• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
https://doi.org/10.11606/D.18.2014.tde-03092014-090152
Document
Author
Full name
Lucas Assis de Moraes
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2014
Supervisor
Committee
Flauzino, Rogério Andrade (President)
Delbem, Alexandre Cláudio Botazzo
Dória Neto, Adrião Duarte
Title in Portuguese
Desenvolvimento de uma abordagem fuzzy para estimação de demanda de potência em um sistema de distribuição de energia elétrica
Keywords in Portuguese
Distribuição de energia elétrica
Estimação de séries temporais
Modelagem e simulação de sistemas dinâmicos
Sistemas de inferência fuzzy
Sistemas inteligentes
Abstract in Portuguese
Este trabalho tem por objetivo desenvolver uma abordagem fuzzy focando na estimação de curto prazo da demanda de potência ativa de um alimentador de sistema de distribuição de energia elétrica. A motivação para este trabalho encontra-se na redução do erro de estimação para que o sistema de distribuição como um todo seja corretamente operado. O destaque da abordagem desenvolvida é a metodologia de seleção de entradas para o sistema de estimação, que o treina fornecendo-lhe informações não redundantes e não desnecessárias sobre o comportamento da série temporal. Os resultados, obtidos com treinamento e teste de um sistema de inferência fuzzy multicamadas, mostram que as estimações realizadas selecionando as entradas do sistema de forma criteriosa apresentam menor erro que quando não há critério de seleção. Conclui-se então que a metodologia foi funcional e eficiente para o caso estudado, o que faz com que este trabalho resulte em válidas contribuições nas áreas de sistemas inteligentes, de sistemas dinâmicos e inclusive na forma metodológica de especificação de modelos de estimação de séries temporais.
Title in English
Development of a fuzzy approach for power demand forecast in an electrical energy distribution system
Keywords in English
Dynamic systems modeling and simulation
Electrical energy distribution
Fuzzy inference systems
Intelligent systems
Time series estimation
Abstract in English
This work aims to develop a fuzzy approach focusing on the short-term active power demand forecast in a feeder of an electrical energy distribution system. This work motivation lies on the reduction of the forecast error so that the whole distribution system can be correctly operated. The highlight of the developed approach is the methodology to select the inputs for the estimation system, which trains it giving to it non-redundant and non-unnecessary information about the time series behavior. The results, obtained by training and testing a multilayer fuzzy inference system, show that the estimations made by following a criterion to select the inputs have smaller error than when there is no selection criterion at all. It is therefore concluded that the methodology was functional and efficient for the case under study, what makes this work result in valid contributions for the fields of intelligent systems, dynamic systems and in the methodological way to specify models to estimate time series.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Lucas.pdf (1.86 Mbytes)
Publishing Date
2014-09-10
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2024. All rights reserved.