number of other

issues was pursued due to curiosity or need of larger understanding) with the purpose of

keeping focus on what was identified as the most important issues for this thesis.

Within the stationary cylinder investigation, the two-dimensional k-ω SST application was

exhaustively studied within the most common range of engineering applications in terms

of Reynolds numbers. It is worth investigating the improvements of the three-dimensional

calculations with the same model to better understand its limitations. Furthermore, the

assessment of different boundary conditions would also be of added value. In this work, a

choice was made for the three-dimensional SAS-SST as it encompasses the improvements

of three-dimensional calculations as well as the improvements of its more advanced con-

ceptual modeling.

Both SAS and LCTM models improved the flow prediction in their main range of appli-

cations: the SAS was better at predicting more three-dimensional character of the flow,

with better resolution of fine turbulent scales, whereas the LCTM improved the prediction

of laminar-turbulent transition. It would only be natural to combine these features into

a new hybrid model which could do both things at the same time, in a new “SAS-LCTM-

SST” turbulence model. To the author’s knowledge, research in that direction is being

carried out, but it has not been made public.

Within the imposed and free motions, a range of different issues can be identified, such

as the effects of adding more degrees of freedom the the dynamic system (which has deep

consequences in the formulation due to the adopted reference frames), varying the mass

ratio and damping values, among others.

With respect to engineering applications, it would be interesting to investigate these issues

with different and more complex geometries, from square cylinders to ships and offshore

platforms. It seems plausible that the conclusions drawn here also apply in these other

cases. Another issue in the edge of knowledge is the development and application of tools

for the simulation of flexible body together with a CFD solver, which would require a

great deal of creativity to circumvent the computational power restrictions.

During the last few years the CFD community has seen great improvements in the mod-

eling of complex flows and applications, from the modeling of cylinder flow to that of a
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ship with propeller and rudder in full scale. Hardware development has also helped this

movement with new-generation, faster and integrated processors with a new many-cores

trend, wide-band networks and others combined with more efficient software. CFD has

transited from being sometimes discredited to a very helpful tool, which can be more cost-

effective than model testing for many applications. In spite of that, one should be aware

that care should be taken when doing calculations for practical applications, in that good

practices concerning the investigation of: i) iterative errors and ii) discretization errors

should be taken into account. It is evidently not possible to carry out verification and

validation practices thoroughly always, but some sensitivity investigation is advisable to

determine proper setups. Conversely, a good overview of the engineering activity is also

beneficial, in that excessive fastidiousness can impair applications in real situations when

cost-effectiveness and time are normally restrictions, thus a good amount of common sense

is required of the engineers.
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la Modélisation Numérique de la Cavitation. Thesis (PhD) — Ecole Centrale Nantes. In
French, 2004.

LIU, C.; ZHENG, X.; SUNG, C. Preconditioned Multigrid Methods for Unsteady
Incompressible Flows. Journal of Computational Physics, v. 139, p. 35–57, 1998.

MALAN, P.; SULUKSNA, K.; JUNTASARO, E. Calibrating the γ-Reθ Transition
Model for Commercial CFD . AIAA Aerospace Sciences Meeting, jan. 2009.

MARZOUK, O. One-Way and Two-Way Couplings of CFD and Structural Models and
Application to the Wake-Body Interaction. Applied Mathematical Modeling, v. 35, p.
1036–1053, 2011.

MENDES, P.; BRANCO, F. Analysis of Fluid-Structure Interaction by an Arbitrary
Lagrangian-Eulerian Finite Element Formulation. International Journal for Numerical
Methods in Fluids, v. 30, p. 897–919, 1999.

MENEGHINI, J.; BEARMAN, P. Numerical Simulation of High Amplitude Oscillatory-
Flow About a Circular Cylinder Using a Discrete Vortex Method. In Proceedings of
AIAA Shear Flow Conference, Orlando, AIAA Paper 93-3288, p. 1–11, 1993.

MENTER, F. Two-Equation Eddy-Viscosity Turbulence Models for Engineering
Applications. AIAA Journal, v. 32, p. 1598–1605, 1994.



223

MENTER, F.; EGOROV, Y. Re-Visiting the Turbulent Scale Equation. In: Proc.
IUTAM Symp. One Hundred Years of Boundary Layer Research. Springer. Gottingen,
2004.

MENTER, F.; EGOROV, Y. The Scale-Adaptative Simulation Method for Unsteady
Turbulent Flow Predictions. Part 1: Theory and Model Description. Flow Turbulence
Combustion, v. 85, p. 113–138, 2010.

MENTER, F.; EGOROV, Y.; RUSCH, D. Steady and Unsteady Flow Modelling using
k −
√
kL Model. Heat and Mass Transfer, v. 5, 2005.

MENTER, F.; KUNTZ, M.; LANGTRY, R. Ten Years of Industrial Experience with the
SST Turbulence Model. Turbulence, Heat and Mass Transfer 4, p. 625–632, 2003.

MENTER, F.; LANGTRY, R.; VOLKER, S. Transition Modelling for General Purpose
CFD Codes. Flow Turbulence and Combustion, v. 77, p. 277–303, 2006.

MITTAL, R.; BALACHANDAR, S. Effect of Three-Dimensionality on the lift and drag
of Nominally Two-Dimensional Cylinders. Physics of Fluids, v. 8, p. 1841–1865, 1995.

MITTAL, S.; KUMAR, V. Flow-Induced Vibrations of a Light Circular Cylinder at
Reynolds Numbers 103 to 104. Journal of Sound and Vibration, v. 245, p. 923–946, 2001.

MITTAL, S.; KUMAR, V.; RAGHUVANSHI, A. Unsteady Incompressible Flow
Past Two Cylinders in Tandem and Staggered Arrangements. Journal of Fluids and
Structures, v. 25, p. 1315:1344, 1997.

NETO, P. L. de O. C. Estat́ıstica: Edgard Blucher, in Portuguese, 2005.

NIEUWSTADT, F.; KELLER, H. B. Viscous Flow Past Circular Cylinders. Computers
& Fluids, v. 1, p. 59–71, 1973.

NOBARI, M.; NADERAN, H. A numerical Study of Flow Past a Cylinder with Cross
Flow and Inline Oscillation. Compuers and Fluids, v. 35, p. 393–415, 2006.

NORBERG, C. Fluctuating Lift on a Circular Cylinder: Review and new Measurements.
Journal of Fluids and Structures, v. 17, p. 57–96, 2003.

ONG, M.; UTNES, T.; HOLMEDAL, L.; MYRHAUG, D.; PETTERSEN, B. Numerical
Simulation of Flow Around a Smooth Circular Cylinder at High Reynolds Numbers.
International Conference on Computational Methods in Marine Engineering. MARINE
2007, 2007.

PATANKAR, S. Numerical Heat Transfer and Fluid Flow : Routledge, 1980.

PENGAN, B. Numerical Accuracy in RANS Simulations of the Flow Around a Cylinder.
Thesis (MSc) — ENSIETA, 2010.
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APPENDIX





Appendix A

Investigation of the Properties of the

LCTM in the Flat Plate Flow

This appendix presents the studies carried out with the local correlation tran-

sition model coupled with the k-ω SST for the flat plate flow. It has been

done with the purposes of verifying the implementation, improving the under-

standing of the model and studying the influence of different parameters in its

behavior.

A.1 Calculation Setup

A.1.1 Description of Test-Cases

Two different sets of calculations will be presented. The first set was chosen to study

the behavior of the LCTM in comparison with traditional turbulence models in low and

high Reynolds numbers, from Re = 103.0 to Re = 109.5, with intervals of 100.5 (fourteen

Reynolds numbers). This range covers the laminar to fully turbulent regimes. In this “Nu-

merical Friction Line Study”, the one-equation model of Spalart and Allmaras (SPALART;

ALLMARAS, 1992), the two-equations models k-
√
kL (MENTER; EGOROV; RUSCH,

2005) and k-ω SST (MENTER; KUNTZ; LANGTRY, 2003) will be compared with the

Local Correlation Transition Model (LCTM) (LANGTRY; MENTER, 2009).

In the second set of calculations, the objective is to reproduce the experimental condi-

tions from the ERCOFTAC Classic Database T3 series (ERCOFTAC, 1990) and from

Schubauer and Klebanoff (S&K) (SCHUBAUER; KLEBANOFF, 1955) with calculations
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Figure A.1: Annotated view of the flat plate domain, showing an example grid.

done with k-ω SST and LCTM. This set will be referred to as “ERCOFTAC”.

A.1.2 Domain and Boundary Conditions

The domains for both studies are rectangular, as showed in figure A.1. For the Numerical

Friction Line calculations, the length of the plate is L = 1m, the domain measures 1.25L

long by 0.25L high. By calculating the analytic solutions for the boundary layer thickness

of laminar and turbulent flows proposed by Blasius (4.91x/
√
Rex) and Schultz-Grunow

(0.382xRe
1/5
x ) (SCHLICHTING H., 2000), the laminar boundary layer is thickest at Re =

103, with ca. 5mm and, for the turbulent solution, ca. 24mm at Re = 106. In both cases

the upper boundary is more than 10 times the expected boundary layer thickness.

For the ERCOFTAC tests, the plate is no longer dimensionless and measures 1.70m long

and 0.30m high, as in the experimental setup.

A.1.3 Grids

Ten different cartesian, structured grids were used for each test case - with the finest

grid containing more than four times the cells of the coarsest (doubled in 2-dimensions).

Although only three grids are required to fit a trend-line for uncertainty analysis, using

10 will decrease the sensitivity of the uncertainty analysis to noise in the results. Table

A.1 shows the number of nodes in the x- and y-directions.

Stretching in the x-direction was applied to reduce the distance between normal grid-lines

at the leading edge - with the aim of improving resolution in the transition region. The

factor used was 25, implying that the first cell from the leading edge be 25 times finer in

x than if uniform distribution had been used. The number of cells (ny) in the y-direction

varies to ensure a consistent number of cells in the boundary layer as the Reynolds number
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increases. The values for y-stretching were fixed for each Reynolds number such that the

grids remained geometrically similar. The value for the y-stretching factor at any Reynolds

number was 0.19686×Re0.715. By means of stretching, at least 45 nodes were within the

boundary layer at the outlet for every Reynolds number.The y+ values were kept below

1.0, both for Numerical Friction Line and ERCOFTAC, with the finest grids always closer

to 0.1, as ω-based models require this condition for proper viscous sublayer calculation

and consistent grid convergence.

Table A.1: Number of nodes in x- and y- direction for grids G1-G10.

log10(Re) G1 G2 G3 G4 G5 G6 G7 G8 G9 G10
All nx 898 842 786 730 674 618 562 506 450 394

3.00-4.00 ny 90 82 74 66 58 50 42 34 26 18
4.50-5.00 ny 103 95 87 79 71 63 55 47 39 31
5.50-6.00 ny 116 108 100 92 84 76 68 60 52 44

6.50 ny 129 121 113 105 97 89 81 73 65 57
7.00 ny 142 134 126 118 110 102 94 86 78 70

7.50-8.00 ny 153 145 137 129 121 113 105 97 89 81
8.50 ny 165 157 149 141 133 125 117 109 101 93

9.00-9.50 ny 177 169 161 153 145 137 129 121 113 105
ERCOFTAC ny 177 169 161 153 145 137 129 121 113 105

A.1.4 Numerical Details

The momentum convection scheme was the (second-order) quadratic upwind interpolation

for convective kinematics (QUICK) with flux limiters and the turbulence and transition

convection scheme used first-order upwind discretization (UD1). The momentum, turbu-

lence and transition equations were solved using the generalized minimal residual method

(GMRES) and the pressure was solved using the conjugate gradient (CG) method. Matrix

pre-conditioning was performed using the modified Jacobi technique and the extrapola-

tion of all boundaries was zeroth order. More details on those methods can be found in

a number of references, such as Ferziger & Peric (2002). All calculations were converged

down to residual machine accuracy, except for the calculations with the transition model,

in which convergence stalled before machine accuracy. Therefore, several non-linear it-

erations were needed. Nevertheless, the calculation times for all cases here shown varied

from minutes for the coarser grids up to hours for the finest grids, in a normal modern

workstation.
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Figure A.2: Example of iterative convergence at Re = 107.5 with G1. Residuals of veloci-
ties and pressure are presented.

A.2 Numerical Friction Line Study

A.2.1 Iterative Convergence

The following criteria was adopted concerning iterative convergence: all the equations had

to be converged in the infinity norm to Linf = 10−12. This was somewhat difficult with

the LCTM, especially for the transitional Reynolds numbers, Re = 106 − 107, and in the

R̃eθt equation, see the example in figures A.2 and A.3. As also recognized by Langtry in

private communication, it can be quite difficult to converge the R̃eθt equation as it is not a

field variable, but a mathematical artifact to transform a global variable (the correlation)

into a local one. Nevertheless, when convergence did stagnate, it was always at a low

value of the residual, as showed in figure A.3.

A.2.2 Order of Convergence and Uncertainty

Analysis of the grid convergence and uncertainty properties of the calculations have been

done with the four models for the force coefficient CD. The local skin friction coefficient

is defined as:

Cf =
µ(∂u

∂y
)(y=0)

1
2
ρU2
∞L

, (A.1)
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Figure A.3: Example of iterative convergence at Re = 107.5 with G1. Residuals of turbu-
lence variables are presented.

whereas the reference force per unit width is given by the integration of the above equation:

CD =
1

L

∫ L

0

Cfdx =
1

L

∫ L

0

µ(∂u
∂y

)(y=0)

1
2
ρU2
∞L

dx. (A.2)

Furthermore, the following reference Blasius solution will be used for the laminar flow on

the flat plate (SCHLICHTING H., 2000):

Cf =
0.664√
Rex

, (A.3)

in which the local Reynolds number is defined as Rex = xU∞/µ, where x is the distance

from the leading edge. For the turbulent friction line, the Schultz-Grunow proposal is

used (SCHLICHTING H., 2000):

Cf = 0.37[log10(Rex)]
−2.584. (A.4)

Figures A.4-A.5 show, respectively, the uncertainty and order of convergence of the calcu-

lations done with the four turbulence models, Spalart and Allmaras, k-
√
kL, k-ω SST and

LCTM; fourteen Reynolds numbers; and ten grids each, a total of 560 calculations. Over-

all, there are low uncertainties, most of them below 4%, except for LCTM in Re = 107.0

and Re = 107.5, which showed noisy convergence and slightly higher uncertainty. On the

other hand, the order of convergence showed to be between p = 1.0 and p = 2.0, which is

consistent, since the discretization schemes used for the momentum equations are second
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Figure A.4: Uncertainty quantification for all turbulence models in the entire range of
Reynolds numbers. Overall, low uncertainties are observed.
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Figure A.5: Orders of grid convergence for all turbulence models. Consistent behavior is
observed as orders are between p = 1.0 and p = 2.0.

Figures A.6, A.7 and A.8 show, as an example, the grid convergence of the force coefficients

for the LCTM of Re = 103.5, 106.0, 109.0. Somewhat noisy grid convergence is a result of a

very small changes in the transition location, which then affects the overall drag coefficient.

The uncertainties obtained are nevertheless low enough to permit a correct modeling error

comparison between the LCTM and the other models.
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Figure A.6: Grid convergence of the drag coefficients for Re = 103.5 with LCTM.
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Figure A.7: Grid convergence of the drag coefficients for Re = 106.0 with LCTM.
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Figure A.8: Grid convergence of the drag coefficients for Re = 109.0 with LCTM.
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Figure A.9: Grid sensitivity of Cf line for Re = 107.0.

A.2.3 Grid Sensitivity

This section presents a few examples of the grid sensitivity study done to obtain grid

independent solutions. It is important to note, as pointed out by Langtry & Menter

(2009), that LCTM requires highly refined grids especially in the normal direction to

the wall (y-refinement). In his work, it is recommended to keep y+ between 0.01 and 1

since smaller y+ tends to push transition downstream whereas larger values cause earlier

transition. Note that the tangential (x) direction must be very well refined so that the

model is able to closely reproduce the information contained in the empirical correlations.

Figures A.9 and A.10 show, respectively, calculations of friction lines for Re = 107.0 and

Re = 107.5, as examples of grid dependency results. In both plots, G1 is the finest grid,

with 898×153; G2 is nearly as fine, 842×145; and G10 is designed to be quite coarse with

394× 81. G1 and G2 are fine enough to produce consistent results in terms of the friction

and drag coefficients and the lines nearly coalesce. G10, on the other hand, is coarse,

shows important grid dependency and transition onset is shifted to an earlier position. It

is important to notice that all grids have very small y+, thus this dependency is strictly

related to the low grid (x and y directions) density.

A.2.4 Nominal Results

Transition on a flat plate boundary layer occurs close to Rex = 105− 106, with a laminar

portion of the plate around 56% for Re = 106.25 and 0.03% for Re = 109.5 (SCHLICHTING

H., 2000). Transition is therefore most important, at least for engineering purposes, at



237

0 2 4 6 8 10

x 10
6

0

0.002

0.004

0.006

0.008

0.01

Re
x

C
f

 

 

G1
G2
G10

Figure A.10: Grid sensitivity of Cf line for Re = 107.5.

moderate Reynolds numbers. Nevertheless, one should not deem it non-relevant for full-

scale structures, as most model tests of ships and offshore structures (and some full-scale

offshore structures, such as risers) occur at those moderate Reynolds numbers and their

results are used to the design of these structures. It is thus important to understand and

interpret these small-scale tests results in order to correctly extrapolate them to higher

Reynolds numbers.

As observed by Wilcox (1993) with k-ω model, the following events take place for a

calculation with the flat plate: the computation starts in a laminar region with k = 0

in the boundary layer and a small free-stream value of k; initially, Pk and Pω are small

and dissipation of both k and ω exceed production and energy is entrained from the free-

stream and spreads through the boundary layer by molecular diffusion; at the critical

Reynolds number, Rexc, production overtakes dissipation in the k equation and turbulent

kinetic energy is amplified in the boundary layer together with eddy viscosity - this is the

onset of transition; k continues to grow and, further downstream, production overtakes

dissipation in the ω equation and ω is amplified until balance is found in the k equation

- with that, transition of the boundary layer is complete.

Bearing the above elements in mind, consider figure A.11. It shows friction coefficient from

calculation with all four models compared to theoretical lines for laminar and turbulent

solutions (equations A.3 and A.4, respectively) for the case ReL = 103.5. In this case, all

models exhibit consistent laminar character, as one should expect for such a low Reynolds

number. Even with reasonable velocity gradient near the wall, this is not high enough to

trigger large production of k and νt/ν > 1, which would indicate turbulent behavior.
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Rumsey and Spalart (RUMSEY; SPALART, 2008) have observed that the transition

location for the SST model occurs around Rex = 40, 000 for low Mach numbers (Ma =

0.2) and SA yields transition at Rex = 20, 000 for the same situation. Wilcox (1993)

has identified a lower transition onset for the k − ω model at around Rex ≈ 12, 000.

The Tollmien-Schlichting waves do not begin forming until Rex = 90, 000, according to

Schlichting H. (2000). It is quite clear that assessment of such turbulence models should

not be merely done regarding their transition-prediction capability as their modeling focus

and development is upon fully turbulent flows. However, the point made here is that

transitional flows are dealt with in engineering applications, for instance in model tests

and laboratory experiments. Therefore, the transition-prediction performance of these

models cannot be disregarded for such applications and complementing them with e.g.

the LCTM is viable alternative as it was devised exactly to cope with this type of flow.

In this sense, Rumsey & Spalart (2008) have also advocated to use LCTM or other

appropriate models meant to deal with transition.

Figure A.12, in which friction coefficients are presented for Re = 106.5, illustrates the same

behavior observed by Rumsey and Spalart: an artificially early transition for both SST
1 and SA. Moreover, k −

√
kL also displays the same behavior. It is interesting to note,

furthermore, that the SA and k −
√
kL lines display a mild transition, in which laminar

behavior does not really occur. The SST, on the other hand, displays a sharp and short

transition length, in which the eddy viscosity increases rapidly and so does the friction

coefficient. This was also noted by Rumsey (2007).

Differently from the other models, The LCTM does not show any sign of transition to

turbulent boundary layer, which in turn, results in laminar friction coefficients. In this

case, although gradients are indeed high enough to trigger the turbulent production in

SST, SA and k −
√
kL, the empirical correlations embedded in the LCTM prevent the

production term from growing all over the boundary layer, thus preventing turbulent

behavior. It is evident that this is a qualitative result, where no experimental counterpart

is showed for these idealized conditions. It is therefore, not consistent to label behavior as

“right” or “wrong”. Comparison with experimental results will be presented further ahead

in the paper with the purpose of analyzing consistency with reality.

Figure A.13 shows friction coefficient distributions for ReL = 109.5, a high Reynolds

number, for the four models together with laminar and turbulent boundary layer analytical

solutions. At this high Reynolds number, all three turbulence models perform their best

1Rumsey showed that SST displays an inconsistent grid-dependent transitional behavior due to the
turbulence decay in the field, for which a remedy is to impose certain free-stream and floor values for the
turbulent quantities. This indeed can solve the grid-inconsistency behavior but, of course, not transition
location.
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as the boundary layer is, in fact, mostly turbulent. Transition is seen with LCTM at

Rex ≈ 4 × 106, which corresponds to roughly 0.15% of the plate length. Transition to

turbulent behavior occurs very early in the boundary layer and, for such a high Reynolds

number, it is almost irrelevant for the force results: the drag forces calculated with SST

and LCTM varies only about 2%, which is comparable with the uncertainty levels.
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Figure A.11: Friction lines for Re = 103.5. For this Reynolds number, behavior is expected
to be fully laminar and all turbulence models here exhibit consistent solutions.
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Figure A.12: Friction lines for Re = 106.0. This Reynolds number fall into the range of
transitional numbers and only LCTM does not predict turbulent behavior.

Attention is now focused on what happens very close to the wall with SST and LCTM.

Figures A.14 and A.15 show the u+ − y+ relations for, respectively, Re = 106.5 and
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Figure A.13: Friction lines for Re = 109.5, a fully turbulent Reynolds number.

Re = 109.5 at x/L = 0.50. In the first plot, x/L = 0.50 corresponds to Rex = 1.58× 106:

figure A.12 indicates that SST has transitioned to turbulence at this position, whereas

LCTM is still laminar. Note that LCTM friction line follows the laminar trend u+ = y+

(viscous sublayer solution), whereas SST follows the log layer. As intermittency factor

remains γ = 0, turbulence production is prevented and thus friction remains laminar. On

the other hand x/L = 0.50 for Re = 109.5 corresponds to Rex = 1.58 × 109 at which

position, both lines are turbulent, comprising viscous sublayer, buffer and log layers in

a very similar way. It is reassuring to notice that LCTM behaves very similarly to SST

when the transition model predicts fully turbulent flow.

Figures A.16 and A.17 show, respectively, k+ and νt/ν vs. y+ for Re = 9.50 at x/L−0.50.

SST and LCTM display similar trends in both plots with an increase of turbulent kinetic

energy and eddy viscosity as distance from the wall is increased.

A.2.5 Influence of Inflow Turbulence

Transition is largely influenced by upstream turbulence levels, even more than the usual

turbulence models. The larger the inflow turbulence, the earlier transition takes place.

Moreover, bypass transition can be promoted if inflow turbulence is large enough. Con-

versely, laminar inflow tends to produce natural transition, as with all the results showed

above. In this section, one can observe how the inflow turbulence values can influence

transition.

In order to initialize and set the inflow values for turbulent kinetic energy and turbulence
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Figure A.14: Near wall behavior for Re = 106.5 at x/L = 0.50 (Rex = 1.58 × 106) with
SST and LCTM. u+ − y+ relations differ in the two models.
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Figure A.15: Near wall behavior for Re = 109.5 at x/L = 0.50 (Rex = 1.58 × 109) with
SST and LCTM. Both boundary layers are turbulent and u+ − y+ relations show nearly
no difference.

intensity, most codes (as indeed with ReFRESCO) set values for eddy viscosity by means

of a relation with laminar viscosity,

f = µt/µ, (A.5)

because it is easier to relate to that than to kinetic energy itself. Taking into account this

ratio one may consider two common ways of setting the turbulence quantities k, ω:
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Figure A.16: k+−y+ relation for Re = 9.50 at x/L−0.50 with SST and LCTM. Differences
in k+ are very small, but one notices a milder transition of boundary layer with LCTM.
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Figure A.17: νt/ν−y+ relation for Re = 9.50 at x/L−0.50 with SST and LCTM. Almost
no differences are observed.

• By setting f or µt/µ and computing k and ω using dimensional considerations,

k = fν × 10
Uref
Lref

, (A.6)

and,

ω = 10Uref/Lref . (A.7)
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• By setting µt/µ and the turbulence intensity Tu, and computing k and ω using

k =
3

2
Tu2UiUi, (A.8)

and,

ω =
k

fν
. (A.9)

One might consider at a glance that the options are equivalent, but as also noted by

Spalart & Rumsey (2007) there is an important difference related to the turbulence decay

that each option determines. Investigation is done on these two options of setting inflow

turbulence and their respective influence on the LCTM.

Consider figures A.18 and A.19, in which the inflow turbulence is varied for Re = 6.50

and Re = 9.50, respectively. The two inflow options are investigated in four different

results: νt/ν = 0.01; νt/ν = 100; νt/ν = 100 − Tu = 1%; νt/ν = 100 − Tu = 10%.

Results are in fact consistent in the sense that increasing turbulence (in either option)

shifts the transition region to an earlier position. Moreover, as the equations above show,

νt/ν = 0.01 corresponds to very low k and thus Tu levels. This is then appropriate when

an ideal laminar inflow is desired. Let us now observe the lines for νt/ν = 100: evidently,

transition is earlier for Tu = 10% than for Tu = 1%, but the condition νt/ν = 100 alone

determines yet another turbulence level at the inflow. As a matter of fact, the turbulence

intensity distribution in the field, within and near the boundary layer is more relevant

than the level in the inflow, but the second is heavily influenced by the first. Indeed, as

observed by Spalart & Rumsey (2007) lower inflow eddy viscosity implies larger turbulence

decay rates and conversely larger inflow turbulence values imply larger decay rates (these

are numerical rather than physical observations). This clearly influences transition onset

since the correlations are basically functions of turbulence levels.

A.3 ERCOFTAC calculations

A.3.1 Setup and Settings

The purpose of this section is to compare the numerical results against ERCOFTAC

(T3A, T3B and T3A-) and Schubauer & Klebanoff (1955) (S&K) experimental data,

see table A.2. The ERCOFTAC data covers bypass transition cases whereas the S&K

experiments exhibit natural transition. Although the domain and grid will not be the same
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Figure A.18: Sensitivity of the friction coefficients to variations in the inflow turbulence
for Re = 106.5.
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Figure A.19: Sensitivity of the friction coefficients to variations in the inflow turbulence
for Re = 109.5.

as in the previous investigation, the resolution and stretching of the grid is maintained as

well as the numerical setup.

The inflow conditions are velocity (U∞) and eddy viscosity ratio µt/µ, and usual water

properties (ρ = 998kg/m3 & µ = 1.002 × 10−3kg/ms), such that the velocity from the

experiments is scaled appropriately. The four test-cases are detailed in table A.2, in

which one notices two sets of results. In the first (EV), the inflow value of eddy viscosity

is fixed, as in the first option described above. In the second set (EV+TU), both eddy
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viscosity values and turbulence intensity on the inflow were fixed. The eddy viscosity

and turbulence intensity at the inlet were controlled such that the measured value of

free stream turbulence intensity at the first data point of the calculation matched the

experimental results.

In the original testing of the LCT models, Langtry & Menter (2009) reduced the inflow

region to help achieve the correct turbulence intensity in a similar way, and the turbulence

intensity was specified at the inflow. In another article, which aims to validate a different

implementation of the LCT models (MALAN; SULUKSNA; JUNTASARO, 2009), the

inflow region was reduced again and the values for k and ω were specified at the inflow

providing a closer match to experimental results.

Qualitative tests were also done to determine if there was any impact on the results due

to the top boundary condition. The results were similar to the previous domain - the

height and type of the boundary was insignificant.

Table A.2: Test cases and inlet conditions for the transition test cases.
Case Velocity, m/s (EV) νt/ν (EV+TU) νt/ν-Tu(%)
T3A 0.361 90 90-3.3
T3B 0.629 600 600-6.5
T3A- 1.325 28 28-0.874
S&K 3.353 7.8 7.8-0.3

A.3.2 Nominal Results

In this section, analysis is done on the results obtained applying the setup and settings

above for the EV and EV+TU options. Let us firstly present the uncertainty values and

order of convergence results of the ERCOFTAC CD calculations in figure A.20. As noticed

in the “Numerical Friction Line” results, uncertainties are kept below 8% and the order of

convergence is between p = 1.0 and p = 2.0.

Firstly notice the turbulence decay computed 0.1m above the plate compared to the

measured in the experiments in figures A.21, A.23 and A.22 for, respectively, T3A, T3B

and T3A- with both EV and EV+TU. The S&K (SCHUBAUER; KLEBANOFF, 1955)

results are not shown because no experimental data for turbulence decay was reported.

These plots show that the EV option invariably promotes larger turbulence decay rate

than the EV+TU, which is not physically consistent with experiments. On the other

hand, the EV+TU option did provide the correct turbulent decay and turbulence values

compared to the experiments. The improved capacity of capturing the turbulence decay

and turbulence values in the field is essential for the transition model as correlations rely
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on turbulent intensity in the field to determine transition onset and length. Therefore, in

order to apply the LCTM correctly, it is vital to compute turbulence intensity rightly in

the entire field independently from LCTM itself.

Cases T3A and T3B (figures A.21 and A.23, respectively) show larger inflow turbulence

intensities than T3A- (figure A.22), which also determines a faster decay in the first two

cases than in the second one. This is entirely determined by the turbulence model itself

and not the transition model.

The following results in figures A.24, A.25, A.26 and A.27 show, respectively, the S&K,

T3A-, T3A and T3B friction lines calculated using both EV and EV+TU options. Note

that the EV+TU results show an overall slightly better comparison with the experiments

than the EV option. This is due to a more accurate prediction of the turbulence decay,

which in turn allows the correlations to provide more accurate transition onset and length

and thus more accurate friction lines. Again, note that the cases T3A and T3B are

emulating more abrupt transition process due to high inflow turbulence. The amplitude

of the deep is missed in Cf for that case of very large turbulence level. On the other

hand, T3A- and S&K emulate natural transition process, occurring at very low inflow

turbulence levels. In those cases, LCTM performs its best.

A.3.3 Analysis of the Flow Field

In this section, some features of the flow field are investigated by inspecting the boundary

layer very close to the plate. Attention is focused on the T3A- case representing natural

transition and on T3B for the bypass case. Figures A.28, A.29 and A.30 show, respectively,

eddy viscosity, turbulence intensity and intermittency factor fields for T3A− on the left

and T3B on the right. We readily notice in figure A.28 that T3B displays a much

thinner laminar region due to the larger inflow turbulence and figure A.29 shows that
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Figure A.20: Order of convergence (p)of the ERCOFTAC calculations on the left and
uncertainty results (U,%) on the right.



247

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

x/L

T
u 

(%
)

 

 

EV+TU
EV
Experimental

Figure A.21: Turbulence intensity measured at an horizontal line placed 0.1m above the
plate for the case T3A.
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Figure A.22: fig:Turbulence intensity measured at an horizontal line placed 0.1m above
the plate for the case T3A-.

the zones of high eddy viscosity correspond to the zones of high turbulent intensity. It is

also interesting to notice in figure A.30 that where intermittency is near zero, turbulence

intensity is kept at low values and thus transition is delayed which corresponds to reality.

Let us now relate the field observations with the previous results in figures A.25 and A.27

for T3A− and T3B, respectively. In T3A−, the friction line is turbulent as of x/L ≈ 0.8,

which is also seen in the field plots of figures A.28, A.29 and A.30. On the other hand,

for T3B, turbulent behavior is present upstream, at x/L ≈ 0.09, for which reason almost

no laminar behavior is seen in the field plots of the same figures.
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Figure A.23: Turbulence intensity measured at an horizontal line placed 0.1m above the
plate for the case T3B.
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Figure A.24: Friction lines obtained with SST and LCTM models in comparison with
experimental results (SCHUBAUER; KLEBANOFF, 1955) for case S&K with EV and
EV+TU. EV+TU shows better comparison with the experiments because of a better
turbulence decay prediction.
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Figure A.25: Friction lines obtained with SST and LCTM models in comparison with
experimental results (ERCOFTAC, 1990) for case T3A- with EV and EV+TU. EV+TU
shows better comparison with the experiments because of a better turbulence decay pre-
diction.
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Figure A.26: Friction lines obtained with SST and LCTM models in comparison with
experimental results (ERCOFTAC, 1990) for case T3A with EV and EV+TU. EV+TU
shows better comparison with the experiments because of a better turbulence decay pre-
diction.
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Figure A.27: Friction lines obtained with SST and LCTM models in comparison with
experimental results (ERCOFTAC, 1990) for case T3B with EV and EV+TU. EV+TU
shows better comparison with the experiments because of a better turbulence decay pre-
diction.

Figure A.28: Non-dimensional eddy viscosity field for case T3A− on the left plane and
T3B on the right. Both are done with EV+TU option.
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Figure A.29: Turbulence intensity field for case T3A− on the left plane and T3B on the
right. Both are done with EV+TU option.

Figure A.30: Intermittency factor field for case T3A− on the left plane and T3B on the
right. Both are done with EV+TU option.


	Introduction
	Preliminary Aspects
	Fixed Cylinder Flow
	Moving Cylinder Flow

	Summarizing the Present Doctoral Work
	Objectives
	ReFRESCO and the Research Environment Around the Code
	Engineering Relevance
	Thesis Outline

	Finite Volume Code ReFRESCO
	Unsteady Reynolds Averaged Navier-Stokes Equations in Inertial Reference Frame
	URANS Equations in Non-Inertial Reference Frames
	Geometry Handling
	Numerical Discretization
	Unsteady Term
	Gradients
	Convective Term
	Upwind Differencing Scheme
	QUICK Scheme

	Diffusive Term
	Source and Pressure Terms

	Solution Process
	Under Relaxation Procedure
	Pressure-Correction Scheme


	Turbulence Modeling
	k- SST Model
	SST-SAS Model
	A Discussion on the Scales
	Comparison with Other URANS Models

	Transition Modeling

	Fluid Structure Interaction
	Dynamics of the Rigid Body
	Coupling of Fluid and Structure Equations
	Weakly Coupled Scheme
	Strongly Coupled Scheme
	Implicit Adams-Bashforth-Moulton Scheme
	Predictor Step
	Corrector Step
	On the Error Estimation and the Evaluation Criteria



	Verification and Validation
	Steady Analysis
	Unsteady Analysis
	Experimental Uncertainty
	Validation

	The Rigid Fixed Cylinder Flow - Traditional Modeling
	Phenomenological Background of Flow Around Fixed Cylinder
	Steady Laminar Regime - Re<49
	Laminar Vortex Shedding - 49<Re194
	Wake-Transition Regime - 190Re<260
	Increasing Disorder in the Fine-Scale Three Dimensionalities - 260<Re1,000
	Shear-Layer Transition Regime - 1,000<Re<200,000
	Critical Transition Regime - 200,000<Re500,000
	Post-Critical Transition Regime - Re>500,000

	Outline of the Calculations
	Numerical Details and Grids
	Solution Verification
	Iterative Convergence
	Discretization and Uncertainty Studies

	Forces and Flow Analysis
	Steady Laminar Calculations
	Unsteady Laminar Calculations
	Turbulent Regime

	Experimental Uncertainty
	Validation
	Final Remarks of the Chapter

	The Rigid Fixed Cylinder Flow - Modern Modeling
	Outline of the Calculations
	Discretization Details
	Scale Adaptive Simulations
	Solution Verification
	Iterative Convergence
	Convergence Analysis

	Improved Flow Prediction in Range II

	Local Correlation Transition Model
	Background Work for the LCTM
	Outline of the Calculations
	Verification
	Iterative Convergence
	Numerical Uncertainty

	Improved Flow Prediction in Range III
	Flow Analysis
	Experimental Uncertainty
	Validation

	Final Remarks of the Chapter

	Rigid Cylinder in 1 Degree-of-Freedom Imposed Motions
	Background
	Description of the Cases
	Setup and Grids
	Iterative Convergence
	Results with Re=10,000 and A/D=0.3
	Results with Re=40,000-45,000 and A/D=0.5
	Final Remarks of the Chapter

	Rigid Cylinder in 2 Degrees-of-Freedom Free Motions
	Background
	Description of the Cases
	Setup and Discretization
	Iterative Convergence
	Decay Analysis
	Vortex-Induced Vibrations
	Initial Branch
	Super Upper Branch
	Lower Branch
	Final Remarks of this Chapter

	Conclusions
	Main Conclusions
	Perspectives

	References
	Appendix Investigation of the Properties of the LCTM in the Flat Plate Flow
	Calculation Setup
	Description of Test-Cases
	Domain and Boundary Conditions
	Grids
	Numerical Details

	Numerical Friction Line Study
	Iterative Convergence
	Order of Convergence and Uncertainty
	Grid Sensitivity
	Nominal Results
	Influence of Inflow Turbulence

	ERCOFTAC calculations
	Setup and Settings
	Nominal Results
	Analysis of the Flow Field



