• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.18.2014.tde-20012015-093009
Documento
Autor
Nome completo
Brianda Rangel Francisco
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2014
Orientador
Banca examinadora
Pinto, Haroldo Cavalcanti (Presidente)
Londoño, Antonio José Ramirez
Oliveira, Marcelo Falcão de
Título em português
Estudo da união por fricção e mistura mecânica entre aço austenítico alto Mn com efeito TRIP e aço automotivo ARBL
Palavras-chave em português
Aços
ARBL
Microestrutura
Propriedades mecânicas
Soldagem por fricção e mistura mecânica
TRIP
Resumo em português
A crescente escassez dos recursos energéticos renováveis, bem como o contínuo aumento dos seus custos tem requerido nas últimas décadas uma redução drástica no consumo de energia utilizada para o transporte de cargas e passageiros. A indústria siderúrgica pode contribuir decisivamente neste contexto, disponibilizando no mercado aços de maior resistência mecânica, os quais podem ser utilizados em estruturas mais esbeltas. Os aços com elevados teores de Mn (15-30%) representam um desenvolvimento muito recente de ligas ferrosas puramente austeníticas, que reúnem resistência mecânica elevada e grande ductilidade. Além disso, trata-se de ligas de baixo custo devido à eliminação dos elevados teores de Ni necessários para a estabilização da austenita e ao reduzido tempo de processamento, que dispensa tratamentos térmicos e processamentos termomecânicos controlados. Por outro lado, a redução de peso estrutural no setor automobilístico requer não somente a pesquisa de novos aços, mas também a utilização de componentes híbridos, resultantes, entre outros, da união dos aços austeníticos alto Mn com aços comerciais estruturais de alta resistência e baixa liga (ARBL). Nesta dissertação, estudou-se, portanto, a soldabilidade pelo processo de fricção e mistura mecânica (SFMM) de aço austenítico alto Mn com efeito TRIP (plasticidade induzida por transformação martensítica) com aço ARBL processado termomecanicamente tipo XABO500 (ThyssenKrupp Steel, limite de escoamento > 460 MPa). As placas de aço TRIP foram fabricadas na EESC-USP com composição Fe-22.5% Mn-0.4% C através de fundição sob atmosfera protetora de argônio, tratamento térmico de homogenização e laminação a quente a 1150°C. As juntas dissimilares TRIP-ARBL foram produzidas com chapas de 3.5 mm de espessura. Os ensaios de soldagem SFMM foram conduzidos com ferramenta de compósito PCBN-WRe. O aporte térmico de soldagem foi variado através do uso de três velocidades de rotação da ferramenta: 300, 400 e 500 rpm, e o avanço foi de 100 mm/min. Dois deslocamentos (offsets) da ferramenta foram investigados: +1.0 e +2.0 mm em direção ao aço TRIP. Os resultados revelaram um acabamento superficial satisfatório das juntas soldadas com 300 e 400 rpm. A penetração de soldagem aumentou com a velocidade de rotação da ferramenta e com um maior deslocamento da ferramenta em direção ao aço TRIP devido ao crescimento do aporte térmico. A SFMM produziu em ambos os lados das juntas dissimilares uma microestrutura caracterizada apenas por zona de mistura (ZM) e zona termicamente afetada (ZTA), não sendo observada a formação de zonas termomecanicamente afetadas (ZTMA). Na ZM do aço ARBL, a SFMM produziu uma microestrutura polifásica, contendo misturas de ferrita acicular, bainita e martensita. O lado TRIP da ZM não exibiu sinais de transformação martensítica induzida por deformação e sofreu recristalização dinâmica com a formação de uma austenita refinada em comparação com o metal de base. A junta produzida com menor aporte térmico (300 RPM e Offset +1) apresentou os maiores picos de dureza na ZM do aço TRIP devido à maior taxa de resfriamento e, consequentemente, a microestrutura mais fina. Apesar dos maiores picos de dureza, a junta produzida com 300 RPM e Offset +1 apresentou o melhor desempenho no ensaio de tração, atingindo o maior percentual de alongamento a fratura e rompendo no metal de base ARBL. Isso se deve provavelmente à formação de ferrita acicular mais fina na ZM do aço ARBL com microestrutura entrelaçada e de maior tenacidade, se comparado com o metal de base ARBL.
Título em inglês
Study union friction and mechanical mixing between austenitic high Mn TRIP effect and automotive steel HSLA
Palavras-chave em inglês
Friction stir welding
HSLA
Mechanical properties
Microestructure
Steels
TRIP
Resumo em inglês
The increasing scarcity of renewable energy resources and their continuously rising costs have required in the last decades a drastic reduction in the energy consumption for the transportation of goods and passengers. The steel industry can decisively contribute in this context by providing the market with steel grades of increased mechanical strength, which can be incorporated into light-weight structures. Steels with high Mn contents (15-30%) represent a recent development of austenitic ferrous alloys that combine elevated mechanical strength with high ductility. In addition, those steel grades correspond to low cost alloys due to the replacement of the high Ni contents necessary to stabilize the austenite as well as the reduced manufacturing time that does not involve subsequent heat treatments or controlled thermo-mechanical processing. On the other hand, the reduction of structural weight in the automotive sector does not only require the research on novel steels, but also the use of hybrid components that result among others from joining austenitic high-Mn steels to commercial structural high-strength low-alloyed (HSLA) steel grades. In this work, we studied therefore the friction stir weldability of an austenitic high-Mn steel with TRIP (transformation induced plasticity) effect to the thermomechanically processed HSLA XABO500 steel grade (ThyssenKrupp Steel, yield strength > 460 MPa). High-Mn TRIP steel plates were produced at the EESC-USP with the chemical composition of Fe-22.5% Mn-0.4% C by casting under protective argon atmosphere, followed by homogenization treatment and hot rolling at 1150°C. The dissimilar TRIP-HSLA joints were produced using 3.5 mm thick plates. The friction stir welding (FSW) experiments were carried out with a tool made of a PCBN-WRe composite. The heat input was varied by using three tool rotational speeds: 300, 400 and 500 rpm. The welding speed was set to 100 mm/min. Two different tool offsets were investigated: +1.0 and +2.0 mm towards the high-Mn TRIP steel. The results revealed that a satisfactory surface finishing is achieved for the butt-joints produced with 300 and 400 rpm. The welding penetration increased for higher tool rotational speeds and larger tool offsets towards the TRIP steel because of an increased heat input. FSW produced at both sides of the dissimilar joints a microstructure characterized by only stir zone (SZ) and heat-affected zone (HAZ). Thermo-mechanical affected zones (TMAZ) could not be observed. In the SZ of the HSLA steel, FSW produced a multiphase microstructure that contains a mixture of acicular ferrite, bainite and martensite. The TRIP side of the SZ did not exhibit traces of strain induced martensitic transformation and underwent dynamic recrystallization with the formation of a fine-grained austenite in comparison to the base material. The butt-joint produced with the lowest heat input (300 RPM and Offset +1) developed the highest hardness peaks in the SZ of the TRIP steel because of the increased cooling rate and, consequently, the more refined microstructure. In spite of the hardest zones, the butt-joint produced with 300 RPM and offset +1 achieved the best performance in the tensile tests by reaching the largest elongation to fracture and having the failure in the HSLA base material. This is likely promoted by the formation of a more refined acicular ferrite in the SZ of the HSLA steel with interpenetrated microstructure and enhanced toughness in comparison to the HSLA base material.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
MEfinal.pdf (7.46 Mbytes)
Data de Publicação
2015-01-28
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.