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RESUMO

Fontes renováveis de energia desempenham um papel fundamental para atender o
constante aumento da demanda de energia global. Os principais objetivos em utilizar en-
ergias renováveis são reduzir os aspectos negativos associados à utilização de combustíveis
fósseis e diversificar a matriz energética. Entre as fontes renováveis, a energia das ondas
oceânicas permanece insuficientemente explorada e tem a capacidade de contribuir para
a produção de energia. O uso de energia das ondas tem sido promovido devido à grande
e densa quantidade de energia e a regularidade na distribuição de energia. A idéia de
coletar a energia das ondas existe há pelo menos dois séculos. No entanto, a extração
começou principalmente após a crise do petróleo da década de 1970. Desde então, vários
conversores de energia das ondas foram criados sem um design predominante, e espera-se
que mais conceitos sejam criados.

Os desafios em projetar dispositivos de conversão da energia das ondas ocorre devido
à dinâmica desse sistema e da natureza estocástica dos esforços ambientais. Como o
dispositivo é normalmente configurado para operar próximo às condições de ressonância,
os dispositivos de energia das ondas exibem grandes deslocamentos e as forças não lineares
aumentam a sua contribuição na dinâmica do sistema. Com base nisto, a análise de
conversores de energia das ondas é geralmente realizada usando modelos no domínio do
tempo para incluir os efeitos não lineares. No entanto, o custo computacional associado
a essas simulações é alto quando comparado aos modelos tradicionais no domínio da
frequência. Além disso, várias condições de carregamento são necessárias para avaliar a
resposta do corpo devido às características estocásticas das ondas do oceano, tornando-se
indesejável a realização de simulações no domínio do tempo.

A seguinte tese enfoca na análise estocástica de conversores de energia das ondas no
domínio da frequência utilizando a linearização estatística para avaliar os efeitos das forças
não lineares. A técnica empregada neste trabalho oferece uma estimativa rápida e con-
fiável da dinâmica do dispositivo. Dois conversores de energia das ondas conceitualmente
diferentes são investigados: um absorvedor pontual, e uma coluna de água oscilante. Os
resultados obtidos usando a linearização estatística são comparados com os seus equiv-
alentes modelos no domínio do tempo para verificar a confiabilidade da técnica. Uma
boa concordância foi obtida entre as simulações de linearização estatística e de domínio
de tempo em termos de distribuição da resposta, densidade espectral, valores médios e
potência média absorvida. No entanto, o custo computacional associado às simulações no
domínio do tempo foi notavelmente superior à da linearização estatística como esperado.
Portanto, a técnica aplicada nesta tese oferece uma abordagem valiosa para ser usada
como uma ferramenta de projeto para dispositivos de energia das ondas e procedimentos
de otimização para desenvolver o setor de energia das ondas.

Palavras-Chave – Energia das Ondas, Análise Estocástica, Linearização Estatística,
Dinâmica Não Linear, Domínio da Frequência.



ABSTRACT

Renewable sources of energy play a fundamental role to attend the constant rising
in the global energy demand. The main objectives of utilizing renewable energies are to
reduce the negative aspects associated with the utilization of fossil fuels and to diversify
the energy mix. Among the renewable sources, ocean wave energy remains insufficiently
explored and have the capacity to contribute to energy production. The use of wave
energy has been promoted due to the vast and dense amount of energy and regularity in
power distribution. The idea of harvesting wave energy exists for at least two centuries.
However, it mostly started after the oil crisis of the 1970s. Since then, several wave energy
converters were created without a predominant design, and more concepts are expected
to be created.

The challenges in the designing of wave energy converts rely on the dynamics of such
systems and the stochastic nature of the environmental loads. As the device is usually set
to operate near resonant conditions, wave energy devices exhibit large displacements, and
nonlinear forces rise in the dynamics of the system. In this regard, the analysis of wave
energy converters is usually conducted using time domain models to include the nonlin-
ear effects. However, the computational cost associated with these simulations is high
compared to traditional frequency domain models. In addition, several load conditions
are necessary to evaluate the body response due to the stochastic characteristics of ocean
waves, becoming undesirable to conduct time domain simulations.

This thesis focuses on the stochastic analysis of wave energy converters in the fre-
quency domain using the statistical linearization to evaluate the effects of nonlinear forces.
The technique employed in this work offers a fast and reliable estimation of the device
dynamics. Two conceptually different wave energy converters are investigated: a point
absorber, and an oscillating water column. The results obtained using the statistical lin-
earization are compared with their equivalent time domain models to verify the reliability
of the technique. The results obtained show a good agreement was obtained between the
statistical linearization and time domain simulations in terms of response distribution,
power spectrum density, mean offsets, and mean power absorbed. However, the compu-
tational cost associated with time domain simulations was remarkably superior to the
statistical linearization as expected. Therefore, the technique applied in this thesis offers
a valuable approach to be used as a design tool for wave energy devices, and optimization
procedures to develop the wave energy sector.

Keywords – Wave Energy, Stochastic Analysis, Statistical Linearization, Nonlinear Dy-
namics, Frequency Domain.
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1 INTRODUCTION

From the economic development of countries to the quality of life of their citizens,

energy drives modern society. The importance of energy is reflected in the global en-

ergy demand, which increased dramatically over the past decades and continues to rise

[1]. Currently, a large amount of energy comes from fossil fuels, such as coal, oil, and

natural gas. The excessive use of these fossil fuels as a source of energy has led some

negative impact on the environment, ranging from the exhaustion of natural sources to

air pollution, greenhouse effect, and the rise of the Earth’s mean surface temperature [2].

Those adverse effects have encouraged several countries to search for sustainable sources

of energy to reduce environmental impacts [3]. As a result, the energy industries and

scientific communities have investigated new technologies based on renewable sources.

Renewable sources have demonstrated a feasible alternative with several advantages.

Currently, the power generated from renewable sources represents approximately 10% of

the total [1]. A considerable amount of this percentage comes from the past decade,

which demonstrated the social acceptance and viability of renewable technologies as an

alternative source of energy. There are several types of renewable sources, being the most

common the solar, hydro, wind, biomass, wave, tidal. The main advantages of them range

from their environmentally friendly characteristics to the vast amount of energy. Also, the

use of renewable sources can diversify the energy mix and increase the reliability in the

electric power supply. Within the renewable sources, ocean waves remain insufficiently

explored and possess a considerable capacity to contribute to global energy production [4],

in which the south of Brazil possess a good energy potential with low seasonal variations

[5].

Ocean waves are a concentrated form of solar power with a substantial amount of

energy. As the sun irradiates the earth’s surface producing a differential heating, it

generates thermal air currents. Those air currents exert tangible stress on the ocean

surface resulting in a rapidly variable shear and pressure fluctuations, which transfer

part of the wind energy to the ocean in the form of waves [6]. Figure 1.1 illustrates
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the process of ocean waves being generated by the wind. The magnitude of ocean wave

energy depends on the wind velocity, contact distance, and time interval [5]. As the

energy transfer is accumulated during long distances, waves have a substantial amount

of energy. According to recent estimations, the ocean wave energy in the entire planet

is approximately 3.7 TW [1]. In addition, wave energy has the highest energy density

[7] among the renewable sources and highest regularity in power available, up to 90 % of

the time, while solar and wind energy are available up to 20 − 30% [8]. Those benefits

promote the exploitation of ocean waves as an alternative source of energy.

Figure 1.1: Ocean waves generation [5].

The idea of harvesting ocean energy exists for at least two centuries. The first mecha-

nism proposed to convert the ocean waves into electricity was patented in France in 1799

by Girard and Son [9]. However, wave energy research mostly started after the oil crisis of

the 1970s. Since then, several concepts were created, leading to more than one thousand

patents [10]. Unlike the wind energy industry, where the predominant design is composed

of a three-bladed turbine, wave energy has a wide variety of wave energy converter (WEC)

concepts that differs in their wave absorption mechanism and power-take-off (PTO) sys-

tem.

1.1 Wave Energy Converters

The present master dissertation focuses on the stochastic analysis of wave energy de-

vices. The objective of this section is to provide a literature review of some of the existing
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WEC technologies and their fundamental characteristics to justify the motivation behind

this dissertation. Currently, several wave energy devices exist with no predominant de-

sign with demonstrated feasibility. As a result, numerous approaches have been proposed

to categorize the vast amount of WECs [7, 11]. Generally, WECs are classified by their

energy conversion principle, orientation and size, PTO mechanism, location, and reaction

point.

1.1.1 Energy conversion principle

The incoming wave field interacts with WECs transferring part of its energy to the

device. The energy conversion principle varies depending on the type of mechanism,

which according to Falcão [11], can be sorted into three main categories: oscillating

water column (OWC), oscillating bodies, and overtopping devices. Figure 1.2 illustrates

examples of WECs for each category.

• OWCs produce energy due to the water oscillations inside the hollow structure

that drives an air turbine generating energy. OWCs can be composed of a fixed

or floating hollow structure, which acts as a cylinder/piston mechanism. As the

structure is partially submerged, the wave-induced pressure leads the inner free-

surface to oscillate [12]. This water column movement compresses and decompresses

the trapped air, forcing it to flow through an air turbine connected to a generator.

For onshore locations, the fixed OWCs are usually applied as a wave breaker to

preserve the coastline [13].

• Overtopping devices convert the wave energy according to overtopping phe-

nomenon driving an hydro-turbine. In those devices, the fixed or floating struc-

ture elevates the incoming waves above the sea level by an ascending ramp into a

reservoir. The use of reflectors amplifies the magnitude of the incoming waves. The

stored water is released back to the sea via one or mode hydro-turbines producing

energy.

• Oscillating bodies extract the energy due to the relative motion. The structure

is composed of submerged or floating structures which are exposed to the incoming

wave field. The wave-induced oscillations drive the PTOmechanism that is generally

hydraulic or electric. Up to date, several types of oscillating body systems exist,

which is frequently divided into two main categories: pitching devices (attenuator,

terminator, oscillating wave surge converter) and heaving devices (point absorber).
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(a) Oscillating water column (b) Overtopping device

(c) Oscillating bodies

Figure 1.2: Energy conversion principle.

The efficiency of WEC changes significantly even for devices using the same energy

conversion principle. For instance, as several oscillating bodies types exists, there is a

broad range of efficiency for those devices. Among the categories, the overtopping device

is one of the least efficient WEC [14]. Therefore, this type of device is not investigated in

this master dissertation.

1.1.2 Orientation and size

Despite the variations of conversion principle, WEC can be sorted according to the rel-

ative size and orientation between the device and the incident wave field. Four categories

are generally used to define the WEC regarding the orientation and size:

• Terminators are devices oriented in the perpendicular direction compared to the

dominant wave direction, and the size comparable to the wavelength.

• Attenuators are devices that operate parallel to the wave propagation, and its size

is superior to the dominant wavelength.

• Point Absorbers are devices with the dimensions considerably smaller than the

dominant wavelength. Therefore, it can be assumed as a point material compared
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with the wave, being insensitive to the wave direction.

• Quasi-point absorbers are asymmetric devices insensitive to the wave propaga-

tion. However, the structure has a dimension comparable to the dominant wave-

length [15].

Figure 1.3: Orientation and size [16].

1.1.3 PTO mechanism

The PTO system is responsible for converting the ocean energy into an usable form

of energy. There are several types of machinery, which varies with the source of power,

such as mechanical, fluid, and electrical.

• Hydraulic PTO mechanism is driven by the moving structure that pressurizes the

fluid. This fluid goes through a controlled manifold to a hydraulic motor connected

to an electric generator.

• Hydro turbines are driven by a fluid flow, which is based on the well-establish

technology employed in hydro-power plants. This type of mechanism is generally

applied in overtopping WEC.

• Pneumatic PTO systems are composed of air-turbines driven by the oscillating

pressure. The turbines are coupled to the electric generator and are applied in

OWCs and pressure-differential devices.

• Direct-drive PTO mechanisms transform the mechanical power directly into elec-

tric power. Two main types of direct-drive mechanism can be categorized: electrical

drive system where the moving part of the mechanical system is connected to a lin-

ear generator; and direct mechanical drive where an additional mechanism transfers

the moving part to a rotary generator [5].
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Figure 1.4: PTO mechanisms in wave energy technology, adapted from [5].

Even though direct electrical drive systems are the most efficient, hydraulic system

are usually employed in wave energy devices due to the operating condition of WECs.

Wave energy devices typically operate at low speed and large forces, which goes in the

opposite direction of conventional electrical generators (high-speed with low torques).

Conversely, hydraulic circuits are designed to work under large forces and low speeds,

which attends the wave energy requirements. The efficiency can also be related to the

control strategy applied, which according to the dynamic behavior of the PTO system,

different approaches are used. Table 1.1 shows the indicative efficiency for several PTO

systems used in wave energy.

Table 1.1: Overview of the indicative efficiency for different PTO systems [17].

PTO system Efficiency (%)

Hydraulic 65

hydro-turbine 85

Pneumatic 55

Direct mechanical drive 90

Direct electrical drive 95
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1.1.4 Location

Location is an essential criterion for the feasibility of WECs. Even though deep-water

applications are attractive due to the high wave power, some challenges exist moving

offshore such as installation and maintenance. Also, depending on the water depth, some

types of energy conversion principles are more favorable. Therefore, a balance must be

established according to the type of WEC. Generally, WECs are classified based on the

location where the device installed, such as shoreline, nearshore, and offshore.

• Shoreline sites are easier for maintenance due to access to the wave power plant.

Besides that, shoreline WECs have fewer chances to be damaged in severe wave

conditions as waves are attenuated when traveling to shallow water. However, this

phenomenon leads to low wave power. In addition, WECs can experience more

breaking waves and nearshore related phenomena such as fouling and corrosion due

to sediments. Fixed OWCs are usually employed in shoreline sites to protect the

coastline.

• Nearshore sites are usually shallow water regions. Generally, in those locations,

the WECs are attached to the seabed, which generally occurs for oscillating bodies.

Like shoreline regions, wave power in nearshore is reduced compared to offshore

locations. However, in some cases, the wave energy magnitude is nearly preserved

when moving from deep water to transitional waters.

• Offshore sites are more attractive due to higher wave energy content in deep water

seas [4]. However, the devices suffer greater loads in severe wave conditions. Also,

as the WEC moves to deeper waters, the cost associated with installation and main-

tenance increases. In this case, the increase of cost can be related to the foundation,

substructure, electric cable, mooring system, distance from ports and cities.

1.1.5 Reaction point

Wave energy extraction occurs due to the relative motion of two or more working parts

of the WEC such as water, structure, or the seafloor. Based on this relative motion, the

PTO mechanism absorbs part of the ocean wave energy generating electricity. Generally,

the reaction source can be divided into three components: self-reacting, seafloor reference,

and fixed structure.
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• Self-reacting WECs use the device’s inertia as a reaction point. Generally, inertial

structures use heaving plates, buoyant spine, and self-rotating mechanisms.

• Seafloor reference is usually employed with tightly-moored WECs. The structure

is tied to an anchorage system which can be composed by a dead-weight or a pile.

• The Fixed structure is frequently applied for onshore and near-shore installa-

tions. The structure is attached to the land, or a concrete foundation, and jack-up

platform.

(a) Self-reacting (b) Seafloor reference (c) Fixed structure

Figure 1.5: Types of reaction point [16].

1.2 Dissertation

1.2.1 Motivation

Up to date, several wave energy converters (WECs) have been proposed, and new

concepts are expected to be created. However, just a few models have reached feasibility,

and even fewer have produced energy for the grid [18]. WEC technology still requires

some further development to become a highly competitive solution for the energy indus-

try. The challenges in developing WEC technology are intensified as these structures are

excited continuously by uncertain environmental loads from waves and ocean currents. In

addition, as the system is usually set to operate next to resonant conditions to enlarge

the power produced, WEC exhibits large displacements. Therefore, nonlinearities present

in numerical models that represent the system dynamics plays a significant contribution.

Generally, WECs are simulated using time domain (TD) models to deal with nonlin-

ear forces. However, the computational effort related to those simulations is extremely

high compared with traditional frequency domain (FD) simulations. Also, a considerable

amount of environmental condition and optimization procedures must be conducted for

feasibility studies, becoming undesirable to perform TD simulations.
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1.2.2 Statistical Linearization (SL)

The SL technique allows to obtain a fast and realistic prediction of the system dy-

namics and mean power produced, which is valuable to address the challenges associated

with the elevated number of simulations and computational effort. The SL uses a prob-

abilistic model to generate an approximated solution to estimate the contribution of the

nonlinear terms in the governing equations. This technique has been widely applied in

several engineering fields such as aerospace and earthquake engineering to investigate the

stationary random response of nonlinear systems [19,20]. The SL consists of an iterative

procedure which minimizes the error between the nonlinear system and the equivalent

linear one in a mean square sense based on the stochastic response. However, despite the

advantages of the technique, a limited number of papers has applied the SL for WECs

[21–27]. This technique is a valuable tool for estimating the nonlinear response of the

system, especially for optimizing a system with a large number of parameters [28] and

several sea states [29].

1.2.3 Scope and Structure of the Dissertation

The present dissertation deals with the nonlinear stochastic analysis of WECs via

statistical linearization (SL) to estimate the system dynamics, power output, spectral

response, response distribution and mean offsets. Two devices are investigated to illustrate

the capability of the SL technique. An oscillating body type, a Point Absorber (PA); and

one OWCs type. The choice of the WEC types is based on the high efficiency of oscillating

bodies and OWCs [14]. The reliability of the method is verified against their respective

nonlinear TD simulation for each WEC.

The work is divided into four parts: Introduction, Background theory, Wave energy

converters, and Conclusion. The introduction presents the topic and the objectives of

the master’s dissertation, also, it introduces some of the existing WEC technologies and

their characteristics to justify the motivation behind this dissertation. In the Background

theory part, the required knowledge is presented, which includes: the modeling of the

ocean resource, and the statistical linearization technique. Two devices are investigated

in the Wave energy converters part: a PA [30] and an OWC [31]. Finally, the conclusion

part reviews some relevant results of each WEC and discuss the reliability of the SL

method.
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2 OCEAN WAVES

Prior to the design of coastal and offshore structures, proper modeling of the envi-

ronment is essential. In this regard, this section deals with the modeling of ocean waves.

Firstly, the analysis of regular wave is presented based on the linear wave theory. Then,

the analysis is extended to irregular waves, scatter diagram, and wave power.

2.1 Wave characteristics

Like WECs, waves are also classified based on their location. In this case, the water

depth has a contribution in the wave characteristics, which affects the trajectory of the

water particles, and consequently, the shape of the wave. Three regions are used to

describe the influence of the water depth [32]:

Figure 2.1: Wave classification based on water depth, adapted from [32].

• Deep-waters are regions deeper than half of the wavelength. For those conditions,

waves are not affected by the seabed, and water particles experience a circular

trajectory.
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• Transitional-waters are regions with water depth between half to 1/20th of the

wavelength. For those regions, the seabed affects the characteristics of waves, and

water particles have an elliptical trajectory.

• Shallow-waters are regions with water depth less than 1/20th of the wavelength.

For those regions, waves have a flattened trajectory, and depending on the wave

characteristics, the wave becomes unstable and breaks.

Deep-water waves with small wave steepness are described using the linear wave the-

ory, which considers an inviscid, irrotational, and incompressible fluid. However, as ocean

waves travel to shallow water regions, the wave shape alters. Generally, when moving to

the shallow-water areas, waves exhibit an increase of height and decrease of wave speed

and length. Those effects lead to nonlinear wave profiles with sharper crests and flattened

troughs. As the nonlinearities rise, the Stokes’ wave theory offers a better description of

the wave characteristics using a perturbation series approach, in which the wave steepness

relates the order of nonlinearity. Figure 2.2 presents wave models according to the relative

water depth and wave steepness proposed by Le Méhauté [33], where H denotes the wave

height, g is the gravitational acceleration, T is the wave period, h is the water depth, and

λ is the wavelength.

Figure 2.2: Wave models, adapted from [33].
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Generally, WECs are assumed to operate in the linear wave theory range. The assump-

tion of linear wave theory contributed to the development of WECs due to the extensive

literature available of offshore structures [6]. However, during operational conditions,

WECs may experience Stokes 2nd and 3rd order waves [34].

2.2 Linear wave theory

Some assumptions are adopted when dealing with the Linear theory. First, the fluid

is assumed incompressible, inviscid, and irrotational [35]. The premise of incompressible

is valid due to the insignificant water compressibility. Viscous effects are most critical

only in a thin boundary layer near the seabed and surface. Therefore, the fluid can be

treated as inviscid in the entire fluid domain. The fluid is considered irrotational owing

to the inviscid flow assumption. In addition, the wave steepness is considered small,

which relates the wave amplitude and wavelength. Also, no surface tension is included,

only gravitational force. Based on the hypothesis adopted, two fundamental equations

describe the fluid motion: Laplace equation and Bernoulli equation [15].

• Continuity equation or Laplace’s equation is obtained from the conservation

of mass applied to the fluid domain:

∇2Φ =
∂2Φ

∂x2
+
∂2Φ

∂y2
+
∂2Φ

∂z2
= 0, (2.1)

where Φ denotes the velocity potential.

~v = ~v(x, y, z, t) = ∇Φ. (2.2)

• Bernoulli’s equation is derived based on Euler’s equation for an unsteady flow:

∂Φ

∂t
+

1

2
∇Φ · ∇Φ + gz = −p− patm

ρ
. (2.3)

where p denotes the pressure, and patm is the atmospheric pressure.

Disregarding second-order term due to the assumption of small steepness, Equation

(2.3) can be linearized to:

∂Φ

∂t
+ gz = −p− patm

ρ
. (2.4)
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2.2.1 Boundary conditions

Besides the governing equations, the velocity potential function must satisfy the

boundary conditions. Three main boundary conditions must be fulfilled in the fluid

domain: at the seabed and free surface [15]. Figure 2.3 illustrates the wave boundary

conditions, where ζ represents the surface elevation.

Figure 2.3: Wave boundary conditions, adapted from [15].

• Seabed Boundary Condition is characterized by its impermeability, which con-

sists of zero velocity normal to the seabed surface.[
∂Φ

∂z

]
z=−h

= 0. (2.5)

• Boundary Condition at the Free Surface is composed of two conditions. Based

on the linearized Bernoulli equation:[
∂Φ

∂t

]
z=0

+ gζ = 0, (2.6)

and the free-surface kinematic boundary condition:[
∂Φ

∂z

]
z=0

=
∂ζ

∂t
. (2.7)

Combining Equations (2.6) and (2.7), the Cauchy-Poisson condition is obtained:[
∂2Φ

∂t2
+ g

∂Φ

∂z

]
z=0

= 0. (2.8)
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2.3 Regular waves

Regular waves are generally characterized in terms of wave height (H = 2ζa), wave

period (T ), and wavelength (λ), where ζa is the wave amplitude. Based on these char-

acteristics, parameters such as wave steepness (s = H/λ), wavenumber (k = 2π/λ) and

wave frequency (ω = 2π/T ) are determined. The wavenumber k refers to the geometric

cyclicity, while the wave frequency ω refers to the time cyclicity. Figure 2.4 illustrates the

main wave parameters.

(a) Snapshot (t = fixed)

(b) Time history (x = fixed)

Figure 2.4: Wave main parameters, adapted from [36].

From the wavelength and period, the wave velocity is obtained:

c =
λ

T
=
ω

k
. (2.9)

Based on the governing equations, boundary conditions, and the wave characteristics,

the following velocity potential satisfies the boundary conditions [36]:

Φ =
gζa
ω

cosh k(z + h)

cosh kh
sin(kx− ωt). (2.10)
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Also, the dispersion relation must satisfy the free-surface condition:

k tanh kh =
ω2

g
. (2.11)

The dispersion relation determines the wavenumber and wavelength for a given fre-

quency and water depth. From the velocity potential and free-surface dynamic boundary

condition, Equation (2.6), the wave surface elevation is given by:

ζ = −1

g

[
∂φ

∂t

]
z=0

= ζacos(kx− ωt). (2.12)

2.4 Irregular waves

Laplace’s equation is linear and homogeneous, which allows the superposition of ele-

mentary results, such as waves superposition and potential fields. This result is essential

for the characterization of real seas. Ocean waves are usually characterized by a spectral

representation, which gives the energy in each frequency component [36]. The spectrum

is obtained by measurements of the wave surface elevation over an extensive period of

time and characterized by a stochastic process [6]. The characteristics of the spectrum

depend on the formation of the sea state. Figure 2.5 illustrates a spectral representation

of sea waves.

Figure 2.5: Sea spectrum representation.
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Based on the statistical aspects and superposition principle, the non-deterministic

behavior of seas can be modeled. Generally, sea spectrum is described based on the wave

period (Tp), significant wave height (Hs), shape factors, zero-crossing period, and so forth

[37]. This representation is valuable to offshore structures owing to the reduced number

of sea parameters required to describe the spectrum. Several formulations are used to

describe the wave spectra depending on the formation, such as the Pierson-Moskowitz

(PM), Bretschneider, and JONSWAP spectrum. This work uses the JONSWAP spectrum

(γ = 3.3), as it offers a better representation of the sea states at the south of the Brazilian

coast.

• Pierson-Moskowitz spectrum was obtained initially using semi-empirical formu-

lations based on sea registers in the Atlantic north. The spectrum is used to de-

scribed fully-developed seas, in which the original formula uses the wind velocity,

U , at 19.5m above the sea level as input [35].

Sζ(ω) =
0.0081g2

ω5
exp

[
−0.74(g/Uω)4

]
. (2.13)

Figure 2.6: PM spectrum.

• Bretschneider or the generalized Pierson-Moskowitz spectrum was suggested dur-

ing the International Ship Structures Congress (ISSC) of 1967 to modify the original

PM spectrum. The spectrum is used to described fully-developed seas based on two

input parameters, Tp and Hs. The Bretschneider spectrum is given by [36]:

Sζ(ω) =
A

ω5
exp

(
− B
ω4

)
, (2.14)

with:

A =
173H2

s

(0.772Tp)4
, B =

692

(0.772Tp)4
.
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Figure 2.7: Bretschneider spectrum, Tp = 10 s.

• JONSWAP spectrum was originated during an extensive program named Joint

North Sea Wave Project, which has been used to describe developing sea states.

In the formulation, a peak enhancement factor introduces an additional parameter

which usually goes from 1 < γ < 7. For γ = 1, the JONSWAP spectrum recovers

the Bretschneider spectrum. The JONSWAP spectrum is given by [36]:

Sζ(ω) =
320H2

s

T 4
pω

5
exp

(
− 1950

T 4
pω

4

)
· γA, (2.15)

with:

A = exp

−( ω
ωp
− 1

σ
√

2

)2


σ

{
σ = 0.07, for ω < ωp

σ = 0.09, for ω > ωp
,

where ωp is the peak frequency.

Figure 2.8: JONSWAP spectrum, Tp = 10 s, Hs = 2 m.
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2.4.1 Scatter diagram

Wave spectrum represents a short-term description of the wave climate. For longer

periods, a common practice is to describe the statistics of the wave climate based on scatter

diagrams, which contains the probability of occurring a sea state (Tp and Hs) for a specific

location. Those data are obtained monitoring several sea states over an extended period.

Based on the scatter diagram, the wave resource of the site is assessed. This procedure is

generally conducted during the preliminary assessment of WEC placement [6].

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Figure 2.9: Scatter diagram of Imbituba (SC), Brazil; obtained from [38].

2.4.2 Wave power

As WECs absorbs part of the wave power, the analysis of the wave resources is a fun-

damental procedure to investigate the reliability of WEC installation. In addition, based

on the ratio between the wave and WEC power, the efficiency of WECs are estimated.

Wave power represents the amount of work delivered over a period by a vertical plane of

a unit width perpendicular to the propagation direction. Each component of the wave

has an energy which is transported at the wave group velocity. As the wave group, cg, is

highly dependent on the water depth, the general equation for wave power can be written

as [39]:

P̄wave = ρg

ˆ ∞
−∞

Sζ(ω)cg(ω)dω, (2.16)

The wave group velocity given by [35]:

cg(ω) = c(ω)

[
1

2
+

k(ω)h

sinh 2k(ω)h

]
, (2.17)
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where the wave velocity is given in Equation (2.9), and the wavenumber is given in

Equation (2.11). Note that each spectrum gives different wave power.

Figure 2.10 illustrates the wave power per meter of wave front for a site with 30 m

water depth, and considering a JONSWAP spectrum with γ = 3.3.
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Figure 2.10: Wave power for a 30m water depth.

The wave power of a specified site is obtained summing the contributions of each sea

state (Figure 2.10) multiplied by their respective probability of occurrence (Figure 2.9).

Considering the scatter diagram of Imbituba (SC), Brazil, the wave power of the site

is 22.53 kW per meter of wave front for a 30 m water depth considering a JONSWAP

spectrum.



36

3 STATISTICAL LINEARIZATION

Prior to the SL technique, the FD model and the Gaussian distribution are introduced,

which are essential for the derivation of the SL.

3.1 Frequency Domain Modelling

FD models are composed of a set of linearized equations, which gives a straightfor-

ward relationship between body displacement and the excitation force. In such models,

the governing equations are generally linearized around mean position due to the assump-

tion of small displacements. In this regard, consider a general multi-degree-of-freedom

(MDOF) linear system described by the differential equation of the form:

Mq̈ + Cq̇ + Kq = F(t), (3.1)

where the vectors of generalized displacements, velocity and acceleration are given by

q, q̇, and q̈; the inertia, damping and stiffness matrices are denoted by M,C, and K; and

the vector of excitation forces is represented by F(t).

The steady-state response of the system under stochastic loads is generally carried

out based on the transfer function of the system. In this regard, the system is assumed

to be excited by a harmonic load. As a result, the body tends to follow a harmonic

response like the excitation force, which can be described by a complex amplitude q̂,

where q(t) = <e{q̂eiωt}. Based on that, the transfer function matrix between the wave

force and the body displacement can be written as:

ααα(ω) = [−ω2M + iωC + K]−1. (3.2)

The stochastic response is generally expressed in terms of power spectrum density

(PSD), which is obtained by:

Sq(ω) = ααα(ω)Sf (ω)αααT∗(ω), (3.3)
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where Sq is the response spectrum matrix, Sf is the spectrum matrix of the force, and

( )T∗ denotes the transpose conjugate of the matrix. In the scalar sense, Equation (3.3)

reduces to:

Sq(ω) = |α(ω)|2Sf (ω). (3.4)

3.2 Gaussian Distribution

The theoretical basis of the Gaussian Distribution is grounded on the Central Limit

Theorem, which states that the sum of independent random variables with arbitrary

distributions tends to a Gaussian distribution as the number of independent variables

becomes large [20]. In practice, environmental loads tend to a Gaussian distribution, such

as wind loading, ocean waves, earthquakes, loads caused by the vehicles traveling over

rough terrain, atmospheric turbulence. In the case of modeling ocean waves, the Gaussian

distribution is achieved due to the random phase relationship among the irregular wave

components [20]. Figure 3.1 illustrates the wave surface elevation considering an irregular

wave, and its probability distribution. The wave surface elevation in the TD can be

written as:

ζ(t) =
N∑
k=1

<e
{
ζ̂a(ωk)e

iωkt
}
, (3.5)

where the complex amplitude of the surface elevation, ζ̂a(ωk), can be obtained from the

sea spectrum using Equation (B.10).

Figure 3.1: Surface elevation distribution. The TD data was acquired during a time
interval of 3000s, and is given by a JONSWAP spectrum (γ = 3.3) with Tp = 10s and Hs

= 2m.
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As it can be observed in Figure 3.1, the probability distribution of the sea surface

elevation recovers the Gaussian distribution. The Probability Density Function (PDF) of

a Gaussian distribution for the sea surface elevation is given by:

f(ζ) =
1

σζ̃
√

2π
exp

(
− ζ2

2σ2
ζ̃

)
, (3.6)

where σζ̃ denotes the standard deviation of the sea surface. The TD and FD can be

correlated by [20]:

σ2
ζ̃

=

ˆ ∞
0

Sζ(ω)dω. (3.7)

According to the linear theory, the response processes have a Gaussian distribution

whenever the excitation process is Gaussian. For a MDOF system, the Gaussian response

of the displacement is written as:

f(q) =
1

(2π)n/2|V|1/2
exp
(
−1

2
(q̃− q̄)TV−1(q̃− q̄)

)
, (3.8)

where V is the covariance matrix of q, and |V| denotes the determinant of the covari-

ance matrix, ( .̃ ) denotes a random zero-mean component, and ( .̄ ) denotes a mean value

component. The covariance matrix of the body response is given by:

V =


σ2
q1

σq1q2 . . . σq1qn

σ2
q2

. . . σq2qn
. . . ...

sym σ2
qn

 , (3.9)

where the diagonal terms (i = j) are based on the auto-spectrum and calculated as:

σ2
qk

=

ˆ ∞
0

Sqk(ω)dω, (3.10)

and the non-diagonal terms (i 6= j) are based on the cross-spectrum and calculated as:

σqiqj =

ˆ ∞
0

Sqiqj(ω)dω. (3.11)

Considering the case of a two degrees-of-freedom (DOF) system, the covariance matrix of
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the displacement and their first time derivatives can be expressed as:

V =


σ2
q1

σq1q2 σq1q̇1 σq1q̇2

σ2
q2

σq2q̇1 σq2q̇2

σ2
q̇1

σq̇1q̇2

sym σ2
q̇2

 , (3.12)

where :

σq̇kqk = 0, (3.13)

σ2
q̇k

=

ˆ ∞
0

ω2Sqk(ω)dω, (3.14)

σqiq̇j = i

ˆ ∞
0

ωSqiqj(ω)dω, (3.15)

σq̇iq̇j =

ˆ ∞
0

ω2Sqiqj(ω)dω. (3.16)

Besides the formulation of the Gaussian distribution, an important characteristic of

a Gaussian vector q ∈ R1×n is summarized by the formula given in [40]:

〈f(q)q〉 = 〈qqT〉〈∇f(q)〉, (3.17)

where the gradient operator ∇ is defined as:

∇ =

[
∂

∂q1
,
∂

∂q2
, ...,

∂

∂qn

]T

. (3.18)

Equation (3.17) is essential for the derivation of the SL formulation.

3.3 Statistical Linearization Technique

In this section, the response of a nonlinear MDOF vibratory system subjected to a

random excitation is investigated. As those systems suffer from a lack of exact solutions,

some approximations are generally applied to estimate the body response. For instance, in

the case of small nonlinearities and few DOF, the approximate solutions can be obtained

by perturbation techniques and methods of energy balance [20]. However, those methods

become difficult to apply for general forms of nonlinearities and MDOF systems. In

this regard, this work applies the SL technique, which offers a systematic approximated

solution to deals with nonlinear equations with MDOF. The SL approach used in this
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dissertation follows the derivations based on Robert and Spanos [20]. Consider a general

MDOF nonlinear equation given by:

Mq̈ + Cq̇ + Kq+Θ(q, q̇, q̈) = F, (3.19)

where M, B, K ∈ Rn×n and denotes the mass, damping and stiffness matrices respectively,

Θ(q, q̇, q̈) ∈ Rn×1 is a vector containing the nonlinear terms, which can be a function

of the generalized coordinate vector q and its derivatives. In the linear case, Θ is null/

neglected. An equivalent linear system of Equation (3.19) can be written as:

(M + Meq)q̈ + (C + Ceq)q̇ + (K + Keq)q = F, (3.20)

where Meq, Beq, and Keq are deterministic matrices that represent the equivalent linear

mass, damping, and stiffness matrices. The equivalent linear terms are determined by

minimizing the difference between the nonlinear system and the equivalent linear system

in a statistical sense. Defining the vector difference ε as:

ε = Mq̈ + Cq̇ + Kq + Θ(q, q̇, q̈)− (M + Meq)q̈− (C + Ceq)q̇− (K + Keq)q, (3.21)

ε = Θ(q, q̇, q̈)−Meqq̈−Ceqq̇−Keqq. (3.22)

The equivalent inertia, damping, and stiffness matrix depend on the response q. Since

the solution depends on the equivalent linear system, a cyclic relationship between both

can be established. Euclidean norm ‖ε‖2 is used as a criterion for the minimization of

the difference:

‖ε‖2 = εTε. (3.23)

The minimization is performed according to:

min
〈
εTε

〉
, (3.24)

where 〈 〉 denotes the mathematical expectation. Using the linearity property of the

expectation, Equation (3.24) can be represented in the form:

min
n∑
i=1

D2
i , (3.25)

with D defined as:

D2
i =

〈
ε2i
〉
, i = {1, 2, ..., n}. (3.26)
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Based on Equation (3.22), it is possible to write:

D2
i =

〈[
Θi −

n∑
j=1

(Meqi,j q̈j + Ceqi,j q̇j +Keqi,jqj)

]2〉
, i = {1, 2, ..., n}, (3.27)

whereMeqi,j , Ceqi,j , and Keqi,j are the elements of the equivalent linear mass, damping and

stiffness matrices respectively, and Θi are the nonlinear elements of ε.

The quantity D2
i can be minimized by solving the equations:

∂

∂Meqi,j

(D2
i ) = 0, j = {1, 2, ..., n}, (3.28)

∂

∂Ceqi,j
(D2

i ) = 0, j = {1, 2, ..., n}, (3.29)

∂

∂Keqi,j

(D2
i ) = 0, j = {1, 2, ..., n}. (3.30)

Applying the minimization procedure, the following equations are obtained:

〈q̈jΘi〉 =
n∑
s=1

[
Meqi,s 〈q̈sq̈j〉+ Ceqi,s 〈q̇sq̈j〉+Keqi,s 〈qsq̈j〉

]
, (3.31)

〈q̇jΘi〉 =
n∑
s=1

[
Meqi,s 〈q̈sq̇j〉+ Ceqi,s 〈q̇sq̇j〉+Keqi,s 〈qsq̇j〉

]
, (3.32)

〈qjΘi〉 =
n∑
s=1

[
Meqi,s 〈q̈sqj〉+ Ceqi,s 〈q̇sqj〉+Keqi,s 〈qsqj〉

]
. (3.33)

The compact form of Equations (3.31) to (3.33) is given by:〈
Θiq

˜

〉
=

〈
q
˜
q
˜

T

〉 
KT
eqi

CT
eqi

MT
eqi

 , (3.34)

where

q
˜

= [q, q̇, q̈]T,

and Keqi , Ceqi , and Meqi are the ith rows of the equivalent stiffness, damping and mass ma-

trices. Under the assumption of a Gaussian approximation, the equivalent linear matrices

can be determined based on Equations (3.17) and (3.34), leading to [20]:

Meqi,j =

〈
∂Θi

∂q̈j

〉
, (3.35)
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Beqi,j =

〈
∂Θi

∂q̇j

〉
, (3.36)

Keqi,j =

〈
∂Θi

∂qj

〉
. (3.37)

Based on the equivalent terms, the equivalent linear transfer function of the nonlinear

system is expressed as:

αααeq(ω) = [−ω2(M + Meq) + iω(C + Ceq) + (K + Keq)]
−1, (3.38)

and the response spectrum obtained as:

Sq(ω) = αααeq(ω)Sf (ω)αααT∗
eq (ω). (3.39)

3.3.1 Treatments of asymmetric non-linearities

Depending on the source of nonlinearity, additional treatment is required to apply the

SL technique, due to a constant offset in the system solutions [20]. In this regard, the

system can be written in terms of a mean value, ( .̄ ) and a random zero mean component

of the response ( .̃ ):

q(t) = q̄ + q̃(t). (3.40)

Hence, for a system with a zero-mean force, Equation (3.19) can be written as:

M¨̃q + C˙̃q + Kq̄ + Kq̃ + Θ(q̄ + q̃, ˙̃q, ¨̃q) = F̃. (3.41)

In this condition, the mean offset is estimated taking the expectation of Equation

(3.41):

Kq̄ +
〈
Θ(q̄ + q̃, ˙̃q, ¨̃q)

〉
= 0. (3.42)

Subtracting Equation (3.42) from Equation (3.41), an equivalent form of Equation

(3.19) is obtained:

M¨̃q + C˙̃q + Kq̃ + G(q̃, ˙̃q, ¨̃q) = F̃, (3.43)

where:

G(q̃, ˙̃q, ¨̃q) = Θ(q̄ + q̃, ˙̃q, ¨̃q)−
〈
Θ(q̄ + q̃, ˙̃q, ¨̃q)

〉
.
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3.3.2 Statistical Linearization Procedure

According to Equations (3.35) to (3.37), the determination of the equivalent linear

terms requires the knowledge of the body response distribution. Since there is no analytic

solution, the technique uses an iterative procedure, which uses the linearized dynamic

of the system as an initial guess until achieving predetermined criteria. The standard

step-by-step procedure is given by:

Step 1: Define the linear transfer function between the system dynamics and the force,

which will be used as an initial guess for the iterative procedure (Meq = Ceq =

Keq = 0).

Step 2: Calculate the PSD matrix of the body response based on Equation (3.3), and

calculate the covariance matrix and the body response distribution (Gaussian)

using Equation (3.8).

Step 3: If the system has asymmetric nonlinearities, calculate the mean offsets based on

Equation (3.42).

Step 4: Calculate the equivalent linear mass, damping, and stiffness terms (Meq,Ceq, and

Keq) using Equations (3.35) to (3.37).

Step 5: Update the equivalent transfer function of the system dynamics based on Equa-

tion (3.38) and calculate the spectral response of the body using the equivalent

linear system using Equation (3.39).

Step 6: Calculate the covariance matrix, the body response distribution (Gaussian) using

Equation (3.8), and the mean offsets based on Equation (3.42) (in the case of

asymmetric nonlinearities).

Step 7: Check the convergence of the new results obtained in Step 6. If the results did

not converge, return to Step 4.

The convergence criteria can be verified comparing the body response used to estimate

the equivalent linear terms and mean offsets with the results obtained using with these new

equivalent linear terms, namely comparing the covariance matrix and mean offsets. In this

work, the solution is considered converged when the relative error between the covariance

matrix terms and the mean offset of the new values and their previous iteration results

are less than 0.1%.
|σi,j it − σi,j it−1|

|σi,j it|
< 0.1%, (3.44)



44

|q̄i it − q̄i it−1|
|q̄i it|

< 0.1%, (3.45)

where it refers to the number of iteration.

Generally, the technique converges effortless and requires a few iterations depending

on the system, its source of nonlinearity, and the number of DOF. For some systems,

an iteration relaxation method can be used to guarantee the convergence [41], which is

important for sensitive nonlinear forces and system with mean offsets. In this work, a

simple solver is used for the iterative procedure.



PART III

WAVE ENERGY CONVERTERS
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4 POINT ABSORBER

PAs constitute a majority of existing prototypes and are usually investigated during

preliminary studies. The size of the structure is small compared to the wavelength, and

the design has an axis-symmetry. Due to these characteristics, the device is insensitive

to the wave direction, which is essential as the wave direction varies in offshore zones.

Currently, several types of PAs exist, wherein the most common is the single floating

PA. For such type, the device extracts energy mainly in heave motion. A standard

configuration consists of a floating structure exposed to the incident wave field. Due to

the wave loads, the structure moves and drives the power-take-off (PTO) system, which

in this case is directly connected to an electric generator. The PTO system is generally

anchored to the sea floor or attached to an external structure. Figure 4.1 illustrates a

typical single floating PA.

Figure 4.1: Illustration of a Point Absorber.
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4.1 Governing Equation

The dynamics of the PA can be divided into linear and nonlinear terms to facilitate

the development of the SL technique. Based on the illustration given in Figure 4.1 and

the description above, the dynamics of the PA can be expressed as:

Mz̈ = Fr(t) + Fhs,l + Fs + Fexc −Θ(z, ż), (4.1)

where M represents the mass of the structure, which comprises the floating structure and

the PTO system; z denotes the heave displacement, Fr(t) is the radiation force, Fhs,l(t)

indicates the linearized hydrostatic force, Fs(t) is the linear mechanical restoring force,

and Fexc(t) is the excitation force; which are linear terms.

The nonlinear terms, Θ(z, ż), of the PA dynamic is given by:

−Θ(z, ż) = Fhs,nl + Fls + Fes + Fvd + FEG, (4.2)

where Fhs,nl(t) is the nonlinear hydrostatic restoring component, Fls(t) is the lateral restor-

ing force, Fes(t) is the end-stop force, Fvd is the viscous drag force, and FEG(t) is electrical

generator force. Note that the negative signal of Θ occurs to maintain the formulation

described in Chapter 3.

• Radiation Force (Fr):

Regarding the linear terms, the first component refers to the radiation force, which

according to the linear wave theory, occurs due to the own body oscillation in the absence

of waves [36]. This force can be divided into two components: the first in phase with the

acceleration, and the second in phase with the velocity [36]. The radiation force can be

expressed in the FD as:

Fr(ω) = −A33(ω)z̈k −B33(ω)żk, (4.3)

where A33 and B33 denote the hydrodynamic added mass and radiation damping in heave

respectively. Figure 4.2 shows the hydrodynamic added mass and radiation damping of a

sphere half-submerged obtained based on the database available in [42].
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Figure 4.2: Added mass and radiation damping coefficients of a sphere (R = 5m).

• Hydrostatic Stiffness, Linear (Fhs,l) and Nonlinear (Fhs,nl):

The second linear force refers to the hydrostatic force that is caused due to the in-

crement and decrement of the differential volume immersed. This component is also

unrelated to the incident wave field according to the linear wave theory, and it can be

described by:

Fhs = −
ˆ
Swpa(z)ρgdz. (4.4)

Usually, the cross-sectional area is assumed to be constant, and the hydrostatic force

can be described linearly with the body displacement. However, for some cases, the

cross-section is a function of the height, and the linearization might lead to an unreliable

hydrostatic force. For a sphere submerged around its center, the waterplane area Swpa is

given by;

Swpa(z) = π
(
R2 − z2

)
dz, (4.5)

where R is the radius of the sphere. Substituting Equation (4.5) in Equation (4.4) yields:

Fhs = −
ˆ
π
(
R2 − z2

)
ρgdz. (4.6)

As it can be observed, it is possible to divide the hydrostatic force into two terms, a linear

and a nonlinear one as:

Fhs = Fhs,l + Fhs,nl = − πρgR2︸ ︷︷ ︸
Khs,l

z +
πρg

3
z3, (4.7)

where Khs,l refers to the linear hydrostatic restoring coefficient.
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• Mechanical Restoring Force (Fs):

The third linear force is the mechanical restoring force caused by the mooring line

that connects the buoy/PTO to the foundation. This force can be simply represented by

a linear stiffness as:

Fs = −Ksz, (4.8)

where Ks denotes the stiffness of the mooring line.

• Spectrum of Excitation Force (Sf):

The last linear force refers to the excitation force caused by the ocean waves, which

is composed of two contributions: incident and diffracted waves. In the SL procedure

described previously in Chapter 3, the excitation force is included in the spectrum of

force Sf (ω). This force is represented by a spectrum which depends on the sea state and

the excitation force per meter of wave amplitude as:

Sf (ω) = |Fexc(ω)|2Sζ(ω). (4.9)

Figure 4.3 shows the excitation force per meter of wave amplitude acting on the sphere

in heave. For more information regarding the fluid-structure forces, such as radiation,

hydrostatic and wave excitation forces, see Appendix A.

Figure 4.3: Excitation force per meter of wave amplitude in the heave direction of a sphere
(R = 5m).
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• Lateral Stiffness (Fls):

Regarding the nonlinear forces, the first term refers to the nonlinear hydrostatic force,

which was modeled for the case of a sphere in Equation (4.7). The second nonlinear force

refers to some mooring systems with an additional lateral stiffness composed of two linear

springs under transverse displacements, as illustrated in Figure 4.4.

d ls

Figure 4.4: Lateral stiffness.

For such systems, the force exerted by the lateral springs in the vertical direction can

be described by:

Fls = −2Kls

(√
z2 + d2ls − lls

)
sinθ, (4.10)

where the projection of the spring forces is expressed as:

sinθ =
z√

z2 + d2ls
. (4.11)

Substituting Equation (4.11) into Equation (4.10), the following nonlinear force is

obtained:

Fls = −2Kls

(
1− lls√

z2 + d2ls

)
z. (4.12)

Note the length of the unstretched spring lls is smaller than the distance dls. Therefore,

the system is stable at the origin, and the force increases the magnitude as the device

move from the equilibrium point.
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• End-stop Mechanism (Fes):

The third nonlinear force refers to the additional springs employed to the PTO system

to preserve the structure from damaging when the device reaches a certain displacement.

Figure 4.5 illustrates such a mechanism, which is named end-stop.

les

les
-les

Fes

z

Figure 4.5: End-stop force.

Generally, the end-stop force is described by:

Fes =


0, for les > |z|

−Kes(z − les), for z > les

−Kes(z + les), for −les > z

, (4.13)

where Kes and les are the end-stop stiffness and the distance from the contact when the

buoy is on its the mean position respectively.

• Viscous Drag (Fvd):

The fourth nonlinear force is a correction to the linear wave theory, which considers

the inclusion of viscous drag forces. This correction is essential for a realistic estimation

of the response due to the large displacements of WECs. The viscous drag contribution

can be written based on Morison’s equation as [43]:

Fvd(t) = −1

2
ρCDS⊥ż|ż|, (4.14)

where CD is the drag coefficient, and S⊥ denotes the cross-sectional area of the body

perpendicular to the heave direction.
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• Electric Generator (FEG):

The last nonlinear force is to describe the PTO force. The PTO system is composed

of an electric generator, which exerts a damping force associated with the electromagnetic

force. The electromagnetic force can be represented as a function of the active area of the

stator [44]:

FEG = −CptoAfac(z)ż, (4.15)

where Cpto is the magnitude of the damping, and Afac denotes the active area of the stator

given by:

Afac(z) =


0, for |z| ≥ 1/2(lp + ls)

1, for |z| ≤ 1/2(lp − ls)
1/ls [1/2(lp + ls)− |z|] , else,

(4.16)

where ls and lp represent the length of the stator and piston respectively. Figure 4.6

illustrates the electric generator and its main dimensions.

Afac

ls lp

z

Figure 4.6: Electric generator.

Based on the electromagnetic damping force described in Equation (4.15), the instan-

taneous absorbed power can be obtained by:

PEG = CptoAfac(z)ż2, (4.17)

and the mean power by:

P̄EG =
1

T

T̂

0

CptoAfac(z)ż2dt. (4.18)
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4.2 Linear System - Frequency Domain

Based on the system dynamics described above, the linearized form of Equation (4.1)

can be expressed as:

[M + A33(ω)]z̈ + [Cpto +B33(ω)]ż + [Ks +Khs,l]z = Fexc(ω). (4.19)

Note that besides the linear forces, the damping exerted by the electric generator was

linearized by neglecting the active area of the stator, while the lateral stiffness, end-stop,

nonlinear hydrostatic stiffness, and viscous drag were neglected.

Based on Equation (4.19), the transfer function between the body displacement and

wave excitation force can be calculated as:

α(ω) = [−ω2(M + A33(ω)) + iω(Cpto +B33(ω)) +Ks +Khs,l]
−1. (4.20)

Using this linear transfer function, the spectral response of the body displacement can

be obtained by:

Sz(ω) = |α(ω)|2Sf (ω), (4.21)

where the spectrum of the excitation force, Sf (ω) depends on the sea state condition and

hydrodynamics of the buoy, namely:

Sf (ω) = |Fexc(ω)|2Sζ(ω). (4.22)

Based on Equation (4.18) and without the effect of the active area of the generator,

the mean power absorbed by the linearized PTO system is given by:

P̄EG =
〈
Cptoż

2
〉
, (4.23)

which for a Gaussian distribution can be obtained as:

P̄EG = Cptoσ
2
ż , (4.24)

where σż is the standard deviation of the body velocity.
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4.3 Equivalent Linear System - Statistical Lineariza-
tion

The equivalent linear transfer function between the body displacement and wave ex-

citation force will have the form:

αeq(ω) = [−ω2(M + A33(ω)) + iω(B33(ω) +Beq) +Ks +Khs,l +Keq]
−1, (4.25)

where Beq and Keq are the equivalent linear terms of damping and stiffness given by:

Beq = Beq,EG +Beq,V D =

〈
∂FEG
∂ż

〉
+

〈
∂Fvd
∂ż

〉
, (4.26)

Keq = Keq,HSNL +Keq,LS +Keq,ES =

〈
∂Fhs,nl
∂z

〉
+

〈
∂Fls
∂z

〉
+

〈
∂Fes
∂z

〉
, (4.27)

where Beq,EG, and Beq,V D denote the equivalent damping due to the electric generator and

viscous drag respectively; Keq,HSNL, Keq,LS, and Keq,ES denote the equivalent stiffness due

to the hydrostatic nonlinear term, lateral stiffness and end-stop respectively.

The equivalent spectral response of the body displacement is computed as:

Sz(ω) = |αeq(ω)|2Sf (ω), (4.28)

where the spectrum of the wave excitation force is given by:

Sf (ω) = |Fexc(ω)|2Sζ(ω). (4.29)

The technique initiates with an iterative procedure where the equivalent terms are

calculated in each step and fed into the equivalent transfer function until the convergence.

Once the results have converged, the mean power calculation via SL can be obtained taking

the expectation based on Equation (4.18):

P̄EG =
〈
CptoAfac(z)ż2

〉
, (4.30)

as the velocity and displacement are uncorrelated, it is possible to write the mean power

based on the equivalent damping coefficient of the electric generator as:

P̄EG = Beq,EGσ
2
ż , (4.31)

where Beq,EG accounts the effect of the active area of the stator and is obtained by the

iterative approach.
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4.4 Results

A nonlinear TD model is used to verify the reliability of the SL technique. In this

regard, the radiation force in TD is described according to Cummins’ equation, and the

radiation impulse response function (memory function) was replaced by an equivalent

state-space representation of order 3 via system identification (see Appendix B.1.1). Tra-

ditional FD model is used as a basis to verify the effect of the nonlinear forces.

• Parameters:

The spherical PA is half-submerged and excited by ocean waves described by the

JONSWAP spectrum (γ = 3.3). Based on the scatter diagram of Imbituba - SC, Brazil

(see in Figure 2.9), six sea states evenly spaced containing an interval of period of high

probability of occurrence are simulated: Hs = 1.75m, and Tp from 7 to 12s. The main

parameters of the simulation are given in Table 4.1. The natural frequency of the PA

was set to operate between the range of higher probability of the incoming wave field to

enhance the power absorption by adjusting the mechanical stiffness and the mass of the

system. However, the system was not optimized.

ωn =

√
Ks +Khs,1

M + A33(ωn)
−→ Tn ≈ 9s. (4.32)

Table 4.1: Simulation parameters of the PA.

Property Value Unit

M 1.8 × 106 [kg]

R 5 [m]

Ks 200
[kN

m

]
Cpto 50

[kN.s
m

]
Kes 250

[kN
m

]
les 1.5 [m]

Kls 100
[kN

m

]
dls 1 [m]

lls 1 [m]

lp 4 [m]

ls 3.5 [m]

CD 0.5 [−]
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• Time Domain Simulation:

Nonlinear TD simulations were used to assess the reliability of the SL technique. The

total time simulated for each condition was equal to 5000s, 10 different wave phases were

used in each sea state, and the wave force was discretized into 300 frequency components.

Figure 4.7 illustrates the heave displacement of the PA for the sea states simulated for

the first 500s.

(a) 1stcondition: Hs = 1.75m;Tp = 7s (b) 2ndcondition: Hs = 1.75m;Tp = 8s

(c) 3rdcondition: Hs = 1.75m;Tp = 9s (d) 4thcondition: Hs = 1.75m;Tp = 10s

(e) 5thcondition: Hs = 1.75m;Tp = 11s (f) 6thcondition: Hs = 1.75m;Tp = 12s

Figure 4.7: Time series of the displacement in heave (first 500s).
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• Response Distribution:

The SL relies on the assumption of a Gaussian distribution. Therefore, an initial

procedure in the SL is the verification of the body response distribution. Based on that,

the displacement distributions using nonlinear TD simulations are compared against the

SL and traditional FD results based on the theoretical Gaussian distribution, which are

illustrated in Figure 4.8.

(a) 1stcondition: Hs = 1.75m;Tp = 7s (b) 2ndcondition: Hs = 1.75m;Tp = 8s

(c) 3rdcondition: Hs = 1.75m;Tp = 9s (d) 4thcondition: Hs = 1.75m;Tp = 10s

(e) 5thcondition: Hs = 1.75m;Tp = 11s (f) 6thcondition: Hs = 1.75m;Tp = 12s

Figure 4.8: Time series of the displacement in heave (first 500s).
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• Spectral Response :

Once the assumption of a Gaussian distribution of the displacement is verified, the

spectral responses are analyzed. Figure 4.9 shows the PSD of the heave motion using TD,

SL, and FD for all sea states. The PSDs of the nonlinear TD simulation was calculated

using the pwelch function in MATLAB, which was calibrated using a linear TD simulation

and compared with the FD results.

(a) 1stcondition: Hs = 1.75m;Tp = 7s (b) 2ndcondition: Hs = 1.75m;Tp = 8s

(c) 3rdcondition: Hs = 1.75m;Tp = 9s (d) 4thcondition: Hs = 1.75m;Tp = 10s

(e) 5thcondition: Hs = 1.75m;Tp = 11s (f) 6thcondition: Hs = 1.75m;Tp = 12s

Figure 4.9: Spectral response of the displacement of the Point Absorber.
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• Mechanical Work and Power Absorbed/Dissipated:

For comparison purpose, the mechanical work done by the equivalent linear stiffness

is compared to the mechanical work by the nonlinear term with displacement dependency

using TD simulation. Similarly, the power dissipated by the equivalent linear damping is

compared to the nonlinear term with velocity dependency. Figure 4.10 shows the power

absorbed/dissipated, and work done by the nonlinearities for all sea states.

(a) 1stcondition: Hs = 1.75m;Tp = 7s (b) 2ndcondition: Hs = 1.75m;Tp = 8s

(c) 3rdcondition: Hs = 1.75m;Tp = 9s (d) 4thcondition: Hs = 1.75m;Tp = 10s

(e) 5thcondition: Hs = 1.75m;Tp = 11s (f) 6thcondition: Hs = 1.75m;Tp = 12s

Figure 4.10: Power absorbed/dissipated and work done.
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In figure 4.10, the subscripts EG, V D, ES, LS, and HSNL, denotes the electric generator,

viscous drag, end-stop, lateral stiffness, and nonlinear hydrostatic, respectively. The

mechanical work by the nonlinear term using TD simulation is given by:

W̄ =
1

T

ˆ T

0

Θ(z, ż)zdt, (4.33)

and for SL technique, the mean mechanical work will be calculated based on the equivalent

linear term as:

W̄ = Keqσ
2
z . (4.34)

The power exerted by the nonlinear term using TD simulation is given by:

P̄ =
1

T

ˆ T

0

Θ(z, ż)żdt, (4.35)

and for the SL technique, the power exerted will be calculated based on the equivalent

linear term as:

P̄ = Beqσ
2
ż . (4.36)

• Capture Width Ratio:

The efficiency of the device is analyzed based on the capture width ratio (CWR). The

CWR is a parameter used to evaluate the WEC performance, which is the ratio between

the total mean power absorbed by the device and the wave power available.

CWR =
P̄abs

P̄wavew
. (4.37)

where P̄abs is the mean power absorbed by the device, P̄wave is the mean wave power per

unit of width (as described in Equation (2.16)), and w is the width of the device. Table

4.2 shows the CWR of the PA for all sea states simulated.

Table 4.2: Capture Width Ratio of the PA using SL.

Condition P̄wave [kW] P̄EG [kW] CWR [%]

1st : Hs = 1.75m;Tp = 7s 9.46 10.72 11.33

2nd : Hs = 1.75m;Tp = 8s 11.17 29.84 26.71

3rd : Hs = 1.75m;Tp = 9s 12.92 36.01 27.88

4th : Hs = 1.75m;Tp = 10s 14.64 25.02 17.09

5th : Hs = 1.75m;Tp = 11s 16.27 18.89 11.61

6th : Hs = 1.75m;Tp = 12s 17.77 15.62 8.79
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• Simulation time

The main advantage of the SL is the low computational cost, while producing reliable

estimations of the system dynamics. For the conditions simulated in this work, the SL

technique required approximately 5 iterations to achieve a relative error of 0.1%. TD

simulations require long periods to assume as valid the ergodicity. In addition, as the TD

response depends on the wave phase components, the simulation of different incoming

waves was performed for more smooth results. Table 4.3 shows the simulation time

(mean) for each model. Note that the FD results denote the linear model.

Table 4.3: Simulation time - PA.

TD SL FD

Time: 195.2 [s] 0.0522 [s] 0.0048 [s]

4.5 Discussion

The SL technique is based on the assumption that the excitation and distribution

are stochastic processes described by Gaussian distribution, in which the displacement

distribution can be verified in Figure 4.8. In general, even though the system has several

nonlinearities, the results are relatively comparable with the theoretical Gaussian distri-

bution for the case simulated and the parameters used, preserving the standard deviation.

For the first and second sea states simulated, the heave distribution was comparable for

all models (TD, SL and FD). For these results, the spectral moment of zero order was the

same for all models; however, it was possible to verify the changes in the system dynamics

based on Figure 4.9. In most cases, the SL also showed a good agreement with the PSD

results using nonlinear TD simulation, preserving the spectral energy in each frequency

component. The main divergences in the linear and nonlinear results occurred close to

resonance when the nonlinear effects are more relevant due to the large displacements.

This effect can be observed in the PDF and PSD of the response, given in Figures 4.8

and 4.9, for the cases (c) and (d).

The mechanical work and power absorbed/dissipated by the nonlinear forces were

well captured by the SL technique for all nonlinearities, while the FD model was not

able to capture these influence (see Figure 4.10). As expected, the nonlinear effects are

more relevant for the conditions close to the resonance, where the PA experiences large
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displacements. In this region, the device achieves better performance, around 27.88%, (see

Table 4.2). However, note that the device is not set to operate in its highest efficiency for

power production, and an optimization procedure must be performed for a more reliable

estimation of the device efficiency. In addition, the overall efficiency must consider the

performance of the PA in all sea states and its probability of occurrence. The main

advantage of the SL is the low computational cost compared to TD simulations (see

Table 4.3), while maintaining a reasonable estimation of the system response. Therefore,

the SL can be used as a valuable tool for optimization routines to analyze all sea states,

and select the best design parameters.
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5 OSCILLATING WATER COLUMN

OWC device is WEC category that has demonstrated a high efficiency. Currently,

several OWC devices/prototypes are operating in many places around the globe [12].

Typically, the structure of such devices is composed of a fixed hollow structure that acts

as a chamber. The base of the structure is located below the sea level and exposed to the

incident wave field. The pressure variation caused by the waves leads the inner surface

to oscillate in which compresses and decompresses the air inside moving an air turbine

connected to a generator. Usually, bidirectional turbines, such as Wells turbines, are

employed. Figure 5.1 illustrates a typical OWC and its main components.

Air turbine
Water Column

Air

Figure 5.1: Illustration of an Oscillating Water Column.
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5.1 Governing equation

Consider the OWC structure composed of a fixed box-shaped chamber that pierces

a quiescent free surface. The control volume is defined as the chamber structure limits,

which is composed of an air mass (mair) and a water column (mw). The mass inside this

control volume varies as the inner surface is free to move. Therefore, the mass inside the

chamber (mch) can be expressed as:

mch = mw +mair, (5.1)

where:

mw = ρwS(H + ξ), (5.2)

mair = ρairS(L− ξ). (5.3)

where H denotes the nominal draft, L denotes the air-chamber height at the nominal

position, ρair is the air density which varies due compressibility effects, ξ(t), denotes the

water column displacement, and S is the cross-sectional area of the chamber. Figure 5.2

illustrates the description of the control volume and the main components.

ξ

p

H

L

S

Figure 5.2: Description of the system

The mass inside the control volume has an explicit dependency on the water column

displacement, as in Equations (5.2) and (5.3). Taking the first time derivative of the mass
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inside the control volume, the mass flux rate is obtained.

ṁch = ṁw + ṁair,

ṁw = ρwSξ̇, (5.4)

ṁair = −ṁturb = −ρairSξ̇ + ρ̇airS(L− ξ), (5.5)

where the mass flow rate of air is given by ṁair and represents the air that passes through

the turbine and produces energy. The negative sign occurs as the air flux is defined

positive for outward flow from the chamber.

• Air Turbine:

The air flux and pressure are related by the air turbine via the turbine’s performance

in terms of dimensionless coefficients to simplify the physics behind the aerodynamics of

those turbine [45]. The dimensionless parameters of: pressure head Ψ, flow rate Φ, power

coefficient Π, and turbine efficiency η are given by:

Φ = fQ(Ψ), (5.6)

Π = fp(Ψ), (5.7)

where

Ψ =
p

ρinN2D2
, (5.8)

Φ =
ṁturb

ρinND3
, (5.9)

Π =
Pturb

ρinN3D5
, (5.10)

η =
Π

ΨΦ
, (5.11)

where N is the turbine rotational speed (rad/s), D denotes the rotor diameter, p is

the manometric pressure, ρin is the air density in stagnation conditions at the turbine

entrance (assumed equal to ρair), and Pturb is the power absorbed by the turbine. Figure

5.3 illustrates the dimensionless parameters of the air turbine used in this work.
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Figure 5.3: Dimensionless parameters of the air turbine, obtained from [45].

• Air Pressure:

Considering that the PTO system is composed of Wells turbines, a linear relationship

between the mass flow rate and the pressure fluctuation can be established [46], Φ = KΨ.

Therefore, the mass flow rate can be expressed in the dimensional form as:

ṁturb =
KD

N
p, (5.12)

where K is the proportionality constant. Considering the air inside the chamber goes

through an isentropic process [47], the time derivative of the density can be expressed as:

ρ̇air =
1

c2a
ṗ, (5.13)

where ca is the speed of sound in atmospheric conditions. Based on the previous assump-

tions, the air pressure inside the chamber can be expressed as:

ρairSξ̇ =
KD

N
p+

S

c2a
(L− ξ)ṗ. (5.14)

• Water Column Dynamics:

Regarding the water column dynamics, a single DOF based on the plug-flow repre-

sentation is used, where the water column displacement is represented via the generalized

coordinate ξ. The water column dynamic is formulated based on the derivations described

in [48–50], which considered a non-forced system and without dissipative forces:

ρwS(ξ +H)ξ̈ + ρwSgξ = 0. (5.15)
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Three non-conservative forces are incorporated into the governing equation of the

water column dynamics:

• the excitation force caused by the wave action, fexc, at the bottom of the control

surface (a non-material surface).

• the force caused by the air pressure inside the chamber, fch, at the free-surface (a

material interface).

• an ad-hoc force due to the viscous effects, fv, caused by vortical flow at the mouth.

fnc = fexc + fch + fv. (5.16)

The excitation force is calculated by integrating the wave pressure over the bottom

of the control volume. Three assumptions are considered for the excitation force, (i)

the structure reflects the wave (reflective wave), (ii) the dimension of the OWC is small

compared to the wavelength (uniform pressure), and (ii) the waves can be described by

the linear wave theory. Based on that, the reflective wave [35] will result in an excitation

force as:

fext = 2ζaρwgS cos(kx− ωt)cosh(k(h−H))

cosh(kh)
, (5.17)

where ζa represents the wave amplitude, h denotes the water depth, g is the gravitational

acceleration and k is the wavenumber given by (see Equation (2.11)):

k =
ω2

g tanh(kh)
. (5.18)

Figure 5.4 illustrates the wave force of the OWC, as described in Equation (5.17).

Figure 5.4: Wave excitation force per unit of wave amplitude of the OWC.
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The force exerted by the air pressure inside the chamber acting on the free-surface

can be modeled as:

fch = −Sp. (5.19)

The ad-hoc viscous flow effects at the mouth of the structure can be expressed as:

fv = −1

2
CvρwSξ̇|ξ̇|, (5.20)

where Cv represents the viscous coefficient.

• Governing Equations:

Considering the non-conservative force terms described above and rearranging/simplifying

the equation, the resulting governing equation for the OWC is given by:

(ξ +H)ξ̈ +
1

2
Cv ξ̇|ξ̇|+ gξ +

1

ρw
p = Fext, (5.21)

with:

Fext = fext/(ρwS).

For the air-chamber pressure, rearranging Equation (5.14) yields:

KD

NS
p+

1

c2a
(L− ξ)ṗ− ρairξ̇ = 0. (5.22)

Besides the water column dynamics and pressure, the analysis of wave energy devices

relies on the estimation of the power produced. Based on Equations (5.7) and (5.10), the

instantaneous power output of the air turbine is [46]:

Pt(t) = ρairN
3D5fp

(
p(t)

ρairN2D2

)
. (5.23)

Therefore, the mean power over a period T of time is given by:

P̄turb =
ρairN

3D5

T

t0+Tˆ

t0

fp

(
p(t)

ρairN2D2

)
dt. (5.24)

where the nonlinear function, fp, is shown in Figure 5.3.
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5.2 Linear System - Frequency Domain

The SL uses the linearized system as an initial guess to start the iterative process. In

addition, the mean power is calculated to compare the difference between the traditional

FD results with those using SL. In this regard, the linearized form of Equations (5.21)

and (5.22) are derived:

Hξ̈ + gξ +
1

ρw
p = Fext, (5.25)

KD

NS
p+

L

c2a
ṗ− ρairξ̇ = 0. (5.26)

The transfer function of the system response is given by:

ααα(ω) = [−ω2(M) + iω(B) + (K)]−1. (5.27)

with:

M =

[
H 0

0 0

]
,

B =

[
0 0

−ρair L/c2a

]
,

K =

[
g 1/ρw

0 KD/NS

]
.

The response matrix is computed as:

Sq(ω) = ααα(ω)SF(ω)αααT(ω), (5.28)

where SF(ω) denotes the power spectrum of the excitation, and ( )T is the transpose

conjugate of a matrix. As the wave excites the water column, the power spectrum of the

excitation force contain only the first term:

SF,11(ω) = |Fext|2Sζ(ω). (5.29)

Based on the Gaussian distribution of the pressure response and the Equation (5.24),

the mean power estimation in FD can be determined by taking the expectation as:

P̄turb = ρairN
3D5

〈
fp

(
p

ρairN2D2

)〉
, (5.30)

where p is composed of a random zero mean component.
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5.3 Equivalent Linear System - Statistical Lineariza-
tion

The equivalent linear system is based on nonlinear terms, which are given by:

Θ1 = ξξ̈ +
1

2
Cv ξ̇|ξ̇| (5.31)

Θ2 = − 1

c2a
ξṗ (5.32)

Unlike the PA, the OWC is characterized by a system with a constant offset due to

its source of nonlinearities. Therefore, the additional procedure described in Subsection

3.3.1 is required. The mean values are obtained by taking the expectation, which for the

pressure inside the chamber is given by:

KD

NS
p̄− 1

c2a
〈ξṗ〉 = 0, (5.33)

and for the water column is given by:

〈ξξ̈〉+ gξ̄ +
1

ρw
p̄ = 0. (5.34)

The equivalent linear terms are calculated, and the equivalent linear transfer function

can be expressed as:

αααeq(ω) = [−ω2(M + Meq) + iω(B + Beq) + K]−1, (5.35)

with:

Meq =

[
ξ̄ 0

0 0

]
,

Beq =

〈 ∂
∂ξ̇

(Cv ξ̇|ξ̇|/2)
〉

0

0 ξ̄/c2a

 .
Note that for these types of nonlinearities there is not an equivalent linear term for the

stiffness. The equivalent response matrix is computed as:

Sq(ω) = αααeq(ω)SF(ω)αααT
eq(ω). (5.36)

Once the iterative procedure has converged, the mean power estimation can be deter-
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mined by taking the expectation as:

P̄turb = ρairN
3D5

〈
fp

(
p

ρairN2D2

)〉
, (5.37)

where p(t) is composed of a non-zero mean and a random zero mean component.

5.4 Results

A nonlinear TD model is used to verify the reliability of the SL results. FD results

are used as a basis to analyze the nonlinear effects compared to the linear system.

• Parameters:

The system is considered to be excited by the same sea state condition of the PA, in

which a high probability of occurrence range in Imbituba - SC, Brazil is selected (Hs =

1.75m, and Tp from 7 to 12s). The main parameters of the simulation are described in

Table 5.1. The natural frequency of the OWC was set to operate within the range of higher

probability to enlarge the power absorption. However, the system was not optimized.

ωn =

√
g

H
−→ Tn ≈ 7s. (5.38)

Table 5.1: Simulation parameters of the OWC.

Property Value Unit

ρw 1025 [kg/m3]

ρair 1.25 [kg/m3]

ca 344 [m/s]

g 9.81 [m/s2]

Cv 0.5 [−]

KT 0.28 [−]

H 12.2 [m]

D 1.75 [m]

L 9 [m]

h 50 [m]

S 10 [m2]

N 30 [rad/s]
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• Time Domain Simulation:

Like the PA case, nonlinear TD simulations were conducted to verify the reliability of

the results obtained using the SL technique. The simulation time was equal to 5000s, 10

different combinations of wave phases were used in each sea state, and the wave force was

discretized into 300 frequency components. Figure 5.5 and Figure 5.6 show the first 500s

of the water column elevation and the pressure inside the chamber for each sea state.

(a) 1stcondition: Hs = 1.75m;Tp = 7s (b) 2ndcondition: Hs = 1.75m;Tp = 8s

(c) 3rdcondition: Hs = 1.75m;Tp = 9s (d) 4thcondition: Hs = 1.75m;Tp = 10s

(e) 5thcondition: Hs = 1.75m;Tp = 11s (f) 6thcondition: Hs = 1.75m;Tp = 12s

Figure 5.5: Time series of the water column displacement (first 500s).
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(a) 1stcondition: Hs = 1.75m;Tp = 7s (b) 2ndcondition: Hs = 1.75m;Tp = 8s

(c) 3rdcondition: Hs = 1.75m;Tp = 9s (d) 4thcondition: Hs = 1.75m;Tp = 10s

(e) 5thcondition: Hs = 1.75m;Tp = 11s (f) 6thcondition: Hs = 1.75m;Tp = 12s

Figure 5.6: Time series of the pressure inside the chamber (first 500s).
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• Response Distribution:

As an initial procedure, the assumption of a Gaussian distribution must be verified for

the OWC wave energy device. Based on that, the water column displacement and pressure

distribution using nonlinear TD simulations are compared with the results obtained using

SL and traditional FD simulations based on the theoretical Gaussian distribution, which

are shown in Figures 5.9 and 5.10.

(a) 1stcondition: Hs = 1.75m;Tp = 7s (b) 2ndcondition: Hs = 1.75m;Tp = 8s

(c) 3rdcondition: Hs = 1.75m;Tp = 9s (d) 4thcondition: Hs = 1.75m;Tp = 10s

(e) 5thcondition: Hs = 1.75m;Tp = 11s (f) 6thcondition: Hs = 1.75m;Tp = 12s

Figure 5.7: Water column displacement distribution.
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(a) 1stcondition: Hs = 1.75m;Tp = 7s (b) 2ndcondition: Hs = 1.75m;Tp = 8s

(c) 3rdcondition: Hs = 1.75m;Tp = 9s (d) 4thcondition: Hs = 1.75m;Tp = 10s

(e) 5thcondition: Hs = 1.75m;Tp = 11s (f) 6thcondition: Hs = 1.75m;Tp = 12s

Figure 5.8: Chamber’s pressure distribution.
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• Spectral Response:

Once the main assumption of the SL was verified, the spectral response of the water

column and pressure were analyzed. Figures 5.9 and 5.10 show the PSD of the water

column displacement and pressure inside the chamber respectively for all sea states sim-

ulated.

(a) 1stcondition: Hs = 1.75m;Tp = 7s (b) 2ndcondition: Hs = 1.75m;Tp = 8s

(c) 3rdcondition: Hs = 1.75m;Tp = 9s (d) 4thcondition: Hs = 1.75m;Tp = 10s

(e) 5thcondition: Hs = 1.75m;Tp = 11s (f) 6thcondition: Hs = 1.75m;Tp = 12s

Figure 5.9: Spectral response of the water column displacement.
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(a) 1stcondition: Hs = 1.75m;Tp = 7s (b) 2ndcondition: Hs = 1.75m;Tp = 8s

(c) 3rdcondition: Hs = 1.75m;Tp = 9s (d) 4thcondition: Hs = 1.75m;Tp = 10s

(e) 5thcondition: Hs = 1.75m;Tp = 11s (f) 6thcondition: Hs = 1.75m;Tp = 12s

Figure 5.10: Spectral response of the pressure inside the chamber.
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• Power Absorbed and Dissipated:

The power absorbed by the air turbine was computed based on the dimensionless pa-

rameters of the turbine described in Figure 5.3 and Equation (5.24) for the TD simulation

and Equation (5.37) for the SL results. The power dissipated by the viscous flow effects

at the mouth of the OWC structure were calculated based on Equations (4.35) and (4.36).

Figure 5.11 shows the power absorbed and dissipated by the OWC.

(a) 1stcondition: Hs = 1.75m;Tp = 7s (b) 2ndcondition: Hs = 1.75m;Tp = 8s

(c) 3rdcondition: Hs = 1.75m;Tp = 9s (d) 4thcondition: Hs = 1.75m;Tp = 10s

(e) 5thcondition: Hs = 1.75m;Tp = 11s (f) 6thcondition: Hs = 1.75m;Tp = 12s

Figure 5.11: Power absorbed and dissipated - OWC
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• Mean Offsets:

The SL technique is able to estimate the mean variables of the system, which for the

pressure and water column displacement are based on Equations (5.33) and (5.34). Figure

5.12 shows the mean values for all sea states using SL and nonlinear TD simulations.

(a) 1stcondition: Hs = 1.75m;Tp = 7s (b) 2ndcondition: Hs = 1.75m;Tp = 8s

(c) 3rdcondition: Hs = 1.75m;Tp = 9s (d) 4thcondition: Hs = 1.75m;Tp = 10s

(e) 5thcondition: Hs = 1.75m;Tp = 11s (f) 6thcondition: Hs = 1.75m;Tp = 12s

Figure 5.12: Mean pressure and mean water column displacement - OWC
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• Capture Width Ratio:

The efficiency of the OWC wave energy device is obtained based on the CWR. How-

ever, like the PA case, the device is not set to operate in its highest efficiency for power

production, and an optimization procedure must be conducted to have a better estimation

of the device efficiency. Table 5.2 shows the CWR of the OWC WEC considering a 3m

width for all sea states investigated.

Table 5.2: Capture Width Ratio of the OWC using SL.

Condition P̄wave [kW] P̄turb [kW] CWR [%]

1st : Hs = 1.75m;Tp = 7s 9.46 9.76 34.40

2nd : Hs = 1.75m;Tp = 8s 11.17 8.42 25.14

3rd : Hs = 1.75m;Tp = 9s 12.92 6.15 15.88

4th : Hs = 1.75m;Tp = 10s 14.64 5.00 11.39

5th : Hs = 1.75m;Tp = 11s 16.27 4.14 8.49

6th : Hs = 1.75m;Tp = 12s 17.77 3.44 6.46

• Simulation time

As stated previously, the main advantage of the SL is the low computational cost

compared to TD simulations. In general, the SL technique converged in approximately

7 iterations for the OWC. The TD model required long periods of simulation to assume

the ergodicity as valid, and also different wave phase components, which resulted in high

computational cost compared to the SL technique. Table 5.3 shows the simulation time

for each model. Note that the FD results denote the linear model.

Table 5.3: Simulation time - OWC.

TD SL FD

Time: 185.5 [s] 0.1035 [s] 0.0072 [s]
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5.5 Discussion

For the OWC case, the natural frequency depends only on the draft. Therefore, in

order to increase the natural period of the water column, the nominal draft must increase.

However, as the draft increases, the wave excitation force decays rapidly, exponentially

for deep waters. Hence, the natural period was set to be inferior to the dominant period

of the sea state.

For a 2 DOF system, the response distribution can be represented by a joint PDF

(ξ, p). However, the marginal PDFs were chosen to facilitate the visualization of the

results. In general, despite the nonlinearities in the governing equations, the TD results

were comparable to the theoretical Gaussian distribution using SL for all cases simulated,

preserving the standard deviation and mean values, as observed in Figures 5.7 and 5.8.

The main differences occurred at the peak of the response distribution when the incoming

waves matched was next to the natural frequency of the water column, which resulted in

large nonlinearities.

The SL and the nonlinear TD simulation obtained comparable results in terms of

PSD, where the energy in each frequency component was correctly estimated, as shown

in Figures 5.9 and 5.10. In Figure 5.10 (c) to (f), the first peak in the spectral response

occurs due to the peak in the excitation force, while the second peak occurs due to the

natural frequency of the water column. Note that the FD overestimates the response of

the second peak due to the viscous drag term. This reduction in the peak is essential to

have a better estimation of the response, as the device is usually set to operate in this

region.

The mean power dissipated by the viscous drag and mean power absorbed by the air

turbine were well captured using SL compared to the TD simulation, while the FD model

overestimates the power absorbed by the air turbine and is not able to predict the power

dissipated by the viscous drag force (see Figure 5.11). The SL technique was also able

to capture accurately the mean values of pressure inside the chamber and water column

displacement (see Figure 5.12). Depending on the OWC draft, the mean water column

displacement can change the peak of the spectrum due to the equivalent linear mass term.

The nonlinear effects are enlarged close to the resonance due to the large displacements

and pressures. In this region, the device achieves the best performance, around 34.40%,

(see Table 5.2). However, as the device was not optimized, an optimization procedure

must be performed for further investigations of the device efficiency. In addition, the
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efficiency must consider the overall performance of the OWC, which uses the efficiency

for all sea states and its probability of occurrence. This can be accomplished using the

SL as a tool for fast and reliable estimation of the system response.



PART IV

CONCLUSION
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6 CONCLUSION

This work investigated the nonlinear stochastic analysis of two conceptually different

WECs with distinct nonlinear terms using SL. The technique consists in minimizing the

difference between the equivalent linear and nonlinear dynamic equation of motion using

an iterative procedure and relies on the Gaussian assumption of the underlying system

response stochastic process. As an initial procedure, the response distribution was verified

for both devices to check the assumption of a Gaussian distribution. This procedure must

be performed before the application of the SL. In general, even though the two wave

energy devices investigated have several nonlinearities, the response distributions were

comparable with the theoretical Gaussian distribution. This distribution was expected

due to the Gaussian excitation and the non-dominant nonlinear terms in the governing

equation. Therefore, the SL technique can be applied to the cases illustrated.

The SL results were compared against nonlinear TD simulations to verify the reli-

ability of the method, and FD results were used as a basis to verify the influence of

the nonlinearities. The results have shown a good agreement between TD and SL for

the nonlinearities and parameters considered of the WECs. Each nonlinearity behaved

distinctly in the system dynamics, and their contributions were well captured by the

equivalent linear system (SL) via the work done, power dissipated or absorbed, and mean

offsets. The results have shown a considerable discrepancy with the traditional FD, which

demonstrates the importance of including the nonlinear effects on the system dynamics.

Like other numerical codes, the verification and validation of the SL must be per-

formed. This work verified the reliability of the method by comparing with nonlinear

TD simulations. However, for future studies, the validation of the numerical code against

experimental results must be performed. The experimental results can also be used to

correct some parameters of the simulations, such as the viscous drag coefficient, wave re-

flection (OWC), and so on. Furthermore, experimental results can also be used to better

represent the PTO mechanism, such as the electric generator, air turbine aerodynamics,

and the tether.
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Typically, the SL converged in a few iterations, around 5 for the PA and 7 for the

OWC. The time required for the TD simulations of the nonlinear system was high to

assume valid the hypothesis of ergodicity. As a result, the SL was in general 3 to 4 orders

of magnitude faster, while producing comparable results. Therefore, this technique can

be useful for optimization procedures and WEC farms analysis, which can facilitate the

development of this technology.

The efficiency of the devices was computed for a range of each sea states with a high

probability of occurrence in Imbituba (SC), Brazil. However, the devices were not opti-

mized. For further works, the optimization considering all sea states and their probability

of occurrence must be evaluated for a more realistic estimation of the device’s efficiency

in the specific site location.
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APPENDIX A – FLUID-STRUCTURE
INTERACTION

This Appendix deals with the fluid-structure interaction of floating and submerged

structures. In this regard, the linear wave theory described previously is extended to

capture the influence of the wave in the rigid body and vice-versa. The analysis and

concepts of this chapter are fundamental to the development of this work.

A.1 Linear wave theory

Based on the derivations in section 2.2 and their respective boundary conditions (see

in subsection 2.2.1), the linear wave theory can be extended to capture the fluid-structure

interaction. In this regard, an additional boundary condition associated with the floating

or submerged structure is included. Figure A.1 illustrates the fluid domain considered

and their boundary conditions.

Figure A.1: Body boundary conditions, adapted from [15].

Like the seabed condition, the body surface is characterized by the impermeability

condition. For a moving body surface with velocity ~u, the fluid velocity normal to the
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body surface must be equal to the body velocity [15]. Therefore, the following boundary

condition must be satisfied:
∂Φ

∂n
= ~n · ~u, on S. (A.1)

If the body is considered fixed, then:

∂Φ

∂n
= 0, on S. (A.2)

A more general velocity potential is defined in this chapter to describe the fluid-

structure interaction. The linear wave theory permits to decompose the wave field into

two components: radiated and scattered (wave and diffracted) [36].

Φ(x, y, z, t) = Φr + Φw + Φd︸ ︷︷ ︸
scattered

, (A.3)

where Φr refers to the radiation potential from the oscillatory motion of the body con-

sidering still water, Φw denotes the incident undisturbed wave potential, Φd denotes the

diffraction potential of the wave about the restrained fixed body.

A.1.1 Forces and Moments

The fluid-structure interactions generate loads in the immersed body due to the pres-

sure from the surrounding fluid. These forces and moments are obtained by integrating

the pressure over the submerged wetted area [51]:

~F = −
¨

S

(p · ~n) · dS, (A.4)

~M = −
¨

S

p · (~r × ~n) · dS, (A.5)

where ~n is defined as the normal outward vector on surface dS, and the position vector

of the surface is denoted as ~r in the O(x, y, z) coordinate system.

The amplitude of the motion and velocities of the body are considered small enough

to neglect second-order terms from Bernoulli’s equation [36]. Therefore, the pressure can

be written in terms of the linearized Bernoulli equation described in Eq. (2.4). Hence,

the pressure can be written based on the velocity potential as:

p = p(x, y, z, t) ≈ −ρ∂Φ

∂t
− ρgz. (A.6)
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Based on the velocity potential in Eq. (A.3), the pressure is given by:

p = −ρ
(
∂Φr

∂t
+
∂Φw

∂t
+
∂Φd

∂t

)
− ρgz. (A.7)

Therefore, the resulting forces and moments acting on the surface of the rigid body

are given by:
~F = ρ

¨

S

(
∂Φr

∂t
+
∂Φw

∂t
+
∂Φd

∂t
+ gz

)
~n · dS, (A.8)

~M = ρ

¨

S

(
∂Φr

∂t
+
∂Φw

∂t
+
∂Φd

∂t
+ gz

)
· (~r × ~n) · dS, (A.9)

or:
~F = ~Fr + ~Fw + ~Fd + ~Fs, (A.10)

~M = ~Mr + ~Mw + ~Md + ~Ms, (A.11)

where the subscript r denotes the radiated waves from the oscillating body, which consid-

ers still water; w denotes the incident waves; d denotes the diffracted waves of the body,

which assumes the body fixed; and the s denotes the hydrostatic buoyancy of the body

in still water.

• Radiation Loads

Radiation loads refer to the forces experienced by the body due to its own oscillatory

movement, which radiate waves. In this regard, radiation boundary condition states that

as the distance from the oscillating body increases significantly, the potential tends to

zero [36]. This boundary condition is valuable for the Green’s Second Theorem.

lim
R−→∞Φr = 0. (A.12)

The radiation potential is not influenced by the incident wave field. However, some

relationships between the radiation and the wave pressure can be established via Haskind

relations [35]. The radiation force and moment are given by:

~Fr = ρ

¨

S

(
∂Φr

∂t

)
~n · dS, (A.13)

~Mr = ρ

¨

S

(
∂Φr

∂t

)
· (~r × ~n) · dS. (A.14)
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The radiation potential, Φr, can be written in 6 components for each degree of freedom,

and separated into spatial and temporal variables [36]:

Φr(x, y, z, t) =
6∑
j=i

φj(x, y, z) · vj(t). (A.15)

The forces and moments can be written as:

{~Fr; ~Mr} = ρ

¨

S

(
∂

∂t

6∑
j=i

φj · vj

)
∂φk
∂n
· dS, (A.16)

or:

{~Fr; ~Mr} =
∂vj
∂t
ρ

¨

S

(
6∑
j=i

φj
∂φk
∂n

)
· dS. (A.17)

Due to the complex magnitude of the potential, the radiation forces and moments can

be divided into two components, one in-phase with the acceleration, named hydrodynamic

added mass; and one in-phase with the velocity, named hydrodynamic radiation damping

[15]. The added mass and radiation damping are defined as:

Mk,j = −<e

ρ
¨

S

φj
∂φk
∂n

.dS

 , (A.18)

Bk,j = −=m

ρω
¨

S

φj
∂φk
∂n

.dS

 , (A.19)

where the body oscillates in the direction j with a velocity potential φj. Considering body

oscillations in the k direction with a velocity potential φk, the added mass and radiation

damping are given by:

Mj,k = −<e

ρ
¨

S

φk
∂φj
∂n

.dS

 , (A.20)

Bj,k = −=m

ρω
¨

S

φk
∂φj
∂n

.dS

 . (A.21)

The determination of the added mass and radiation damping coefficients analytically

are restricted to simple geometries. Generally, those coefficients are solved numerically

using boundary element methods (BEM) such as NEMOH[52], ANSYS AQWA[53], or

WAMIT[54]. Those software solve the radiation and scattering problems based on Green’s

Second Theorem over the discretized wetted surface of the body.



94

• Scattered Loads

The wave and the diffraction potential in the hydrodynamic forces and moments can

be treated simultaneously. The wave component refers to the undisturbed wave potential,

which was derived in chapter 2. However, the diffraction potential must be determined.

The wave contribution is associated with the Froude-Krylov force [6]. For cases where the

structure has a small length compared to the wavelength, the diffraction component can

be neglected. The scattered loads are given by:

~Fw + ~Fd = ρ

¨

S

(
∂φw
∂t

+
∂φd
∂t

)
~n · dS, (A.22)

~Mw + ~Md = ρ

¨

S

(
∂φw
∂t

+
∂φd
∂t

)
· (~r × ~n) · dS. (A.23)

Based on the principle of linear superposition, the determination of these loads is

defined considering the body fixed in its nominal position. Therefore, the potential must

satisfy the kinematic boundary condition of the body surface:

∂Φ

∂n
=
∂Φw

∂n
+
∂Φd

∂n
= 0, on S, (A.24)

Rewriting the potentials based on a spatial and temporal dependent potentials:

Φw(x, y, z, t) = φw(x, y, z)e−iωt, (A.25)

Φd(x, y, z, t) = φd(x, y, z)e−iωt. (A.26)

From the boundary condition described in Eq. (A.24) follows:

∂φw
∂n

= −∂φd
∂n

, on S. (A.27)

Based on Eqs. (A.22) and (A.23) , the forces and moments can be written as:

{~Fw + ~Fd; ~Mw + ~Md} = −iρ e−iωt
¨

S

(φw + φd)
∂φk
∂n
· dS, (A.28)

where φk is the radiation potential in direction k. Using Green’s second theorem and the

boundary condition described in Eqs. (A.27) and (A.12), the diffraction potential can be
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written based on the wave potential as:
¨

S

φd
∂φk
∂n

dS = −
¨

S

φk
∂φw
∂n

dS. (A.29)

This result leads to the Haskind relation [36]:

{~Fw + ~Fd; ~Mw + ~Md} = −iρ e−iωt
¨

S

(
φw
∂φk
∂n

+ φk
∂φw
∂n

)
· dS. (A.30)

• Hydrostatic Loads

Hydrostatic loads can be distinguished into two components: the hydrostatic stiffness,

and the buoyancy. The hydrostatic stiffness refers to the increase-decrease of buoyancy

around its equilibrium position due to the variation of submerged volume. In the case of

a submerged body, no hydrostatic stiffness occurs, and the buoyancy is constant. As the

linear wave theory neglects the effect of the wave surface elevation, the hydrostatic loads

are unrelated to the incident wave field. The hydrostatic loads are given by [36]:

~Fs = ρg

¨

S

z~n · dS, (A.31)

~Ms = ρg

¨

S

z(~r × ~n) · dS. (A.32)

A.1.2 Limitations of the linear theory

The Linear wave theory is grounded on the assumption of small wave steepness, and

small amplitude and velocity of body oscillations. However, wave energy devices usually

operate in severe wave conditions and in a resonant condition. The linear theory valid

range is illustrated in Fig. A.2, which uses as parameters the wave height (H), the

characteristic dimension of the body (D), and the wavelength (λ) [37]. For Regions I, III,

and V, the ratio between the characteristic dimension of the body and the wavelength

are small. Therefore, the body has a minor effect on the wave field, and wave diffraction

is negligible. However, for higher ratios, the wave field is influenced by the body, and

wave diffraction becomes relevant. When the values of the ratio H/D exceed the limits

of the diffraction region (Region IV), the potential flow loads and viscous loads must

be considered. At Region VI, viscous effects dominate the response, and the dynamics

cannot be described via linear theory. Therefore, linear wave theory is valid for Regions

II and IV.
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Figure A.2: Regions of importance for diffraction and viscous forces, adapted from [37].

Generally, the influence of viscous loads is determined by the Keulegan-Carpenter

number, KC, given by [37]:

KC =
u0T

D
, (A.33)

where u0 denotes the amplitude of the relative velocity between the body and fluid, and

T is the period of the oscillation. Usually, for KC > π, viscous losses have a significant

impact on system response.
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APPENDIX B – TIME-DOMAIN
MODELING

This Appendix deal with the hydrodynamic and hydrostatic forces of floating struc-

tures in TD.

B.1 Time-Domain Modeling

The modeling of floating rigid structures can be adequately described using 6 DOF,

three translational modes (surge, sway, and heave), and three rotational modes (roll,

pitch, and yaw). Figure B.1 illustrates the modes of motion for a typical PA. However,

a common approach in the wave energy field is to describe the dynamics in the vertical

plane of motion, or focused on a specific motion, such as heave, surge, or pitch [6].

Figure B.1: Rigid body dynamics in 6 DOF [16].

The complete dynamic motion of the system can be written as:

Mẍ(t) = Fr(t) + Fw(t) + Fd(t)︸ ︷︷ ︸
Fexc(t)

+Fs(t) + Fvisc(t) + Fpto(t), (B.1)
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where M denotes the inertia (mass) matrix defined by M ∈ R6×6, x denotes the position

vector defined by x ∈ R6×1, and Fr(t),Fw(t),Fd(t),Fs(t),Fvisc,Fpto(t) ∈ R6×1 are the

radiated, wave, diffracted, hydrostatic, viscous, and PTO forces and moments acting on

the body, and the excitation force Fexc(t) comprises the wave and diffracted forces. The

hydrodynamic and hydrostatic forces in TD are given in the following subsections.

B.1.1 Radiation Loads

Radiation loads are usually described in FD as the magnitude of the load varies

according to the frequency of oscillation. The FD representation of the radiation force is

given by [15]:

F̂r(ω) = −A(ω)ˆ̈x−B(ω)ˆ̇x, (B.2)

where A ∈ R6×6 is the matrix of hydrodynamic added mass, B ∈ R6×6 is the hydro-

dynamic radiation matrix, ˆ̇x and ˆ̈x are complex amplitudes of velocity and acceleration.

The radiation force in the j mode due to body oscillations in the k direction is given by:

F̂r,jk(ω) = −Ajk(ω)¨̂xk −Bjk(ω) ˙̂xk, (B.3)

where j and k = {1, 2, ..., 6}.

In the TD, radiation loads are usually described by means of Cummins Equations

given by [55]:

Fr,jk(t) = −A∞,jkẍk −
ˆ t

0

kjk(t− τ)ẋk(τ)dτ, (B.4)

where A∞,jk = limω−→∞Ajk(ω) is the infinite frequency hydrodynamic added mass, and

kjk denotes the retardation function, also known as the radiation impulse response.

The fluid memory term in Eq. (B.4) can be approximated to a state-space model [41]:

Ffm(t) =

ˆ t

0

kjk(t− τ)ẋk(τ)dτ ≈
q̇̇q̇q(t) = Arqqq(t) + Brẋk(t)

Ffm(t) = Crqqq(t),
(B.5)

where the body velocity ẋk in the direction k is taken as input, and qqq is an auxiliary state

vector without physical meaning. The approximate state space of the radiation force can

be obtained using a MATLAB MSS FDI toolbox [56], which uses pre-calculated values

of the radiation damping and added mass. This toolbox guarantees the convergence and

quality of the fit by changing the order of the model.
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In this work, the fluid memory term of the spherical floating PA is approximated to a

state-space model of order 3 based on the hydrodynamic coefficients described in Figure

4.2. The space-state results are given by:

A =


−1.449 −1.496 −0.114

1 0 1

0 1 0

 , (B.6)

B =


1

0

0

 , (B.7)

C =
[
1.378e5 1.495e4 0

]
. (B.8)

B.1.2 Excitation Loads

The excitation forces and moments comprise the wave and the diffraction contribu-

tions, which according to the linear theory is dependent on the surface elevation. The

force can be represented in the FD as [41]:

F̂exc,j(ω) = ĤFj(ω)ζ̂a(x0, y0, ω), (B.9)

where ĤFj is the force response amplitude operator in the mode j, (x0, y0) is the reference

point which coincides with the body mean position or the projection of the center of mass

on the water plane.

Even though the TD equivalent force can be written by convolution operation based

on the surface elevation, this work uses the excitation force as an input signal. Based on

the power spectrum density of the wave, the complex amplitude of the surface elevation

can be written as:

ζ̂a(ωk) =
√

2Sζ(ωk)∆ωk e
iθζ(ωk), (B.10)

where θζ is a phase angle obtained from real data or generated randomly based on a

uniform distribution within [0, 2π] radians. The complex wave amplitude is fed into the

complex amplitude of the wave excitation by:

F̂exc,j(ωk) = ĤFj(ωk)ζ̂a(ωk), (B.11)
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and the input force in TD composed of N frequencies is given by [41]:

Fexc,j(t) =
N∑
k=1

<e
{
F̂exc,j(ωk)e

iωkt
}
. (B.12)

B.1.3 Hydrostatic Loads

The hydrostatic loads are independent of the incident wave field. Therefore, the

pressure field is caused due to the water column pressure. Applying the Gauss theorem

in Eq. (A.31), it follows:

~Fs = ρg

˚

V

(∇z)dz = ρgV ~k, (B.13)

where V denotes the volume of water displaced by the structure. This force is associated

with the buoyancy component of the hydrostatic force.

The hydrostatic stiffness is obtained via Gauss theorem considering small displace-

ments around the equilibrium position. Considering the case where the center of mass is

located at the reference system, the hydrostatic loads are written in the TD as:

Fs(t) = Ksx(t), (B.14)

where the non-null terms of the hydrostatic stiffness matrix, Ks, are given by:

Ks,33 = −ρgAw
Ks,44 = −mg(zb + S22/V )

Ks,55 = −mg(zb + S11/V ),

(B.15)

where the hydrostatic stiffness Ks ∈ R6×6, Aw denotes the cross-sectional area of the

structure at the water plane, zb is the distance from the center of buoyancy, S11 and S22

are the second moment of area, given by:

S11 =

¨

Aw

x2dS, (B.16)

S22 =

¨

Aw

y2dS. (B.17)
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