FELIPE RUGGERI

A TIME DOMAIN RANKINE PANEL METHOD FOR 2D SEAKEEPING

ANALYSIS

Dissertacdo apresentada a Escola
Politécnica da Universidade de S&o
Paulo para obtencéo do titulo de Mestre
em Engenharia

Sao Paulo

2012



FELIPE RUGGERI

A TIME DOMAIN RANKINE PANEL METHOD FOR 2D SEAKEEPING

ANALYSIS

Dissertacdo apresentada a Escola
Politécnica da Universidade de S&o
Paulo para obtencéo do titulo de Mestre
em Engenharia

Area de Concentracao:
Engenharia Naval e Oceénica

Orientador:
Prof. Dr. Alexandre Nicolaos Simos

Sao Paulo

2012



FICHA CATALOGRAFICA

Ruggeri, Felipe

A time domain rankine panel method for 2D seakeeping
analysis / F. Ruggeri. -- Sdo Paulo, 2012.

137 p.

Dissertacdo (Mestrado) — Escola Politécnica da Universidade
de S&o Paulo. Departamento de Engenharia Naval e Oceénica.

1. Método dos elementos de contorno 2. Ondas (Oceanogra-
fia) I. Universidade de S&o Paulo. Escola Politécnica. Departa-
mento de Engenharia Naval e Oceénica ll. t.




Resumo

A capacidade de prever os movimentos de uma plataforma de petrdleo sujeita a ondas é
bastante importante no contexto da engenharia naval e oceanica, ja que esses movimentos terao
diversas implicagoes no projeto deste sistema, com impactos diretos nos custos de producao e
tempo de retorno do investimento. Esse trabalho apresenta os fundamentos tedricos sobre o
problema de comportamento no mar de corpos flutuantes sujeitos a ondas de gravidades e um
método numérico para solugao do problema 2D no dominio do tempo. A hipdtese basica adotada
¢ a de escoamento potencial, que permitiu a utilizagao do método de elementos de contorno para
descrever a regiao fluida. Optou-se pela utilizagao de fontes de Rankine como fungao de Green
no desenvolvimento do método, o qual serd abordado somente no contexto linear do problema
matematico, delimitado através de um procedimento combinado entre expansao de Stokes e
série de Taylor. As simulagoes sao realizadas no dominio do tempo sendo, portanto, resolvido
o problema de valor inicial com relagao as equagoes do movimento e equacoes que descrevem
a superficie-livre combinadas com dois problemas de valor de contorno, um para o potencial
de velocidades e outro para o potencial de aceleracao do escoamento. As equagOes integrais de
contorno permitem transformar o sistema de equagoes diferenciais parciais da superficie livre
num sistema de equagoes diferenciais ordindarias, a quais sao resolvidas através do método de
Runge-Kutta de 4% ordem. As equagoes integrais sao tratadas de forma singularizada e o método
utilizado para discretizar as mesmas é de ordem baixa tanto para a funcao potencial quanto para
a aproximacao geométrica, sendo as integracgoes necessarias realizadas numericamente através de
quadratura Gauss-Legendre. O algoritmo numérico é testado e validado através de comparacoes
com solucoes analiticas, numéricas e experimentais presentes na literatura, considerando os
problemas de geracao de ondas, calculo de massa adicional e amortecimento potencial através
de ensaios de oscilacao forcada, testes de decaimento e, por ultimo, resposta em ondas. Os
resultados obtiveram boa concordancia com aqueles adotados como paradigma.

Palavras chave: Método de Rankine, Método de elementos de contorno, Comportamento em

ondas.
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Abstract

The ability to predict the seakeeping characteristics of an offshore structure (such as an oil
platform) is very important in offshore engineering since these motions have important conse-
quences regarding its design and therefore its cost and payback period. This work presents the
theoretical and numerical aspects concerning the evaluation of the 2D seakeeping problem under
the potential flow hypothesis, which allows the use a Boundary Elements Method to describe the
fluid region with Rankine sources as Green function. The linearized version of the mathematical
problem is built by a combined Stokes expansion and Taylor series procedure and solved in time
domain.

The initial value problem concerning the motion and free surface equations are solved com-
bined to the boundary value problems considering the velocity and acceleration flow potentials,
which transform the partial differential equations of the free surface into ordinary differential
equations, that are solved using the 4" order Runge-Kutta method. The integral equations
are solved in it’s singularized version using a low order method both for the potential function
and the geometrical approximation, with the terms of the linear system evaluated using Gauss
Legendre quadrature.

The numerical scheme is tested and validated considering analytical, numerical and experi-
mental results obtained in the literature, concerning wave generation, added mass and potential
damping evaluation, decay tests and response to waves. The results achieved good agreement
with respect to those used as paradigm.

Keywords: Rankine panel method, Boundary Elements Method, Seakeeping.
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Chapter 1

Introduction

1.1 Relevance and Motivation

In the context of offshore and naval design the correct seakeeping prediction is very important
in all design phases, since response to waves (motions, velocities and accelerations) will define
the environmental conditions in which the structure will operate safely. The latest discoveries
of petroleum reservoir in the brazilian coast, in ultra-deep waters, mean that a greater demand
for ships and platforms will appear in the next years, increasing the need for refined seakeeping
studies. In facts better designs should help reducing the production downtime, specially under
harsh conditions, improving production efficiency and reducing costs.

The technological development continuously improves the computational capability, allow-
ing the use of sophisticated numerical methods for this problem. The problem to be studied
consists of determining forces and motions on floating bodies under waves, current and wind
with arbitrary incidences upon a floating structure that may or may not have forward speed.
For platforms there are also interactions with the risers, mooring lines and tendons, most of
them usually not considered in a first analysis.

An alternative approach is experimental, which is based on small-scale models that are
tested on offshore basins, being able to reproduce some phenomena which are hard to evaluate
numerically. The constrains involved in the experimental approach are related to the lack of
similarity, specially Reynolds number and the accuracy on small parts and measurements (like
the risers of an oil platform in deep waters). However, the experimental approach usually
provides essential contributions on the validation/extension of numerical models.

A mixed approach based on numerical models combined with experimental data has been

17



developed at the Numerical Offshore Tank (TPN-USP) since 2000. One of the goals has been
to provide a simulator that could handle a fully coupled solution of hydrodynamics, mooring
lines, environmental conditions and body motions. Since the hydrodynamic solution is obtained
in frequency domain using WAMIT (see Lee and Newman [2005] that summarize some of the
developments performed), the time domain solution is evaluated following the theory developed
by Cummins [1962], that basically transform the frequency domain solution into a time domain
one using a convolution integral to take into account the flow memory effects. However, this
procedure leads to some limitations, specially because the hydrodynamic problem in frequency
domain can only be solved considering the first order and higher order solutions using Stokes
series (see Stoker [1957]), which is only valid for weakly non-linear problems, as will be discussed
later.

Following this approach the mesh is fixed during the whole simulation period, which leads
to some limitations concerning some practical problems, like multi body simulation with large
relative displacements. This problem, for example, motivated alternative strategies trying to
overcome this limitation, like re-run the frequency domain code if the displacements exceeds a
specified value, as presented by Tannuri et al. [2004] and Queiroz Filho and Tannuri [2009].

The only way to consider all the non-linearities concerning the problem is by solving the fully
non-linear fluid-structure problem considering the time dependent boundaries and interactions,
which is a long term goal for the simulator, specially for dealing with engineering applications
where the ”strong” ! non-linear effects are important, such as multi body simulations with large
relative displacements, extreme roll motions of FPSOs, structures with very low draft (such as
monobuoys) and bodies in resonant motions. Shao [2010] states that strong non-linear effects
are also important in the study of slamming, green water, capsizing of ships and violent sloshing.

Following this fully non-linear approach, almost all methods assumes a mixed Fulerian-
Lagrangean (MEL) approach for the free surface evolution in time, which is not performed in
the weakly non-linear formulation because the free surface remains in the undisturbed position.
van Daalen [1993] formulated a fully non-linear time domain BEM for the evaluation of 2D
wave-maker problem, forced oscillation test and decay tests. Greco [2001] followed a similar
approach for the investigation of green water phenomenon, but added some additional effects
like hydroelasticity. Tanizawa et al. [1999, 2000], Koo [2003], Koo and Kim [2004] and Kim and

Koo [2005] applied the bidimensional fully non-linear approach for the evaluation of response to

1For strong non-linear effects we understand the ones that are beyond what the multi-scales approach can
evaluate properly
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waves of floating bodies in a numerical wave tank simulation (NWT). Tanizawa and Naito [1997]
used the NWT for the study of parametric roll of a ”bell” shaped body still in a 2D approach.
Contento [2000] also studied the fully non-linear problem validating the results initially with
Vugts [1968] experiments for forced oscillation and then performed decay tests and response to
waves. The simulations concerning large initial displacements (40% of the draft) for heave free
decay tests showed significant non-linear influence, which was not verified by van Daalen [1993]
concerning a circular and rectangular sections, as will be presented latter. Tanizawa and Naito
[1998] tried to reproduce chaos in roll motions still in a bidimensional approach.

Some other important problems concerning ”weak” non-linearities are the slow motions (well
discussed by Pinkster [1980]) and mean drift (introduced initially with a simple formula by Maruo
[1960]) of offshore structures, that are already evaluated in the simulator using the first and sec-
ond order solutions, both engineering problems discussed by Faltinsen [1990]. Those effects are
taken into account although the slow motions evaluation require a long time to run when multi
body and shallow water effects need to be considered for the QTF? evaluation. This long time
computation is partially because the second order problem requires the free surface discretiza-
tion, since the Green function adopted does not respect the second order inhomogeneous free
surface condition. An alternative procedure would be the evaluation of a group of waves together
in time domain, obtaining all the forces and motions during one single computation, following
an approach similar to the proposed by Kim et al. [1997].

The weakly non linear approach was also adopted for the study of third order problems,
concerning the presence and absence of current as presented in Shao [2010] (who also studied
second order problems), that used a time domain higher order BEM for solving the mathemat-
ical problem, achieving good agreement for the results. Zhu [1997] formulated the third order
diffraction problem, comparing a BEM solution to the long-wave approximation theory for the
ringing® phenomenon. Stassen et al. [1998] described a BEM applied to the problem concerning
the third-order free surface waves discussing that an additional condition must be imposed in
order to correct the secular terms (see Nayfeh [1973]), that produced instabilities, as introduced
by Benjamin and Feir [1967] for waves propagating without any kind of dissipation (or at least
negligible in this order of approximation).

Although the main goal of the simulator is to evaluate the practical engineering problems

discussed before, in the present work only basic steps involved in building an offshore seakeeping

2Quadratic Transfer Function
3High frequency transient type response
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analysis code will be presented, in order to achieve a better comprehension of the physical
phenomenon, mathematical modelling (and hypothesis), numerical issues and implementation
procedure. In order to evaluate the method proposed a 2D code was implemented in Matlab ®
programming language. The output of the code is compared with some results presented in the
literature to confirm the correctness of the mathematical model and numerical scheme presented,
that latter will be extended to the desired practical problems. Furthermore, the main goal of
this text is to present the basic aspects (which are not trivial) concerning the seakeeping problem
for further extensions to the three dimensional problem.

The physical problem can be converted into a mathematical problem using appropriate
hypothesis, simple conservation laws and boundary conditions concerning the nature of the
fluid-structure interaction. The structures studied are fixed and floating bodies without forward
speed susceptible only to gravity wave loads. Despite the formulation adopted provides an
extension to multi-bodies interaction almost directly, this work is focused on a single floating
body problem. The code was developed to allow simulations either in ocean conditions or in
wave basins (modeling the wave-maker and the walls of a wave basin).

The conservation laws adopted for solving the flow are the mass and linear momentum
conservation. The bodies are assumed as rigid and their motions can be described by Newton’s
law.

Regardless the body is free to move, the partial differential equation system describing the
flow dynamics consists of four equations (three for momentum and one for mass), meaning that
the velocity components in all directions and the pressure can be evaluated. The pressures are
integrated over the wetted body surface, providing the hydrodynamic forces used for motion
evaluation.

The ideal fluid model is usually adopted in the context of seakeeping analysis, which means
that the fluid is homogeneous, has no viscosity and the flow is assumed as incompressible and
potential, so the velocity field is irrotational, allowing the complete velocity field to be described
by the value of a scalar function at the boundaries, being this function known as the velocity
potential.

The assumption of potential flow is appropriate when the viscous effects can be neglected,
which may occurs as the Reynolds number increases, since the inertial forces becomes large
compared to viscous ones. For streamlined bodies this means that the flow separation will be

small. For oscillating bodies, such as floating bodies on ocean waves, the relation of inertial
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forces and viscous forces is given by the KC* number, which is usually small for oil platforms,
specially in the linear problem context, when the problem is linear with the wave amplitude and
the wave steepness is small.

The completely non-linear boundary value problem (BVP) for a floating body is very diffi-
cult to be solved, since the boundary conditions are mostly non-linear and applied to unknown
time variant boundaries. In order to simplify the BVP, a Stokes expansion procedure is usu-
ally adopted, together with Taylor expansions, leading to a linear problem solved at the mean
boundaries.

The BVP can be solved either in time domain or in frequency domain. The solution in
frequency domain is based on separation of variables considering the motions as periodic, not
allowing the analysis of transient effects, which can be done in time domain. Besides that, in
frequency domain one usually does not solve the fluid/structure interaction directly, since the
body motion equation is not solved coupled to the hydrodynamic BVP. Therefore, the body
dynamic does not affect the hydrodynamic solution. In frequency domain usually the hydrody-
namic solution is obtained considering 6 individual problems (one for each degree on freedom, the
so called radiation problems) and the diffraction problem, the latter considering only the body
presence, but not the body motion. On the other hand, the time domain approach requires the
body dynamics to be solved coupled with the fluid BVP, solving the fluid/structure interaction
directly, facilitating the inclusion of non-linearities, either in the hydrodynamic problem or in
the body motion. However, it should be noticed that the time domain approach usually requires
much more computational effort than the frequency domain, which was one of the reasons for
the first numerical methods developed to be based in frequency domain solutions.

In this work, the numerical technique chosen to solve the BVP is the Boundary Elements
Method (BEM), since the velocities can be defined in terms of the values at the boundaries, not
being necessary to discretize the whole fluid domain, as would be the case in a Finite Elements
Method (FEM), Finite Volumes Method (FVM) or Finite Differences Method (FDM). The
computational effort required for solving a boundary elements method is usually much smaller
than those required by these other methods, since only the boundaries are discretized, reducing
the number of elements (and the size of the linear system).

In this work, only the linear problem will be considered in order to get the knowledge

concerning the fundamental approach. Furthermore, the bidimensional linear approach presents

4Keulegan Carpenter
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several relevant problems that can be solved analytically, which is very useful for validation
purposes. So, this first work concerning a linear time domain boundary elements method should
be understood as only the first step for further extensions, that in the future could consider the
mooring dynamics and the completely non-linear problem.

The BEM requires the choice of a Green function and there are several ones, such as Kelvin
sources and transient Green function. These functions satisfy the linearized free surface condi-
tions automatically, reducing the computational effort, since the free surface does not need to
be discretized. They could also be extended to satisfy the no flux condition at the flat bottom,
if required, but then they have the inconvenient of containing an improper integral of diffi-
cult convergence. Besides that, these functions usually satisfy only the linearized free surface
conditions and therefore they cannot be applied for non-linear problems, which is one of the
long term goals. In the present work, the Rankine sources are chosen, which do not satisfy
any boundary condition immediately, but their evaluation does not require much computational
effort, rendering future extensions to non-linear problems easier.

The three major subdivisions in boundary elements method applied for naval and ocean
applications are: advancing ships (problem with forward speed), platforms (floating stationary
structures) and numerical wave tanks (NWT), the last one focusing on two main themes, non-
linear free surface phenomena and fluid-structure interaction. Among the numerical codes based
on Boundary Elements Methods available nowadays for seakeeping analysis, the main commercial
softwares are WAMIT®), AQWA® and WADAM®), all adopting a frequency domain solution.
Among the time domain softwares, which were mostly applied and developed for academic
purposes, one may find TIMIT® and SWAN®).

The order of approximation of the geometry and the potential function leads to two kinds
of numerical methods: the low order, that retains only the first term in the approximations,
methods with plane panels and constant potential inside each panel, as introduced by Hess
and Smith [1964] and the higher order method, that uses other representations containing more
terms, that keep the continuity of the potential function and normal vector between the panels,
and that can also be extended to guarantee the continuity of the derivatives of the potential
function. One example of low order method is the singularized one developed by Yee-Tak Ng
[1993] to study second order effects on floating structures. However, the use of higher order
numerical methods are justified due to the reduction of computational effort, specially for solving

the higher orders problems concerning seakeeping of stationary structures or problems concerning
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forward speed, which require the evaluation of the panels tangential derivatives accurately. Some
of the higher order codes developed are, for example, Maniar [1995] that extended the WAMIT
code to a higher order panel method based on spline approximations for the potential function
but the geometry could be arbitrary described. He also adopted a Galerkin procedure to obtain
a determined linear system. Qiu [2001] and Qiu et al. [2006] presented the so-called panel
free method (desingularized) for wave body interaction, with and without current, where the
geometry is generically described by the coefficients of a NURBS, as largely available in CAD
packages. Gao and Zou [2008], presented a desingularized higher order method based on NURBS
for the geometry description and B-spline for the potential function to study problems concerning
forward speed. Shao [2010] presented a higher method based in quadratic elements defined each
3 nodes, for both the potential function and geometry.

The following Table (1.1), taken from Bertram [1996] summarizes some of the numerical
methods available for solving the forward speed problem. Here the ”indirect method” stands
for methods that evaluate the source strength, while the ”direct method” indicate the ones that

evaluate the velocity potential.

Table 1.1: Numerical methods for forward speed

No. Place Country Code Author Method | Domain
1 MIT USA SWAN Nakos, Sclavounous | Direct | Frequency
2 | KRI/SNU Korea HOBEM Hong, Choi Direct | Frequency
3 | Hiroshima Japan CBIEM Iwashita et al. Direct | Frequency
4 Osaka Japan - Takagi Indirect | Frequency
5 MHI Japan - Yasukawa Indirect | Frequency
6 Nantes France AQUAREVA | Maissonneuve et al | Indirect | Frequency
7 NTH Norway - Zhao, Faltinsen Indirect | Frequency
8 IfS Germany NEPTUN Bertram Indirect | Frequency
9 IfS Germany FREDDY Bertram, Hughes | Indirect | Frequency
10 | Michigan USA - Cao et al. Direct Time
11 MIT USA SWAN Kring, Sclavounos Direct Time
12 AMI USA USAERO/FSP Maskew Indirect Time
13 Delft Holland - Prins Direct Time

The numerical wave tank approach has also been researched by several groups, almost ex-
clusively for academic purposes, creating even benchmark cases, whose contributors, taken from

Tanizawa [2000] are shown in Table (1.2).
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Table 1.2: List of contributors for NWT benchmark (Tanizawa [2000])

Contributor Simulation Method
K. Tanizawa BEM Fully Nonlinear
M. Kashiwagi BEM Fully Nonlinear
H. Kihara BEM Fully Nonlinear
A. H. Clement BEM Fully Nonlinear

C. Maisondieu BEM 2nd order

R. Otto & J. H. Westhuis | FEM Fully Nonlinear
N. Hirata FVM Fully Nonlinear

It can be seen that most of the developments have been performed at the academic context. A
better comprehension concerning the mathematical formulation and numerical methods in time
domain for seakeeping analysis, which to the author’s knowledge, was not complete developed
in Brazil yet, is therefore one of the goals of the present study.

With this in mind, Chapter 2 states the complete mathematical problem stating the potential
flow hypothesis and the free surface condition as described by a mathematical function, which
does not allow overturning waves. A brief discussion about the complete non-linear problem is
done, followed by a linearization procedure based on Stokes expansion.

Chapter 3 describes the mathematical procedure that allows the BVP concerning the flow
problem to be described by means of an integral equation. A boundary elements method (BEM)
for solving this problem is also defined, followed by a low order approximation description.

Chapter 4 describes the numerical method implemented, consisting on solving the Boundary
Value Problem using a lower order panel method and the Initial Value Problem using a 4th
order Runge-Kutta method (RK-4).

Chapter 5 shows the numerical results obtained for wave-generation at a numerical offshore
tank, the added mass and wave damping coefficients estimated for simple geometric cylinders, the
analysis of decay tests of the cylinders and the response amplitude operator for a bidimensional
box. A small discussion concerning the comparison of the results with available data at the
literature is also performed, showing that good agreement is achieved.

Finally, Chapter 6 brings the main conclusions about the linear method capability and the
next steps required in order to extend the method for 3D cases. A discussion about possible

improvements of the code and extensions for multi-bodies and non-linearities is also performed.
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1.2 Bibliography review

The description of the fluid dynamics can be defined by a system of equations containing a
scalar equation of mass conservation (continuity) and a vectorial equation concerning the linear
momentum conservation (Navier-Stokes), that allow the evaluation of pressure and velocity field.
These equations are largely available and discussed in Batchelor [2009], Milne-Thomson [1968]
and Fox and Donald [1973]. The dynamic of a rigid body can be studied through the motion
equations derived from Newton’s laws.

The problem concerning floating bodies under gravity waves has been largely studied con-
sidering the potential flow description (Lamb [1945], Newman [1977] , Mei et al. [2005]), when
the velocity field is assumed as irrotational, simplifying, for incompressible flows, the continuity
equation into Laplace’s equation. The ocean waves was largely studied for several authors, for
example, by Stoker [1957] and Hermans [2011], that describe a multi-scale procedure for the de-
composition of the non-linear free surface conditions into a sequence of several linear conditions,
where the lower solutions are imposed into the higher order problems, as proposed by Stokes
[1847].

The mathematical problem is quite difficult to be solved generically since it has non-linear
conditions applied to time-varying boundaries (the free surface and the body wetted surface), as
discussed, for example, by John [1949, 1950] and Kuznetsov et al. [2004]. In order to overcome
this inconvenient several authors proposed simplified procedures, basically known as the linear
approach, where the time varying boundaries are replaced by static ones and the boundary
conditions are linearized during the calculations, achieving good experimental agreement for
free surface flow without a floating body, as described by Barber and Ursell [1948] and Dean
et al. [1959].

Hess and Smith [1964] introduced the use of a panel method for solving Laplace’s equation
using a singularized and indirect equation with a low order approximation either by the source
strength distribution or geometrical approximation, obtaining good results considering bodies
fully submerged. Dawson [1977] was one of the first to use Rankine sources as Green function for
a panel method to evaluated three dimensional ship-resistance. Yang [2004] implemented a sim-
ilar method for linear wave resistance calculation and formulated the fully non-linear approach
concerning the wave resistance problem citing Tanizawa [1995] work, extending the formulation

to consider forward speed effect. A discussion about the simulation stability in time is performed
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by both and Tanizawa [2000] summarizes the four consistent methods available for the evalua-
tion of the time derivative of the potential function, which is very important for time domain
simulation stability, as will be presented latter: (1) Iterative method, as performed, for exam-
ple, by Cao et al. [1994]; (2) Modal decomposition; (3) Indirect Method; (4) Implicit boundary
condition method. Kacham [2004] evaluated this derivative by using a finite difference scheme.
van Daalen [1993] followed the implicit boundary condition method, obtaining good agreement
in the results.

The use of a numerical beach in order to avoid wave reflection was introduced by Israeli and
Orszag [1981], which was followed by several authors concerning different numerical methods and
problems. This idea was extended to the Rankine panel method considering damping term(s) in
the free surface condition(s), for example, by Nakos et al. [1993], Kring [1994], Prins [1995], Cao
et al. [1994], Huang [1997], Kim [2003], Koo and Kim [2004] and Zhen et al. [2010], although

there are some variations.
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Chapter 2

Mathematical problem

In this chapter the mathematical problem is formulated for the generic case of arbitrarily floating
body motions on gravity waves. The difficulties involved for solving the complete problem are
discussed and using a Stokes series approach the problem is simplified (linearized). After properly
boundary conditions are defined, the Boundary Value Problem (BVP) is complete and linearized,

the Initial Value Problem (IVP) is treated by defining the correct initial conditions.

2.1 Governing equations

As already mentioned, the basic hypothesis adopted are the incompressible and potential flow.
The mass conservation is given by (2.1), where p is the specific mass and ¥/ is the velocity field.
By definition, an incompressible flow has the material derivative of the specific mass as zero at

all times, simplifying the mass conservation to equation (2.2).

Dp

L T=0 2.1

Dt+’0vv (2.1)
pV - 1=0=V-7=0 (2.2)

Since the flow is assumed as potential the velocity field is written as (2.3), where ¢ denotes
the velocity potential function, which is position and time dependent, converting the continuity

equation to Laplace’s equation (2.4), valid at the fluid region €.

v=Vop (2.3)



V-Vo=Vp=0 (2.4)

The conservation of linear momentum is expressed by equation (2.5) and represents Newton’s
second law applied to fluid particle. The acceleration is on the left side of the equation and all
forces on the right side, where the contact forces are evaluated in terms of the stress tensor (7"
and the field forces, such as gravity, by the body forces vector b.

Dy oy

1 -
= = G- 7=~-V-T 2.
i at+Vv 0] pV +b (2.5)

Looking more carefully into this equation we can se that it’s only a statement of the balance
between the acceleration of the fluid and the forces acting on it, which are segregated in two
groups, one that acts directly on the fluid particle by contact and other that acts by distance.
Since the fluid is assumed ideal, the system is conservative because the unique external load
considered is the gravity, which is also a conservative field. The stress tensor is given by (2.6),
which allows the linear momentum conservation law to be written as (2.7), which is exactly
Bernoulli’s equation for an irrotational, non-permanent flow, where p is the pressure and g the

gravity acceleration.

Tij = —pdij (2.6)
0 1 P
2V + S rgz=C0) (2.7)

The initial 4 variables/4 equations problem is then reduced to the solution of 2 equations con-
cerning 2 scalar functions (variables), the velocity potential function ¢ and the pressure p.

However, in order to particularize the solution, boundary conditions need to be provided.
Those conditions guarantee the BVP an unique solution and the boundaries can be grouped in
Stized, Spms Sy and Spg, denoting the fixed (stationary), prescribed motions, floating body and
free surface boundaries, respectively.

The fixed boundaries are usually the sea bottom or the walls at a wave basin. The prescribed
motion boundaries are the wetted surface of bodies with imposed motion, such as wave-makers
or, as another example, bodies at oscillation test.

The conditions at all boundaries but the free surface are simply the no-flux condition, given
by (2.8), (2.9) and (2.10). One should notice that velocity at the boundary can be described
in terms of the velocities at the center of gravity of the body using Poisson formula, since

the body is supposed rigid. These Neumann conditions are non-linear but at Spizeq, and are
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quite complicated since the region of evaluation are time dependent, leading to a very complex
condition. The non-linearities are due to the fluid-structure interaction nature, since different
flows lead to different pressures and forces, changing body motions, wetted surface and the

normal vector.

0pQ

Fng =0, for Q€ Sfized (2.8)

% — {}‘Q(t) . ﬁQ(t), for Qe Spm(t) (2.9)

e _ Uq(t) - ig(t) = fig(t) - [Ua(t) + d(t) A (Q(t) — G(1)], for Qe Sp(t)  (2.10)

In the context of seakeeping analysis concerning potential flow, the free surface is usually
understood as a membrane that segregates water from air at all time. This kind of construction
denies the possibility of breaking waves, since the membrane is assumed as simply connected.

This approach simplifies the mathematical problem since the free surface can be described by
a geometrical surface, where the boundary condition can be applied. The free surface elevation
is measured from the undisturbed surface using a variable 1 and represents the z coordinate
of the air-water interface, as can be seen on Figure (2.1). The basic idea is to find out a
mathematical surface that can correctly capture the water-air interface, such as a membrane
that always segregates the two phases, it is, no fluid particles can cross the membrane. Besides
that, any motion of the particles in the surface normal direction deforms it, in order to keep the

membrane always segregating the two phases.

Figure 2.1: Free surface

Suppose a generic surface given by (2.11). It can be expanded using Taylor series as shown
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in (2.12), where @ is the surface velocity with components (v, vy, v.).

S(z,y,z,t) =0,Vt (2.11)

S(F+v At y+v,At, z+v, At t) = S(x,y,2,t)+ (aa—‘j-iﬂ_fs‘VS) At+O(A)+O(AP) +... (2.12)

If we divide the expansion by At and take the limit case when At goes to zero, assuming all

surface derivatives as finite, the equation (2.14) is obtained, since (2.11) is true at all times.

(—65 + 7 vs)
. S(x 4+ v Aty + v Atz + v, At t) _ S(z,y,z,t) ot 5" 9
A At = At [ At At At+O(At H"']
(2.13)
os
o T VS =0 (2.14)

Since the fluid has no viscosity, the basic relation of a generic fluid particle at the boundary
is that the particle velocity vector projection on the free surface normal direction should be the
same as the projection of the surface velocity vector at the surface normal direction, as given by
(2.15), where %, is the flow velocity at a point P adjacent to the surface S and 7, is the surface

normal vector, which is equal to the surface gradient.

T, iy = U flg =, VS =0, VS, PeS (2.15)

Applying (2.14) at the right side of (2.15) and changing the flow velocity by the gradient of

the velocity potential function leads to (2.16).

oS

VQOP . VSp = —g p,

vt, PeS (2.16)

The free surface can be written as (2.17) and replacing it in equation (2.16) leads to condition

(2.18).

S=z-—n(zyt)=0 (2.17)
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This condition is known as kinematic condition and states that particles at the free surface
will be always at the free surface, because the velocity of the fluid particles adjacent to the
membrane on the surface normal direction should be the same of the surface normal velocity of
the membrane itself, which is assumed by construction, it is, the particles cannot ”drop” from
the surface.

The description of the free surface as (2.17) denies the possibility of overturning waves (waves
that are almost breaking, see Figure (2.2)) because an elevation function 7 is assumed and it is

single valued of the coordinates x and y.

Figure 2.2: Example of overturning wave

The first expression in (2.18) states the Neumann condition for the free surface, but since
7 is unknown, the kinematic condition is not enough for determining the membrane behavior,
specially because nothing was said about it’s dynamics. Another condition needs to be specified
then in order to evaluate the elevation itself, which is achieved by applying Bernoulli’s equation
(2.7).

Imposing that the pressure at the free surface should be atmospheric and choosing the
constant C(t) as zero, equation (2.19) is obtained. This statement is known as dynamic free

surface condition and describes the equilibrium of forces at the air-water interface.

%

1
o (Ve Vel tgn=0 at z=n(zy1) (2.19)

In the same way as already discussed for the prescribed motion and floating body boundaries,
the free surface conditions are non-linear, being difficult to find an easy solution procedure. In

the case of the free surface and the floating body, there is an additional problem because the
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boundary conditions should be applied at an unknown time dependent surface. The floating
body wetted surface, at all times, can only be defined by solving Newton’s second law (2.20)
and (2.21), assuming the body mass as constant and the only external loads as the gravity and
flow pressure, where EO is the angular moment considering a pole O and Mgrt is the external

torque considering the same pole.

d(mi) Fext
=) Fe* 2.20
7 > (2.20)
dEO “rext
— = DM (2.21)

Therefore the boundary value problem (BVP) can be summarized in solving Laplace’s equa-
tion (2.4) under the boundary conditions given by (2.18), (2.8), (2.9) and (2.10). The dynamic
free surface condition (2.19) and body motions equations (2.20)/(2.21) would be used for the
definition of the time dependent surface boundaries.

Since the problem containing non-linear boundary conditions applied at unknown boundaries
are hard to solve directly, an initial simplified problem is solved, which is the linear problem,

usually achieved by using expansions in Stokes series, as presented next.

2.2 Stokes expansion

The velocity potential, free surface elevation, normal vectors and moving bodies position vectors
can be expanded using an unidimensional Stokes series, that is basically a multi-scales expansion
using a perturbation factor €, where the potential of order zero equals to zero because the problem
has no forward speed and the position and normal vectors of order zero represent their mean
values, it is, the vectors when the bodies are at rest. The X function in equation (2.25) and
@ function in equation (2.26) denote the body linear and angular displacements. The method
proposes the problem to be solved by splitting the original problem into a collection of linear
problems (one for each order), solving them successively by imposing the solutions of the lower

orders problem into the higher order ones.

0 ¢]
p=¢+ (t).¢ (2.22)
=1
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n = 2 7 (). (2.23)
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=1
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a=da+ ) al).e (2.26)
=1

The first condition for the series convergence is that all individual potentials ¢; to be finite,
it is, they are bounded by a positive real M (|p;] < M, M € R*,i = 1,2,3,...,00) and the
perturbation factor modulus to be less than 1 since this series is bounded by a geometrical

series. This convergence condition is obviously extended to the remaining expansions.

0 0 0
i=0 1=0

1=0

The velocity vector can be written by time derivation of (2.25) and (2.26), providing (2.28)

and (2.29). As expected the mean velocities are zero, there is no zero order term.

V= i VO (¢).e (2.28)
i=1

&= i SO (t).€ (2.29)
=1

The boundary condition at the floating bodies and prescribed motion surfaces can be written

as (2.30).

7

Re[ X el 74
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The standard procedure would be to multiply this expression by the powers of (1/¢) taking
the limits when € — 0 successively, which would lead to several boundary conditions, one for
each order. However, it would not solve the inconvenient of having a time dependent boundary.

In order to overcome this inconvenient, the velocity vectors and the normal vectors are
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expanded in Taylor series around the surface Sy, (t = 0) = Sp,. Supposing an arbitrary point

(%0, Yo, 20) that belongs to the Sy, (t = 0), the expansion (2.31) can be performed.

; , Vi ov!
V(2o + Az, yo + Ay, 20 + Az, t) = V. (20, yo, 20, 1) + =2 x t Ay+
e (o vo 0 ) =" (@0, 30, 20,1) 0x I(z0,y0,20) 0y (x0,y0,20) Y
oVi O & & Ard Ayk Az pithruy D
L A = 2.31
52’ ((Eo,yo,Zo) S ; ; Z ‘k'u' ax](')yk(’)zu (:Bo,yo,ZO) ( 3 )

The values of Az, Ay and Az are the (2.25) terms without the zero order value. Therefore all
powers of the delta terms on Taylor expansion have at least order €, but the zero power, which is
exactly the value at rest. The other velocity and normal vector components could be expanded
by an analogous process.

Replacing those expansions into (2.30), dividing by e and now taking the limit for e — 0
leads to (2.32), which is the first order condition.

Yoy iiq =V fig, at Qe Spm(0) (2.32)

The procedure for the floating body boundary is exactly the same. For the deduction of a second
order condition, the expression (2.30) should now divided by €? (the terms of (1/¢) order would
cancel each other since they respect the first order condition) followed by taking the limit for
€ — 0. However, in this work the results are developed considering only the first order problem.

The next step is the linerization of the free surface boundary condition, which is done by
replacing the velocity potential and free surface elevation series into the kinematic and dynamic

conditions. The expressions (2.33) and (2.34) are then derived.

a o0 1 o0 o0
pa(Zcp() Y+ - pVngue Z +ng )=0 in szn € (2.34)

u=0 u=0

After some algebra the expressions for an arbitrary order can be achieved and grouped as
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can be seen in (2.35) and (2.36).
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Following the same procedure adopted before, all functions can be locally expanded by a
Taylor series around the undisturbed free surface (z=0). Replacing the free surface by the

stokes series (2.23) the expression (2.37) for the time derivative of the free surface elevation can

be derived.
on@ on@ ENPUER ORI 0 Sty (50
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Changing all terms in equations (2.35) and (2.36) by their respective Taylor series leads to
the equations (2.39) and (2.38). Taking the limit € — 0 in expression (2.39) leads to the zero

order elevation to be zero, as can be seen on (2.40).
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The next step is the division of expressions (2.39) and (2.38) by the perturbation factor € and the

evaluation of the limit when € — 0, already considering the zero order elevation and potential as

zero. Only the first term on Taylor series should be taken, since it is powered at zero while the

other terms will contain powers equal or greater than 1 for the perturbation factor. Following

this process the expressions (2.41) and (2.42) are obtained, which is the first order problem and

supposing that it was solved, the first order elevation and potential at the free surface would be

determined.
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Taking the expression (2.39) and (2.38), dividing by €2 and evaluating again the limit when
€ — 0 leads to the so-called second order condition as can be seen in (2.43) and (2.44), getting new
inhomogeneous linear equations where the second order elevation and potential are evaluated

imposing the first order solutions.

© - o ak+1n(i) (Z €V 77 © ak+1§0(z) (ZOO 6vn(v))k
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Crlon® oM (977(2) 0@ M oM oM op) 52@(1)
1 - _ _ (1)
tim | ( o o2 ) o T Ta: Tar o oy oy o2 ! | =0
on@ 0@ oM o) a1 oM §2,1) 1) )
_ _ - —0 (2.4
o o T am ar t o oy e 70 m z=0 (243
o O okt () > e“n(“))k
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A [ [gg( e )
L[ o @e?) (oe oen = U= (X, en@)F
§j_0[k2_ov( 02F le=0 ) kz_o ( e M I
o g (X 06”77‘“)) 1 el
= . 1 4 ¥
ng:o 2% |=0 ] ” lﬂ%[ (9’7 ot )*
PIRG) 1 52,0
Sgt + g +§W(1> V) 4 6;0(% n(”] -
® o loLm wm L EeW
N +gn +§Vg0 -Vt + 200" =0, in z=0 (2.44)

As discussed before this procedure can continue for higher orders and the important result is
the decomposition of the non-linear condition into several linear problems, recovering the original
non-linear equation if there is a small perturbation factor that goes to zero and a solvability
condition. However, it should be noticed that the higher orders problems (more than the three)
are hard to be verified experimentally and the effects concerning those problems could be as
small as the viscous effects, which were neglected since the beginning of the formulation.

In the linear problem the free-surface boundary conditions are given by (2.46) and (2.47),

where 1 and ¢ are the first order potentials, being the subscripts neglected in order to simplify
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the notation.

This perturbation factor € is actually kA, the wave steepness where k is the wave number, and
in order to guarantee the wave stability this factor should be small. The Keulegan-Carpenter
number (KC) (2.45) measures the inertial forces over drag forces for bluff objects at oscillatory
motions, where V is the velocity amplitude, T is the period of oscillation and L is a charac-
teristic length, which can be simplified at gravity waves situation to the wave amplitude over
a characteristic length. If this value is small, it is, the wave amplitude is small compared to
the body characteristic length, the inertial forces dominate. In the seakeeping context of oil
platforms (focus of this work), this condition is usually satisfied, which means that most of the
acting forces are inertial. The approximation assuming potential flow for the hydrodynamic
forces is also as good as the flow near the body can be assumed as potential. Near the body
it is well known that there is a boundary layer, where the viscous and turbulent effects are
significantly appreciable. If this layer is thin and there is not much separation, the pressure at
the body surface can be approximated by the potential pressure near the surface and outside
the boundary layer. This condition is satisfied if the body has an hydrodynamic shape, it is,
the surface curvature radius is large, which is clearly not the case at edges and corners. For oil
platforms motion prediction this local effect can under some circumstances be neglected, it is, if
the wave steepness and body motions are small, since this local contributions on forces are small
compared to the flow global effects. This condition is usually not completely satisfied near the
resonance frequency, since even small waves lead to big displacements. Besides that, in order to
guarantee accurate results, the ratio wave amplitude per body draft should be reasonable, since
the problem is solved considering the wetted mean surface (wetted surface at rest), not taking

into account the instantaneous wetted surface.

A 27
VT W 2mA
KO="T=""7"=71 (2.45)
on  Op .
L _ZF = 24
=2, oz 0 (2.46)
n= —é%—f in z=0 (2.47)

The linear free-surface equations can be combined into a single condition (2.48), which is
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known as the Cauchy-Poisson condition.

% oy )
W‘FQE—O in z=0 (248)

The motions equation are also solved, so the pressure at the body (2.49) and (2.50) needs

to be linearized. The pressure evaluation is transferred from the instantaneous wetted surface

to the mean wetted surface using again Taylor expansion.

p=3 pié (2.49)

o0 e 6}
p= —P% ( Z w(i)e"> - %,OV< Z tp(i)el) . V( (p(i)ei> — pgz,atSyy(t) (2.50)
i=1 i=1 i=1
p= —pi e%ail) + 1 ZZ: Vi) V(p(j)> + pgz,at  Sp(t) (2.51)
2 Vo 24 ) 1 :

The linearized flow pressure is given by (2.52), with the hydrostatic term neglected because
the forces are evaluated at the mean wetted surface, which is the body position at rest, assuming
buoyancy equilibrium (which is a zero order quantity), it is balanced by the body weight. The
body weight and buoyancy equilibrium can be changed in motion equations by considering
constant hydrostatic restoration terms involving, in first order, the mean water plane area and
static moments.

oo _
pg) =—p gt , at Sp(0) = Sy (2.52)

The body motion equations are presented on (2.53), (2.54) and (2.55) for the bidimensional
case, the case of interest in this work, where Ly is the area of water plane (actually it is a
length in the bidimensional case), m is the body mass, I is the moment of inertia concerning
the center of flotation (actually a moment of inertia per length) with the normal vector assumed
as pointing inward the body. The normal vector mean value (time independent) is denoted by

the index 0 in order to better comprehend the order of the forces evaluated.

mé(Gl) + ngWng) = f_ p(Dl)ngO)dl (2.53)
Sfb
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miig) = fg pg)ngo)dl (2.54)
fb

10" + pgvaMot) = J pp [l (ag) — &) —nigzy 1di (2:55)

Sty
For the evaluation of the Neumann conditions at the floating bodies boundary, the velocities

can be described in terms of the center of gravity, as shown in (2.56).

= Vg (0)-7ig) = nigli) (1) + 00 (0).(a)) — 2N + niglig (1) = 0V (0).() — 2E)))
(2.56)

The equations and conditions presented so far are enough to guarantee an unique solution
to the boundary value problem. The initial conditions for the initial value problem closure are
discussed ahead, in section 2.4. From now on the development will be performed only for the
interest case, which is the bidimensional one.

The theory developed above can be applied for numerical wave tanks, but for oceanic con-
ditions, an incident wave potential must be included. Supposing the incident wave potential
given by (2.57) the boundary conditions at Sfized, Spm and Sy, change to (2.59) imposing the
impermeability under the assumption of the superposition effects, as shown on (2.58). Here ¢
will denote the perturbation caused by the body on the undisturbed flow field represented by

¢1. The incident wave potential already respects the linearized free surface conditions.

¢ = %ekz cos(kx —wt), |z|] <o, 2<0 (2.57)
Dt (259)
o) oW Sy o ) 091

0 o = = a0l = Ve t)-nQ ~ 2,0 (2.59)

Some differences between the time domain and frequency domain approaches should be

discussed before the mathematical problem development continues.
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2.3 A discussion between time domain and frequency domain

approaches

In frequency domain the separation of variables technique (2.60) and the superposition principle
are used (2.61), decomposing the total potential into a diffraction potential ¢p, 3 radiation

potentials ¢pr; (2D case, one for each degree of freedom) and an incident wave potential ¢;.

®(z,2,t) = Re{®(z, z)e™"} (2.60)
3

O =dp+ ), bri+¢r (2.61)
=1

The boundary condition at the floating body is given by (2.62) that may be decomposed
into the conditions (2.63) and (2.64), which combined to Laplace’s equation, the other boundary
conditions and an appropriate radiation condition at infinity lead to the so called diffraction and
radiation problems, which may be solved individually. The radiation condition appears from the
separation of variables, that leads to a non-unique solution, requesting an additional condition

defining the correct direction of energy propagation for diffracted and radiated waves.

ov o 0pp| | 01 2\ 0 ;
o Vg = . Q+a—n‘Q+Z on lo = Vaanag+Vaan.g+0[n.q(zo—rc)—n.q(29—2c)]
(2.62)
dpp| _  0¢1
Tl an s (2:63)
a(le a¢R2 8¢R3 A

= O[n:q(zq — z¢) — neq(2qg — 2a)]; (2.64)

on Q: rGNzQ; on Q: 2GT2Q;5 on ’Q

More importantly, one should observe that in frequency domain the original boundary value
problem is decomposed into several independent problems, the transient effects cannot be eval-
uated directly due to the previous assumption of harmonic variation in time (2.60) and in the
linear approach the body dynamics does not need to be solved coupled to the hydrodynamics, so
the body motions are only post-processed results. Despite being much faster in terms of calcu-

lation effort, since there is only 4 integral equations to be solved (one for the diffraction problem
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and three for the radiation problems), this approach turns difficult to add non-linearities to
the BVP or considering multi-bodies problems, when the relative position change significantly
during the timespan of the analysis.

On the other hand, time domain approach naturally deals with transient effects and must
solve the coupled fluid-body problem. It makes the inclusion of geometrical and hydrodynamic
non-linearities easier, but requires much more computational capability, since there will be two
BVP (one for the velocity potential and another for the acceleration one, the last presented
next) and five ordinary differential equations for IVP (two for the free surface equations and
three for body motions). An important aspect that should be remarked is that due to the
coupled body dynamics and hydrodynamics, the numerical scheme needs to be robust, in order
to avoid numerical instabilities. The main issue during the time evolution is the evaluation of
the time derivative of the velocity potential function, used for the body forces evaluation, since
it is difficult to provide an accurate and stable numerical scheme because the velocity potential
is evaluated explicitly. In order to overcome this inconvenient, the acceleration potential is
introduced into the numerical scheme, leading to a new BVP, that solved provides the time

derivative directly, as presented next.

2.3.1 Acceleration potential

The essence of the fluid-structure interaction for a free floating body is quite different from the
one when the motion is prescribed, because in the latter the position does not depend on the
hydrodynamic pressure, which is proportional to the time derivative of the potential function.
For a free floating body this dependence exists and any inaccurate evaluation may turn the
solution unstable and, after some time, the simulation diverges.

In the context of potential flow the velocity field is assumed irrotational, which allows the
determination of a potential function for the flow velocity, representing a conservative field,
being the velocity completely defined by the values of this function at the boundaries. The same

procedure may be proposed for the flow acceleration:

ST
I

<
S

(2.65)

It is possible to establish an equation between the acceleration potential and the velocity

potential, as shown in (2.66). This equation is non-linear with a difficult convective term, but
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using Stokes expansion, it can be demonstrated that this term can be neglected in the first order

problem, since the zero order velocity potential is null, leading to (2.68).

i vp.g= V9 V(Y)Y = v(2E L Ve Vi) = VT (2.66)
ot ot ot
op 1
N VP 2.
N + 2V<p Ve (2.67)
0o
g = & .
- (2.68)

The linearized acceleration potential also satisfies Laplace’s equation (2.69) (one should
notice that the complete acceleration potential (2.67) does not satisfies Laplace’s equation due
to the non-linear term). The boundary conditions can be defined by derivation of the first order
velocity potential BVP boundary conditions, as can be seen in (2.70). The acceleration potential
conditions are given by (2.71) and (2.72) for fixed and prescribed motion boundaries, where the
subscripts are neglected in order to simplify the notation. It should be noted the time derivative
of the normal vector in (2.70) is zero because in the linear approach only the normal vector zero

order term (time independent) is considered.

V(%) -0 in 9 (2.60)

%(Zz) jt(VSD) i+ V- g? = g—j-ﬁ =at) - (2.70)
aa (Zi)’ - _%<%> o € Srired (2.71)
L) ot ra- L), @t -

At the floating body boundary, the acceleration can be described in terms of the center of
gravity acceleration (2.73). The stokes expansion for this condition leads to (2.74), neglecting

the centripetal acceleration term, since it is, at least, of order €2.
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ig=52 =g +0n Q- G)+HA[TA Q) (2.73)

o Qe Sp
(2.74)

(o

ot ) ’Q = n.qlia(t) + 0(t).(zQ — 6)] + nuglic(t) — 6(t). (2 — 2¢)] — %(%>

The acceleration of the center of gravity can be described in terms of the equations of
motion (2.54), (2.53) and (2.55), which then result dependent of the acceleration potential as
shown in (2.75), with v as a dummy variable concerning the body wetted surface. By following
this procedure the body acceleration can be eliminated from the integral equation and the

acceleration potential remains as the only variable.

o . (9901) Ngov (Z - ZG)[nzv(xv - xG) - nxvzv]
aQ.nQ:panff( pn ){F_ Q 7 dl,+

(2

%0 [ngGM (ZQ — Zg) 9} -
Iy
0Py, [Nz (2@ — 2G)[N20(Ty — 2G) — Naw 20
panfﬁ( (;Dt ){F_( Q —7a)[ (IO a) ]}dlv+

v

L VGM -

nog [_pg WL, . P9 (zqQ — za) 0] (2.75)
m IO

The first order boundary condition at the free surface is given by (2.76), where 7 is evaluated

through the dynamic free surface condition.

10pqg  dpq
_ _ - - _ =0 2.76
nQ ot~ a ang, % (2.76)

The BVP for the acceleration potential is then complete. The solution provides the time
derivative of the potential function, which may then be used for the body forces evaluation. Since
the problem is solved on time domain, initial conditions concerning the initial value problem

should be provided, as discussed next.

2.4 Initial conditions

The initial conditions concerning the floating body are basically the initial velocity and position

to be nulls, since the body is assumed at rest initially, the undisturbed free surface n(Z,0) = 0

44



and the velocities and acceleration as zero at the prescribed motion boundaries.

At the floating bodies, prescribed motion and fixed surfaces the variable to be evaluated in
the BVP is the potential function, because the Neumman conditions are known (for the fixed
and prescribed motion surfaces) or can be evaluated (for the floating bodies using the equations
of motion) at all time. However, for the free surface neither the potential nor the flux are known,
which means that both could be chosen as variable to be evaluated in the BVP. In this work
the choice was the imposition of a Dirichlet condition (the potential function) at the free surface
and the evaluation of the flux, in order to convert the free surface partial differential equations
into ordinary differential equations.

The free surface Dirichlet condition can be derived from the mass conservation condition on

the interior region translated into flux conservation by Gauss theorem (2.77).

fv2 Q) = %awdm f a¢ds+f a“ods+f a¢ds+f as”czs_o V>0
Stized on Spm Sty St

(2.77)
The flux through the free surface is zero and replacing the linearized free surface condition
into the zero flux condition and since the surfaces are fixed in time, the condition (2.78) can be

derived.

2 2
J (‘9_90> ds = J (‘9_90> ds = _lj (‘9_920> ds = _la_Qf o(z,2,0)dS =0
Spe N0/ g Sra \N0% /1o 9Js;. N0 J g g ot* Js,,

(2.78)

The simplest function that satisfies this condition is the null function and it was assumed for
the whole free surface (¢(x,z,0)=0). The BVP and IVP are now complete. The next chapter

will discuss the numerical procedure adopted for solving the BVP.
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Chapter 3

Boundary Elements Method (BEM)

In this chapter a brief discussion on boundary elements method is done in order to discuss
the benefits from the potential flow hypothesis. The discussion about the adoption of Rankine
sources as the Green function for the numerical model is performed and after that, the velocity
and acceleration potential BVPs are translated into integral equations, which may then be solved

by the numerical scheme described in Chapter 4.

3.1 Green’s second identity

As it was discussed before, the assumption of potential flow allows the velocity field to be
completely described by the boundaries values of a potential function. Under this assumption
the solution of flow dynamics is based on BVPs governed by Laplace’s equation.

However, this equation must be satisfied in the entire fluid region, which is not convenient
in terms of a numerical solution because then the whole volume domain should be discretized
and the velocity field does not depend of the interior domain values directly. The basic idea of
a boundary elements method is to relate the interior values of the function with the boundary
values and this can be done by making use of Green’s second identity (3.1), so the interior values

can be related to the function values and flux at the boundaries.
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Figure 3.1: Representation of §2, 0Q2, 002, and €

(GAp — pAG)dQ = G——go o0 (3.1)
Il [[io5 -5

The region €2 is assumed to be singly connected and bounded by piecewise smooth surfaces
012, as shown in Figure (3.1), with the normal vector pointing outward concerning an observer
inside the fluid domain. The potential function ¢ and the Green’s function G are assumed
harmonic and C?-continuous, which means that both satisfy Laplace’s equation (VZp = V2G =
0) in €, but for a finite number of points where the functions may not be defined.

It is possible to isolate the points where the functions are not defined (being & the vector
pointing from the origin of the coordinate system to those points) by using a small sphere of
radius € and surface 0€). centered at z if those points are placed in the interior of 2. If those
points are at the boundary 052, half a sphere is used, taking advantage of the smooth piecewise
boundary, meaning that half a sphere can always isolate those points. For a more generic surface
that is not smooth, such as a corner, a spherical cap defined by the solid angle, it is, the interior
space angle, should be taken.

Now that all precautions were taken and there are two surfaces bounding the points where
the function is not defined, Green’s identity can be applied to the region between those surfaces
if the point is inside Q or at the region 2\ if the point is at the boundaries, leading to (3.2).
The fact that the potential function and Green’s function are harmonic can be used to cancel

the left side of the equality, obtaining (3.3).

H (GAp — pAG)dD f f % _ aG)daQ (3.2)
Q

0Q+09
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HG——% 1400 — — HG——% 1400 (3.3)

0Qe
The next step is to evaluate the right side of (3.3). Since the radius can be as small as
desired and so may be the surface €2, one may take the limit ¢ — 0 (3.4). Before proceeding,

however, the function G needs to be defined.

lim f f )daQ (3.4)

3.2 Rankine sources

The choice of the most appropriate Green’s function is particular to each boundary problem,
the convenience to the numerical method and approach adopted. In the context of seakeeping
problems there are some famous ones, such as the transient Green function, Kelvin sources and
Rankine sources, this last one being adopted in this work.

The transient Green function for deep water is given by (3.5), where r and 1’ are given by (3.6)
and (3.7), K is the wave number, Jj is the Bessel function, Q is the point where the singularity is
placed and P the evaluation point. This singularity is usually adopted in the frequency domain
approach automatically satisfies the linear free surface and radiation conditions, which means
that the free surface does not need to be discretized. However, this Green’s function has the
inconvenient of involving a improper integral containing a Bessel function in the integrand, which
requires some computational effort to guarantee its numerical convergence. Furthermore, it only

satisfies the linearized free surface condition and so non-linearities cannot be included easily.

G(P,Q) = l l, 2K f e (kR) (3.5)
r=/(ep —3)? + (yp — 4Q)? + (2p — 20)? (36)
r = \/(CCP —2)* + (yp —y@)* + (2p + 2)? (3.7)

Despite the Rankine sources do not satisfy any boundary condition automatically (like the

free surface or a plane bottom) it is simple to evaluate and appropriate for future works con-
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cerning non-linear calculations, justifying it’s first use in this work. This Green’s function is

given by (3.8), where cq is an arbitrary constant (the source strength).

G(P.Q) = —> (3.8)
TPQ
rpg = /(2P —2)? + (up —4Q)? + (2 — 70)? (3.9)

This expression should be replaced into Green’s identity and, as discussed before, the pre-
cautions should be taken because Rankine source is singular at rpg = 0, leading to an indeter-
mination problem for interior or boundary points.

After choosing the Green function (3.8) the limiting process (3.4) can be continued, but for
convenience a spherical coordinate system will be used, where (6 : 0 < 6 < 27) is the azimuth
angle, (¢ : 0 < ¢ < ) is the polar angle and r is the radial distance. The jacobian for a spherical
coordinate system is r2sin(¢) and assuming the function @@ as finite, the first part of the limit

can be evaluated as (3.10), which is independent of the angle 1)*.

hm J:[ G (pdaQ = hmf J% 0 9%Q <2 sm(lb)] dfdy =

’I” nQ r=€

Pp* 27
lim f [cor 0q sin(i/))]
0

par A Fne _ dfdy = lim 2~ cos()] e =0 (3.10)

rT=€

For the evaluation of the second part of the limit, the gradient operator in spherical coor-
dinates is given by (3.11) and the term g—g becomes (3.12), with the normal vector pointing
outward the fluid region.

The limiting process is taken in (3.13).

o, 10, 1 0
V= (504t rmm o) (3.11)
0G . N 0 Co SN Co
% = VG n = 57"( , )GT (—eT) S5 7‘2 (312)

¥ 27r o
lim H —daQ_hm f Q3T smw)] dfdy) =

e—0 r=€

¥ 27 "
lim f pocosin()didy = 2rpoco[—cos()]L” (3.13)
0

e—0 0
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As discussed before, if the point is interior to Q then * = 7. Otherwise, if the point is at
the boundary 0€2 and the surface is smooth, ¢* = /2.

This leads to the results in (3.14), where the integration region does not contain the point
P, since the residues were already evaluated and is shown in the right side of the expression.
(For the boundary values it was considered only smooth surfaces). The constant ¢y is assumed

as unit since it is arbitrary anyway.

-

—4mpp, if P is inside )

0G pQ 0pQ . .
ff <‘PQ% - GPQ%>d59Q =1 2mpp, if P is at 09 (3.14)
oQ_p

0, if P is outside

For the bidimensional problem, focus of this work, the Rankine source should be replaced

by (3.15) and the integral equation to be solved is reduced to (3.17).

G(P,Q) = coln(rpq) (3.15)

rpQ = \/(a:p —zQ)? + (zp — 29)? (3.16)

2mpp, if P is inside )

aGpQ aSOQ ' .
‘LQP[SD ongQ ~Grq 8nQ daQQ_<7“PP7 if P is at 09 (3.17)

0, if P is outside ()

\S

The Rankine sources are also one of the fundamental solutions of Laplace’s equation in polar
coordinates. For instance, consider Laplace’s equation in polar coordinates (3.18). If it is
assumed that ¢ = ¢(r), the equation is easily simplified into the ordinary differential equation

(3.19) with the basic solution given generically by (3.20); more details can be seen on Ang [2007].

10/ dp 1 0%

o)+ g =0 (3.18)
d/ dy
) =0 (3.19)



p=Ciln(r)+Cz, r#0 (3.20)

3.3 Fredholm integral equation

The equation (3.17) is part of a group of equations known as integral equations, characterized
by the integrand function (or part of it) as the variable of the problem, in this case, the potential
function (7, t). Equation (3.17), either choosing points at the boundaries or inside the domain
for evaluation is a Fredholm inhomogeneous equation of the second kind (generally represented
by (3.21)) because the limits of the integral operator are fixed (Fredholm), the function ¢(Z,t)
appears inside and outside the integral (second kind) and there is another function f(&) outside
the integral sign (inhomogeneous). The function K (Z, ) is known as the kernel function and
due to the nature of the Green’s function adopted (Rankine sources) the kernels obtained are

symmetric, it is, satisfies (3.23).

PEY) = F(E0) + | K(7,5)0(5,0)d5 (3.21)
F(E@,t) = L K(Z,5)0(5,t)d8 (3.22)
K(7,5) = K(3,7) (3.23)

This classification is important because if the points chosen to evaluate the equation are
outside the domain 2, the equation to be solved would be a first kind Fredholm equation.
However, even if the points are chosen inside the domain or at the boundaries, we can still have
a first kind equation because at the free surface both the potential and the flux are unknown
and if the choice is by the flux as a variable, a first kind equation is obtained.

In this work, the points will be chosen only at the boundaries because it is convenient for
the numerical method that will be applied, as will become clear in Chapter 4. The potential as
variable to be found for all boundaries but for the free surface, where the variable will be chosen
the flux. This will lead to a mixed second and first kind equation.

It is possible to demonstrate that the set of linear algebraic equations (3.24) when n — oo,

with dz; = +/(x; — xj41)%2 + (2; — zj+1)%, applied for points in the equation domain (09) is
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exactly the solution of the integral equation. This is an important fact, because it allows
changing the integral equation by a set of linear algebraic equations with infinite degrees of
freedom, which is reduced by finite approximation adopting the collocation method. This is the
procedure adopted in this work.

The collocation method approximates the equation domain by splitting the boundary 0 in
small line segments (elements) and the term K(Z;, Z;)¢(Z;,t) has a different value inside each
one. The function ¢(Z,t) (unknown a priori and the one that we are looking for an approxi-
mation) and the domain surface are expanded in Taylor series and the order of approximation

defines the accuracy of the method for a given number of elements.

n
o(Ti,t) = f(E,t) + Y, K(&, )p(Z), )0z, i=12..,n (3.24)
j=0
This simple description of integral equations are sufficient for the purpose of this work, but
more details can found on Tricomi [1985], Moiseiwitsch [2005] and Rahman [2007].
Looking carefully into the boundary value problem and considering the flux at all boundaries
as known, the boundary problem is reduced to the classic Neumman problem, which has an

unique solution, but for a constant, if the total flux is zero. This constant is unknown and

cannot be defined easily.

3.3.1 Numerical solution procedure

In this work the collocation method was adopted because other methods, such as Neummann
approximations, which is iterative, would be very costly because for each order of approximation
the integral equation needs to be evaluated at all points of the grid.

The integral equation to be solved is (3.25), which can be replaced by (3.26), suppressing
the potential time dependence in order to simplify the notation, with P as an arbitrary point at
the boundary and P; the segments of the closed curve that composes the boundary.

@ t) + jﬁ (@ t) PR jaqy, 39 QT 0) 1 po)dcy =0, Pea (3.25)

ong ong
Q#P Q#P

N N
. aln('f‘pQ) a(pQ
A}lm —Tpp+ E (J P; @Q—lej — JQ];].P %ln(rpc))dlj> =0, Pe 09, j_EOPJ = 0N

(3.26)
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Let’s consider the existence of a parametrization (3.27) that takes the points of a line segment
to the domain boundaries, which is a closed curve and cannot intersect itself. It allows the

definition of an inverse transformation since y(s1) = 7y(s2) only if s; = a and sy = b.

v(s) = {(z(s),2(s))|Va <t <b,dd= ~} (3.27)

In equation (3.26), the domain geometry and the logarithmic function are known but the
potential function ¢ is not. However, the potential function can be expressed locally by a
spatial Taylor series (3.28), where ¢(z, z,t) = p(x(s), 2(s),t) = ¢(s,t) and, in order to simplify

the notation, will be referred only as ¢(s).

i 5]—5’”) (3.28)

¢ is replaced by the Taylor series in the second term of (3.26), assuming a convenient point
s inside each segment of the curve (this can be, for example, the center point of the element).
The expression (3.29) is then derived, where the sg; correspondent point is inside each segment

of the curve bounded by the points (z(s1;), 2(s15)) and (x(s2;), 2(s2;5)),4 = 0,1,2, ..., N.

oln( rpQ SRS (s 525 (s — s0;)k Oln(r(s)) |
Z()‘[Q¢P ong _ZZ 0 J k! on(s) "7(

i=0k=0 515
if PEP;

S)H ds (3.29)

As discussed before, the imposition of a Dirichlet condition in some parts of the boundaries
requires the flux at those parts to become variables of the problem. The flux can also be
expanded locally by a Taylor series, as shown in (3.30) and replaced in the third term of (3.26),

thus obtaining (3.31).

a_‘p(s) _ i i(@) M (3.30)

on ) ds) \on/ sg J!
N w0 .
0pQ dk /op 527 (5 — 50;)F
B[, Lo 552 [ et ol oo
if PeP;

These expressions allow the representation of the functions ¢ and %f by an arbitrary order of
approximation by retaining the corresponding terms in the series. Although the geometry (the

domain) is known, it is not easy to find a parametrization for a generic curve in space, which
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means that it is convenient to express this curve by a Taylor series, as shown in (3.32).

, 5 —50)
#(s) = as0) + X220 (50) 52
j — 30
2(s) = 2(s0) + i 29 (s0)
The last approximation to be done regards the normal vector, that should satisfy the condition

(3.33) for any order of approximation and is almost completely defined by the unity norm

condition (3.34), remaining only the external normal vector definition.

fi(so) - v (s0) = 0 = [2* — z(s0)]2’ (s0) + [2* — 2(50)]2(s0) = 0 (3.33)

\/[x* —x(s0)]? + [2* — 2(s0)]? = 1, 7i(s0) = (x* — x(s0), 2™ — 2(50)) (3.34)

The Taylor series approximation for the potential function and the flux through the bound-
aries transform the problem variables from continuum functions to the corresponding Taylor
series coefficients, which can then be evaluated by applying a collocation method. If one adopts
a representation concerning only the first term of the potential function and line segments for the
geometry, the method obtained is called as low order method. Otherwise, if the representation
of the potential function and geometry is done by choosing more terms on their Taylor series,
the method is generically referred as higher order.

The low order method leads to equation (3.35), which is discretized by a finite number
of panels and when evaluated at all panels compose a fully determined linear system. Its
solution provides the potential at the panels without any guarantee of continuity, recovering
the continuum distribution when the number of panels increases to infinity.

The point where the potential and the flux will be evaluated inside each panel is arbitrary, but
is common to adopt the midpoint. For the geometry, although the Taylor series could be written
using an arbitrary point inside each panel, it is convenient to choose a point that guarantees
the ”connection” between the nodes of neighbor panels in order to avoid discontinuities in the

geometry representation. The mean value theorem (3.36) guarantees the existence of such point.

+ i J Anry) 0 25 J In(ri)dl; =0, i=1,2,..,N  (3.35)
—TTP; wj | ——=dl; - ) — n(ry;)dl; =0, 1 =1,2, ..., .
e L R B

2/ (s%) = a(s2) —a(s1) J(s*) = M’ (3.36)

) 81 < 8§ < 89
S92 — 81 S92 — 81
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The development above was done assuming the same parametrization for the geometry and
potential function, but one could make use of different ones. It should be noticed that other
expressions (not Taylor) could be created to represent both the potential function and the
geometry, such as B-splines, NURBS! etc, leading to more complex expressions and involving
new orders of approximation. All the approximation procedure was done concerning the velocity
potential BVP. However, the procedure for the acceleration potential is analogous, providing

(3.37).

on; ai\an,

00 < dp; [ dln(ry) N0 10p; o
w5 , omtrig) g _;0 ( )Lj In(rij)dl; =0, i =1,2,.,N  (3.37)

The next step is to define the numerical scheme to be adopted for solving the integral
equations for the boundary value problems together with the boundary conditions and the

initial value problem. This will be done in the next chapter.

!Non Uniform Rational Basis Spline
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Chapter 4

Numerical scheme

The numerical scheme implemented for solving the fluid-structure interaction is presented in this
chapter. Some particularities adopted during the implementation, such as the ramp function
and the numerical beach are also discussed. The first one to avoid an impulse response of the
system, which could compromise the numerical stability, and the second one was used to avoid
wave reflections at the domain’ edges. The numerical integration method and the time marching
scheme are also discussed. A simple method for the evaluation of the volume and water plan
area of an arbitrary body using only the panels, required for free floating simulations, is shown

in the Appendix A.

4.1 Linear system

4.1.1 Velocity potential

The linear system for the potential velocity BVP is shown in (4.1), where the terms A;; and
B;; are given by (4.2) and (4.3), respectively. In the right hand side C! is evaluated imposing
the Neumman conditions at the body and other fixed and prescribed domain boundaries and

the Dirichlet conditions at the free surface, as seen in (4.4), with Np as the sum of the fixed,
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prescribed motion and floating body panels and N as the total panels.

—m+ An Aqp Az .. Bin-1 Bin i 1 - 1
of Ct
Agi —m+ Agp Az ... Bon_1 Bon .
©3 ct
: = (4.1)
Op\t
o ¢
(&z)N—l Ch-1
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. | o |
| Ant Ans Ansg .. Bnyn-1 Byn |- 0z/N
Ayj —J otn(ry) g (4.2)
P; (377,]
Bz’j = f ln(r”)dlj (43)
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Ng N
¥ — a(bl t t .
Z <Vn— %)ij Z SOinja 1= 1,2,...NB
ot — j=1 Jj=NB+1 (4 4)
T\ N Py N :
3 (V A %> Bij— Y ¢i(-m+4y), i=Np+1..,N
=1 J=Npi1

The integral terms A;; and B;; are only geometry dependent since the linear approach was
adopted, and they are constant along the whole simulation, being only evaluated once. The
linear system for the velocity potential BVP can be summarized in (4.5), (4.6) and (4.7) and

only the last term in (4.5) needs to be updated for each time step.

. dbrnt
(¢")npx1 (V = %)
SNXN | /0Nt = RnxN "/ NpX1 (4.5)
_r t
(02)(NFSX1) (SD)(NFSXI)
I(NBXNB) O(NBXNFS)
SNxN = (- 7T + [AnxNg) _B(NXNFS)]) (4.6)
O(NFSXNB) O(NFSXNFS)
OvpxNg)  OWpXNrs)
Ryxn = <7T + [B(vxnNg)» _A(NXNFS)]> (4.7)

O(NFSXNB) I(NFSXNFS)
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4.1.2 Acceleration potential

The linear system for the acceleration potential BVP is similar to the one for the velocity
potential one. However, there are some differences because of the floating bodies condition,
since the acceleration term is eliminated by replacing the motion equation into the corresponding
boundary condition. The linear system (4.8) is obtained with the floating body terms given by
(4.9) and right side given by (4.10).

-+ A1 Aqg DiNg—Npg+1 - Bin-1 Bin | T . 1 r -
Pi1 C”{
Agy —m+ Ay DoNg—Npg+1 - Baon_1 Bon .
Pt2 Cé
G| e
An—11 An—12 DN_1Ng-Npp+1 -+ Bn-in—1 Bn-in t@ (5([3”;1 ot
(9 et
| ANt Ans DN Ng—Npg+1 - Byn-1 Byn | - Ot\0z/N
(4.8)

D;j = Agj+pli(M ™ [ngj, nzgl[nag, nzg] " +1g  [=naj (25— 26), nzj(xj—26) [~ najzj, nzg(wj—2a)] ")

(4.9)
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(4.10)

4.2 Numerical integration

4.2.1 Spatial integration

There are two different integrals in the equations that need to be evaluated, concerning the
Rankine source and the dot product of the source gradient by the normal vector. A numerical
integration process is adopted using Gauss-Legendre quadrature with 4 points. The convergence
was verified by evaluating the integrals with Gaussian points ranging from 4 to 8 and the results
compared with the software Mathematica®), and no significant was observed. Therefore 4 points
was assumed sufficient and this value was adopted for all the integration processes.

The spatial integrals that need to be performed are line integrals and so a parametrization
must be found. The linear parametrization (4.11) was performed with the Jacobian equals to

half the panel length and integral is changed by a weighted sum of the integrand values (4.12).

2(s) = 11 + (xg —x1)(s+ 1)
v(s) = 2 . —1<s<1 (4.11)
z(s) = z1 + (22 = 212)(8 )
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Figure 4.1: Isoparametric domain

1 N
Jf(%Z)dl = J X FO) [T (s) ds ~ Y wif(si) (4.12)
- 1=0

Actually, in a low order method the integrals could be performed analytically using a similar
procedure to the one presented by Hess and Smith [1964] for tridimensional cases, requiring
the coordinate system to be changed during the integrations to a local coordinate system at
the panel side, as shown in Figure (4.2). However, since one of the goals of this work is the
development of numerical procedures aiming at future improvements and one of them is the

consideration of higher order methods, the integrals were performed numerically.

223)

(x1,24)

v

Figure 4.2: Changing coordinate system during integration
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4.2.2 Time integration

The equations that guarantee the time marching solution are the free surface and body motion
equations. The motion equations are already ODEs and the free surface equations were trans-
formed from a system of PDEs into a system of ODEs because the flux through the free surface
can be evaluated at all times through the acceleration potential BVP. The 4th order Runge-Kutta
(RK-4) method was adopted, as suggested by Yang [2004], Koo [2003] and Tanizawa [2000], be-
cause it provides a large stability region and good accuracy. Although the predicted values are
good, the computational cost is higher if compared to predictor/corrector schemes, since inside
each time step the equations need to be evaluated 3 times, while the predictor/corrector schemes

evaluate then only once per time step.

4.3 Additional Schemes

4.3.1 Ramp function

As discussed before, to avoid the system impulsive response a ramp function was adopted at the
prescribed motion boundaries and for the incident wave potential. The ramp function adopted
for the prescribed motion boundaries can be seen in (4.13), where U, is the amplitude of the
velocity and 7, is the ramp time (usually adopted as multiple of the motion period). The
function adopted for the incident wave potential is basically the same, only the wave amplitude

modified.

1 7t
“U,[1 —cos(=)], if t<T,
V(t)-ii={2 ot i (4.13)

Ug, if t>1T,

4.3.2 Numerical beach

In the offshore seakeeping context, the incident waves and the waves irradiated from the body
usually cannot reflect and come back to the body. In the ocean, this occurs because the bound-
aries that could reflect part of the wave energy are usually far way and the energy is dissipated by

non conservative forces or wave breaking before the reflected waves could come back to the body
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considered in the analysis. In towing tanks there is usually a physical beach or active absorbers
that avoid (at least partially) that the reflected waves come back to the model. The beach basic
function is to dissipate the energy transported by the waves, but in the numerical simulation it
is impossible to reproduce its physical behavior because all mathematical formulation is based
on conservative fields and therefore no dissipation is expected.

There are two ways to overcome this inconvenient, both based on modelling some new
equations or conditions: to transmit the energy through the domain boundaries or to artificially
damp the waves. The most common condition that transmits the wave energy outside the
domain is the so-called Sommerfeld boundary condition, which will be discussed latter in this
text, associated to the wave-maker problem, presented ahead. However, the basic problem of
these conditions is that, although they are usually very efficient for normal incidences of linear
waves, the same is not true for oblique incidences or non-linear waves. Besides, these conditions
are usually imposed for a single well defined frequency, having a narrow range of frequencies
for which the condition will be efficient. Since for a fully developed ocean the frequencies have
a large variation, the choice was done for a damping region, because, despite the beach factor
being frequency dependent, it’s efficiency is not restricted to a narrow range of frequencies.

The damping condition is also known as ”sponge boundary condition” and was first pro-
posed by Israeli and Orszag [1981]. It has been largely adopted on numerical simulations and
satisfactory performances have been reported. Since there are some variations, the formulation
here presented was taken from Zhen et al. [2010]. The condition is applied on both kinematic
and dynamic free surface conditions, modifying them to (4.14) and (4.15), respectively, with
dpeach being the distance between the generation region and the beginning of the damping zone
and v(z) being the damping function, define by (4.16) with a parabolic profile. The coefficients

a and b define the intensity and length of the beach, respectively.

0 0 ‘
8_;7 = a—f —v(x)n, for z=01in|z| > dpeach (4.14)
Op .
o =9 v(z)p, for z=01in |x|> dpeach (4.15)
_ T — dpeach \ 2
v(z) = aw( 5\ ) (4.16)
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The choice of a and b values should be done carefully because low values for the a coefficient
lead to an incomplete damping, while high values lead to numerical reflection in the beginning
of the damping zone. The coefficient b defines the length of the beach and so the higher this
value the smoother is the damping process for the same value of a coefficients. However, large
damping zones have an impact on the computational performance because the domain must
increase in order to avoid the damping zone influence at the region near the floating body. More
details on this matter can be found in Engquist and Majda [1977], Kumar and Narayan [2008],
Cao et al. [1993], Kim [2003] and Clement [1996].

dbeach
( A \ Damping zone
. e
bA
Wave
maker H=5m
H=50m

Figure 4.3: Wave-maker in a wave tank with 50 meters length and 5 meters depth

The behavior of this sponge layer can be understood in a simplified analysis by derivating

expression (4.15) with respect to time and combining it with expression (4.14), obtaining (4.17).

o on

0 02 0
W—Fga—ﬂj(x)_@_():} 14 v

0 .
== 0= Sr g g v(a) 3 =0, forz = 0inla] > dyeacn (4.17)

ot

Eliminating the free surface elevation 7 from this equation using expression (4.15) leads to

(4.18). Assuming ¢ as periodic in time (p = ¢(x, 2)e™?) and replacing in the previous equation

leads to (4.19), which can be used to evaluate the wave number in the damping zone considering

0
deep water condition in order to simplify the analysis (k:(b = a—f)
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P O ¢ 2
a2 T95, 1 21/(m)§ +v(z)*p =0 (4.18)

0

[—w? + 2u(z)iw + v(z)?]¢ = ~93,

(4.19)

The wave number in the damping zone is then given by (4.20), which reveals an imaginary
part in the frequency of oscillation, which will become a damping term of the potential function
(4.21) in time. So, it can be seen that inside the damping zone the potential function will

asymptotically go to zero, as the free surface elevation, since it should also be periodic (7 o

eiwt)‘
p= ML RO (i = ko= s (120)
Y= qﬁ(x,z)em = ¢(z, z)eii\/@te_”(m)t (4.21)

Some brief tests were performed using the wave-maker shown in figure (4.3) and the conclu-
sion was that at least one wave length should be used for the damping zone. In order to illustrate
the results, a comparison of the free surface elevation n was done by changing the beach intensity
coefficient a while keeping b fixed at a point located 6 meters far from the wave-maker. The
time series of 77 can be seen in figure (4.4) for a wave period of 2 seconds.

As discussed before, without the damping zone (green line) there is a full reflection and the
free surface elevation has the maximum value more than twice the generated wave amplitude.
For the blue and red lines the wave is damped and it was important to verify that for an a
coefficient equal to 2 (red line) the reflection was more intense and started at the beginning of
the damping zone, due to a non-smooth damping process.

It was verified during the simulations performed that these coefficients should be adjusted
for each case in order to balance the tradeoff between computational demand and satisfactory
damping levels, specially because the ”optimum”(here understood as the one that produces

minimum wave reflection) coefficients value change with the wave frequency.
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Figure 4.4: Comparison of free surface elevation for some beach coefficients for a point located
6 meters far from the wave-maker

In order to illustrate the effectiveness of the numerical beach with the wave frequency, the
reflection coefficient was calculated changing the values of the coefficients a and b. The sim-
ulation setup is given in Table (4.1). The reflection coefficient was evaluated by tanking the
wave amplitude average (H1) of a point placed at the position x=10m before the reflected waves
could come back to the numerical wave probe, neglecting the first crests (ramp effect), and then

compared to the wave amplitude after reflection (Hz), using expression (4.22).

_ H,— H,

yin (4.22)

Cy

The reflection coefficients for several values of coefficients a and b are given in Figures (4.5)
and (4.6). The results show that the higher the value of the beach length coefficient b, the lower
is the reflection coefficient for an arbitrary frequency, but this conclusion cannot be extended

to the intensity coefficient a, since there is an apparently strong non-linear dependence of the

frequency.
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Table 4.1: Simulation setup for reflection coefficient study

(b) beach length coefficient b=1.5

Figure 4.5: Reflection coefficient results 1
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Description Value | Unit
Length 50 m
Depth 5 m
Wave period 2 S
Velocity amplitude wave-maker | 0.05 | m/s
Time-step 0.05 S
Simulation time 200 S
Panel size 0.2 m
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(a) beach length coefficient b=2.5
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(b) beach length coefficient b=3

Figure 4.6: Reflection coefficient results 2

A longer study could be performed in order to investigate a procedure that could guarantee
the beach effectiveness. However, since the numerical beach had a good performance during all

simulations, this study was not deeply assessed.
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Chapter 5

Numerical results

In this chapter the numerical results obtained using the theory developed in Chapter 2 and 3,
combined with the numerical scheme presented in Chapter 4 are shown. The results were widely
compared to analytical results, when available, or the results obtained with accepted numerical
codes. Most of the compared results are obtained in frequency domain and a discussion concern-
ing the methodology adopted for the comparison is performed before each result is presented.
The first tests were performed for the wave-maker problem, which the analytical solution was
obtained assuming an eigenvector expansion procedure, as proposed by Dean and Dalrymple
[2000].

The next tests were for the added mass and wave damping coefficients evaluation of simple 2D
sections (circular and rectangular), reproducing Vugts [1968] experimental results and compari-
son considering Pesce [1988] and van Daalen [1993] numerical results. For the rectangular section
an analytical solution was also available, first presented by Black et al. [1971] and re-presented
by Zheng et al. [2004].

On these first simulations, the acceleration potential was not essential to guarantee the numer-
ical stability, since the body position is force independent, which is not true for a free floating
body. In order to evaluate the stability of free floating bodies simulation, the decay tests of
simple cylinders were performed and the results compared with the numerical ones presented
by van Daalen [1993].

However, none of the simulations until performed considered the analytic incident wave potential
and, in order to evaluate this important consideration, the response amplitude operator (RAO)
of a simple rectangular section was evaluated. The results were compared to the numerical ones

presented by Tanizawa et al. [1999] and the analytical one combining the radiation and diffrac-
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tion potentials as briefly discussed in section 2.3, evaluated following the methodology presented

by Zheng et al. [2004].

5.1 Wave-maker problem

In order to validate the numerical method the first problem studied was the one of a wave-
maker, which is a classical hydrodynamic problem with a useful result since it can be used on
the analysis of ocean basins. The problem is sketched in Figure 5.1, and consists in solving
Laplace’s equation with the linearized free surface condition, the impermeability of the wave
generator and bottom using a radiation condition on the x axis for x — o0, since the solution
is obtained in frequency domain. The radiation condition is the one that defines the correct
direction of energy propagation in frequency domain, because the solution is evaluated using
separation of variables, leading to a non-unique solution if this condition is not enforced. The
physically consistent one is preserved by this condition, defining that the energy goes from the

wave-maker to the infinity and not the opposite.

y 0% o
@F dy
o] ‘*\______/ gl 4
0 9 0
.c'; = Uy)sinwt Ve = ey .
/ ay

s 77 L4 rd [d rd rd 7 7 LA £ 7 r A A F A LA

Figure 5.1: Wave-maker boundary value problem (Source:Lin [1984])

The radiation condition usually adopted is the Sommerfeld radiation condition, generically
stated in (5.1), where n is the dimension of the space (3 for 3D problems and 2 for 2D problems)
and k is the wave-number and ¢ the imaginary unit. Further details can be found in Sommerfeld
[1949].

0

n—1
lim |z| 2 (=— —ik)p(Z,t) =0 5.1
Jim [o]"5 (5 — ikl (1)

For the bidimensional problem this condition can be simplified into (5.2), where the x coordinate

increases to infinity and the only way to get a feasible solution is imposing that the parenthesis

term is zero or goes to zero faster than the x coordinate increases and for a generic case it is
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simpler to impose directly the parenthesis term as zero.

3}1_{130 \/E(Z—i —ikp)=0= g—i —ike =0 (5.2)

The linear solution to this problem was first shown by Havelock [1963] using Fourier integral
theorem, for the wave-maker with velocities profile given by the right side of (5.3), where U(y)
can be an arbitrary function of y and the wave-maker is considered as vertical and plane, changing
the flux condition by the x derivative of the potential function, since the external normal vector
is —2.

9o _ 0p _
on  Ox

—U(y)sin(wt), at x =0 (5.3)
However, there are methods to compose the solution (not the Fourier Integral Theorem
adopted by Havelock), such as the eigenvector decomposition, which is shown on Dean and
Dalrymple [2000] and is adopted here, consisting in composing the full solution by the simple
sum of basic harmonic functions, as can be seen in (5.4). The wave-maker kinematic boundary
condition is applied in order to get the correct potential function that provides the correct U(y)
velocity profile at the wave-maker.
Examining the candidate solutions in (5.4), it is possible to verify that the constant B could
take any value without changing the boundary value problem and so it is arbitrarily set as zero.

The constant A should also be zero because it will never respect the impermeability at the

wave-maker since the motion must be periodic.
o(Z,t) = A, cosh[ky(h + y)] cos(kpr — wt) + (Az + B) + Ce ™ cos[ks(h + y)] sin(wt) (5.4)

Replacing the potential into the linearized free surface condition for periodic solutions (5.5)
leads to the so-called dispersion relation for progressive waves and a relation for the stationary

solution (evanescent wave) as can be seen in (5.6).

op  wlp

— ——=0, at =0 5.9

2 g y (5.5)
w? = gk, tanh(kyh), w? = —gkstan(kh) (5.6)

The progressive wave for finite depth has a known potential, given by the first term in (5.4),

where k, is the real positive root of the dispersion relation (the negative root should be dropped
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in order to keep the correct propagation direction). The evanescent wave has infinite possible
values of kg, since the frequency wave-number equation has an infinite number of solutions and
all positive real roots should be taken. The final solution form is (5.7) and all constants are

determined using the boundary condition (5.3).
(@, t) = Apcosh[ky(h + y)] cos(kpxr — wt) Z Ape M2 o[k (n) (h + y)] sin(wt)  (5.7)

Applying this condition leads to the equation (5.8) and all cosh[ks(n)(h + y)] combinations
or cos[ks(n)(h +y)] to cosh[ks(n)(h + y)] are orthogonal (except the combination of ks(n) with
itself), so they are the eigenvectors of the problem and the wave-numbers k, and k(n) are the
corresponding eigenvalues, which means that the coefficients can be calculated using (5.9), which
is obtained by multiplying the equation (5.8) by the cos[ks(n)(h + y)], integrating both sides on

the interval [-h,0] and taking advantage of the orthogonality.

—U(y) = Apky, coshky(h + y)] Z ) cos[ks(n)(h + y)] (5.8)
0 0
4= - ) (g(y) Coih[kp(h oy Ugy) cos[ks(n) (h + y)]dy 5.9
ky §_,, cosh?[ky(h + y)]dy ks(n)§_, cos?[ks(n)(h + y)]dy

Looking more carefully into the series solution it is possible to identify two types of waves,
one progressive and the other local oscillations (evanescent modes), the last one due to the non-

exponential velocity profile generated by the traditional wave-maker shape (flaps and pistons).

5.1.1 Piston type wave-maker

The solution for this kind of wave-maker is given by (5.10), supposing the velocity profile (5.11).

(7.1) = 4U sinh(kph) cosh[k,(h + y)]
P T [sinh(2k,R) + 2kyh)

_ o AU sin(ks(n)h) cos[ks (n)(y + 1))k (nye
sin(wt) 2, ks () [5i0(2ks (n) 1) + 2k5(n)h] © k()

cos(kpr — wt)—

(5.10)

n=1

Uly) =U (5.11)

The free surface elevation can be determined using the linearized dynamic free surface con-
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dition, obtaining (5.12).

2Uw sinh(2kyh)
n(l"t) = :
gkp[sinh(2k,h) + 2k,h]

sin(kpr — wt)+

[oe}
2Uws1n(2k (n)h) o
t) s(me (5,12
cos(w Z:: [sin(2ks(n)h) + 2ks(n)h]e (5.12)
In order to validate the numerical results a numerical tank was created, the simulation
performed using the setup conditions given by table (5.1). Three different numerical meshes
were used with 275, 550 and 1100 panels. All the meshes were uniform, meaning that all their

panels had the same length. A numerical wave probe was positioned at the position x=25m

Table 5.1: Simulation setup for piston wave-maker

Description Value | Unit
Length 50 m
Depth 5 m
Wave period 2 S

Velocity amplitude wave-maker | 0.05 | m/s
Time-step 0.05 S
Simulation time 50 S
Beach coeflicient ”a” 1 -
Beach length ”b” 1 -

(half the tank length) and the free surface elevation time series at this position was obtained and
compared to the analytical solution, as can be seen in Figure (5.2). In order to better visualize
the results, a zoom was applied and the results showed in figure (5.3), which demonstrates
that for more than 550 panels the results had a very good agreement with the analytical ones.
The numerical damping zone (beach) worked fine since no visual wave reflection was observed,
meaning that the a and b coefficients equal to one were enough to guarantee a satisfactory

simulation.
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Figure 5.2: Time series for a wave probe at x=25m
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Figure 5.3: Zoom at time series for a wave probe on x=25m

For a more comprehensive verification, other wave frequencies were tested following the
same methodology discussed above at the same numerical wave tank. The wave-maker transfer
function concerning the probe at half the tank length was evaluated using the 550 panel mesh
and the numerical results compared to the analytical predictions, as can be seen in Figure (5.4),

where A is the wave amplitude of the generated wave at the probe and S is the piston stroke.
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Once again a good agreement is observed.

1.1 \

— Analitico - Havelock —BEM 2D

AIS
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1.6 1.8 2 2.2 2 4 2.6 2.8 3 3.2
w (rad/s)

Figure 5.4: Piston-type wave-maker transfer function

5.1.2 Flap type wave-maker

The flap type wave-maker is very used on ocean basins, such as the TPN one, so the same study
performed to piston type was reproduced. The velocity profile function is given in (5.13) and
the potential function for this wave-maker in (5.14).

Uly) = U+ 7) (5.13)

(71) = 4U|1 + kphsinh(kph) — cosh(kph)] coshlky(h + y)]
PAEE) = FZh[sinh(2k,h) + 2kyh]

& —1 + ks(n)hsin(ks(n)h) + cos(ks(n)h)] cos[ks(n)(y + k)] _ )z
sin(wt) Z:l K2 (n)Asin (2 (n)h) + 2ks(n)h] e hT (5.14)

cos(kpr — wt)—

Using the linearized dynamic free surface condition again, the free surface elevation (5.15)
is obtained.
AUw[1 + kphsinh(k,h) — cosh(kyh)] cosh(kph)

t) = — in(kyz — wt
n(,t) gk2h[sinh(2k,h) + 2Kyh)] sin(kpe — wh)+

cos(wt) i AUw[—1 + ks(n)hsin(ks(n)h) + cos(ks(n)h)] cos(ks(n)h) e (5.15)

)
gk2(n)h[sin(2ks(n)h) + 2ks(n)h]

The simulation setup can be seen in Table (5.2) with a mesh that contains 1550 panels,

considering a 0.2m panel size. The result for the transfer function of the wave-maker can be
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seen in Figure (5.5), with a good agreement of the results, except for a small shift in the curve
for high frequencies. These differences suggested that the convergence was not achieved yet and,
in order to minimize the discretization error, a simulation was performed with half the panel
size (0.1m), obtaining the results shown in Figure (5.6). A comparison of the results can be
seen in Table (5.3), where it can be verified that the differences between the finest mesh and the

analytic solution is less than 3%.

Table 5.2: Simulation setup for piston wave-maker

Description Value | Unit
Length 150 m
Depth ) m

Velocity amplitude wave-maker | 0.05 | m/s
Time-step 0.05 S
Simulation time 100 S
Beach coefficient ”a” 1 -
Beach length ”b” 1 -

2 \
—BEM-2D
1.8k |—Analytic - Havelock i

1.6

1.4 -

A/JS

1.2

0.8

14 1.6 18 2 2.2 2.4 2.6 2.8 3 3.2

Figure 5.5: Flap-type wave-maker transfer function h=0.2m

75



2 \

—BEM-2D
1.8 |—Analytic - Havelock i
16 .
1.4r -
L
<

1.2+ -

l, —
0.8 -

| | | | | | | |
1.4 1.6 1.8 2 2.2 w 2.4 2.6 2.8 3 3.2
Figure 5.6: Flap-type wave-maker transfer function h=0.1m
Table 5.3: Ratio A/S for the flap wave-maker comparison
Analytic-Havelock BEM-2D (h=0.2m) BEM-2D (h=0.1m)

1.500 0.708 0.702 0.707

1.683 0.842 0.838 0.840

1.867 0.982 0.973 0.978

2.050 1.119 1.110 1.115

2.233 1.242 1.233 1.237

2417 1.349 1.337 1.341

2.600 1.433 1.420 1.427

2.783 1.503 1.486 1.497

2.967 1.561 1.549 1.555

3.150 1.610 1.588 1.600

5.2 Added mass and wave damping coefficients of simple forms

When a floating body is excited by ocean waves, energy is transferred from the wave to the
body, generating motion. However, the body motions also transfer energy from the body to the
water, being this phenomenon known as radiation problem.

In the linear analysis, the hydrodynamic force can be segregated in two components: one in
phase with the body acceleration and another in phase with it’s velocity, meaning that the first
one can be summed with the body mass as an added mass and the second one acts as an external
damping, as indicated in (5.16) and (5.17), where y is the horizontal axis and z the vertical one.

The terms a;; represents the added mass, b;; the wave damping and ¢;; the hydrostatic restoring.
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In these expressions, eventual cross terms are neglected and the hydrostatic coefficient for y

direction is set as zero because there is no hydrostatic restoration in this direction.

Fy(t) = (M + ayy):ﬁg + byy Y + cyyya (5.16)

Fz(t) = (M + azz)‘Z:G +b.22G + 22 (5.17)

These coeflicients can be experimentally evaluated through a forced oscillation test, where a
prescribed motion like (5.18) is imposed and the dynamic forces are measured. Since the motion
is periodic, a periodic behavior is expected in the hydrodynamic forces, as can be seen in (5.19)

and (5.20), with a relative phase a; between motion and force.

ya(t) = ay sin(wt) 2G(t) = a, sin(wt) (5.18)
0 :
Fy(t) = J prydS = —pJ —nydS = Aysin(wt + o) (5.19)
W ws Ot
F.(t) = f pn.dS = —pj a—sonzdS = A, sin(wt + a) (5.20)
ws ws Ot

Replacing these prescribed motions into the motion equations leads to the simple (5.21) and

(5.22) formulas for the added mass and potential damping evaluation.

A, cos(ay) Ay sin(ay)
Qyy = ——yw2ay Y byy = R s 24 wa, Y (5.21)
ayCyy — A, cos(ay) A, sin(ay)
0y, = 2Czz w2; z b, = % (522)
z z

In order to validate the numerical method, the forced oscillation test was numerically repro-
duced and the results compared with the experimental data from Vugts [1968], numerical results
from Pesce [1988] (frequency domain) and van Daalen [1993] numerical results (time domain).
The last one used a fully non-linear time domain boundary element method. For the rectangu-
lar section an analytical solution by eigenvector expansion (similar to the wave-maker problem)
was obtained following the procedures first presented by (Black et al. [1971]) and reproduced by
(Zheng et al. [2004]).
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5.2.1 Circular section cylinder

The initial test was performed using a circular section as shown in Figure (5.7) with radius of 1m
and the section placed exactly at the half the length of the tank. The range of frequencies tested
were from 0.78 rad/s to 6.26 rad/s, leading to very long waves for the lowest frequencies (almost
100m of wave length). To overcome the problem of wave reflection, the damping zone influence
in the body pressure and finite depth, large domains were adopted during the simulations.
However, it is intuitive that for shorter waves the panel size should be smaller in order to cap-
ture the physical phenomena better and the use of large domain increases the number of panels.
For this reason, the first step was the study of the domain and panel sizes to verify the ones
that could capture the phenomena. The wave length was always evaluated using the dispersion
relation and wave-number relation for deep waters (5.24) and the study was performed for three
dimensionless frequencies, @ = 0.25, © = 1.00 and @ = 2.00, with wave lengths of 100.53m,
6.28m and 1.57m, respectively. The domains were adopted with 500m, 60m and 60m length.
The bottom influence was also studied in order to verify the sufficient values to guarantee the
deep water condition, it is, no bottom influence.

For comparison purposes the results are non-dimensional according to (5.23), where p = 1000kg/m3
is the water density and V = 7R?/2 is the displacement by unit of length, supposing that the

equilibrium position has the radius as draft.
N R A Qg 2 bre |R A GQzz 2 b.. |R
= wi =, O T N T 5.93
w=w g Oy pv T pv g Qzz pv 2z pv g ( )

The added mass and potential damping coefficients variation with depth can be seen in Figures
(5.9), (5.10) and (5.11). It was verified that for the highest frequency the ratio depth/wave
length to guarantee the deep water condition is higher than the one for the smallest frequency.
Since the method proposed is a time domain, the direct result obtained from the simulation is

the time series of the hydrodynamic force, as can be seen in Figure (5.8) as an example.
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Figure 5.8: Force and position series example
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Figure 5.9: Variation of added mass (ayy, @.,) and potential damping (by,, b..) coefficients
changing depth H for the dimensionless frequency & = 2 for the circular section.
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Figure 5.10: Variation of added mass (a@yy, @..) and potential damping (by,, b.,) coefficients
changing depth H for the dimensionless frequency & = 1 for the circular section.
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Figure 5.11: Variation of added mass (@yy, @..) and potential damping (by,, b.,) coefficients
changing depth H for the dimensionless frequency & = 0.25 for the circular section.

This study allowed the depth determination in order to avoid bottom influence, as shown in

Table (5.4), which was adopted for both heaving and swaying.

Table 5.4: Domain dimensions for forced oscillation test of a circular section
@ | L(m) | H(m)
2.00 60 8
1.00 60 8
0.25 | 500 80

The discretization error were also evaluated changing the number of elements in order to
guarantee the convergence. To reduce the computational effort, the meshes built were stretched,
allowing the concentration of elements near the body. An example of a stretched mesh can be
seen in Figure (5.12), where the red circles are the element vertices and the blue symbol the
center of the elements. The stretched meshes tested are in Table (5.5), ranging from 0.05m
elements up to 0.8m ones. The stretching formula adopted was a simple geometric series with

a stretching factor -, as can be seen on (5.25), where l,,,;, is the smallest panel size and N the
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number of panels in a given direction (left and right of the body). However, since the sum of
these panels size may not be exactly the geometry length, the stretching factor needed to be
adjusted in order to keep the number of panels and geometric length, using (5.26). Additionally

there were also a maximum panel size [,,4; in order to avoid excessive large panels.

li = lpin(1+7), i=0,1,2, ., N — 1 (5.25)

(y*N 1)

lyco = lmin——2
geo mm,y*_1

(5.26)

V)

+ H =8 meters

L = 60 meters

Figure 5.12: Mesh for circular section with stretching and number of panels N = 279

Table 5.5: Stretched meshes tested for numerical forced oscillation test of a circular section
@ | Ni | No | N5 | Ny | Ns
2.00 | 124 | 150 | 183 | 224 | 279
1.00 | 124 | 150 | 183 | 224 | 279
0.25 | 199 | 229 | 262 | 305 | 360

The convergence analysis concerning the panel size can be seen in Figures (5.13), (5.14),
(5.15), (5.16), (5.17) and (5.18) and shows that a mesh with 183 elements would be enough for
the dimensionless frequencies @ = 1.00 and @ = 2.00 concerning engineering purposes. However

for the dimensionless frequency @ = 0.25 a bigger mesh with 262 panels would be recommended.

83



—N=124 —N=150 —N=183

—N=224 = N=279

F (N/m)

0.24r

0.22r

0.2

2o0.18¢
S

0.16f

0.14r

0.12¢ . . . . . . . h
120 140 160 180 21(\)]0 220 240 260 280

(b)

(a)

7
Tempo (s)

140 160

180 2%0 220 240 260 280

()

Figure 5.13: Circular section. (a) Time series of hydrodynamic force per length F),; Convergence
of (b) Added mass coefficient for swaying a,, and (c) Potential damping for swaying b, as
function of the panel number N, for dimensionless frequency @ = 2.00.

Table 5.6: Convergence analysis for swaying for the dimensionless frequency & = 2.00 for the

circular section

~

Number of panels | ay, byy
124 0.130 | 0.030
150 0.222 | 0.220
183 0.207 | 0.306
224 0.206 | 0.296
279 0.206 | 0.290
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Figure 5.14: Circular section. (a) Time series of hydrodynamic force per length F.; ConverAgence
of (b) Added mass coefficient for heaving a@,, and (c¢) Potential damping for heaving b,, as
function of the panel number N, for dimensionless frequency & = 2.00.

Table 5.7: Convergence analysis for heaving for the dimensionless frequency & = 2.00 for the
circular section

~

Number of panels | a,, b,
124 0.701 | 0.053
150 0.776 | 0.130
183 0.803 | 0.078
224 0.815 | 0.065
279 0.820 | 0.060
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Figure 5.15: Circular section. (a) Time series of hydrodynamic force per length F,; Convergence
of (b) Added mass coefficient for swaying a,, and (c) Potential damping for swaying b, as
function of the panel number N, for dimensionless frequency @ = 1.00.

Table 5.8: Convergence analysis for swaying for the dimensionless frequency & = 1.00 for the
circular section

Number of panels | ay, Byy
124 0.250 | 0.288
150 0.374 | 0.452
183 0.383 | 0.689
224 0.380 | 0.701
279 0.379 | 0.706
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Figure 5.16: Circular section. (a) Time series of hydrodynamic force per length F,; Convergence
of (b) Added mass coefficient for heaving a,, and (c) Potential damping for heaving b,, as
function of the panel number N, for dimensionless frequency @ = 1.00.

Table 5.9: Convergence analysis for heaving for the dimensionless frequency & = 1.00 for the

circular section )
Number of panels | a,, b,
124 0.589 | 0.413
150 0.599 | 0.423
183 0.567 | 0.394
224 0.569 | 0.387
279 0.571 | 0.384

87



1500

—N=199 —N=229 —N=262 — N=305 = N=360

F, (N/m)

20 25 30

1.1r

0.9F

Ayy

0.8

0.7

0.6

150 200 250 N 300 350 400

(b)

(a)

35
Tempo (s)

40 45 50

0.05f
0.0451
0.04f
0.035t

>
S 0.03r
0.025}

0.02

0.015p

0.01

150

200 250 N 300 350 400

()

Figure 5.17: Circular section. (a) Time series of hydrodynamic force per length F),; Convergence
of (b) Added mass coefficient for swaying a,, and (c) Potential damping for swaying b, as
function of the panel number N, for dimensionless frequency @w = 0.25.

Table 5.10: Convergence analysis for swaying for the dimensionless frequency & = 0.25 for the

circular section

~

Number of panels | ay, byy
195 0.597 | 0.050
225 0.774 | 0.013
258 1.021 | 0.009
301 1.033 | 0.009
358 1.034 | 0.009
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Figure 5.18: Circular section. (a) Time series of hydrodynamic force per length F.; ConverAgence
of (b) Added mass coefficient for heaving a@,, and (c¢) Potential damping for heaving b,, as
function of the panel number N, for dimensionless frequency @w = 0.25.

Table 5.11: Convergence analysis for heaving for the dimensionless frequency & = 0.25 for the
circular section

~

Number of panels | a,, b,
124 1.581 | 0.410
150 1.681 | 0.452
183 1.677 | 0.460
224 1.678 | 0.459
279 1.679 | 0.459

Following a similar convergence procedure, the results for added mass and potential damping

coefficients in sway could be evaluated for a wider range of frequencies, as can be seen in Table
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(5.12) and Table (5.13), respectively, with the data plotted in (5.19) and (5.20) in order to
better visualize the results. It can be seen that the results of the present method BEM-2D
(2011), Pesce [1988], Vugts [1968] and van Daalen [1993] agree very well for the added mass
and potential damping coefficients, except the results of van Daalen [1993] for low frequencies.
Regarding these discrepancies, it should be noticed that since he used a time domain fully non
linear method, the numerical scheme had a very high computational cost (specially in 1993),

which probably made the long time simulation on large domains unfeasible.

Table 5.12: Added mass coefficient for circular section in sway a,,

. Gy
Vugts (1968) Pesce (1988) van Daalen (1993) USP (2011)
0.250 1.086 1.095 — 1.087
0.452 — — 1.244 —
0.500 1.293 1.303 — 1.311
0.677 — — 1.175 —
0.750 0.862 0.877 - 0.883
0.903 — — 0.539 —
1.000 0.385 0.383 - 0.394
1.250 0.221 0.218 — 0.226
1.355 - - 0.191 -
1.500 0.178 0.185 — 0.178
1.750 0.184 0.195 - 0.186
2.000 0.224 0.239 — 0.207
1.4 T 1
§ ¢ Vugts (1968)
12- L4 * Pesce (1988) i
’ L ® van Daalen (1993)
] o BEM 2D (2011)
1- i
¥
0.8 B
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Figure 5.19: Added mass for sway motion in sway direction of a circular cylinder
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Table 5.13: Potential damping coefficient for circular section in sway IA)yy

~

~ byy
Vugts (1968) Pesce (1988) van Daalen (1993) USP (2011)
0.250 0.006 0.006 — 0.017
0.452 — — 0.123 —
0.500 0.192 0.187 — 0.194
0.677 — — 0.594 —
0.750 0.661 0.664 — 0.663
0.903 — — 0.786 —
1.000 0.747 0.747 — 0.752
1.250 0.632 0.632 . 0.651
1.355 — — 0.641 —
1.500 0.500 0.500 — 0.480
1.750 0.382 0.386 — 0.376
2.000 0.293 0.347 — 0.295
0.8 N T 1 I
B ¢ Vugts (1968)
* Pesce (1988)
0.71 ® van Daalen (1993) ||
. g e o BEM 2D (2011)
0.6 ° B
0.5 * 1
8
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Figure 5.20: Potential damping for sway motion in sway direction of a circular cylinder

The results for added mass and potential damping coefficient for the heave motion can be
seen in Tables (5.14) and (5.15), being the results plotted in Figures (5.21) and (5.22). The

conclusions were very similar to those concerning the sway motion analysis.
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Table 5.14: Added mass coefficient for circular section in heave @,

a’ZZ

~ Qzzy
Vugts (1968) Pesce (1988) van Daalen (1993) BEM-2D (2011)
0.226 — — 1.189 —
0.250 1.732 1.751 — 1.771
0.452 — — 0.766 —
0.500 0.869 0.879 — 0.888
0.677 — — 0.638 —
0.750 0.623 0.624 — 0.632
0.903 — — 0.628 —
1.000 0.612 0.605 — 0.610
1.250 0.681 0.672 — 0.676
1.129 — — 0.660 —
1.355 — — 0.735 —
1.500 0.743 0.753 — 0.754
1.580 — — 0.801 —
1.750 0.807 0.818 — 0.817
1.806 — — 0.848 —
2.000 0.858 0.864 — 0.863
2 1
4 Vugts (1968)
* Pesce (1988)
1.8 ¥ ® van Daalen (1993)
o BEM 2D (2011)
1.61
1.4+
1.2~ °
1- . ° °
§ .
0.8- o . 4
! bl ® 4 ° ! !
0 0.5 1 15 25

Figure 5.21: Added mass for heave motion in heave direction of a circular cylinder
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Table 5.15: Potential damping coefficient for circular section in heave l;zz

~

A bZZ
Vugts (1968) Pesce (1988) van Daalen (1993) BEM-2D (2011)
0.226 — — 0.581 —
0.250 0.482 0.484 — 0.481
0.452 — — 0.584 —
0.500 0.616 0.622 — 0.632
0.677 — — 0.565 —
0.750 0.553 0.553 — 0.561
0.903 — — 0.478 —
1.000 0.398 0.397 — 0.412
1.250 0.244 0.245 — 0.264
1.129 — — 0.326 —
1.355 — — 0.211 —
1.500 0.135 0.138 — 0.158
1.580 — — 0.137 —
1.750 0.072 0.077 — 0.093
1.806 - — 0.087 —
2.000 0.037 0.041 — 0.056
0.7 T
¢ Vugts (1968)
06l ¥ * Pesce (1988)
’ ° ° ® van Daalen (1993)
*3 o BEM 2D (2011)
0.5-
[ ]
0.4 ¥
I
<~DN [ ]
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go
0 | | | g\. ® .\ h
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Figure 5.22: Potential damping for heave motion in heave direction of a circular cylinder
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5.2.2 Rectangular section cylinder

For the rectangular cylinder a similar procedure was adopted, with the dimensionless calculations
given by (5.27) and the arrangement considering a box with breadth of 6.4m and draft of 0.8m,

illustrated in Figure (5.23).

Heave Sway
—
z
I T=08m X
B=64m
H
L

Figure 5.23: Rectangular section forced oscillation test

The numerical results of the present method were compared to the results of Pesce [1988],
Vugts [1968] and with the analytical solution of Black et al. [1971], as reproduced by Zheng et al.
[2004]. The analytic solution is built by an eigenvector expansion similar to the one developed
for the wave-maker but with 3 different regions. This solution requires some compatibility
conditions that avoid pressure or velocity jumps betweens the regions. The analytical results

presented were obtained considering the first 30 terms of the series.

. B ~ Ary 2 ber | B A Qzz 2 b.. | B
N el N T I T el 5.97
W =w g ,  Qgg pv s rx pv 297 Azz pv 5 2z pv 2 ( )

Following the same analysis procedure adopted for the circular cylinder, the results for
swaying and heaving test were obtained and are presented next. The depth influence and
discretization convergence analyse were similar to the one applied for the circular section. The

determination of depth influence in the added mass and potential damping can be seen in
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Figures (5.24), (5.25) and (5.26), for the same dimensionless frequencies @ = 2.00, @ = 1.00 and

w = 0.25.
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Figure 5.24: Variation of added mass (ayy, G..) and potential damping (by,, ISZZ) coefficients
changing depth H for the dimensionless frequency @ = 2.00 for the rectangular section.
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Figure 5.25: Variation of added mass (G, G..) and potential damping (by,, b..) coefficients
changing depth H for the dimensionless frequency & = 1 for the rectangular section.
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Figure 5.26: Variation of added mass (G, G..) and potential damping (by,, b..) coefficients
changing depth H for the dimensionless frequency @ = 0.25 for the rectangular section.

This study defined the domain dimensions as given in Table (5.16). The meshes were also
created using stretching ranging the minimum panel size from 0.05m up to 0.8m, providing

meshes with the number of panels given in Table (5.17).

Table 5.16: Domain size for forced oscillation test of a rectangular section
w ‘ L (m) ‘ H (m)
2.00 60 20
1.00 140 20
0.25 | 1600 600

Table 5.17: Stretched meshes tested for numerical forced oscillation test of a rectangular section
® | Ni | Ny | Ng | Ny | Ns
2.00 | 165 | 199 | 241 | 304 | 408
1.00 | 163 | 196 | 241 | 305 | 412
0.25 | 269 | 305 | 350 | 419 | 526

The discretization convergence tests can be seen in Figures (5.27), (5.28), (5.29), (5.30),

97



(5.31) and (5.32), with the hydrodynamic forces, added mass and potential damping coefficients
presented for sway and heave motions. It can be seen that the convergence is easier for this kind

of geometry, since the results almost do not change by increasing the panel number.
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Figure 5.27: Rectangular section. (a) Time series of hydrodynamic force per length F,; Conver-
gence of (b) Added mass coefficient for swaying a,, and (c) Potential damping for swaying by,
as function of the panel number N, for dimensionless frequency & = 2.00.
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Table 5.18: Convergence analysis for swaying for the dimensionless frequency & = 2.00 for the

rectangular section

2.5

1.5H

F. (N/m)

-0.5

-1.5

-2.5

x 10

Number of panels | ay, l;yy
165 0.035 | 0.375
199 0.036 | 0.399
241 0.035 | 0.407
304 0.035 | 0.410
408 0.035 | 0.411

0.5r 4

—N=165 —N=199 —N=241 —N=304 —~N=408

3.6r

3.5

3.4F

3.2r

3.1

150 200 250

300
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(b)

350

400
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Tempo (s)

15

(a)

0.46f

0.44F

0.42

0.38f

0.36f

0.341
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()

Figure 5.28: Rectangular section. (a) Time series of hydrodynamic force per length F.; Conver-
gence of (b) Added mass coefficient for heaving a.. and (c) Potential damping for heaving b,
as function of the panel number N, for dimensionless frequency & = 2.00.
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Table 5.19: Convergence analysis for heaving for the dimensionless frequency & = 2.00 for the

rectangular section

Number of panels | a,, l;zz
165 3.326 | 0.433
199 3.295 | 0.402
241 3.284 | 0.381
304 3.283 | 0.367
408 3.284 | 0.363
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Figure 5.29: Rectangular section. (a) Time series of hydrodynamic force per length Fy; Conver-

gence of (b) Added mass coefficient for swaying a,, and (c) Potential damping for swaying by,
as function of the panel number N, for dimensionless frequency & = 1.00.
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Table 5.20: Convergence analysis for swaying for the dimensionless frequency & = 1.00 for the
rectangular section

F_(N/m)

x 10*

Number of panels | ay, byy
163 0.340 | 0.330
196 0.351 | 0.331
241 0.356 | 0.330
305 0.358 | 0.330
412 0.359 | 0.330
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Figure 5.30: Rectangular section. (a) Time series of hydrodynamic force per length F.; Conver-
gence of (b) Added mass coefficient for heaving a.. and (c) Potential damping for heaving b,
as function of the panel number N, for dimensionless frequency & = 1.00.
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Table 5.21: Convergence analysis for heaving for the dimensionless frequency & = 1.00 for the

rectangular section

Number of panels | a,, Bzz
163 2.755 | 1.822
196 2.739 | 1.854
241 2.736 | 1.866
305 2.734 | 1.870
412 2.734 | 1.871
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Figure 5.31: Rectangular section. (a) Time series of hydrodynamic force per length Fy; Conver-

gence of (b) Added mass coefficient for swaying a,, and (c) Potential damping for swaying by,
as function of the panel number N, for dimensionless frequency @ = 0.25.
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Table 5.22: Convergence analysis for swaying for the dimensionless frequency & = 0.25 for the
rectangular section

Number of panels | ay, l;yy
269 0.389 | 0.003
305 0.392 | 0.003
350 0.393 | 0.003
419 0.394 | 0.003
526 0.395 | 0.003
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Figure 5.32: Rectangular section. (a) Time series of hydrodynamic force per length F.; Conver-

gence of (b) Added mass coefficient for heaving @.. and (c) Potential damping for heaving b,
as function of the panel number N, for dimensionless frequency & = 0.25.
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Table 5.23: Convergence analysis for heaving for the dimensionless frequency & = 0.25 for the
rectangular section

Number of panels | a,, l;zz
269 6.837 | 1.566
305 6.845 | 1.567
350 6.856 | 1.568
419 6.861 | 1.568
526 6.864 | 1.568

From this convergence analysis, the number of panels chosen for the dimensionless frequencies
w = 2.00, © = 1.00 and @ = 0.25 was 408, 241 and 305 panels, respectively. The results for
swaying of the rectangular section can be seen in Tables (5.24) and (5.25) and plotted in Figures
(5.33) and (5.34). It can be seen that the agreement between results is very good and in terms
of engineering the differences would be negligible. The results for swaying can be seen on Tables
(5.24) and (5.25) and to better visualize they are plotted on Figures (5.33) and (5.34). It can
be seen that the agreement between all results are very good, and the differences between the
present results and the analytical solution could be considered negligible from an engineering

point of view.

Table 5.24: Added mass coefficient for rectangular section in sway @,

Gy
Black and Mei (1971)

@ Vugts (1968) Pesce (1988) Zheng (2004)

BEM-2D (2011)

0.250 0.390 0.357 0.390 0.388
0.500 0.430 0.426 0.455 0.455
0.750 0.454 0.441 0.473 0.446
1.000 0.350 0.336 0.356 0.351
1.250 0.215 0.205 0.216 0.217
1.500 0.115 0.113 0.120 0.120
1.750 0.057 0.050 0.062 0.063
2.000 0.023 0.027 0.032 0.033
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Figure 5.33: Added mass for sway motion in sway direction of a rectangular cylinder

Table 5.25: Potential damping coefficient for circular section in sway lA)yy

~

byy
Black and Mei (1971)

@ Vugts (1968) Pesce (1988) Zheng (2004)

BEM-2D (2011)

0.250 0.000 0.001 0.001 0.005
0.500 0.026 0.026 0.027 0.031
0.750 0.150 0.142 0.152 0.160
1.000 0.318 0.307 0.330 0.325
1.250 0.428 0.407 0.438 0.429
1.500 0.448 0.428 0.463 0.458
1.750 0.440 0.428 0.447 0.444
2.000 0.405 0.396 0.411 0.409
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Figure 5.34: Potential damping for sway motion in sway direction of a rectangular cylinder

The results for heaving can be seen on Tables (5.26) and (5.27) and are plotted in Figures
(5.35) and (5.36), it can be seen that the agreement is good for the heave motion too recovering

the analytic solution very well.

Table 5.26: Added mass coefficient for rectangular section in heave a,,

Az

Black and Mei (1971)

@ Vugts (1968) Pesce (1988) Zhensg, (2004) USP (2011)
0.250 — 6.895 6.994 6.790
0.500 4.080 4.080 4.129 4.060
0.750 3.045 3.066 3.104 3.070
1.000 2.736 2.706 2.753 2.735
1.250 2.701 2.672 2.743 2.738
1.500 2.816 2.802 2.919 2.895
1.750 3.046 2.992 3.172 3.100
2.000 3.218 3.176 3.386 3.288
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Figure 5.35: Added mass for heave motion in heave direction of a rectangular cylinder

Table 5.27: Potential damping coefficient for circular section in heave b..,

bZZ
Black and Mei (1971)

& Vugts (1968) Pesce (1988) Zheng (2004) USP (2011)
0.250 1.550 1.556 1.550 1.540
0.500 2.155 2.161 2.144 2.140
0.750 2.195 2.203 2.167 2.170
1.000 1.908 1.922 1.868 1.866
1.250 1.465 1.477 1.414 1.433
1.500 0.975 1.012 0.956 0.974
1.750 0.590 0.626 0.590 0.602
2.000 0.330 0.356 0.341 0.349
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Figure 5.36: Potential damping for heave motion in heave direction of a rectangular cylinder

5.3 Decay tests

Until this point, none of the simulations performed requested the acceleration potential in order
to guarantee the numerical stability, since the motion series is independent of the hydrodynamic
forces. In order to verify the fluid-structure interaction capabilities for floating bodies, numerical
decay test simulations were performed. The comparison was done for the circular and rectangular
cylinders and the results were compared to the numerical results of van Daalen [1993]. Since his
method is fully nonlinear, he presented the results for several initial displacements in order to
verify the influence of non-linearities. The comparison was done taking only the lowest initial
displacement in order to minimize the non-linear effects, although his conclusion was that the

non linear effects were minimum, but for the roll decay test.

108



5.3.1 Circular cylinder

The circular section was the first one studied and a simulation considering the section at the
middle of the numerical tank was performed. An illustrative picture is shown in Figure (5.37)
and considers the center of gravity at the symmetry axis with coordinates (x¢, 2¢). Initially the
cylinder is at rest with the center of gravity at (20,0)m and then moved upside by an initial
displacement of §z and released, irradiating waves (energy) and reducing it’s motion amplitude.
The simulation was performed until the motion amplitude becomes small, which does not take

more than 5 cycles, as can be seen in (5.38), as an example.

BELE

Figure 5.37: Circular section heave decay test

The simulation setup is shown in Table (5.28) and in order to keep the comparison as fair
as possible, the same tank dimensions of van Daalen (1993) were adopted. The panel size was
arbitrary chosen as 0.1m at all domain, since the domain dimensions were small compared to the
ones adopted for the forced oscillation test (described previously), allowing the mesh generation

without stretching.
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Figure 5.38: Example of cylinder section heave decay test

Table 5.28: Simulation setup for heave decay test of the circular cylinder

Description Value | Unit
Tank length 40 m
Tank depth 10 m
Time-step 0.05 S
Simulation time 15 S
Panel size (constant) 0.1 m
Initial displacement (dz) | 0.05 m
Beach coefficient a 1 -
Beach length b 1 -

The comparison with van Daalen [1993] simulation are presented in Figure (5.39), with the
time series reduced in order to better visualize the comparison (he presented onyl the first 10s),
where the z coordinate is made non-dimensional by the initial displacement (z5(0) = 0z). The
agreement of both curves are good for the first two cycles. After that, small differences appear,
however, the results for the present numerical method were considered consistent, since for the
last cycle the z coordinate still cross the zero, as should be expected, which does not happen in
van Daalen [1993] simulation. It should be remarked that the absolute values for z coordinates
on the last cycle are very small, which makes the accuracy hard to be guaranteed. Since the
results of van Daalen (1993) were taken from his thesis, there may also be some small deviations
from the original curve. Figure (5.38) shows that after 5 cycles, the body is already almost at

rest.
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Figure 5.39: Comparison of heave temporal series for the decay test of a circular cylinder

5.3.2 Rectangular cylinder

The same type of comparison was done for a rectangular cylinder with a 4m width and draft
of 1m. In addition, the roll decay test was performed in this case. The results are compared to
the ones presented by van Daalen [1993]. Actually, it is not exactly a rectangular section since
the corners were rounded by circles of 0.25m in order to avoid singularities at the sharp edges
and keep the potential flow hypothesis as well as possible, this reported by van Daalen [1993].
An illustration of the test can be seen in Figure (5.40) and the tank used was the same of
the circular cylinder. The simulation setup can be seen in Table (5.29). The mesh was kept

non-stretched with a constant panel size of 0.1m.
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Figure 5.40: Rectangular section heave decay test

Table 5.29: Simulation setup for heave decay test of the rectangular cylinder

Description Value | Unit
Tank length 40 m
Tank depth 10 m
Time-step 0.05 S
Simulation time 15 S
Panel size (constant) 0.1 m
Initial displacement (6z) | 0.25 m
Beach coefficient a 1 -
Beach length b 1 -

The results of this simulation is shown in Figure (5.41) and in this case the agreement is

very good along the whole simulation time compared (van Daalen [1993] presented only 10s),

even for the small amplitudes, observed at the last cycles of the simulation.
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Figure 5.41: Comparison of heave temporal series for the decay test of a rectangular cylinder

The next simulation performed was the same section with rounded corners on roll decay test
(single degree of freedom), as can be seen in Figure (5.42), being the initial displacement a small
66. For this simulation, the moment of inertia need to be provided, since it cannot be evaluated
directly following the methodology presented in appendix A. The moment of inertia per length
can be evaluated by (5.28), where R is the radius concerning the rounded corner and H is the

box height (assumed as twice the draft), assuming an homogeneous mass distribution.

I = p{—H(31; 2R) g2 (p_opyz BUL= QR)[RZ+ =200 onr -2 (?)2
+ wTRLL + wRQ[(g - R)2 + (g — R)Q]} (5.28)
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Figure 5.42: Rectangular section roll decay test

The simulation setup can be seen in Table (5.30) and the results are presented in Figure
(5.43), compared with van Daalen [1993] numerical results. He states that, although there is
some non-linear behavior concerning the roll degree of freedom, observed because the roll period
slightly decreased when the initial roll angle is increased, the effect was small. The comparison
of linear method here presented and his nonlinear computations shows that in the first cycle
the agreement is very good, but there is differences concerning the next cycles. During the
simulation, the linear method provided a constant frequency of 1.795 rad/s, while the non-linear
computations of van Daalen [1993] provided a time varying frequency, although there was only
a few cycles to confirm this conclusion and some inaccuracy due to the scanning process of the
results. Maybe those differences were due to non-linear effects, but the agreement still good
enough for engineering purposes, specially because the viscous effects were not considered and

are very appreciable for this condition.

Table 5.30: Simulation setup for roll decay test of the rectangular cylinder

Description Value | Unit
Tank length 40 m
Tank depth 10 m
Time-step 0.05 S
Simulation time 15 S
Panel size (constant) 0.1 m
Initial displacement (60) | 0.05 | rad
Beach coefficient a 1 -
Beach length b 1 -
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Figure 5.43: Comparison of roll temporal series for the decay test of a rectangular cylinder

5.4 Response Amplitude Operator

In the simulations concerning the decay tests, it was verified that the acceleration potential
could provide a stable numerical scheme, verified through the comparisons with other numerical
method. The last analysis regards the response amplitude operator of a floating rectangular
cylinder, as shown in Figure (5.44), in order to confirm the acceleration potential capability and
the correct implementation of the analytic incident wave potential. The results are compared
with the numerical ones of Tanizawa et al. [1999], who used a fully non-linear boundary elements
method in time domain, and an analytic solution built using the excitation force and radiation
potential obtained by applying the methodology proposed by Zheng et al. [2004], already men-
tioned for the radiation problem, taking the first 40 terms of the series. All the simulations
were performed using numerical beaches in order to avoid wave reflection. It is important to
emphasize that the present method used an analytic incident potential (as shown in Chapter
2) in order to evaluate the implementation. Tanizawa et al. [1999] used a numerical wave tank
(NWT), therefore the wave was generated by a wave-maker.

The results taken from Tanizawa et al. [1999] were for the smaller incident waves and there

115



CcG
- 0.25m * -

0.50m

Sm

Figure 5.44: Rectangular section for floating body simulation

may be some imprecisions since the results were taken directly from the graphs. The analytic
solution used for the response amplitude operator (RAQO) was done considering the same depth of
the numerical computation in order to keep consistency. The depth is more than one wave-length
for all waves, but for the longest one, where it is ~80%, so no bottom effects are expected.
The simulation setup can be seen in Table (5.31) and an example of the motion series can
be seen in Figure (5.4), which shows the signal periodicity and numerical beach effectiveness,
since no wave reflection was visually verified. The beach coefficients were kept fixed as one (both
a and b) during all simulations. The mesh was arbitrary chosen with a constant panel size of
0.05m in the body, in order to have an integer number of panels, and 0.10m in the free surface

and bottom.
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Table 5.31: Simulation setup for rectangular section RAO calculation

Description Value | Unit
Tank length 50 m
Tank depth 5 m
Time-step 0.05 S
Simulation time 100 S
Panel size at the body (constant) 0.05 m
Panel size at the free surface and bottom (constant) | 0.10 m
Body mass per length 125 | kg/m
Moment of inertia 5.208 | kg.m
KG 0.135 m
Beach coefficient ”a” 1 -
Beach length ”b” 1 -
0.01
< 0
S
0.01, 20 40 60 80 100
0.02 £(s)
5 0
N
0.02, 20 40 60 80 100
0.02 £(s)
= o0
>
0024 20 40 60 80 100
t(s)

Figure 5.45: Motion series example for the rectangular section free floating

The regular waves tested are given in Table (5.32), together with the dimensionless factor
& = i used on Tanizawa’s results. The heave response operator is given in Figure (5.46),
where it can be seen that the numerical results had a good agreement with the analytic solution,
with small differences from the results of Tanizawa. Apparently in his results the heave peak
is a little bit further in frequency and with a smaller amplification factor, which could be due
to the fully non-linear approach, since the linear value is more than 2, which could generate a

considerable variations in the body submerged surface. Besides that, near resonance regions the

non-linear approach is difficult, specially considering higher wave amplitude, as was verified by
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him in the lack of convergence for some simulations. During the simulations, the three degrees

of freedom were free to oscillate.

Table 5.32: Regular waves used for RAO calculation

¢ | w(rad/s) | A(m)
0.25 3.13 6.28
0.50 4.43 3.14
0.55 4.65 2.86
0.60 4.85 2.62
0.65 5.05 2.42
0.70 5.24 2.24
0.75 5.42 2.09
1.00 6.26 1.57
1.25 7.00 1.26
1.50 7.67 1.05
1.75 8.29 0.90
2.00 8.86 0.79

The results for sway and roll can be seen in Figures (5.47) and (5.48), respectively, and the
agreement of all results are good, with the time domain simulation being capable of correctly
predicting the cancelation point on the sway response operator without any kind of additional
modelling, as was needed for the analytic solution due to the added mass and potential damping
cross terms, which generate the hydrodynamic coupling between these degrees of freedom. It
means that the presented numerical method, considering an unique disturbance potential, can

evaluate the hydrodynamic field entirely.

2.5 :
O Tanizawa and Minami (1999)
O BEM-2D (2011)
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27
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~
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17
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Figure 5.46: Comparison of heave response operator for a rectangular section
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Figure 5.47: Comparison of sway response operator for a rectangular section
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Figure 5.48: Comparison of roll response operator for a rectangular section
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Chapter 6

Conclusion and final remarks

In this work a time domain low order panel method was developed using Rankine sources for
the prediction of hydrodynamic forces and motions of 2D floating structures. Two integral
equations were obtained for solving the more generic case containing floating bodies and bodies
with prescribed motion, being possible to reproduce both an experimental test at a wave basin
or an ocean condition in a simplified way, since it is a 2D method.

A linear approach was adopted, which means that the geometry is fixed during the simu-
lations since the boundary conditions are linearized and imposed at the mean surfaces. The
numerical scheme uses the collocation method for solving the integral equation with one collo-
cation point placed on the center of the linear panels. The free surface differential equations
and body motion equations were evaluated using the Runge-Kutta 4th order method, which
provided an accurate and stable numerical method, although required some evaluations of the
functions per time-step, that is time consuming. A possible next step would be a more focused
study on the stability conditions and time-step size in order to reduce the computational effort
by using an adaptative time-stepping procedure.

The integration processes were performed numerically to develop a flexible numerical scheme
that could be latter extended for a higher order method, when no analytical solutions are
available for the potential distribution inside the panels.

In order to avoid the presence of reflected waves, a numerical beach were also implemented
and applied in the simulations, showing good effectiveness despite the small numerical effort that
it requires. The method chosen was based on damping the waves through a sponge condition,
as first presented by Israeli and Orszag [1981].

The numerical results for the cases tested were in good agreement with analytic, numerical
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and/or experimental results. The first application studied was a classical wave-maker problem
and the numerical scheme was able to correctly predict the transfer function of piston and flap
type wave-makers.

The numerical tool was also used to evaluate the added mass and potential damping of
bidimensional circular and rectangular cylinders, obtaining good agreement with the results
available on the literature, including the experimental results of Vugts [1968].

Decay tests were also performed in the context of a wave tank and the results showed good
agreement with the ones of van Daalen [1993], even for rolling simulations.

The last result presented was the response amplitude operator (RAO) evaluation for a rect-
angular cylinder. The results were compared to an analytic solution and the fully non linear
numerical results of Tanizawa et al. [1999]. Once again a good agreement could be obtained.

Future works could be done in order to improve the tool for three-dimensional cases, still in
linear context. After that, the extension for non-linear simulations and multi-bodies could be
performed and validated in order to improve the numerical code. Other applications, such as the
integration with mooring line codes or structural ones would probably also lead to very interest-
ing results. These last goals would be a long term development for the Numerical Offshore Tank
(TPN) in order to attach a time domain boundary elements method for seakeeping prediction
(single and multi-bodies) to a mooring finite element method (FEM) software, in order to solve
the coupled dynamic of a floating body in time domain, which could be latter extended to fully

non-linear analysis.
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Part 1

Numerical calculation of volume and

water plane area
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Figure 6.1: Gauss theorem orientation

The volume and water plane area are needed for free floating simulations and so a numerical
automatic method for their calculation are required in order to makes the numerical method
generic. The volume calculation by the definition (6.1) can be changed for (6.2) using Gauss
theorem and considering an arbitrary vector field with unitary divergent. The volume is then
a simple calculation using the boundaries, which are exactly the entrances for a panel method.

Some simple fields are F = i, Fy = yj' or Fy = 2k and any can be used for the calculations.

V= f dv (6.1)
14
J V. FdV = #ﬁ - 7oV (6.2)
14
ov

For the bidimensional case the volume (actually the volume per length) is evaluated by the
expression (6.3), considering the field xi, where ngj is the x component of the normal vector
(which is constant for the low order approximation), x.; is the x coordinate of the centroid and

l; is the panel length. An analogous expression would be found for the fields yj or k.

V= ﬁﬁ . ﬁd&V X — Z jp xnxjdlj = — Z nxj JP .Z‘dlj = — Z nxjxcjlj (6.3)
J J

v jeBody jeBody jeBody

The water plane area can be evaluated using Stokes theorem (6.4) and the identity (6.5) is

verified. The next step is to find any vector field, which the curl has z component equals to
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unity, so the calculations on (6.6) can be performed.

J(vxﬁ).ﬁd5=3€ﬁ-d§ (6.4)
s oS
f (V x F) - kdS = (V x F)-fidS (6.5)
SWaterplane SWetted
VxF=ai+fj+1k= (V x F) - kdS = dS = Awr (6.6)
SWaterplane SWaterplane

An example of vector field that satisfies this condition is F = :cf, which reduces the water
plane area calculation to the simple calculation (6.7). For the bidimensional case the results is

analogous.

AWsz (V x F)-itdS = n.dS ~ 2 J n,dS = 2 nzjf as =
SWetted Pj Pj

Swetted jeBody jeBody

Z anAj (67)

jeBody
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