LISTA DE FIGURAS

Figura 1 - Cadeias poliméricas linear	36
Figura 2 - Cadeia polimérica ramificada	36
Figura 3 - Cadeias poliméricas com ligações cruzadas	37
Figura 4 - Representação da estrutura semicristalina polimérica.	38
Figura 5 - Arranjo Isotáctico do PP	38
Figura 6 - Arranjo Sindiotáctico do PP	38
Figura 7 - Arranjo atáctico do PP	39
Figura 8 - Difratogramas de raios-X esquemáticos do PP isotáctico, atáctico e sindiotáctico	39
Figura 9 - Representação esquemática da reação de obtenção dePP partir do propeno.	40
Figura 10 – Formas isoméricas de encadeamento molecular	42
Figura 11- Forma isomérica cabeça-cauda do i-PP	42
Figura 12 – Representação esquemática da estrutura detalhada de uma esferulita.	44
Figura 13 - Conformação Helicoidal do i-PP vista a) lateral , b) superio.	45
Figura 14 – Micrografia do i-PP a) esferulita fase ß, b) esferulita fase α.	46

Figura 15 - Esquema do arranjo proposto para as cadeias dentro das amelas da forma do i-PP. Os segmentos da cadeia estão inclinados a 40° em relação a superfície das lamelas. No cruzamento com ângulo de 80°, os grupos metila se faceiam uma da outra.

Figura	16	-	Mecanismo	de	degradação	sem	0	49
rompim	ento	de	ligação C-C	na ca	adeia principa	l.		

Figura 17 - Reação de oxigênio com macroradicais alquila.

Figura 18 - Reação do macroradical peroxila com uma49cadeia polimérica,com a formação de um novomacroradical alquila e um hidroperóxidoR'representando uma macromolécula.

Figura 19 – Esquema de um espectrômetro de FTIR50

Figura 20 – Estrutura cristalina de NaCl mostrando o 57 arranjo regular dos íons Na⁺¹ Cl⁻.

Figura 21- Difração de Raios X no plano 57 cristalográfico e a incidência do ângulo θ eque expressa a condição da Lei de Bragg.

Figura 22 – Padrão de difração típica para o i-PP, 59 mostrando a divisão entre fase a amorfa e a cristalina do material.

Figura 23- Célula monoclínica A) simples e B) de face 60 centrada.

Figura 24 - Geometria do corpo de prova para o62ensaio de tração segundo a norma ASTM D 638-08.

Figura 25 - Moléculas orientadas na direção da 64 solicitação aplicada por meio do ensaio de tração.

47

Figura 26 - Formação do empescoçamento no ensaio	64
de tração.	
Figura 27- (a) Contato conforme (b) Contato não conforme.	68
Figura 28 - (Representação esquemática do contato entre uma superfície elástica plana e a) esfera rígida (conjunto 1 Tabela 2) e b) esfera elástica (conjunto 2 Tabela 2).	68
Figura 29 - Esquema representativo do processo de indentação antes, durante e após a indentação.	72
Figura 30 - Parâmetros para análise dos dados da curva descarregamento x profundidade de indentação.	72
Figura 31- a) fenômeno "pile-up", b) fenômeno "sink- in.	78
Figura 32- Penetração dos feixes de elétrons em	86
função da energia.	
Figura 33 – Comparação de um tubo de imagens de um televisor com o acelerador de elétrons.	88
Figura 34 - Aparatos necessários para confecção do corpo de prova para ensaio de tração.	98
Figura 35- Acelerador de elétrons Dynamitron Job 188.	99
Figura 36- Corpos de prova presos nas bandejas para irradiação do material.	101
Figura 37 - Máquina Universal de Ensaios Instron 5567 pertencente ao laboratório de Ensaios Mecânicos do IPEN.	102

Figura 38 - Micro indentador instrumentado Fischerscope H100V pertencente ao LFS do Departamento de Mecânica da Escola Politécnica da USP.	103
Figura 39 - Polimento do corpo de prova de polipropileno em tecido com detergente líquido para retirar marcas superficiais que não foram retiradas no processo de lixamento.	104
Figura 40 - Equipamento DSC - 50 SHIMADZU Calorímetro Exploratório Diferencial.	106
Figura 41- À direita o cadinho com PP HA722J e a esquerda o cadinho de referência vazio.	106
Figura 42 - Equipamento de termogravimetria,TGA - 50 SHIMADZU.	107
Figura 43 – Equipamento Thermo Scientific Nicolet 6700 FTIR.	109
Figura 44 - Equipamento Melt Flow Índex XRL 400 A/B/C/D utilizado para o ensaio de índice de Fluidez.	111
Figura 45 - Espectros UV–VIS das amostras de i-PP Prístino submetidas a radiação por feixes de elétrons com 20, 40, 60, 100, 200 e 300kGy.	114
Figura 46 - Espectro UV–VIS da amostra de i-PP Prístino.	115
Figura 47- Espectros UV–VIS das amostras de i-PP irradiadas com doses de 20, 40 e 60kGy.	116
Figura 48 - Espectros UV–VIS das amostras de i-PP irradiadas com 100, 200 e 300 kGy.	117
Figura 49 - Espectro de transmitância na região do Infravermelho do i-PP Prístino.	118

Figura 50 - Espectro de transmitância na região do Infravermelho do i-PP irradiado com dose de 20kGy.	119
Figura 51 - Espectro de transmitância na região do Infravermelho do i-PP irradiado com dose de 40kGy.	119
Figura 52- Espectro de transmitância na região do Infravermelho do i-PP irradiado com dose de 60kGy.	120
Figura 53 - Espectro de transmitância na região do Infravermelho do i-PP irradiado com dose de 100kGy.	120
Figura 54- Espectro de transmitância na região do Infravermelho do i-PP irradiado com dose de 200kGy.	121
Figura 55 - Espectro de transmitância na região do Infravermelho do i-PP irradiado com dose de 300 kGy.	121
Figura 56- Espectros de absorção infravermelho do i- PP Prístino e irradiados com doses de 20, 40, 60, 100, 200 e 300kGy com amostras pulverizadas.	126
Figura 57 - Amarelecimento das amostras irradiadas com diferentes doses de radiação.	127
Figura 58 – Corpo de prova para ensaio de DRX.	128
Figura 59 - Difratogramas de raios X do i-PP Prístino e irradiado com doses de 20, 40, 60, 100, 200 e 300kGy.	129
Figura 60 - Difratograma de raios – X do i-PP Prístino.	130
Figura 61 - Difratograma de raios – X do i-PP irradiado com dose de 20kGy.	132
Figura 62 - Difratograma de raios – X do i-PP irradiados com doses de 40 e 60kGy.	133

Figura 63- Difratograma de raios – X do i-PP irradiado com dose de 100kGy.	134
Figura 64 - Difratograma de raios – X do i-PP irradiado com dose de 200kGy.	136
Figura 65- Difratograma de raios – X do i-PP irradiado com dose de 300kGy.	137
Figura 66 - Resultados do ensaio de MFI para i-PP prístino e irradiadas com doses de 20, 40, 60 e 100 kGy.	143
Figura 67 – i-PP irradiado com dose de 300kGy, preso na máquina de MFI.	143
Figura 68- Temperatura inicial de fusão do i-PP Prístino e irradiado com doses de 20, 40, 60, 100, 200 e 300kGy.	147
Figura 69 - Resultado do ensaio de TGA para i-PP Prístino e irradiado com doses de 20,40, 60, 100, 200 e 300kGy.	149
Figura 70 – Resultados da perda de massa para o i- PP prístino e irradiado com doses de 20, 40, 60, 100, 200 e 300kGy.	150
Figura 71- Resultados de RT _{esc} para i-PP prístino e irradiado com doses de 20, 40, 60, 100 e 200kGy.	151
Figura 72 - Superfície de fratura do i-PP prístino com aumento de 35 e 200 X.	153
Figura 73 - Superfície de fratura do i-PP irradiado com dose de 20kGy, com aumento de 35 e 200 X.	154
Figura 74 - Superfície de fratura do i-PP irradiado com dose de 40kGy,com aumento de 35 e 200 X.	155

Figura 75 - Superfície de fratura do i-PP irradiado com dose de 60kGy,com aumento de 35 e 200 X.	156
Figura 76 - Superfície de fratura do i-PP irradiado com dose de 100kGy, com aumento de 35 e 200 X.	158
Figura 77 - Superfície de Fratura do i-PP irradiado com dose de 200kGy, com aumento de 35 e 200 X.	159
Figura 78 - Superfície de Fratura do i-PP irradiado com dose de 300kGy, com aumento de 35 e 200 X.	160
Figura 79 - Curvas obtidas no ensaio de indentação instrumentada com o tempo de fluência de 20 segundos para amostra do i-PP prístino.	161
Figura 80 - Curvas do i-PP prístino obtidas no ensaio de indentação instrumentada com tempo de fluência de 20 e 60 segundos.	164
Figura 81 - Gráfico de comparação da profundidade <i>hf</i> obtido no ensaio de indentação instrumentada com tempo de fluência de 20s para diferentes doses de radiação.	165
Figura 82 - Gráfico de comparação da profundidade <i>hf</i> obtido no ensaio de indentação instrumentada com tempo de fluência de 60s para diferentes doses de radiação.	165
Figura 83 - Comparação da profundidade <i>hf</i> em relação ao tempo de fluência de 20s e 60s para as diferentes doses de radiação.	166

Figura 84 – Resultados do módulo de elasticidade em 167 função das doses de radiação.

Figura 85 - Gráfico de comparação da profundidade 168 $h \max$ obtido no ensaio de indentação instrumentada com tempo de fluência de 20 s para diferentes doses de radiação.

Figura 86 - Gráfico de comparação da profundidade168*h* max obtido no ensaio de indentação instrumentadacom tempo de fluência de 60s para diferentes dosesde radiação.

Figura 87 - Comparação da profundidade $h \max$ em 169 relação à fluência e as diferentes doses de radiação.

Figura 88 - Gráfico de comparação da 170 profundidade *hc* obtido no ensaio de indentação instrumentada com tempo de fluência de 20s para diferentes doses de radiação.

Figura 89 - Gráfico de comparação da179profundidade hcobtido no ensaio de indentaçãoinstrumentada com tempo de fluência de 60s paradiferentes doses de radiação.

Figura 90 - Comparação da profundidade hc em171relação ao tempo de fluência de 20s e 60s e paradiferentes doses de radiação.

Figura 91-Micrografia da impressão Vickers após 172 ensaio de indentação instrumentada com tempo de fluência 60s do i-PP irradiado com dose de 60kGy (aumento de 2000x).

Figura 92 – Comparação da área de contato obtida pelo ensaio de indentação instrumentada com diferentes doses de radiação para o tempo de fluência de 20s.	173
Figura 93- Comparação da área de contato obtida pelo ensaio de indentação instrumentada com diferentes doses de radiação para o tempo de fluência de 60s.	173
Figura 94-Comparação dos valores de área de contato obtida no ensaio de indentação instrumentada com o tempo de fluência de 20s e 60s.	174
Figura 95 – Valores de dureza obtidos no ensaio de indentação instrumentada com tempo de fluência de 20s para diferentes doses de radiação.	175
Figura 96 - Valores de dureza obtidos no ensaio de indentação instrumentada com tempo de fluência de 20s para diferentes doses de radiação.	175
Figura 97 – Comparação dos valores de dureza obtidos no ensaio de indentação instrumentada para diferentes doses de radiação com tempo de Fluência de 20s e 60s.	176
Figura 98 – Ensaio de Dureza Vickers: pirâmide de diamante de base quadrada e medição das diagonais de impressão.	177

•

LISTA DE TABELAS

Tabela 1- Diferenças entre os métodos Brinell, Rockwell e o método Vickers.	66
Tabela 2 - Propriedades elásticas e geometria do contato das superfícies. (Rodriguez,S.A)	69
Tabela 3 - Principais polímeros e gases formados durante a irradiação.	90
Tabela 4 – Tipos de ligações e seus valores de energia de ligação.	93
Tabela 5 - Parâmetros de Carregamento de Fluência e de Descarregamento (constantes para todas as indentações).	105
Tabela 6- Espessura dos filmes utilizados para ensaio de FTIR no modo transmissão.	111
Tabela 7- Valores de intensidade de absorvância para i-PP prístino e irradido com dose de 23kGy.	127
Tabela 8 - Intensidade de absorvância das bandas 972 e 1000 cm ⁻¹ .	127
Tabela 9 - Resultados de DRX do i-PP Prístino.	134
Tabela 10 - Resultados de DRX do i-PP irradiado com dose de 20 kGy.	135
Tabela 11 - Resultados de DRX do i-PP irradiado com dose	136

de 60kGy.

Tabela 12- Resultados de DRX do i-PP irradiado com dose de 100kGy.	138
Tabela 13- Resultados de DRX do i-PP irradiado com dose de 200kGy.	139
Tabela 14- Resultados de DRX do i-PP irradiado com dose de 300kGy.	
Tabela 15 – Parâmetros de rede e ângulo β' da célula monoclínica do i-PP α .	141
Tabela 16 – Área do pico de cristalinidade (halo cristalino) e área total (halo cristalino + halo amorfo) das amostras submetidas a difração de raios-X.	142
Tabela 17 – Parâmetros utilizados para irradiação dos corpos de prova.	143
Tabela 18 - Resultados experimentais do ensaio de índice de fluidez, para i-PP prístino e irradiados com diferentes doses.	145
Tabela 19 - Resultados obtidos no ensaio de Fração Gel para o i-PP Prístino e com diferentes doses de radiação.	148
Tabela 20 - Resultado do ensaio de DSC para i-PP Prístino e irradiado com doses de 20, 40, 60, 100, 200 e 300kGy.	149
Tabela 21 - Resultado do ensaio de TGA para amostras de i-PP Prístino e irradiado com doses de 20, 40, 60, 100, 200 e 300kGy.	151

Tabela 22- RTe do i-PP Prístino e irradiado com doses de15420, 40, 60, 100 e 200kGy.

Tabela 23 – Parâmetros obtidos pelo ensaio de indentação166instrumentada para amostra do i-PP prístino e irradiado comdoses de 20, 40, 60,100,200 e 300kGy.

Tabela 24 – Resultados de diagonal, área de contato e184dureza obtidos por meio do ensaio de indentaçãoinstrumenda para o i-PP prístino e irradiado com diferentesdoses.

Tabela 25- Resultados de diagonal, área de contato e dureza185obtidos através do ensaio de indentação instrumentada do i-PP irradiado com diferentes doses de radiação.

LISTA DE ABREVIATURAS E SIGLAS

PP	polipropileno
T_{v}	temperatura de fusão cristalina
-CH ₃	grupo metila
kGy	Kilogray
PE	polietileno
PVC	poli(cloreto de vinila)
i-PP	Polipropileno isotáctico
$\overline{M_{v}}$	massa molar mássica
$\overline{M_n}$	massa molar numérica média
T _D	temperatura de início de degradação
TGA	Ensaio Térmico de Termogravimetria
HDT	ensaio de temperatura de deflexão térmica
FTIR	ensaio de Espectroscopia na Região do Infravermelho por Transformada de Fourier
UV-VIS	espectroscopia no ultravioleta visível
DRX	Difração de Raios X

χ^{2}	chi-quadrado
L. E. T.	(Linear Energy Transfer), quantidade de energia que se perde por unidade de distância percorrida
DSC	Calorimetria Exploratória Diferencial
MEV	Microscopia Eletrônica de Varredura
$\overset{o}{A}$	Angstrons
d _{hkl}	distancia interplanar
FWHM	(em graus) valor da largura a meia altura do pico.
(µm)	Micrometros
HB	Brinnel

LISTA DE SÍMBOLOS

Ε	Módulo de elasticidade
n	Polidispersividade
α	esferulitas α (monoclínica)
ß	esferulitas ß (hexagonal)
γ	esferulitas (triclínica)
Π	orbital molecular ligante
π*	orbital molecular antiligante
I ₀	luz incidente é simbolizada por
Ι	luz transmitida é simbolizada por
hkl	índice de Miller Bravais
λ	comprimento de onda da radiação incidente
n	parâmetro de difração (Lei de Bragg)
d	distância interplanar para o conjunto de planos hkl (índice de Miller) da estrutura cristalina e
θ	ângulo de incidência dos raios X
Ar_{c}	Área da curva que engloba as contribuições cristalinas

Ar_{c+a}	Área da curva que engloba as contribuições cristalinas e amorfas.
A_a	área que correspondente ao halo amorfo e as áreas cristalinas.
β	Ângulo obliquo da célula i-PP monoclínica.
L ₀	comprimento inicial e
L	Comprimento final
σ	Tensão
F	força aplicada ao material
A ₀	área transversal inicial do corpo-de-prova
E	deformação,
ΔL	variação de comprimento
U _{zi}	Deslocamento normal da superfície do indentador
<i>U</i> _{z2}	Deslocamento normal da superfície do indentada
U _r	Deslocamento radial da superfície do indentada
а	Raio de contato
Р	Força total da indentação comprimindo os sólidos

δ	Distância de aproximação mutua indentador - corpo indentado
h	Profundidade de indentação sob superfície original da superfície indentada
ν	Módulo elástico do corpo indentado
E _i	Módulo elástico do indentador
V _i	Coeficiente de Poisson do indentador
E _r	Módulo reduzido
<i>h</i> max	profundidade máxima de indentação
<i>a</i> '	é a semi – diagonal residual projetada na superfície
hs	profundidade de deflexão da superfície ao redor do perímetro de contato penetrador/ superfície da amostra
hc	profundidade de contato
hf	profundidade residual
<i>h</i> max	profundidade máxima de indentação
\mathcal{E}^{\prime}	função particular do tipo de geometria do penetrado

A,m	constantes empíricas obtidas após ajustes dos dados de
	descarregamento
S	módulo de rigidez
β	fator de correção para ajustar os valores obtidos a condições reais de indentação.
(A _{max})	área de contato que incorpora a influência dos efeitos de "pile-up" e "sink- in".
ξ	grau de empilhamento ou afundamento
Ac	área projetada de uma indentação
A_c	área de contato de indentação instrumentada proposta pelo LFS
f	parâmetro que depende da geometria do indentador
(n)	coeficiente de encruamento
<i>P</i> max	Força aplicada a carga máxima (indentação instrumentada)
∆t	intervalo de tempo entre os pontos no ensaio de indentação instrumentada
Н	dureza
HU	dureza universal

H_{v}	dureza vickers
$\gamma^{\scriptscriptstyle +}$	raios gama
α*	partículas alfa
β*	partículas beta
e,	Elétrons
р	prótons
n'	neutrons
E_{β}	energia máximo da partícula beta
Q	calor ou emite
hv	um quantum de luz
A _v	área vickers
IF	Índice de fluidez
t _e	tempo de ensaio das amostras em segundos, (IF)
M_{a}	massa das amostras em grama (IF)
(En)	energia de radiação
(Cf)	corrente do feixe de radiação

Np	nº de passadas pelo feixe de elétrons
Rt _{esc}	resistência à tração no escoamento
${oldsymbol{\mathcal{E}}}_f$	alongamento de fratura.
d ₁	1º diagonal da impressão vickers
d ₂	2diagonal da impressão vickers
A_{ν}	área vickers

SUMÁRIO

1- INTRODUÇÃO	30
2 - REVISÃO BIBLIOGRÁFICA	33
2.1 Polímeros	33
2.1.1 Forças moleculares em polímeros	33
2.2 Polimerização	34
2.2.1 Polimerização por adição	35
2.3 Cadeia Polimérica	36
2.4 Cristalinidade	37
2.4.1 Tacticidade	38
2.5 Polipropileno	40
2.5.1 Tacticidade do Polipropileno	41
2.5.2 Propriedades do Polipropileno Isotáctico	43
2.5.3 Polimorfismo do i-PP	43
2.6 Degradação	47
2.6.1 Auto-oxidação	49
2.6.2 Degradação Térmica	50

2.7 Ensaios de Caracterização	51
2.7.1 Ensaio de Índice de Fluidez	51
2.7.2 Fração de Gel ou Grau de Reticulação	52
2.7.3 Ensaio de Espectroscopia na Região do Infravermelho por Transformada de Fourier - FTIR	53
2.7.4 Espectroscopia UV-VIS	54
2.7.5 Difração de Raios X (DRX)	56
2.7.5.1 Determinação da Cristalinidade via (DRX)	58
2.7.5.2 Refinamento da estrutura pelo método dos mínimos quadrados	59
2.8 Ensaios Mecânicos	61
2.8.1 Resistência à tração	62
2.9 Indentação	65
2.10 Indentação Instrumentada	67
2.10.1 Fenômenos "pile - u"p e "sink - in"	77
2.11 Química das Radiações	80
2.11.1 Radiação Ionizante	80

2.11.2 Fontes de radiação	80
2.12 Tipos de Radiação	82
2.12.1 Particulas Alfa α^*	82
2.12.2 Partículas Beta β^*	83
2.12.3 Nêutrons	83
2.12.4 Raios X	84
2.13 Interações da Radiação com a Matéria	84
2.14 Aceleradores de Elétrons	85
2.14.1 Feixes de Elétrons	85
2.14.2 Introdução e princípio de funcionamento	86
2.15 Efeito da Radiação em Polímeros	88
2.16 Propriedades dos polímeros irradiados	94
3- MATERIAIS E MÉTODOS	97
3.1 Materiais	97
3.2 Método para Preparação dos Corpos de Prova para Ensaios	97

3.3 Irradiação por Feixes de Elétrons	98
3.4 Ensaios Mecânicos	101
3.4.1 Ensaio de tração	101
3.4.2 Equipamento para Ensaio de Indentação Instrumentada	102
3.4.3. Procedimentos de ensaio de indentação	103
3.4.3.1 Preparação dos Corpos de Prova para Ensaio de Indentação Instrumentada	104
3.5 Técnicas de Caracterização	105
3.5.1 Calorimetria Exploratória Diferencial – DSC	105
3.5.1.1 Preparação do corpo de prova para ensaio térmico de DSC	105
3.5.1.2 Equipamento para ensaio de DSC	105
3.5.1.3 Parâmetros utilizados para ensaio de DSC	106
3.6 Ensaio Térmico de Termogravimetria – TG	107
3.6.1 Equipamento para Ensaio de Termogravimetria	107
3.6.1.2 Parâmetros utilizados para ensaio de Termogravimetria	108

3.7 Difração de Raios X (DRX)	108
3.8 Espectroscopia no Infravermelho com Transformada de Fourier – FTIR	108
3.8.1 Preparação do corpo de prova para FTIR	109
3.9 Espectroscopia no Ultravioleta/Visível (UV-VIS)	110
3.10 Ensaio de Índice de Fluidez	110
3.11 Microscopia Eletrônica de Varredura – (MEV)	111
4 – RESULTADOS E DISCUSSÃO	114
4.1 Oxidação Radiolítica	114
4.1.1 Grupos cromóforos	114
4.1.1.2 Ensaio UV-VIS	114
4.1.2 Amostra de i-PP Prístino	115
4.1.3 Amostras de i-PP irradiadas com doses de 20, 40, 60kGy	115
4.1.4 Amostras de i-PP irradiadas com doses de 100, 200 e 300kGy	116
4.2 Espectroscopia Infravermelho (FTIR)	117

4.2.1 Bandas em 1727 e 1644 cm ⁻¹ (i-PP irradiado com doses de 100, 200 e 300kGy)	122
4.2.2 Banda em 2359 cm ⁻¹	123
4.2.3 Bandas próximas a 970 e 1000 cm ⁻¹	123
4.3 Efeito Visual pós Radiação	126
4.4 Difração de Raios X (DRX)	128
4.4 Difração de Raios X (DRX)	128
4.4.1 i-PP Prístino	130
4.4.2 i-PP Prístino e irradiado com dose de 20kGy	131
4.4.3 i-PP irradiado com doses de 40 e 60kGy	133
4.4.4 i-PP irradiados dose de 100kGy	134
4.4.5 i-PP irradiados com dose de 200kGy	135
4.4.6 i-PP irradiados com dose de 300kGy	137
4.7 Determinação dos parâmetros de rede a,b,c e do ângulo β ' pelo método dos mínimos quadrados	138
4.7.1 Determinação da Cristalinidade por DRX	139
4.8 Cisão da Cadeia Principal X Reticulação	141

4.8.1 Índice de Fluidez (MFI)	142
4.8.2 Fração Gel ou Grau de Reticulação	144
4.9 Análise Térmica	145
4.9.1 Análise Térmica DSC	145
4.9.2 Termogravimétria (TGA)	148
4.10 Propriedades Mecânicas	150
4.10.1 Ensaio de Tração	150
4.10.2 Microscopia Eletrônica de Varredura (MEV) dos Resultados de tração	152
4.11 Indentação Instrumentada	161
4.11.1 Influência do tempo de fluência	163
4.11.2 Influência da Radiação de feixes de elétrons nos valores de profundidade final (<i>hf</i>)	164
4.11.3 Influencia da Radiação de feixes de elétrons nos valores de Módulo de Elasticidade	167
4.11.4 Influência da Radiação de feixes de elétrons nos valores de profundidade de contato (<i>hc</i>)	169
4.11.5 Fenômenos "Pile - up" ou "Sink - in"	171

4.11.6 Influência das doses de radiação na Área de Contato	172
4.12 Influência da Radiação com feixes de elétrons nos valores de dureza	175
4.12.1 Dureza universal (HU)	175
4.12.2 Estimativa da diagonal de impressão e Dureza Vickers (H_v)	176
5 - CONCLUSÕES	183
REFERÊNCIAS BIBLIOGRÁFICAS	186
ANEXO A	195
APÊNDICE I	203
APÊNDICE II	209
APÊNDICE III	217
APÊNDICE IV	225
APÊNDICE V	202
APÊNDICE VI	258