• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.18.2008.tde-14072008-235317
Documento
Autor
Nome completo
Ana Cláudia Paris
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2008
Orientador
Banca examinadora
Gonzaga, Adilson (Presidente)
Traina, Agma Juci Machado
Vieira, Marcelo Andrade da Costa
Título em português
Análise da eficiência de recuperação por conteúdo de imagens médicas, utilizando extratores de textura baseados em Wavelet e Wavelet Packet
Palavras-chave em português
Best tree
CBIR
Imagens Médicas
Wavelet
Wavelet Packet
Resumo em português
Aplicações computacionais voltadas para o auxílio ao diagnóstico (Computer-Aided Diagnosis - CAD) estão se tornando cada vez mais freqüentes. O objetivo dessas aplicações é fornecer ao profissional da área médica ferramentas que auxiliem na detecção precoce de patologias diversas. Nesse contexto, algoritmos que satisfaçam o interesse do usuário em encontrar imagens semelhantes a um caso específico podem ser desenvolvidos. Essas buscas devem ser feitas por similaridade, considerando a informação visual da imagem e não utilizando os recursos do processo convencional de busca textual, o qual compara parâmetros fornecidos pelo usuário com valores de atributos armazenados. As técnicas que permitem esse desenvolvimento são descritas na literatura como recuperação de imagens baseada em conteúdo (Content-Based Image Retrieval - CBIR). O maior desafio nessa abordagem é determinar o conjunto de características que descrevem o conteúdo da imagem adequadamente. No presente trabalho foram implementados algoritmos para extrair as características das imagens médicas utilizando as transformadas Wavelet e Wavelet Packet. A transformada Wavelet Packet tem maior capacidade para distinguir as freqüências quando comparada com a transformada Wavelet "tradicional". Esse estudo explora tal propriedade e analisa o desempenho dessas abordagens matemáticas na recuperação das imagens médicas por conteúdo. Ao final do estudo pôde-se estabelecer um comparativo entre os resultados obtidos com os vetores gerados a partir dos dados extraídos por ambas transformadas. Considerando-se que na área médica a precisão na obtenção das informações tem importância fundamental, a transformada Wavelet Packet revelou vantagens relevantes sobre os métodos tradicionais que aplicam a transformada Wavelet. Gráficos recall x precision e confusion matrix forneceram medidas da eficácia de recuperação.
Título em inglês
Efficiency analysis of content-based medical image retrieval, using texture extractors based on Wavelet and Wavelet Packet
Palavras-chave em inglês
Best tree
CBIR
Medical images
Wavelet
Wavelet Packet
Resumo em inglês
Computer-Aided Diagnosis (CAD) applications are becoming more frequent each day. This application's objective is to provide tools for the medical professional that help in the precocious detection of different pathologies. On this context, algorithms that satisfy the user interest to find similar images related to a singular case can be developed. Such searches must be done considering the visual information instead of using common resources employed in textual conventional procces's searches, which compares parameters provide by the user to attribute's values stored. The techniques that admit such development are depicted in the literature as Content-Based Image Retrieval (CBIR). The great challenge here is to define the features that represent the image appropriately. In the present research were implemented algorithms to extract the images features using the Wavelet transform and Wavelet Packet transform. A Wavelet Packet transform distinguish frequencies better than the "tradicional" Wavelet transform. Therefore this study explores such properties and analyze the both mathematics approaches performance in the medical images retrieval. A comparative can be estabilished between the results obtained with the vectors produced using extracted data in both transforms. Considering that in the medical area the precision to obtain informations has fundamental importance, the Wavelet Packet transform revealed relevant advantages compared to the traditional methods that use the Wavelet transform. Recall x precision graphs and confusion matrix provides retrieval efficiency measures.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
DissertacaoFinal.pdf (5.72 Mbytes)
Data de Publicação
2008-07-18
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.