• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.3.2018.tde-03052018-090007
Document
Author
Full name
Ygor Amadeo Sartori Regados
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2018
Supervisor
Committee
Martorano, Marcelo de Aquino (President)
Albertin, Eduardo
Castro, José Adilson de
Ferreira Neto, João Batista
Ferreira, Alexandre Furtado
Title in Portuguese
Modelo matemático para previsão da macrossegregação durante a solidificação com zona pastosa ou interface sólido-líquido plana.
Keywords in Portuguese
Estrutura dos materiais
Simulação
Solidificação
Abstract in Portuguese
A macrossegregação pode causar problemas sérios em processos de fundição, mas pode ser útil em processos de refino metalúrgico como os empregados na produção de silício de alta pureza. Ela é formada por fluxos convectivos presentes tanto na solidificação plana quanto na solidificação com zona pastosa, enquanto o transporte difusivo é efetivo quando a solidificação direcional é controlada, mantendo-se uma interface plana. A modelagem da solidificação de lingotes em escala macroscópica é atualmente dividida em modelos que assumem a presença de uma zona pastosa e modelos que assumem interface plana como hipótese inicial, exigindo conhecimento prévio da morfologia interfacial durante toda a operação. Um modelo matemático para a macrossegregação causada por transportes difusivos e convectivos de soluto durante a solidificação com crescimento plano ou com zona pastosa foi apresentado e implantado. Uma análise numérica apenas do transporte difusivo revelou a transição da interface plana para uma zona pastosa desenvolvida, que ocorreu em coincidência com critérios de estabilidade clássicos, além de revelar uma região inicial refinada formada mesmo após a formação da zona pastosa e confirmar a ineficiência da difusão sozinha na formação de macrossegregação em maiores velocidades. A convecção demonstrou efeito estabilizador para a interface sólido-líquido plana ao reduzir a camada super-resfriada por soluto, assim como acentuou a macrossegregação, com tendência ao caso de Scheil. Ensaios experimentais para silício presentes na literatura foram avaliados com o modelo proposto, confirmando o efeito estabilizador da interface plana observado e também mostrando o papel fundamental da difusão na formação da interface plana. Os resultados do modelo foram comparados com os de ensaios experimentais conduzidos em um forno do tipo Bridgman com liga Al-1% Cu com velocidades de solidificação crescentes e a estabilidade da interface plana e a macrossegregação correspondente examinadas sem ou com convecção forçada. Os resultados experimentais indicaram uma região com interface sólido-líquido plana que, após a segunda mudança de velocidade, indicou a aparente formação de células, verificadas por análise metalográfica. A velocidade de crescimento crítica foi estimada no experimento, mostrando-se significativamente maior que a calculada através do critério do super-resfriamento constitucional.
Title in English
Mathematical model for macrosegregation prediction during solidification with mushy zone or planar solid-liquid interface.
Keywords in English
Simulation
Solidification
Structure of materials
Abstract in English
Macrosegregation is a source of serious problems in castings, but it can be a useful tool in metallurgical refining processes such as those employed in the production of high-purity silicon. It is often a result of convective liquid flow either at planar solidification or when a mushy zone is present, while diffusive solute transport is effective at controlled directional solidification with planar interfaces. Ingot solidification modeling at macroscopic scale is currently divided in models assuming a mushy zone is always present and planar interfaceassuming models, thus requiring prior knowledge of interface morphology. A mathematical model for macrosegregation resulting from diffusion and convection during solidification with planar interface or mushy zone was presented and implemented. Diffusive transport was evaluated numerically, revealing a transition from planar to mushy-zone solidification conforming to classical stability criterions, with an initial refined zone that grew even after a mushy zone developed and the inefficacy of macrodiffusion-induced macrosegregation at higher growth velocities shown. Convection showed stabilizing effect for planar solid-liquid interface by reducing the solute-undercooled layer and increased macrosegregation, with a tendency towards Scheil model. Silicon experiments publicly available were compared with the present model, confirming the experimentally-observed stabilizing effect and proving the key role of diffusion at macrosegregation formation on these systems. The model was evaluated with experiments made in a Bridgman-type furnace with an Al-1% Cu alloy with increasing growth velocities to study interface stability and macrosegregation with or without liquid stirring. Results indicate a planar growth region followed by a cellular interface one after the second velocity change, as identified by metallographical testing. Critical growth velocities for classical criterions were estimated after the experiments and were smaller than the evaluated ones.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2018-05-04
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2024. All rights reserved.