• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.3.2002.tde-16052005-083957
Documento
Autor
Nome completo
Alexandre Teixeira Mafra
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2002
Orientador
Banca examinadora
Simoes, Marcelo Godoy (Presidente)
Okamoto Junior, Jun
Reali Costa, Anna Helena
Título em português
Reconhecimento automático de locutor em modo independente de texto por Self-Organizing Maps.
Palavras-chave em português
quantização vetorial
reconhecimento de locutor
reconhecimento de voz
redes neurais
Self-Organizing Maps
SOM
Resumo em português
Projetar máquinas capazes identificar pessoas é um problema cuja solução encontra uma grande quantidade de aplicações. Implementações em software de sistemas baseados em medições de características físicas pessoais (biométricos), estão começando a ser produzidos em escala comercial. Nesta categoria estão os sistemas de Reconhecimento Automático de Locutor, que se usam da voz como característica identificadora. No presente momento, os métodos mais populares são baseados na extração de coeficientes mel-cepstrais (MFCCs) das locuções, seguidos da identificação do locutor através de Hidden Markov Models (HMMs), Gaussian Mixture Models (GMMs) ou quantização vetorial. Esta preferência se justifica pela qualidade dos resultados obtidos. Fazer com que estes sistemas sejam robustos, mantendo sua eficiência em ambientes ruidosos, é uma das grandes questões atuais. Igualmente relevantes são os problemas relativos à degradação de performance em aplicações envolvendo um grande número de locutores, e a possibilidade de fraude baseada em vozes gravadas. Outro ponto importante é embarcar estes sistemas como sub-sistemas de equipamentos já existentes, tornando-os capazes de funcionar de acordo com o seu operador. Este trabalho expõe os conceitos e algoritmos envolvidos na implementação de um software de Reconhecimento Automático de Locutor independente de texto. Inicialmente é tratado o processamento dos sinais de voz e a extração dos atributos essenciais deste sinal para o reconhecimento. Após isto, é descrita a forma pela qual a voz de cada locutor é modelada através de uma rede neural de arquitetura Self-Organizing Map (SOM) e o método de comparação entre as respostas dos modelos quando apresentada uma locução de um locutor desconhecido. Por fim, são apresentados o processo de construção do corpus de vozes usado para o treinamento e teste dos modelos, as arquiteturas de redes testadas e os resultados experimentais obtidos numa tarefa de identificação de locutor.
Título em inglês
Text independent automatic speaker recognition using Self-Organizing Maps.
Palavras-chave em inglês
neural networks
Self-Organizing Maps
SOM
speaker recognition
speech recognition
vector quantization
Resumo em inglês
The design of machines that can identify people is a problem whose solution has a wide range of applications. Software systems, based on personal phisical attributes measurements (biometrics), are in the beginning of commercial scale production. Automatic Speaker Recognition systems fall into this cathegory, using voice as the identifying attribute. At present, the most popular methods are based on the extraction of mel-frequency cepstral coefficients (MFCCs), followed by speaker identification by Hidden Markov Models (HMMs), Gaussian Mixture Models (GMMs) or vector quantization. This preference is motivated by the quality of the results obtained by the use of these methods. Making these systems robust, able to keep themselves efficient in noisy environments, is now a major concern. Just as relevant are the problems related to performance degradation in applications with a large number of speakers involved, and the issues related to the possibility of fraud by the use of recorded voices. Another important subject is to embed these systems as sub-systems of existing devices, enabling them to work according to the operator. This work presents the relevant concepts and algorithms concerning the implementation of a text-independent Automatic Speaker Recognition software system. First, the voice signal processing and the extraction of its essential features for recognition are treated. After this, it is described the way each speaker's voice is represented by a Self-Organizing Map (SOM) neural network, and the comparison method of the models responses when a new utterance from an unknown speaker is presented. At last, it is described the construction of the speech corpus used for training and testing the models, the neural network architectures tested, and the experimental results obtained in a speaker identification task.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2005-09-27
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.