• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
10.11606/T.18.2010.tde-24062010-153212
Document
Auteur
Nom complet
Milene Arantes
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 2010
Directeur
Jury
Gonzaga, Adilson (Président)
Batista, Leonardo Vidal
Mascarenhas, Nelson Delfino D'Ávila
Rodrigues, Evandro Luis Linhari
Saito, José Hiroki
Titre en portugais
Método de reconhecimento da marcha humana por meio da fusão das características do movimento global
Mots-clés en portugais
Análise da marcha
Biometria
Fusão de característica
Marcha humana
Movimento global
Reconhecimento da marcha
Resumé en portugais
Este trabalho propõe um novo enfoque em visão computacional aplicado a sequências de vídeo, de pessoas em movimento, para reconhecê-las por meio da marcha. O movimento humano carrega diferentes informações, considerando-se diferentes maneiras de analisá-lo. O esqueleto carrega as informações do movimento global de articulações do corpo humano e como se comportam durante a caminhada e a silhueta carreia informações referentes ao comportamento global do contorno do corpo humano. Além disso, imagens binárias e em escala de cinza possuem diferentes informações sobre o movimento humano. O método proposto considera o conjunto de frames segmentados de cada indivíduo como uma classe e cada frame como um objeto desta classe. A metodologia aplica o Modelo de Mistura de Gaussianas (GMM) para subtração de fundo, redução de escala realizada por meio de técnicas de multiresolução baseadas na Transformada Wavelet (TW) e a extração dos padrões por meio da Análise dos Componentes Principais (PCA). São propostos e ensaiados quatro novos modelos de captura de movimentos globais do corpo humano durante a marcha: o modelo Silhouette-Gray-Wavelet (SGW) captura o movimento baseado nas variações em nível de cinza; o modelo Silhouette-Binary-Wavelet (SBW) captura o movimento baseado nas informações binárias da silhueta; o modelo Silhouette-Edge-Wavelet (SEW) captura o movimento baseado nas informações contidas na borda das silhuetas e o modelo Silhouette-Skeleton-Wavelet (SSW) captura o movimento baseado do esqueleto humano. As taxas de classificações corretas obtidas separadamente a partir destes quatro diferentes modelos são então combinadas utilizando-se uma nova técnica de fusão. Os resultados demonstram excelente desempenho e mostraram a viabilidade para reconhecimento de pessoas.
Titre en anglais
Recognition method of human gait by fusion of features of the global movement
Mots-clés en anglais
Biometry
Fusion of characteristics
Gait analysis
Gait recognition
Global motion
Resumé en anglais
This paper proposes a novel computer vision approach that processes video sequences of people walking and then recognises those people by their gait. Human motion carries different information that can be analysed in various ways. The skeleton carries motion information about human joints, and the silhouette carries information about boundary motion of the human body. Moreover, binary and gray-level images contain different information about human movements. Our proposed method considers the set of the segmented frames of each individual as a distinct class and each frame as an object of this class. The methodology applies background extraction using the Gaussian Mixture Model (GMM), a scale reduction based on the Wavelet Transform (WT) and feature extraction by Principal Component Analysis (PCA). We propose four new schemas for motion information capture: the Silhouette-Gray-Wavelet model (SGW) captures motion based on grey level variations; the Silhouette-Binary-Wavelet model (SBW) captures motion based on binary information; the Silhouette-Edge-Binary model (SEW) captures motion based on edge information and the Silhouette-Skeleton-Wavelet model (SSW) captures motion based on skeleton movement. The classification rates obtained separately from these four different models are then merged using a new proposed fusion technique. The results suggest excellent performance in terms of recognising people by their gait.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Milene.pdf (6.48 Mbytes)
Date de Publication
2010-07-14
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
Centro de Informática de São Carlos
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2019. Tous droits réservés.