SUMÁRIO

1.0	INTRODUÇÃO	1
2.0	OBJETIVOS	3
3.0	REVISÃO BIBLIOGRAFICA	4
3.1	Aço inoxidável	4
3.1.1	Produção mundial e brasileira de aço inoxidável	4
3.2	Ferro-cromo	5
3.2.1	Produção mundial e brasileira de ferro-cromo alto carbono	6
3.2.2	Tipos	6
3.2.3	Aplicações	9
3.3	Processos tradicionais de fabricação do ferro-cromo	12
3.4	Processo convencional de fabricação de ferro-cromo alto carbono (Forno Elétrico de Arco Submerso)	16
3.4.1	Variáveis de controle do forno	18
3.5	Processos industriais que utilizam pré-redução de pelotas ou	
	briquetes auto-redutores de cromita	19
3.6	Processos Alternativos	22
3.6.1	Processo Tecnored para produção de ferro-cromo	23
3.7	Análise termodinâmica da redução da cromita	25
3.7.1	Redução carbotérmica da cromita	25
3.7.1.1	Análise considerando atividades dos elementos envolvidos unitárias	29
3.7.1.2	Análise considerando atividade da cromita não unitária	32
3.7.2	Redução silicotérmica da cromita	37
3.7.3	Equilíbrio metal-escória na produção de ferro-cromo alto carbono (FeCrAC)	40
3.8	Variáveis no processo da redução em pelotas e briquetes auto-redutores de cromita.	46
3.8.1	Efeito da temperatura	46
3.8.2	Efeito do redutor	48
3.8.2.1	Redutores gasosos	48
3.8.2.2	Redutor Sólido	50
3.8.2.3	Quantidade e tamanho do redutor	51
3.8.3	Efeito da cromita	52

3.8.3.1	Relação Cr/Fe	52
3.8.3.2	Granulometria	52
3.8.3.3	Composição química	53
3.8.4	Efeito da adição de fluxantes	54
3.8.5	Efeito da composição da escória	56
3.8.6	Outros efeitos	57
3.8.7	Gradiente de temperatura na direção radial da pelota	59
4.0	MATERIAIS E METODOS	61
4.1	Materiais	61
4.1.1	Cromita	61
4.1.2	Coque de petróleo	62
4.1.3	Ferro-silício	63
4.1.4	Sílica	63
4.1.5	Cal dolomítica	64
4.1.6	Cimento Portland	64
4.1.7	Gás Argônio	64
4.1.8	Cadinho de grafite	64
4.2	Equipamentos	65
4.3	Métodos	68
4.3.1	Pelotas auto-redutoras	68
4.3.2	Procedimento experimental	69
4.3.3	Calculo da fração de reação	70
4.3.4	Medida da resistência a compressão das pelotas auto-	71
	redutoras	
5.0	RESULTADOS E DISCUSSÕES	72
5.1	Ensaios de redução	72
5.1.1	Influência da temperatura	72
5.1.2	Efeito da adição de Fe-75%Si	75
5.1.3	Influência da adição de fluxantes	79
5.2	Analise Micro-estrutural	80
5.2.1	Gradiente de temperatura na direção radial da pelota	81
5.2.2	Produtos de reação	86
5.2.2.1	Análise dos produtos de reação na temperatura de 1773K (1500ºC) da pelota 1 (P1)	86

5.2.2.2	Comparações quanto à evolução da redução das pelotas P1, P2 e P3 com adições de 0, de 1 e de 2% de Fe-75%Si respectivamente, na temperatura de 1773K (1500°C)	97
5.2.2.3	Comparações quanto à evolução da redução das pelotas 3, 4 e 5 (P3, P4 e P5) com adições de 2, de 4% de Fe-75%Si e 2% de Fe-75%Si com 2,88% de sílica e 3,83% de cal dolomítica, respectivamente, na temperatura de 1773K (1500°C)	106
5.3	Aspecto visual das pelotas auto-redutoras de cromita 1, 2, 3, 4 e 5, antes e após de serem reduzidas	117
5.4	Ensaios de compressão	118
6.0	POSSÍVEL APLICAÇÃO TECNOLOGICA E CONFIRMAÇÃO DOS RESULTADOS	119
6.1	Obtenção de pré-reduzidos de ferro-cromo alto carbono, a partir de pelotas auto-redutoras de cromita em forno rotativo de laboratório	119
7.0	CONCLUSÕES	127
	REFERÊNCIAS	130
	APENDICE A	
	APENDICE B	
	APENDICE C	
	APENDICE D	

LISTA DE FIGURAS

		Pág.
Figura 1	Produção anual de aço inoxidável no Brasil de 2000 a 2008	4
Figura 2	Evolução da produção mundial de aço inoxidável de 2003 a 2008	5
Figura 3	Produção mundial de aço inoxidável por regiões de 2003 a 2008	5
Figura 4	Evolução da produção mundial e brasileira de ferro-cromo alto carbono	6
Figura 5	Família de aços inoxidáveis	11
Figura 6	Solubilidade do carbono em ferro-cromo-silicio (aproximada)	14
Figura 7	Fluxograma da produção silicotérmica do ferro-cromo	15
Figura 8	Esquema do forno elétrico a arco submerso	17
Figura 9	Processo de produção de ferro-cromo alto carbono na Ferbasa	19
Figura 10	Economia de energia elétrica por tonelada de liga com o pré- aquecimento da carga (minério coque e fluxantes) para diversas temperaturas	21
Figura 11	Influências da carga pré-reduzida (pré-reduzido) e do pré- aquecimento da carga (sem redução) no consumo de energia elétrica para produção de FeCrAC	21
Figura 12	Economia de energia elétrica, por tonelada de liga, com carga pré-reduzida (pré-reduzido) e com pré-aquecimento da carga (sem redução) na produção de FeCrAC	22
Figura 13	Esquema do forno Tecnored	23
Figura 14	Componentes típicos dos minérios de ferro-cromo (cromita) existentes no mundo, em %molar	29
Figura 15	Variações da relação pCO ₂ /pCO fornecidas pela reação numero 13 da tabela 8 (reação de Boudouard) em função da temperatura (Os cálculos estão no anexo C)	30
Figura 16	Relação pCO ₂ /pCO em função da temperatura, da reação de Boudouard e de algumas reações de redução pelo CO selecionadas que constam da tabela 8, considerando pCO ₂ + pCO = 1 e atividade do FeO.Cr ₂ O ₃ no minério igual a 1.	31
Figura 17	Atividade do FeO. Cr_2O_3 na estrutura complexa da célula unitária da cromita de FeO. Cr_2O_3 – MgO(Cr_x Al _{1-x}) ₂ O ₃ em uma solução sólida saturada de (Cr ,Al) ₂ O ₃ a 1573K (1300°C).	33

Figura 18	Variação do coeficiente de atividade do $FeOCr_2O_3$ no minério de cromita do Vale do Jacurici com a temperatura (Os cálculos estão no anexo C)	34
Figura 19	Variação da atividade do FeO.Cr ₂ O ₃ no minério de cromita com a temperatura (Os cálculos estão no anexo C)	35
Figura 20	Relação pCO ₂ /pCO em função da temperatura da reação de Boudouard e de algumas reações de redução pelo CO selecionadas que constam da tabela 8 considerando pCO ₂ + pCO = 1 e atividade do FeO.Cr ₂ O ₃ no minério igual a 0,165 (Os cálculos estão no anexo C)	36
Figura 21	Relação de gases de equilíbrio pCO_2/pCO em função da temperatura da reação de Boudouard e atividade do FeO.Cr ₂ O ₃ no minério igual a 1, mostrando o equilíbrio SiO ₂ -Si (Os cálculos estão no anexo C)	38
Figura 22	Relação de gases de equilíbrio pCO_2/pCO em função da temperatura da reação de Boudouard e atividade do FeO.Cr ₂ O ₃ no minério igual a 0,165, mostrando o equilíbrio SiO ₂ -Si (Os cálculos estão no anexo C)	38
Figura 23	Energia livre padrão das reações de redução pelo Si, que constam na tabela 11	40
Figura 24	Efeito do silício no carbono, aproximadamente para a relação Cr/Fe de: a) 1,1; b) 1,3 e c) 1,7	40
Figura 25	Efeito do teor da sílica na escória e da temperatura no teor de silício do metal, para relação Cr/Fe de 1,3	41
Figura 26	Efeito da relação CaO/Al $_2O_3$ da escoria no silício do metal, para relação Cr/Fe 1,3	42
Figura 27	Efeito da relação MgO/CaO na distribuição de silício entre metal e escória para 25% Al ₂ O ₃ e $39,3\%$ SiO ₂	43
Figura 28	Efeitos da basicidade e temperatura no teor de cromo das escórias	44
Figura 29	Variação em escala logarítmica da partição do teor de cromo com a partição do teor de ferro, entre escória () e metal	45
Figura 30	Efeito do FeO no teor de cromo nas escórias	46
Figura 31	Efeito da temperatura na velocidade de redução carbotérmica de pelota auto-redutora de concentrado de cromita sul-africana com grafita. Quantidade estequiométrica de redutor	47
Figura 32	Efeito da temperatura na velocidade de redução pelo CO $(pCO = 10^5 Pa)$ de pelota de cromita	47
Figura 33	Efeito da temperatura na velocidade de redução pelo H_2 (p $H_2 = 10^5$ Pa) de pelota de cromita	48
Figura 34	Efeito da pH_2 na velocidade de redução pelo CO (ptotal = 10^5 Pa) de pelota de cromita	49

Figura 35	Efeito da relação pCO/pCO ₂ no grau de metalização durante a redução a 1573K (1300 °C) por 3 horas de pelotas auto- redutoras de cromita sul-africana	50
Figura 36	Efeito do tipo de redutor sólido na velocidade de redução de cromita americana (mistura solta / High Plateu- Califórnia)	51
Figura 37	Efeito do tamanho de partícula de cromita na velocidade de redução de pelota auto-redutora de cromita sul-africana – LG-6 a 1689K (1416°C)	53
Figura 38	Comparação da velocidade de redução carbotérmica de cromita em briquetes auto-redutores sem (a) e com (b) adição de fluoretos – $10\%NaF + CaF_2$	54
Figura 39	Efeito da adição de SiO ₂ em briquetes auto-redutores de cromita grega na velocidade de redução a 1673K (1400°C)	56
Figura 40	Efeito do diâmetro das pelotas auto-redutoras de cromita sul-africana no grau de redução (20 minutos de ensaio)	58
Figura 41	Efeito da oxidação previa da cromita a 1473K (1200 °C) por 2 horas na velocidade de redução de pelotas de cromita sul- africana. HT é cromita oxidada e NHT é cromita não oxidada	59
Figura 42	Imagem de elétrons retro-espalhados da cromita utilizada no presente trabalho	61
Figura 43	(a) Esquema do cadinho, (b) Cadinho de grafita (vista frontal e de topo)	65
Figura 44	Representação esquemática do forno de indução, ensaio de redução	66
Figura 45	Vista do forno de redução e do conjunto de equipamentos auxiliares para seu funcionamento: (A) forno de indução, (B) controlador da potencia e (2) transformador de voltagem, (C) Torre de refrigeração	66
Figura 46	Pelotas auto-redutoras de cromita	68
Figura 47	Vista frontal do misturador Turbula utilizado para homogeneização da composição da maioria das pelotas	69
Figura 48	Comparação da redução da pelota 1 (17,37 % coque de petróleo - sem Fe-75%Si) a diferentes temperaturas	73
Figura 49	Comparação da redução da pelota 2 (17,19 % coque de petróleo – 1,0% Fe-75%Si) a diferentes temperaturas	73
Figura 50	Comparação da redução da pelota 3 (17,00% coque de petróleo – 2,0% Fe-75%Si) a diferentes temperaturas	74
Figura 51	Comparação da evolução da redução da pelota 4 (16,64% coque de petróleo – 4,0% Fe-75%Si) a diferentes temperaturas	75
Figura 52	Comparação das reduções das pelotas 1, 2, 3 e 4 a temperatura de 1773K (1500°C)	76

	78
Figura 54 Comparação das reduções das pelotas 1, 2, 3 e 4 a temperatura de 1873K (1600°C)	a 79
Figura 55 Comparação das reduções das pelotas 3 e 5 na temperatura de 1773K (1500°C)	a 80
Figura 56 Pelota 1 (P1): cromita, coque de petróleo e cimento (sen Fe-75%Si e sem fluxante), a 1773K (1500°C), durante 0,8 minutos. (a) superficie da pelota 1, (b) centro da pelota 1	5 81
Figura 57 Pelota 1 (P1): cromita, coque de petróleo e cimento (sen Fe-75%Si e sem fluxante), a 1773K (1500°C), durante 2,8 minutos. (a) superficie da pelota 1, (b) centro da pelota 1	5 82
Figura 58 Pelota 1 (P1): cromita, coque de petróleo e cimento (sen Fe-75%Si e sem fluxante), a 1773K (1500°C), durante s minutos. (a) superficie da pelota 1, (b) centro da pelota 1	5 83
Figura 59 Pelota 1 (P1): cromita, coque de petróleo e cimento (sen Fe-75%Si e sem fluxante), a 1773K (1500°C), durante 10 minutos. (a) superficie da pelota 1, (b) centro da pelota 1) 84
Figura 60 Pelota 1 (P1): cromita, coque de petróleo e cimento (sen Fe-75%Si e sem fluxante), a 1773K (1500°C), durante 28 minutos. (a) superficie da pelota 1, (b) centro da pelota 1	84
Figura 61 Pelota 1 (P1): cromita, coque de petróleo e cimento (sen Fe-75%Si e sem fluxante), a 1773K (1500°C), durante 40 minutos. (a) superficie da pelota 1, (b) centro da pelota 1) 85
Figura 62 Pelota 1 (P1): cromita, coque de petróleo e cimento (sen Fe-75%Si e sem fluxante), a 1773K (1500°C), durante 120 minutos. (a) superficie da pelota 1, (b) centro da pelota 1) 85
Figura 63 Imagem de elétrons retro-espalhados (MEV), 500x Microestrutura no centro da pelota 1, antes de ser reduzida (17,37% coque de petróleo)	87
Figura 64 Imagem de elétrons retro-espalhados (MEV), 1000x Microestrutura do produto de reação após o ensaio de redução no centro da pelota 1 (17,37% coque de petróleo), a 1773K (Fr media = 0,40; 0,5 minutos)	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Figura 65 Imagem de elétrons retro-espalhados (MEV), 1000x Microestrutura do produto de reação após o ensaio de redução no centro da pelota 1, (17,37% coque de petróleo) a 1773K (Fr media = 0,72; 2,5 minutos)	; , 90
Figura 66 Imagem de elétrons retro-espalhados (MEV), 1000x Microestrutura do produto de reação após o ensaio de redução no centro da pelota 1 (17,37% coque de petróleo) a 1773K (Er maria = 0.78, 5 minutos)	; , 92

- Figura 67 Imagem de elétrons retro-espalhados (MEV), 1000x.
 Microestrutura do produto de reação após o ensaio de redução no centro da pelota 1 (17,37% coque de petróleo), a 1773K (Fr media = 0,86, 10 minutos)
- Figura 68 Imagem de elétrons retro-espalhados (MEV), 1000x.
 Microestrutura do produto de reação após o ensaio de redução no centro da pelota 1 (17,37% coque de petróleo), a 1773K (Fr media = 0,99, 40 minutos)
- Figura 69 Imagem de elétrons retro-espalhados (MEV), 1000x.
 Microestrutura do produto de reação após o ensaio de redução no centro da pelota 1 (17,37% coque de petróleo), a 1773K (Fr media = 0,40; 0,5 minutos)
- Figura 70 Imagem de elétrons retro-espalhados (MEV), 1000x.
 Microestrutura do produto de reação após o ensaio de redução no centro da pelota 2 (17,19% coque de petróleo e 1% Fe-75%Si), a 1773K (Fr media = 0,54; 0,5 minutos)
 98
- **Figura 71** Imagem de elétrons retro-espalhados (MEV). 1000x. Microestrutura do produto de reação após o ensaio de redução no centro da pelota 3 (17% coque de petróleo e 2% de Fe-75%Si), a 1773K (Fr_{media} = 0,47; 0,5 minutos)
- Figura 72 Imagem de elétrons retro-espalhados (MEV), 1000x.
 Microestrutura do produto de reação após o ensaio de redução no centro da pelota 1 (17,37% coque de petróleo), a 1773K (Fr media = 0,72; 2,5 minutos)
- Figura 73 Imagem de elétrons retro-espalhados (MEV), 1000x.
 Microestrutura do produto de reação após o ensaio de redução no centro da pelota 2 (17,19% coque de petróleo e 1% de Fe-75%Si), a 1773K (Fr media = 0,79, 2,5 minutos)
- Figura 74 Imagem de elétrons retro-espalhados (MEV). 1000x.
 Microestrutura do produto de reação após o ensaio de redução no centro da pelota 3 (17% coque de petróleo e 2% de Fe-75%Si), a 1773K (Fr media = 0,84, 2,5 minutos)
- Figura 75 Imagem de elétrons retro-espalhados (MEV), 1000x. Microestrutura do produto de reação após o ensaio de redução no centro da a pelota 1 (17,37% coque de petróleo), a 1773K (Fr media = 0,99; 40 minutos)
- Figura 76 Imagem de elétrons retro-espalhados (MEV). 500x.
 Microestrutura do produto de reação após o ensaio de redução no centro da pelota 2 (17,19% coque de petróleo e 1% de Fe-75%Si) a 1773K (Fr media = 0,99; 20 minutos) 104
- Figura 77 Imagem de elétrons retro-espalhados (MEV). 1000x.
 Microestrutura do produto de reação após o ensaio de redução no centro da pelota 3 (17% coque de petróleo e 2% de Fe-75%Si), a 1773K (Fr media = 0,99; 5 minutos)

99

Figura 78 Imagem de elétrons retro-espalhados (MEV). 1000x. Microestrutura do produto de reação após o ensaio de redução no centro da pelota 3 (17% coque de petróleo e 2% 107 de Fe-75%Si), a 1773K (Fr media = 0,79; 1,5 minutos) Figura 79 Imagem de elétrons retro-espalhados (MEV). 1000x. Microestrutura do produto de reação após o ensaio de redução no centro da pelota 4 (16,64% coque de petróleo e 4% de Fe-75%Si), a 1773K (Fr media = 0.42; 1.5 minutos) 108 Figura 80 Imagem de elétrons retro-espalhados (MEV). 1000x. Microestrutura do produto de reação após o ensaio de redução no centro da pelota 5 (11,22% coque de petróleo e 2% de Fe-75%Si com 2,88% de sílica e 3,83% de cal dolomítica hidratada), a 1773K (Fr media = 0,28; 1,5 minutos) 109 Imagem de elétrons retro espalhados (MEV). 1000x. Figura 81 Microestrutura do produto de reação após o ensaio de redução no centro da pelota 3 (17% coque de petróleo e 2% de Fe-75%Si), a 1773K (Fr media = 0.97, 4 minutos) 111 Figura 82 Imagem de elétrons retro-espalhados (MEV). 1000x. Microestrutura do produto de reação após o ensaio de redução no centro da pelota 4 (16,64% coque de petróleo e 112 4% de Fe-75%Si), a 1773K (Fr media = 0.93; 4.0 minutos) Figura 83 Imagem de elétrons retro-espalhados (MEV). 1000x. Microestrutura do produto de reação após o ensaio de redução no centro da pelota 5 (11,22% coque de petróleo e 2% de Fe-75%Si com 2,88% de sílica e 3,83% de cal dolomítica hidratada), a 1773K (Fr_{media} = 0,88; 7,5 minutos) 113 Figura 84 Imagem de elétrons retro-espalhados (MEV). 1000x. Microestrutura do produto de reação após o ensaio de redução no centro da pelota 3 (17% coque de petróleo e 2% de Fe-75%Si), a 1773K (Fr media= 0,99; 5 minutos) 114 Figura 85 Imagem de elétrons retro-espalhados (MEV). (a) 200x. (b) 1000x. Microestrutura do produto de reação após o ensaio de redução no centro da pelota 4 (16,64% coque de petróleo e 4% de Fe-75%Si), a 1773K (Fr media = 0,99; 8,0 minutos) 115 Figura 86 Imagem de elétrons retro-espalhados (MEV). 1000x. Microestrutura do produto de reação após o ensaio de redução no centro da pelota 5 (11,22% coque de petróleo e 2% de Fe-75%Si com 2.88% de sílica e 3.83% de cal dolomítica hidratada), a 1773K (Fr média = 0,98; 12,0 minutos) 116 (a) Pelota sem reduzir; (b) Pelotas 1, 2 e 3 reduzidas; (c) Figura 87 pelota 4 reduzida; (d) pelota 5 reduzida 118 Figura 88 118 Resistência a compressão das pelotas 1, 2, 3, 4 e 5 Figura 89 (a) Esquema do processo de redução no forno rotativo de laboratório. (b) Perfil térmico do forno rotativo de laboratório vazio com 0° de inclinação 120

Figura 90	Forno rotativo de laboratório	121
Figura 91	(a) Pelotas antes de serem reduzidas; (b) Pelotas após ensaio de 30 minutos em forno rotativo de laboratório a 1773K (1500°C)	121
Figura 92	Evolução de redução com o tempo, na zona de redução do forno rotativo de laboratório	122
Figura 93	Imagem de elétrons retro-espalhados no centro da pelota 3, após 5 minutos de ensaio. 1000 X. Fase branca (metálico), fase cinza (cromita) fase cinza escura (escória), fase preta (resina de embutimento)	123
Figura 94	Imagem de elétrons retro-espalhados no centro da pelota 3, após 10 minutos de ensaio, 1000 X. Fase branca (metálico), fase cinza (escória) com partículas de cromita reduzida, fase preta (resina de embutimento)	124
Figura 95	Imagem de elétrons retro-espalhados no centro da pelota 3, após 30 minutos de ensaio. 1000 aumentos. Fase branca (metálico), fase cinza continua (escória) com pontos metálicos, fase preta (resina de embutimento)	125

LISTA DE TABELAS

		Pag
Tabela 1	Especificação de Fe-Cr-AC, conforme produtor	7
Tabela 2	Especificação de Fe-Cr-MC, conforme produtor	8
Tabela 3	Especificação de Fe-Cr-BC, conforme produtor	9
Tabela 4	Composição química de minério e escória	13
Tabela 5	Composições das matérias primas	24
Tabela 6	Composição do ferro-cromo produzido pela Tecnored	24
Tabela 7	Energias livres de formação, no estado padrão, dos principais elementos envolvidos	26
Tabela 8	Possíveis reações químicas durante a pré-redução carbotérmica da cromita	27
Tabela 9	Temperaturas mínimas para ocorrer as reações de redução a partir do espinélio de cromita com atividade unitária e com atividade 0,165 (espinélio na cromita brasileira)	37
Tabela 10	Energias livres padrões de formação dos principais elementos envolvidos	39
Tabela 11	Possíveis reações químicas durante a redução silicotérmica da cromita	39
Tabela 12	Composições químicas das fases presentes, identificadas na figura 42	62
Tabela 13	Composição química da cromita	62
Tabela 14	Analise granulométrica da cromita	62
Tabela 15	Composição química do coque de petróleo, % massa (análise imediata)	63
Tabela 16	Analise granulométrica do coque de petróleo	63
Tabela 17	Composição química do Fe-Si, segundo Instituto de Pesquisas Tecnológicas (IPT)	63
Tabela 18	Analise granulométrica do Fe-75%Si	63
Tabela 19	Composição química da cal dolomítica antes da hidratação	64
Tabela 20	Composição química do Cimento Portland ARI	64
Tabela 21	Composição das pelotas (% massa)	68
Tabela 22	Tempo para atingir fração de reação unitária (minutos)	75
Tabela 23	Calor necessário para a redução das pelotas, nas temperaturas isotérmicas de ensaio e porcentagem de calor adicionado pelas adições de Fe-75%Si	77
i abela 24	Composição química do centro da pelota 1 analisada por EDS no MEV. Figura 63	87

Tabela 25	Composição química do centro da pelota 1 analisada por EDS no MEV. Temperatura de 1773K (0,5 minutos). Figura 64	88
Tabela 26	Composição química do centro da pelota 1 analisada por EDS no MEV. Temperatura de 1773K (2,5 minutos). Figura 65	90
Tabela 27	Composição química dos óxidos da escória, vindos da tabela 25, indicação 4	91
Tabela 28	Composição química do centro da pelota 1 analisada por EDS no MEV. Temperatura de 1773K (5 minutos). Figura 66	92
Tabela 29	Composição química dos óxidos da escória, vindos da tabela 27, indicação 2	93
Tabela 30	Composição química do centro da pelota 1 analisada por EDS no MEV. Temperatura de 1773K (10 minutos). Figura 67	94
Tabela 31	Composição química dos óxidos da escória, vindos da tabela 29, (indicações 2 e 3) com estimativas das temperaturas <i>líquidus</i>	94
Tabela 32	Composição química do centro da pelota 1 analisada por EDS no MEV. Temperatura de 1773K (40 minutos). Figura 68	96
Tabela 33	Composição química dos óxidos da escória, vindos da tabela 31, indicações 3 e 4	96
Tabela 34	Composição química do centro da pelota 1 analisada por EDS no MEV. Temperatura de 1773K (0,5 minutos). Figura 69	98
Tabela 35	Composição química do centro da pelota 2 analisada por EDS no MEV. Temperatura de 1773K (0,5 minutos). Figura 70	98
Tabela 36	Composição química do centro da pelota 3 obtida por EDS no MEV. Temperatura de 1773K (0,5 minutos). Figura 71	99
Tabela 37	Composição química do centro da pelota 1 analisada por EDS no MEV. Temperatura de 1773K (2,5 minutos). Figura 72	100
Tabela 38	Composição química do centro da pelota 2 analisada por EDS no MEV. Temperatura de 1773K (2,5 minutos). Figura 73	101
Tabela 39	Composição química do centro da pelota 3 obtida por EDS no MEV. Temperatura de 1773K (2,5 minutos). Figura 74	102

Tabela 40	Composição química do centro da pelota 1 analisada por EDS no MEV. Temperatura de 1773K (40 minutos). Figura 75	103
Tabela 41	Composição química do centro da pelota 2 obtida por EDS no MEV. Temperatura de 1773K (20 minutos). Figura 76	104
Tabela 42	Composição química do centro da pelota 3 obtida por EDS no MEV. Temperatura de 1773K (5 minutos). Figura 77	105
Tabela 43	Composição química do centro da pelota 3 obtida por EDS no MEV. Temperatura de 1773K (1,5 minutos). Figura 78	107
Tabela 44	Composição química dos óxidos da escória, vindos da tabela 42, indicação 2	108
Tabela 45	Composição química do centro da pelota 4 obtida por EDS no MEV. Temperatura de 1773K (1,5 minutos). Figura 79	108
Tabela 46	Composição química dos óxidos da escória, vindos da tabela 44, indicações 3 e 4	108
Tabela 47	Composição química do centro da pelota 5 obtida por EDS no MEV. Temperatura de 1773K (1,5 minutos). Figura 80	109
Tabela 48	Composição química dos óxidos da escória, vindos da tabela 46, indicação 4	109
Tabela 49	Composição química do centro da pelota 3 obtida por EDS no MEV. Temperatura de 1773K (4 minutos). Figura 81	111
Tabela 50	Composição química dos óxidos da escória, vindos da tabela 48, indicações 2 e 3	111
Tabela 51	Composição química do centro da pelota 4 obtida por EDS no MEV. Temperatura de 1773K (4,0 minutos). Figura 82	112
Tabela 52	Composição química dos óxidos da escória, vindos da tabela 50, indicações 2 e 3	112
Tabela 53	Composição química do centro da pelota 5 obtida por EDS no MEV. Temperatura de 1773K (7,5 minutos). Figura 83	113
Tabela 54	Composição química dos óxidos da escória, vindos da tabela 52, indicações 3 e 4	113
Tabela 55	Composição química do centro da pelota 3 obtida por EDS no MEV. Temperatura de 1773K (5 minutos). Figura 84	115
Tabela 56	Composição química dos óxidos da escória, vindos da tabela 54, indicações 2 e 3	115
Tabela 57	Composição química do centro da pelota 4 obtida por EDS no MEV. Temperatura de 1773K (8,0 minutos). Figura 85	115
Tabela 58	Composição química dos óxidos da escória, vindos da tabela 56, indicações 2 e 3	116
Tabela 59	Composição química do centro da pelota 5 obtida por EDS no MEV. Temperatura de 1773K (12,0 minutos). Figura 86	116

Tabela 60	Composição química dos óxidos da escória, vindos da tabela 58, indicações 2 e 3	116
Tabela 61	Composição da pelota (% massa)	120
Tabela 62	Análise por EDS das fases presentes do centro da pelota 3, com 5 minutos de ensaio. Figura 93	123
Tabela 63	Análise por EDS das fases presentes do centro da pelota 3, com 10 minutos de ensaio. Figura 94	124
Tabela 64	Análise por EDS do centro da pelota 3, com fração media de reação de 0,98 com 30 minutos de ensaio. Figura 95	125
Tabela 65	Recuperação (R) de cromo para os diferentes tempos de ensaio no forno rotativo de laboratório	126

LISTA DE ABREVIATURAS E SIGLAS

Fe-Cr	Liga ferro-cromo
Fe-Cr-Ni	Liga ferro-cromo-níquel
Fe-Cr AC	Liga ferro-cromo alto carbono
Fe-Cr BC	Liga ferro-cromo baixo carbono
Fe-Cr MC	Liga ferro-cromo médio carbono
VOD	Vacuum oxygem descarburization
AOD	Argon oxygen descarburization
MeO	Óxido de um metal qualquer
MeC	Carbeto metálico
Fe-Cr-Si	Liga ferro-cromo-silício
Fe-Cr-Si BC	Liga ferro-cromo-silício baixo carbono
SAF	Forno de arco submerso
Fe-Mn	Liga ferro-manganês
Ме	Metal
R	Constante universal dos gases
Т	Temperatura (K)
Fe-Cr-Si-C	Liga ferro-cromo-silício-carbono
CF	Carbono fixo
V	Voláteis
U	Umidade
CZ	Cinzas
LCT	Laboratório de caracterização tecnológica
FeSi	Liga ferro-silicio
EDS	Electrons difraction spectrum
ARI	
	Alta resistencia inicial

LISTA DE SÍMBOLOS

ΔG^{o}	Energia livre
Ke	Constante de equilíbrio
a c	Atividade de carbono
рСО	Pressão parcial do gas CO
pCO ₂	Pressão parcial do gás CO ₂
γ	Coeficiente de atividade Raoultiano
Ν	Fração molar do componente
~	Aproximadamente
Δ	Variação.
К	Kelvin
k	quilo
°C	Graus Celcius
1000x	1000 vezes de aumento
kWh	kilowatt-hora
kHz	kilohertz