EDILSON PISSATO

GESTÃO DA MINERAÇÃO DE AREIA NO MUNICÍPIO DE GUARULHOS: APROVEITAMENTO DE RESÍDUOS FINOS EM CERÂMICA VERMELHA

Tese apresentada à Escola Politécnica da Universidade de São Paulo para obtenção do título de Doutor em Engenharia

EDILSON PISSATO

GESTÃO DA MINERAÇÃO DE AREIA NO MUNICÍPIO DE GUARULHOS: APROVEITAMENTO DE RESÍDUOS FINOS EM CERÂMICA VERMELHA

Tese apresentada à Escola Politécnica da Universidade de São Paulo para obtenção do título de Doutor em Engenharia

Área de concentração: Engenharia de Minas e de Petróleo

Orientador: Prof. Dr. Lindolfo Soares

Este exemplar foi revisado e alterado em relação à versão original, sob responsabilidade única do autor e com a anuência de seu orientador.
São Paulo, 15 de junho de 2009.
Assinatura do autor
Assinatura do orientador

FICHA CATALOGRÁFICA

Pissato, Edilson

Gestão da mineração de areia no município de Guarulhos:

aproveitamento de resíduos finos em cerâmica vermelha / E. Pissato. – ed.rev. -- São Paulo, 2009. 115 p.

Tese (Doutorado) - Escola Politécnica da Universidade de São Paulo. Departamento de Engenharia de Minas e de Petróleo.

1. Mineração de minerais não metálicos 2. Cerâmica verme-

Iha 3. Rejeitos de mineração 4. Desenvolvimento sustentável 4. Argilas I. Universidade de São Paulo. Escola Politécnica. Depar- tamento de Engenharia de

DEDICATÓRIA

À FÁTIMA, PELO DEDICAÇÃO E APOIO, À CATERINA E À MEMÓRIA DE MEUS PAIS.

AGRADECIMENTOS

Ao Professor Doutor Lindolfo Soares, pela orientação e pelo constante incentivo.

Ao Empresário Hudo Kehler, proprietário da Mineração Floresta Negra, pela hospitalidade e valorosa colaboração.

Ao amigo Geólogo Hércio Akimoto, e ao Engenheiro de Minas Marcelino Blasques Júnior, da MGA, pela colaboração irrestrita.

Aos funcionários do Laboratório de Caracterização de Minérios e do Laboratório de Caracterização Tecnológica (LCT), do Departamento de Engenharia de Minas, pela ajuda.

Aos funcionários do laboratório de cerâmica do SENAI de Itu, pela prestatividade. Ao Engenheiro Expedito Paula Oliveira, pela colaboração na revisão, e a todos que direta ou indiretamente contribuíram na execução deste trabalho.

LISTA DE ILUSTRAÇÕES

Figura 1.1 – Localização do Município de Guarulhos no contexto do Estado de	
São Paulo e RMSP	15
Figura 1.2 – Evolução da mancha urbana de 1970 a 2.000	16
Figura 1.3 – Mapa tectônico dos Terrenos Apiaí, Guaxupé, Curitiba, Embu e Luis	
Alves	18
Figura 1.4 – Mapa geológico da região de Guarulhos	19
Figura 1.4 (Continuação) – Mapa geológico da região de Guarulhos	20
Figura 1.5 – Mapa geológico da Bacia de São Paulo	22
Figura 1.6 – Polígonos das áreas requeridas no município de Guarulhos	26
Figura 1.7 – Mapa do potencial mineral do município de Guarulhos	27
Figura 1.8 – Mapa de zoneamento do município de Guarulhos	29
Figura 1.8 (Continuação) – Mapa de zoneamento do município de Guarulhos	30
Figura 2.1 – Dados do setor de cerâmica de revestimento	36
Figura 2.2 – Principais produtos cerâmicos e suas características	39
Figura 2.3 – Principais elementos da cela unitária da estrutura cristalina das	
argilas	41
Figura 2.4 – Representação esquemática da estrutura da cela unitária dos	
principais tipos de argilominerais	42
Figura 2.5 – Estrutura dos argilominerais do grupo das esmectitas	43
Figura 2.6 – Aptidão de massas de cerâmica vermelha segundo a classificação	
granulométrica	45
Figura 2.7 – Cadeia produtiva da cerâmica vermelha	46
Figura 2.8 – Principais pólos de cerâmica nas Regiões Sul e Sudeste	54
Figura 2.9 – Regiões produtoras de materiais industriais cerâmicos	55
Figura 3.1 – Localização da Mineração Floresta Negra	59
Figura 3.2 – Foto aérea da região da mineração	60
Figura 3.3 – Planta de situação da Mineração Floresta Negra	62
Figura 3.4 – Fluxograma do processo de beneficiamento	70
Figura 3.5 – Processo de amostragem utilizando o método de pilha cônica	78
Figura 3.6 – Condições para a difração de raios – X	81
Figura 3.7 – Análise granulométrica por difração à laser	82
Figura 4.1 – Distribuição granulométrica da amostra 01	94

Figura 4.2 – Distribuição granulométrica da amostra 02	95
Figura 4.3 – Distribuição granulométrica da amostra 03	95
Figura 4.4 – Distribuição granulométrica da amostra 04	95
Figura 4.5 – Distribuição granulométrica da amostra 05	95
Figura 4.6 – Localização das amostras no Diagrama de Winkler	98
Figura 4.7 – Difratograma da amostra 01	99
Figura 4.8 – Difratograma da amostra 02	100
Figura 4.9 – Difratograma da amostra 03	100
Figura 4.10 – Difratograma da amostra 04	101
Figura 4.11 – Difratograma da amostra 05	.101

LISTA DE TABELAS

Tabela 1.1 – Situação das minerações no Município de Guarulhos	26
Tabela 2.1 – Comparação dos blocos cerâmicos com outros produtos	
concorrentes	50
Tabela 2.2 – Comparação entre telhas cerâmicas e outros materiais de cobertur	a53
Tabela 2.3 – Principais pólos de cerâmica vermelha no Estado de São Paulo	53
Tabela 2,4 – Preços de tijolos e blocos	56
Tabela 2.5 – Preços de alguns tipos de telhas cerâmicas	57
Tabela 3.1 – Reservas de argila das bacias de rejeito	62
Tabela 3.2 – Volume total de argila explorável	62
Tabela 4.1 – Análises químicas por espectrometria das amostras em % de óxido	s94
Tabela 4.2 – Distribuição estatística da granulometria	96
Tabela 4.3 – Composição granulométrica ideal para os produtos de cerâmica	
vermelha	97
Tabela 4.4 – Distribuição das faixas granulométricas das amostras para estudo o	de
formulações em cerâmica vermelha	97
Tabela 4.5 – Composição mineralógica das amostras com base nos resultados	
da difração de raios-X	102
Tabela 4.6 – Análise do resíduo	103
Tabela 4.7 – Características dos corpos de prova secos à 110°C	103
Tabela 4.8 – Características dos corpos de prova após a queima	103
Tabela 4.9 – Valores recomendados para cerâmica vermelhas adotados pelo	
SENAI	104

LISTA DE FOTOS

Foto 2.1 – Blocos cerâmicos para vedação	49
Foto 2.2 – Blocos cerâmicos estruturais ou portantes	50
Foto 2.3 – Alguns tipos de telhas cerâmicas	52
Foto 3.1 – Vista geral de uma das frentes de lavra. Observa-se intercalações	
de lentes de argila roxa e areia	63
Foto 3.2 – Pacote sedimentar arenoso, com intercalações de lentes	
argilosas centimétricas	64
Foto 3.3 – Conglomerados	64
Foto 3.4 – Contato erosivo entre conglomerados e uma camada argilosa roxa	65
Foto 3.5 – Arenito conglomerático com estratificações cruzadas acanaladas	66
Foto 3.6 – Arenito conglomerático com estratificação plano-paralela, em	
contato brusco com uma camada de argila roxa	66
Foto 3.7 – Seqüência da base para o topo: argila roxa, argila cinza	
esverdeada e solo de alteração argiloso laterítico	67
Foto 3.8 – Argila com alta concentração de matéria orgânica, sobre camada	
de argila de coloração azul	67
Foto 3.9 – Extração do minério por processo de desmonte hidráulico	69
Foto 3.10 – Bacia de acumulação coma a draga que realiza a sucção do	
material desagregado (polpa) e envio para o beneficiamento	69
Foto 3.11 – Hidrociclones, onde o material mais fino é separado da areia	72
Foto 3.12 – Cone desaguador	72
Foto 3.13 – Silos, onde ocorre a separação da areia para comercialização	73
Foto 3.14 – Espessador	73
Foto 3.15 – Centrífuga	74
Foto 3.16 – Correia transportadora da argila obtida no final do processo	74
Foto 3.17 – Lagoa ou tanque de clarificação. Deste local a água é recuperada	
e reutilizada no processo de lavra e beneficiamento	75
Foto 3.18 – Amostras de argila provenientes do processo de beneficiamento	77
Foto 3 19 – Amostras selecionadas para os ensaios de caracterização	77

Foto 3.20 – Amostrador Jones utilizado para a separação das amostras para os	
ensaios de caracterização	78
Foto 3.21 – Amostras de argila após primeiro processo de amostragem	79
Foto 3.22 – Espectrômetro de dispersão (WDS) utilizado nas análises químicas	80
Foto 3.23 – Moinho de bolas tipo planetário, usado na preparação das amostras	
para o difratômetro	81
Foto 3.24 – Equipamento Malvern MMS do LCT EPUSP	82
Foto 3.25 – Galga, equipamento utilizado para a preparação da massa	85
Foto 3.26 – Extrusora utilizada para moldagem dos corpos de prova	85
Foto 3.27 – Corpos de prova utilizados nos ensaios cerâmicos	86
Foto 3.28 – Prensa utilizada para realização dos ensaios à flexão	87
Foto 3.29 – Fornos elétricos para realização da queima dos corpos de	
prova	89

RESUMO

O município de Guarulhos, localizado na Região Metropolitana da Grande São Paulo, possui uma área de 341 km², e população de aproximadamente 1.200.000 habitantes. Apresenta franco crescimento do ponto de vista urbano, o que o coloca como um grande consumidor de matérias primas para a construção civil. A atividade extrativista no município foi muito grande no passado, estando hoje restrita a três minerações de brita, três minerações de areia em atividade, o uma mineração de areia paralizada. As minerações de areia realizam a extração do minério utilizando o processo de desmonte hidráulico, resultando em um resíduo fino composto principalmente por argila. Esta argila atualmente é considerada como rejeito do processo de beneficiamento e descartada em bacias de decantação, quase sempre constituídas pelas antigas cavas de exploração. Ao término da lavra restam as cavas que devem ser recuperadas. O processo de recuperação mais utilizado consiste no tratamento paisagístico e formação de lago para utilização como área de lazer. O objetivo deste trabalho é propor a utilização da argila armazenada nas bacias de decantação (rejeito), assim como das camadas de argila segregadas no processo de extração (estéril) para cerâmica vermelha, prolongando a vida útil da mineração e promovendo um melhor aproveitamento da jazida. Para tal foram realizados ensaios para caracterização da matéria-prima e ensaios cerâmicos. Em um contexto mais amplo, a proposta do trabalho é fornecer parâmetros técnicos e sócio-econômicos para o desenvolvimento estratégico e sustentável da atividade mineral próximo a grandes centros urbanos, integrando-a ao uso do solo municipal e garantindo o suprimento dos recursos minerais industriais imprescindíveis para o desenvolvimento da cidade. É proposto ainda a utilização das cavas de extração remanescentes para disposição dos resíduos inertes oriundos da construção civil, integrada ao Plano de Gestão dos Resíduos da Construção Civil, desenvolvido pela Prefeitura do Município de Guarulhos.

Palavras-chave: Mineração. Areia. Argila. Cerâmica. Desenvolvimento Sustentável. Aproveitamento de resíduos.

ABSTRACT

The municipality of Guarulhos located in the Metropolitan Region of São Paulo has an area of 341 square kilometers and a population of approximately 1,200,000 inhabitants. It shows frantic urban growth what places it among major consumer centers of raw materials for civil construction. Mining activities in the municipality were of considerable importance in the past, being restricted nowadays to three guarries used for the production of crushed stone and four minings where extraction of sand is carried out. The hydraulic process is commonly used for ore extraction which results in a fine residue made up mainly of clay. This clay, currently considered as a by-product, is discarded in decanting basins which nearly always are old exploitation diggings. When mining exploitation comes to an end, the resultant diggings must undergo landscaping and formation of artificial lakes used as leisure areas. The objective of the proposed work is to make longer the mining lifetime as well as diversify its products through the utilization of the clay stored in the decanting basins as structural ceramics. As a whole the proposal is to present a contribution for the sustainable development of mineral activities near to great centers, currently in conflict with urban growth. Another proposal is to turn exploitation diggings into deposition sites of inert residue originated from civil construction works, this activity being integrated to the Civil Construction Residues Management Plan devised by the City of Guarulhos.

Keywords: Mining. Sand. Clay. Ceramic. Sustainable development. Utilization of residues.

SUMÁRIO

CAPÍTULO 1 – INTRODUÇÃO	14
1.1 Apresentação do tema	14
1.2 Aspectos do meio físico no município de Guarulhos	15
1.2.1 Contexto geográfico	15
1.2.2 Contexto geológico regional	17
1.2.3 Hidrografia e relevo	23
1.3 Aspectos da mineração no município de Guarulhos	24
1.3.1 Diagnóstico da atividade mineral	24
1.3.2 O uso do solo e a mineração	28
1.4 Premissa do trabalho e objetivo da pesquisa	32
CAPÍTULO 2 – REVISÃO DA LITERATURA	34
2.1 A importância dos minerais de uso na construção civil	34
2.2 Definição de produtos cerâmicos	36
2.3 Cerâmica vermelha	40
2.3.1 Matéria-prima	40
2.3.2 Processo de fabricação	45
2.3.3 Produtos	48
2.3.3.1 Blocos	48
2.3.3.2 Telhas	51
2.3.4 Aspectos mercadológicos e de produção	55
CAPÍTULO 3 – METODOLOGIA	58
3.1 Trabalho de campo	58
3.1.1 Aspectos da Mineração Floresta Negra	58
3.1.2 Levantamento geológico	63
3.1.3 Processo de lavra e beneficiamento	68
3.1.4 Coleta das amostras	75
3.2 Ensaios de caracterização.	76
3.2.1 Preparação das amostras	76
3.2.2 Análise química por espectrometria de fluorescência de raios-X	79
3.2.3 Análise mineralógica por difração de raios-X	80
3.2.4 Análise granulométrica por difração a laser	82

3.3 Ensaios tecnológicos cerâmicos	83
3.3.1 Preparação das amostras	83
3.3.2 Plasticidade	84
3.3.3 Moldagem e preparação dos corpos de prova	84
3.3.4 Umidade de extrusão	86
3.3.5 Contração linear de secagem	86
3.3.6 Resistência à flexão seco	87
3.3.7 Cor de queima	88
3.3.8 Perda ao fogo	89
3.3.9 Contração linear após queima	90
3.3.10 Resistência à flexão após queima	90
3.3.11 Massa específica aparente (MEA)	90
3.3.12 Porosidade aparente e absorção de água	91
3.3.13 Determinação do resíduo	91
CAPÍTULO 4 – RESULTADOS E DISCUSSÃO	93
4.1 Resultados dos ensaios de caracterização	93
4.1.1 Análise química por fluorescência dos raios-x	93
4.1.2 Análise granulométrica por difração a laser	94
4.1.3 Difração de raios-x	99
4.2 Resultados dos ensaios cerâmicos	102
CAPÍTULO 5 – CONCLUSÃO	106
REFERÊNCIAS BIBLIOGRÁFICAS	109