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RESUMO 

 

RIBEIRO, M. L. (2013) Modelos de falha e dano para estruturas aeronáuticas com 

curvatura e fabricadas em material compósito. 234p. Tese - Escola de Engenharia de São 

Carlos, Universidade de São Paulo, São Carlos.  

 

As recentes melhorias nos processos de fabricação e nas propriedades dos materiais 

associadas a excelentes características mecânicas e baixo peso tornam os materiais 

compósitos muito atrativos para aplicação em estruturas aeronáuticas. No entanto, mesmo 

novos projetos, ainda são muito conservadores, pois os fenômenos de falha dos compósitos 

são muito complexos. Vários critérios e teorias de falha têm sido desenvolvidos para 

descrever o processo de dano e sua evolução, mas a solução do problema ainda está em 

aberto. Além disso, técnicas modernas de fabricação, como o enrolamento filamentar 

(filament winding) vêm sendo utilizadas para produzir uma ampla variedade de formas 

estruturais. Assim, este trabalho apresenta o desenvolvimento de um modelo de dano e a sua 

aplicação para simular a falha progressiva de estruturas planas e cilíndricas fabricadas em 

material compósito através do processo de filament winding. O modelo de dano proposto foi 

implementado como sub-rotinas em linguagem FORTRAN (UMAT-User Material Subroutine 

e, VUMAT-User Material Subroutine para simulações explícitas), que foram compiladas 

junto ao programa comercial de Elementos Finitos ABAQUSTM. Várias análises numéricas 

foram realizadas via elementos finitos, a fim de prever a falha dessas estruturas de material 

compósito sob diferentes condições de carregamentos quase-estáticos e de impacto. Além 

disso, vários ensaios experimentais foram realizados, a fim de identificar os parâmetros 

relacionados com o modelo de material, bem como  avaliar as potencialidades e as limitações 

do modelo proposto.  

 

Palavras-chave: estruturas curvas, materiais compósitos, modelo de material, análise 

progressiva de falhas, Elementos Finitos. 

 



 

 

 

 

 

 



 

ABSTRACT 

 

RIBEIRO, M. L.(2013) Damage and progressive failure analysis for aeronautic composite 

structures with curvature. 234p . PhD Thesis - São Carlos School of Engineering, University 

of São Paulo, São Carlos.  

 

Recent improvements in manufacturing processes and materials properties associated with 

excellent mechanical characteristics and low weight have became composite materials very 

attractive for application on civil aircraft structures. However, even new designs are still very 

conservative, because the composite structure failure phenomena are very complex. Several 

failure criteria and theories have been developed to describe the damage process and how it 

evolves, but the solution of the problem is still open. Moreover, modern manufacturing 

processes, e.g. filament winding, have been used to produce a wide variety of structural 

shapes. Therefore, this work presents the development of a damage model and its application 

to simulate the progressive failure of flat composite laminates as well as for composite 

cylinders made by filament winding process. The proposed damage model has been 

implemented as a UMAT (User Material Subroutine) and VUMAT (User Material Subroutine 

for explicit simulations), which were linked to ABAQUSTM Finite Element (FE) commercial 

package. Progressive failure analyses have been carried out using FE Method in order to 

simulate the failure of filament wound composite structures under different quasi-static and 

impact loading conditions. In addition, experiments have been performed not only to identify 

parameters related to the material model but also to evaluate both the potentialities and the 

limitations of the proposed model.  

 

Key-Words: curved structures, composite materials, material model, progressive failure 

analysis, Finite Element Method. 
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method to produce composite parts. The basis of the filament winding process is the high 

speed and the precise deposition of continuous fibers impregnated by resin onto a mandrel. 

Several parts can be manufactured using a filament winding process, such as pressure vessels, 

pipes, drive shafts and aircraft structures (panels and flight command surfaces). These 

structures have high strength per weight, i.e. high specific strength. The geometry of the 

mandrel is limited to producing closed and convex structures. Filament winding can produce 

from small diameter tubes up to 40 meters, as well as large wind turbine blades. The 

manufacturing process is computer controlled and the reinforcement may be oriented to match 

the design requirement loads. With appropriate automation, this process is economically 

attractive (Callister, 2011) and, it is possible to produce a wide variety of structural shapes 

such as cylindrical parts and “quasi-flat” laminates (with high relative radius of curvature as 

7.6 m), which are manufactured by a special mandrel. However, it is worth to mention that 

complex parts even with cut-outs are not possible to be produced by using filament winding. 

In this case, it is more strategic to use, for example, fiber placement process, which produces 

aerospace parts with high quality. 

In addition to the aspects commented above, it is very important to highlight that it is 

difficult to find scientific contributions in the literature for flat or quasi-flat composite 

laminates made by using filament winding. Thus, there is a scientific scenario, which 

motivates the development of a damage model and its application to simulate the progressive 

failure of quasi-flat (single curved) composite laminates and cylinders made by using filament 

winding process. Also, numerical analyses via FEM (Finite Element Method) to model the 

failure of flat filament wound composite laminates under different loading conditions are very 

attractive not only for providing scientific contributions, but also creating new technologies 

for the aeronautic industry.  

1.1 OBJECTIVES 

The present work aims to develop a material model to aid the study of damage and 

progressive failure analysis of unidirectional long fibers composite structures, mainly with 

curvature. This model should be easily implemented and would not significantly increase the 

computational cost of finite element analyses. Also, the model parameters must be easily 

identified and should require simple experiments. Therefore, the specific objectives of this 

work consist of: 
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 Formulating a new material model based on Continuum Damage Mechanics 

(CDM) in order to predict, with good accuracy, the behavior of composite 

structures (mainly with curvature) during failure process; 

 Implementing the material model proposal as a FORTRAN subroutine in order to 

be linked to the commercial finite element program ABAQUSTM. Thus, user 

material subroutines defined as UMAT (for quasi-static simulations) and as 

VUMAT (for dynamic simulations) need to be developed; 

 Proposing a set of experiments to identify the model parameters. Thus, two groups 

of experiments will be proposed. One group to characterize the material and 

another to evaluate the damage evolution and how the stress state interacts with the 

failure process. Based on this set of experiments, it is possible not only to 

characterize the material, but also to determine the model parameters and partially 

evaluate the material model potentialities; 

 Performing a set of experiments in order to evaluate more deeply the potentialities 

and limitations of the material model proposal, considering different geometries, 

stacking sequences, type of loadings and etc; 

 Carrying out Finite Element Analyses in order to simulate the experiments. Based 

on the comparison between the numerical analyses and the experimental results, it 

is necessary to discuss the advantages and disadvantages of the FE models.  

1.2 ORGANIZATION OF CHAPTERS 

In order to help the readers, this Thesis is divided into 7 (seven) Chapters, which are 

summarized as follows:.  

 CHAPTER 1: the first chapter presents the introduction, motivation, objectives and 

the Thesis  organization; 

 CHAPTER 2: the second chapter presents the development of a new damage model 

for composite materials. The specific literature review of progressive damage analysis 

of composite materials is shown, as well as the theory used to develop the damage 

model. After that, the procedures to identify the model parameters from experiments 

are described in details. The new damage model is implemented as a FORTRAN 

subroutine (UMAT and VUMAT – “user material”) linked to finite element software 
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ABAQUSTM. The differences between implicit and explicit algorithms are also 

discussed; 

 CHAPTER 3: in the third chapter, the experiments results used to characterize the 

material, as well as to identify the model parameters are described in details. The 

experimental results to evaluate the model have also been presented (quasi-static and 

impact tests). Procedures from American Standards for Testing Materials (ASTM) 

have been used for all conventional tests and consulted as a guide for non 

conventional tests. The results of experiments are discussed in details; 

 CHAPTER 4: in this chapter, the new damage model is evaluated for quasi-static 

loading cases of “flat” specimens, as well as for impact loadings on cylinders, veryfing 

the model performance to simulate real filament winding structures. In fact, 

potentialities and limitations of the new damage model are shown, considering the 

comparison between numerical and experimental results; 

 CHAPTER 5: in this chapter, the final conclusions based on the results of the previous 

chapters are presented, correlating the obtained results and the established objectives. 

Also, in the final of this chapter, it is possible to find a list of issues, which could be 

investigated in future works; 

 CHAPTER 6: this chapter shows the scientific publications developed by the author 

during the PhD work. 

 CHAPTER 7: the last chapter has all the references used to develop the present Thesis. 
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2 MATERIAL MODEL 

This chapter presents the development of the material model based on Continuous 

Damage Mechanics in order to predict the failure behavior of composite structures. This 

material model needs to be developed considering some important aspects: 

 Requiring only simple tests for model parameters identification; 

 Requiring only simple test coupons to be manufactured; 

 Being simple to be implemented as a computational program; 

 Possessing low computational cost; 

It is important to mention that this material model has to be applied for either flat or 

curved composite structures made of stacked plies with long unidirectional fibers. 

2.1 FAILURE CRITERIA AND DEGRADATION LAWS 

Two approaches are usually applied for laminate failure analysis. The first one, defined as 

“first ply failure”, regards that the whole laminate fails when a single layer does. This 

approach does not consider alternative load paths for the other laminate layers and, usually, 

provides very conservative results. Also, the first ply failure approach only needs a failure 

criterion. The other one, defined as “last ply failure”, is more complex because it considers 

that the laminate fails only when its last ply does. The last ply failure approach requires a 

failure criterion and a degradation law to be applied for the material elastic properties. In this 

approach, the failed ply loads are redistributed to the other laminate plies. 

On the  other side, several macromechanical failure theories have been proposed for 

composite materials. Some of them are adaptations of the isotropic failure criterion, which 

accouts the anisotropy effects of composite materials (Daniel & Ishai, 2006). As reported by 

Daniel and Ishai (2006), lamina failure theories are classified as: 

 Limit or noninteractive theories: either the lamina stress or the strain state acting 

values (in local coordinate system) are compared to the corresponding stress or 

strains allowable values. There are no interactions between the stress and strain 

components; 

 Interactive theories: all the stress components are included in one expression and 

there is no distinction among the failure modes; 
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 Theories based on failure modes : different failure criteria are defined for each 

failure mode.  

In fact, the prediction of mechanical behavior for composite structures is very 

complicated, because these structures exhibit multiple types of damage before total laminate 

rupture. The intrinsic heterogeneity of composite materials makes the failure process very 

complex and not well defined. This process involves a quite different number of phenomena, 

such as fiber fracture, fiber pull out, matrix cracking, fiber debonding, fiber kinking, interface 

cracks and fiber splitting, which can be defined as intra-ply failure modes. In addition, 

composite structures are normally made of the stacking of plies. And, it is very common to 

observe also delaminations between plies, which are defined as inter-ply failure modes. It is 

important to highlight that the difficulty in predicting the structural failure modes (Puck & 

Schürmann, 2002) requires better planned design test program (Maimí, Camanho, Mayugo, & 

Dávila, 2007) for aeronautic applications. Thus, considering this scenario, recent evolutions 

have brought significant improvements to composite materials properties, e.g. tensile strength 

and inter-laminar fracture toughness (Yokozeki, Ogasawara, & Ishikawa, 2005). However, 

these new discoveries have not been enough to overcome the challenges related to the 

prediction of composite structures mechanical behavior. On one side, the evaluation of 

compression failure has still been considered essential for the safety design of composite 

structures because the compressive strength is often lower than 60% of tensile strength 

(Budiansky & Fleck, 1993). On the other side, under flexural loads, the mechanical behavior 

of the composite structures can be driven by matrix properties, which are much lower when 

compared to fiber properties. In addition, matrix not only transfers the stresses to the fibers, 

but also protects the fibers and provides an alternative load path when a fiber fails (Reid & 

Zhou, 2000). Therefore, there are many reasons to improve the prediction of the mechanical 

behavior of composite laminates made of polymer matrix. 

Continuous Damage Mechanics (CDM) has been applied by several authors in order to 

model failure phenomena in composite materials. For example, Donadon et al. (Donadon, 

Frascino, Arbelo, & Faria, 2009) have recently applied the CDM with crack smeared 

formulation to model progressive failure mechanisms in composite structures. Pavan et al. 

(2010) have used CDM in the development of a material model, which accounts the visco-

elastic effects in the failure process of composites. Flatscher and Pettermann (2011) 

performed finite element analyses for open hole specimens subjected to uniaxial tensile loads, 

combining CDM and Plasticity Theory. Besides, multiscale approaches have been addressed 

in order to develop models based on micromechanics and mesomechanics of laminated 
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composites, and these approaches have created a synergy between them. In this context, a 

semi-discrete and multiscale approach that called the computational damage micromodel for 

laminated composites has been presented by Lubineau and Ladeveze (2008). Transverse 

microcracking and microdelamination have been described through discrete cracks, for which 

minimum cracking surfaces have been introduced according to finite fracture mechanics. The 

cracked ply was assumed to be made of a “fiber-matrix material”, whose homogenized 

behavior has been described through a continuum mechanics model. The authors 

implemented the model into ABAQUSTM through a User Material subroutine (UMAT) and 

discussed the advantages and limitations of the new proposed approach. In fact, not only the 

multiscale approaches for micromechanics integrated to mesomodel with CDM have been 

used to evaluate composite failure but also the combination of Fracture Mechanics Theory 

and CDM. Lubineau (2010) described a pyramidal scheme to formalize the imbrication of 

classical micromechanics based on discrete fracture mechanics coupled with damage 

mechanics. The researcher has applied the pyramidal approach to deduce homogenized law to 

be implemented into a commercial finite element software. 

2.2 FAILURE MECHANISMS AND THEORETICAL MODELS 

Due to both composite heterogeneity and anisotropy, it has been observed multiple 

mechanisms of damage before the total failure. Thus, failure of composite materials and 

structures are very complex and not well defined. However, as commented earlier, it is 

possible to summarize composite laminate failures in two types of modes: 

1. Intra-ply failure modes: damage at fibers, polymeric matrix and/or interface between 

fibers and matrix (Figure 2(a)); 

2. Inter-ply failure modes: delaminations between plies (Figure 2(b)). 
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Regarding the numerical methods used to simulate structures it is possible to mention that 

Finite Element Method (FEM) is the most popular numerical technique applied to structural 

analysis. The process analyses via FEM allow to model complex structures, providing 

displacements, strains and stresses components. Based on the stress components, it is possible 

to carry out the progressive failure analysis using a theoretical model and strength values as 

well. However, it is not a simple task, since some models demand a high computational effort 

whereas the analysis time may be considerable. Also, material with softening behavior 

normally presents severe convergence problems because the Jacobian matrix is no longer 

positive definitive. This issue is more pronounced when implicit finite elements programs are 

used (Lapczyk & Hurtado, 2007). Nevertheless computational simulations create some 

problems, they can reduce the characterization costs of composite materials and support the 

optimization of these materials (Meer & Sluys, 2009). Moreover, Xiao (2007) showed that 

some damage model parameters can be identified by correlations among  computational 

simulations with standard material test results. In addition, some damage effects due to “free 

surfaces” and discontinuities can be detected by the reduction of some physical properties as 

stiffness, yield stress, hardness, ultrasonic wave velocity, density, etc (Lemaitre, 1996). Some 

of these physical effects allow measuring the damage in an inverse way, mainly with the 

support of CDM approach, which has been used by several authors to describe the damage 

process (initiation and propagation) as commented before.  

Based on the considerations shown above, the present work used CDM to develop the 

mathematical formulation of the material model and numerical simulations via FEM in order 

to evaluate the potentialities of the proposed model. 

2.2.1 LONGITUDINAL FAILURE 

When a unidirectional, UD, composite lamina is loaded in fiber direction (see Figure 

3(a)), the largest portion of the load is supported by the fibers due to their high stiffness 

compared to the matrix. Also the transmission of tensile loads in the fibers is not influenced 

by the state of damage in the matrix (Matzenmiller et al., 1995). The behavior of 

unidirectional lamina varies because of several factors such as: fiber volume fraction, matrix 

material, fiber material, manufacturing process, compressive or tensile load, etc. After fiber 

failure, the internal loads are redistributed and it may cause a structural collapse (Maimí, 

Camanho et al., 2007). 
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In UD composites, intralaminar failure mechanisms trigger structural collapse almost 

immediately. However, multidirectional composites can support an increase of intralaminar 

failure before final collapse (Maimí, Camanho et al., 2007). 

Considering that the fiber limit strain value is usually lower than the matrix limit strain 

value, when this unidirectional composite lamina is loaded in fiber direction, fibers will fail 

before the matrix. The majority of load supported by the fibers will be transferred to the 

matrix. However, under tensile loads, the fibers tend to straighten, what may contribute to 

matrix damage (Herakovich, 1998). 

On the other hand, under compressive load, the composite failure is considered to be a 

fiber microbuckling problem. This phenomenon is influenced by several factors such as fiber 

size and shape, fiber waviness, fiber matrix bonding, fiber and matrix stiffness and strength 

(Herakovich, 1998). The compressive load carrying capacity is severely affected by the 

effective stiffness and strength of matrix. The matrix works as an elastic base for the fibers 

under compression (Matzenmiller, Lubliner et al., 1995). 

Whereas fiber tensile strength XT can be regarded as the true fiber tensile strength, fiber 

compressive strength XC is usually not the true fiber compressive strength, because 

compressive failure mostly occurs through elastic instability (Puck e Schürmann, 2002). Also, 

compressive strength of composite materials is highly dependent on the fiber alignment, 

where low values of misalignment can lead to a drastic reduction of the compression strength 

((Wisnom, 1990) (Yokozeki, Ogasawara et al., 2006)). 

2.2.2 TRANSVERSE FAILURE 

The transverse behavior of unidirectional composite (Figure 3(a) - directions 2 and 3) 

materials is highly anisotropic and for its strength it is considerable smaller comparing to fiber 

direction strength. Even when loaded in fiber direction, the composite may fail in transverse 

direction, having a significant influence for the composite strength (Callister, 2011). 
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Moreover, the cracks closures allow forces to be transmitted through the cracks, when

22 0  . Schuecker & Pettermann (2006) regarded this effect as stiffness recover for shear 

modulus. 

Another important issue of composite transverse direction failure is how the shear stress 

affects the failure plane angle. For high in-plane shear stress compared to transverse stress,

2212   , the fracture plane is perpendicular to the mid-plane. And, increasing 22 , the 

fracture plane angle changes (Maimí, Camanho et al., 2007). 

2.2.3 CONTINUOUS DAMAGE MECHANICS 

The qualitative mechanical behavior of engineering materials, such as metals, polymers, 

ceramics and composites, are very similar despite their physical differences. These similarities 

imply that common “mesoscopic” properties can be explained by energy mechanisms similar 

for all those materials. These characteristics make possible to apply the CDM and 

Thermodynamics Theories to model the material behavior, regardless the differences and 

complexity of their physical structure (Lemaitre, 1996). 

The creation and growth of microvoids and microcracks are known as damage (Lemaitre 

and Desmorat, 2005). The deterioration of materials properties, when loaded, can be 

simulated through internal variables to describe the damage process (Lemaitre, 1996). 

There are different forms of damage manifestations in a continuum media such as 

(Lemaitre, 1996): 

 Brittle damage occurs when a crack is initiated in a mesoscale without 

considerable plastic strains; 

 Ductile damage occurs when nucleation and growth of microvoids and 

microcracks take place in the media as a result of plastic strains (Kachanov, 1986); 

 Creep damage occurs when a metallic structure is loaded under elevated 

temperatures and the plastic strains involves viscosity (Lemaitre, 1996); 

 Low cycle fatigue damage occurs when a material is cyclic loaded at high values 

of stress or strain;  

 High cycle fatigue damage occurs under cyclic loads lower than a reference stress 

leading to a material deterioration. 
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Where n̂ is the effective normal vector related with the effective area ( Ŝ ). 

For anisotropic damage, a good representation of damage physics as well as its 

compatibility with thermodynamics is much more complicated. The effective stress is given 

by the following equation: 

 

      
ˆˆ ˆi ij l i kl jv n S v n S                    (3) 

 

Using the EQ. (2), it is possible to write: 

 

           ˆij ijkl ijkl k l kl k lI D v n S v n S                                                  (4) 

 

It is important to mention that the fourth order damage tensor ( ijklD ) has the following 

symmetries: ijkl ijlk jikl klijD D D D   . Considering those symmetries, the effective stress 

tensor is (Lemaitre & Desmorat, 2005): 

 

                                                         1
ˆ ij kl klij

I D                                                                           (5) 

 

Regarding the forth order damage tensor, there are some restrictions for this tensor: 

 Symmetry of the effective stress; 

 Effective stress independent of the strain behavior and Poisson’s coefficient; 

 Compatibility with the Thermodynamics; 

 Different damage effect on the hydrostatic stresses behavior;  

 

The actual elasticity tensor softened by damage is: 

 

        ˆ( )ijrs ijrs rskl ijklI D E E                                                     (6) 

 

For composite materials, the damage mechanism is different in tension and shear. Thus, it 

is necessary two independent scalar variables to describe this influence on the elastic shear 

and hydrostatic energy. These variables are sD (for the deviator stress components) and nD
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(for hydrostatic stress). Hence, the anisotropic complementary energy density for damaged 

media is (Lemaitre J. , 1996): 

    1 1 21 1

2 2
D D

e ijkl ij kl ijkl H ij klw E E    
 

   (7) 

 

Where D
ij is the stress deviator stress tensor, H is the hydrostatic stress and ij  is the 

Kronecker delta.  
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These derivatives can be written, using engineering constants (Lemaitre J. , 1996):  
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Considering that the principal directions remain constant along the time, the damage has 

the same principal directions as the stress (Lemaitre J. , 1996).  It results in effective stresses 

for three dimensional principal directions, which are: 
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Where 1D , 2D and 3D are the damage variables in the principal directions for three 

dimensional stress states.  

2.3 FIBER BEHAVIOR MODEL 

For longitudinal tensile loads, i.e. loading applied in the fiber direction of the lamina 11 , 

the behavior of each unidirectional lamina (e.g. made of carbon fiber with epoxy resin) under 

tensile can be considered to be linear elastic with a brittle fracture, which is simulated by 

using the Maximum Stress Criterion (EQ.(13)). After the failure detection, the damage 

variable in fiber direction, d1, is set to “1” (one).  

There is no gradual evolution of the parameter d1 in order to represent the abrupt failure 

phenomenon of the fibers, what has been observed during experiments. Therefore, d1 abrupt 

change may cause localizations issues. Thus, the degradation of properties occurs at the end 

of the time step via FEM solution. There is not any degradation during each iteration process. 

Hence, this strategy is similar to the viscous damage models, which create a time delay to 

reduce the properties by retarding the localization process. However, it is necessary to 

evaluate the time step in order to limit the size between the last step (where the damage was 

calculated) and the next step (where the damage is applied). Also, it is strategic to verify the 

FE mesh sensitivity during the numerical simulations in order to obtain better results. 

 

 11 1
TX


  (13) 

 

On the other hand, the behavior of the composite lamina under compressive longitudinal 

loads is linear elastic until a specified value; then the lamina starts to behave like a nonlinear 

elastic material. This nonlinear elastic limit 0CX  is identified by the experimental 

compression tests for 0o coupons. And, the compression failure is detected by using the 

EQ.(14). 

 

 11

0

1
CX


  (14) 
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  0
01E E

  


    (16) 

 

To improve the experimental curve fit, the previous procedure has been applied several 

times as  shown by Figure 5(c). Thus the parameter  becomes function of the strain. For the 

present work, the parameter h  in EQ. (15) is the same as the parameter  in EQ. (16). Based 

on the real experimental data of 0o compression curves, the linear regression for h is given by 

EQ. (17). However, the experimental tests will be commented in details later. 

 

  11 1126.32 +0.35h     (17) 

 

The previous approach to account for the effect of the compression loads on the structural 

behavior is different from the others shown by some researchers, who also used CDM in their 

model formulation. 

 

2.4 DAMAGE MODEL FOR TRANSVERSE AND SHEAR LOADING 

Assuming a plane stress state in each unidirectional lamina of the quasi-flat filament 

wound laminate, the damage process in the matrix is driven by the stress components 22  

(transverse loading – direction 2) and 12  (shear loading – in plane 1-2). A nonlinear behavior 

has been observed in some experiments performed by the present author, mostly when the 

fibers and loading are not aligned. This nonlinear behavior is due to matrix inelastic strains 

and damage ( (Puck & Schürmann, 2002), (Ribeiro, Tita, & Vandepitte, 2012)). In order to 

model the matrix damage process, two internal damage variables d2 and d6 have been used, 

ranging from “0” (zero), for undamaged material, to “1” (one) for totally damaged material. 

Based on Continuous Damage Mechanics (CDM), the hypothesis of effective stress relates 

the damage variables to the plane stress state at the lamina (Herakovich, 1998) as shown by 

EQ. (18). 
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EQ. (19) shows the damaged strain energy density in terms of effective stresses 

accounting only for matrix phase stresses (Herakovich, 1998).  

 

 
   

0 0 0

2 2 2
22 22 12

22 2 22 12 6
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2 1 1DE
E d E G d

  
 

 
   

   
 (19) 

 

Where the operator x x  , if 0x  ; otherwise 0x   , if 0x  . And x x   , if

0x  ; otherwise 0x   , if 0x  . Another important concept adopted consists of the 

Thermodynamic Forces, which relates the damage variables and strains energy density DE  

(EQ.(20) and (21)) (Ladeveze & LeDantec, 1992). 
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According to CDM, micro-cracks and micro-voids are opened in the matrix when the 

lamina is under transverse tensile stress, i.e. the load is applied in the direction normal to the 

fibers (direction 2). However, when the lamina is under transverse compression, micro-cracks 

and micro-voids can be closed in the matrix (Herakovich, 1998). To model this behavior, the 

damage variable d2 can change only when 22 0  , but the damage parameter d6 can change 

regardless of the shear stress sign, 12 . 

The composite structures damage initiation can be identified by the stiffness reduction. 

The elastic properties degradation can be evaluated by performing a cyclic tensile or 
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experimental evaluations (Ribeiro, Tita, & Vandepitte, 2012). Therefore, this nonlinear 

behavior has been simulated by using a secant modulus (EQ. (24)).  

 

     
0

22
22 22 22 22

22

1yE g g E


 


    (24) 

 

The parameter  22g   is obtained from the fit of stress-strain curves for 90o coupons 

under compressive loading. The procedure used for this case is similar to that used for fiber 

under compression. For the transverse compression, 22  is the strain component in transverse 

direction and 
022E  is the initial elastic modulus measured from experimental data of 90o 

coupons under compression.  

Based on the real experimental data of 90o compression curves, the linear regression is 

given by EQ. (25). However, the experimental tests will be commented in details later. 

 

 22 22( ) 14.61 0.36g      (25) 

 

This method to account the compression effects on the composite matrix is also different 

from those previously published by other authors. Besides, the material model considers the 

ply brittle fracture, using the strain energy, ED, until this energy reaches a critical value. Thus, 

when ED is higher than a limit value (EDC) obtained by experiments, then d2 is equal to “1” 

(one) and, d6 is equal to “1” (one), too. 

2.5 MATERIAL MODEL SUMMARY 

In order to help the application of the material model, Table 1 summarizes the new 

damage model. 
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Table 1: Material model summary 

Failure Criteria Type of Failure Degradation Law 

11 1
TX


  Fiber Tensile 011 E  

0

11 1
CX


  Fiber Compression     0

011 11 11 11
11

1CX
E h h E 


    

0f  Matrix Tensile     BYAd  22  

0f  Matrix Compression 
    

0

22
22 22 22 22

22

1yE g g E


 


  

 
0f  Shear     DYCd  66  

 

Another important aspect of the damage model proposal consists of the adjustments for 

the Poisson's coefficients to take into account the damage effect. Using CDM formulation 

(Matzenmiller, Lubliner, & Taylor, 1995), the compliance tensor is given by EQ. (23), where

   211221 111 ddK  . 

 

 

    
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 

1 11 1 2 21 22
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6 12

1 1 1 0
1

1 1 1 0

0 0 1

d E d d E

D d d E d E
K

K d G




   
     
  

 (26)  

 

Finally, in order to exclude material self-healing behavior, the damage parameters d1, d2 

and d6 never decrease from their maximum values obtained during the calculation process. 

Table 2 presents the differences between the proposed damage model and Ladevèze’s 

model (Ladeveze & LeDantec, 1992). It is important to light that both models use the CDM 

framework to predict the material behavior, but it is very easy to identify the differences 

between some failure criteria and evolution laws. 
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Table 2: Proposed model vs. Ladevèze’s model 

Failure/Damage Proposed Model Ladevèze’s Model 

Fiber 

Failure 

criteria 

Tensile 
11 1
TX


  11 1

TX


  

Compression 
0

11 1
CX


  - 

Evolution 

law 

Tensile 1 1d   1 1d   

Compression     0

011 11 11 11
11

1CX
E h h E 


     0

11 11 111E E  


   

Matrix 

Failure 

criteria 

Tensile 0f    2 2 2
12 22 0 0a R p R       

Compression 0f    2 2 2
12 22 0 0a R p R       

Shear 0f    2 2 2
12 22 0 0a R p R       

Evolution 

law 

Tensile    2 2d A Y B    0
2

c

Y Y
d

Y



  

Compression 
    

0

22
22 22 22 22

22

1yE g g E


 


  

 

- 

Shear    6 6d C Y D    
'

0
6 '

c

Y Y
d

Y



  

 

The differences start for the fiber compression failure criteria, where Ladevèze’s model 

decreases the elastic parameter even at low loads level. However, for the model presented in 

this work, the elastic modulus decreases after, under compression, the load in fiber direction 

(direction 1) reaches some specified value, which is the limit between linear and nonlinear 

behavior (response).  

Despite both material models use the secant modulus to decrease the elastic modulus 11E , 

the proposed model is the function of the strain and Ladevèze’s model has a secant modulus 

 0
11 11 111E E  


  , which decreases in a constant way. 

The damage onset surface is also different for both material models. Ladevèze’s model 

regards the matrix plasticity, using the parameters ( )R p  and 0R . The proposed material model 

uses a curve fit of the experimental data to identify the damage onset. 
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Finally, Ladevèze’s model regards that the influence of the transverse and shear stress is 

constant. The material model presented in this work regards the damage variable as dependent 

on the ply orientation.  

2.6 PARAMETERS IDENTIFICATION AND MODEL EVALUATION EXPERIMENTS 

In order to identify the parameters and/or to evaluate the material model, standard tests for 

tension, shear and compression and some additional off-axis and angle-ply have been selected 

and performed.  

Regarding Table 1, some special considerations must be taken for off-axis experiments. It 

is very difficult to apply only a uniaxial stress state in an off-axis test coupon due to test 

machine clamps. Although the applied load is uniaxial, the stress state is biaxial, with a shear 

stress component xy  present. A detailed discussion about off-axis experimental testing can 

be found in literature (Pierron & Vautrin, 1996) and (Herakovich, 1998), which describes that 

the test coupon aspect ratio and lamina orientation have a significant influence on xy . 

Therefore, the present author followed the recommendations given by the literature. Also, 

Pierron & Vautrin (1996) showed the effects of the end tabs in off-axis coupons tests. 

As commented earlier, it is important to highlight that some tests have been  used to 

evaluate the material model. For example, the off-axis 15o and 30o compression and, off-axis 

30o tensile test have been used for the model evaluation. In fact, those coupons have not been 

used for the elastic properties material characterization, once the coupon aspect ratio is too 

low. However, they are good test coupons to evaluate the model due to the complex stress 

state. More details about experiments as well as the results will be shown in the next chapters. 

Another important aspect is related to the determination of the damage variables. For this 

case, cyclic experiments have been carried out and, the damage measurement procedure was 

the same as that described in the literature ( (Allix, Ladevèze, & Vittecoq, 1994) (Ladeveze & 

LeDantec, 1992)). For all experiments, the machine speed has been 0.5 mm/min and, in order 

to avoid low cycle fatigue, the maximum number of cycles has been equal to 5 (five). The 

relation between damage variables and Thermodynamic Forces (Y) is shown in Figure 8 for 

d2 and, in Figure 9 for d6.  
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Table 3: Data statistics for the regression 

Variable R Square Adjusted R Square Significance of F 

d2-5º 0.51 0.48 0.0006 

d2-67.5º 0.63 0.60 0.0020 

d2-90º 0.47 0.43 0.0047 

d6-5º 0.76 0.74 0.00002 

d6-45º 0.95 0.93 0.005 

d6-67.5º 0.30 0.23 0.064 

 

Table 3 shows some important statistical parameters obtained by the linear regression. The 

R square represents how much of the output variables variance is explained by the input 

variables variance (ideally, this value should be greater than 0.6) by using this information, 

for d2-5º, d2-90º and d6-67.5º, the regression results are not so good, regarding the amount of 

data. The worst case is for d6-67.5º where only 30% of the predicted damage can be explained 

by the thermodynamic force. The other parameter, the adjusted R square is more conservative 

than the R square and, once again, the worst case is for d6-67.5º.  

On one hand, the R square and the adjusted R square are not good for some cases. On the 

other hand, the significance of F ( the regression might have been obtained by chance) is 

acceptable for almost all cases (values lower than 1%), but for d6-67.5º the value of 

significance of F is 6.4%, i.e. It is 6.4% possible that the regression had been a chance. 

Although some values identified are not so good, all results have been used in this work, even 

for d6-67.5º. 

Regarding the evolution of the parameter d2 shown in Figure 8, it is verified that the ply 

orientation has an important role in damage evolution. The damage process has been 

accelerated due to shear stress. For the parameter d6, as expected, if the orientation is close to 

90o; the shear damage is low as shown by Figure 9. However, if the ply orientation changes 

towards 0o; then d6 becomes a very important parameter and, it strongly affects the matrix 

damage process. As previously shown, the damage model assumes that d2 evolves in a linear 

way. Thus, d2 evolution equations have been fitted as a function of the orientation angle (θ) 

(EQ. (20)). The same procedure has been applied to d6 as presented by EQ. (20). Therefore, 

based on the experimental results, it is possible to identify the parameters  A  ,  B   ,  C   

and  D  . 
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2.7 IMPLEMENTATION VIA UMAT (USER MATERIAL SUBROUTINE) 

Figure 10 presents the flow chart of UMAT and ABAQUSTM integration for progressive 

failure analysis. ABAQUSTM controls the nonlinear solution process. The process consists of 

successive iterations. For all finite element integration points (at each lamina) and for every 

analysis time step, the UMAT subroutine is called mainly to calculate the stress state and the 

Jacobian matrix (    ) compatible to the strain state given for each i-th step. Thus, the first 

procedure performed by the UMAT is the identification of the material model state variables 

and the strain tensor. After that, the Jacobian matrix is calculated and, there is a prediction of 

the stress state (step 1 in Figure 10). Then, the calculated stress state is verified by the damage 

model implemented via UMAT (step 2 in Figure 10). If any failure mode occurs, the damage 

variables are updated (step 3 in Figure 10). After that, the state variables are updated with the 

damage variables, and then these variables are passed to the next step to update the stress 

tensor. If failure does not occur, the prediction of the stress state is considered correct. Then, a 

Residual (R) is calculated as the difference between the internal and the external forces 

vectors, and it is compared to the tolerance threshold established by the user. If there is a 

convergence, i.e. R is lower than the tolerance (tolerance=0.005, which is adequate for 

engineering applications (Simulia, 2010)); then a new load step is applied. Otherwise, 

ABAQUSTM stops the numerical analysis. During the iterations for each load step, it is 

expected that R decreases. If R increases, then the solution process diverges and, the 

numerical analysis stops. Divergence normally occurs when the material properties show a 

high degree of degradation and the structure has insufficient resistance to support the applied 

loads. Localisation problems can take place with the abrupt reduction of the material 

properties. The FE (Finite Element) mesh density plays an important role in this situation. 

Moreover, the material model hypotheses need to be physically consistent to avoid incoherent 

predictions.  
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The equation of motion for dynamic simulation is given by: 

 

           M u C u K u F     (27) 

 

Where [M] is the mass matrix, [C] is the damping matrix, [K] is the stiffness matrix, {F} 

is the load vector and {u} is the displacement vector. From EQ. (27), the material density has 

always been used to calculate the mass matrix, but the damping values can be neglected, if 

damping effects are not relevant. 

2.8.1 MASS MATRIX 

The mass matrix is a generalization of the mass concept to the generalized coordinates 

used in the FEM. The finite element mass matrix is based on the element mass matrix in local 

coordinates transformed into global coordinates. And all the element mass matrices are 

merged, forming the model mass matrix, like the technique used for the stiffness matrix.  

The consistent mass matrix is defined by: 

 

 TM d 


   (28) 

 

Where ρ is the density,   is the shape function (using Galerkin, the trial and weight 

functions are the same). 

In opposite to the stiffness matrix, the mass matrix can be handled, for example, by  

making a diagonal mass matrix to improve the numerical solution of the differential 

equations. There are different methods to modify the mass matrix. Each approach to obtain 

the mass matrix affects the performance of the solution via FEM (Zienkiewicz & Taylor, 

2000).  

As mentioned before, to improve the numerical solution for many applications, the 

consistent mass matrix can be modified to become a diagonal matrix. The first procedure to 

build a diagonal mass matrix consists of summing all the matrix line components (

ii ij
j

M M ). And the procedure consists of calculating *
ii ii

S
M M

D
 , where S is the 
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summation of the consistent mass matrix and D is the summation of the consistent mass 

matrix principal diagonal. 

2.8.2 DAMPING MATRIX 

Real structures exhibit some levels of energy dissipation due to material nonlinearities, 

internal or external friction, damage, etc. Steel and high strength aluminum possess low 

internal damping. On the other hand, some composite materials can possess high damping.  

Damping can be modeled in several ways in ABAQUSTM in order to accurately simulate 

the energy loss. There are four categories of damping source in ABAQUSTM (Dassault 

Systèmes Simulia Corp, 2010): 

 Material and element damping: specified as material properties and specific 

elements such as dashpots, springs and connectors, which could work as dampers 

(viscous and structural); 

 Global damping: apply damping to the entire model for the cases which are not 

possible to use material and element damping. 

 Modal damping: apply damping to the system modes. 

 Damping associated with time integration: “Marching through a simulation with 

finite time increment size cause some damping.” (Simulia, 2010). 

 

Also, damping can be simulated as a viscous model, which is proportional to either 

velocity or displacement. 

 

ABAQUSTM provides the Rayleigh’s model for direct integration dynamic analysis to 

simulate energy dissipation mechanisms through damping (Dassault Systèmes Simulia Corp, 

2010). In fact, in the Finite Element Analysis (FEA), damping is treated as a matrix, which 

can be approached in two different ways: either as a material property or as a numerical object 

to oppose the excitation forces (Kyriazoglou & Guild, 2007).  

Considering the equilibrium equation in dynamic analysis: 

 

              M u C u K u f t        (29) 
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According to (Zabaras & Pervez, 1990), the following transformation can be applied to 

EQ. (29),
1

2
i ij ju M y

 , and the resulting equation is multiplied by 
1

2
ijM
 . Thus, EQ.(27) can 

be rewritten as: 

 

        y C y K y f       
    (30) 

 

EQ.(30) is used to obtain the critical damping, which is calculated by: 

 

 
1

22
ijCR ijC K   (31) 

 

Based on the classical modal analysis     0, 0C f  , it can be shown that

      2t
K w   . The modal matrix of eigenvalues vector is

1
2

ij kj ilM  . Thus, the modal 

fraction of critical damping is given by: 

 

 
    
    

t

i i
i t

CRi i

C

C

 


 

 

 (32) 

 

Using the Principle of the Orthogonality for  , eq(32) results in: 

 

      2
t

i ii i
C     (33) 

 

Rayleigh’s model introduces damping in the structure as a linear combination of mass and 

stiffness system matrices (Kyriazoglou & Guild, 2007), where the parameters  and   can 

be obtained by using both EQ. (34) and experimental data. 

 

      C M K    (34) 
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Therefore, the damping is proportional to the mass and the stiffness. The mass 

contribution is related to the low frequencies vibrations and the stiffness contribution is 

related to the high frequencies vibrations (Dassault Systèmes Simulia Corp, 2010). 

It can be proved that for a mode i , the fraction of critical damping proportional to [M] is: 

 
2i

i




  (35)   

And, the fraction of critical damping proportional to [K] is: 

 

 
2

i
i

   (36)  

 

In fact, for this work, a reversal analysis was performed in order to obtain  Rayleigh’s 

parameters. However, in the coming works, these parameters may be obtained by dynamic 

experimental analyses. 

2.8.3 NUMERICAL SOLUTION: IMPLICIT VS. EXPLICIT  

To perform a dynamic analysis, it is possible to apply both implicit and explicit methods. 

Each method possesses its own advantages and disadvantages and finite element software 

user must be aware of each method particularities. 

Implicit methods are unconditionally stable. Despite the stability, these methods may face 

some problems when analyzing the complicated 3D models. The reasons for these problems 

are related to the decrease of time increment; so computational cost for calculation of tangent 

stiffness matrix will increase radically and it may diverge. Also, local instabilities could lead 

to difficulties in order to guarantee the equilibrium (Sun, Lee et al., 2000).  

Explicit methods have been used to overcome the problems with implicit method 

mentioned in previous paragraph. For explicit methods, the computational cost is proportional 

to the size of the finite element model and does not increase radically like solution using 

implicit methods. Although the explicit methods may overcome the implicit problems, they 

are conditionally stable. The stability of explicit method is limited to the size of the time 

increment, which should be less than the dilatational wave in the finite element. In addition, 

these methods are limited for short transient problems (Sun, Lee et al., 2000).  
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2

elt L


 
 


 (37) 

 

Where ρ is the density, λ and μ are the material properties (Lamé constants). 

Small time increments allow solving the problems without calculating the tangent stiffness 

matrix, what is very interesting for contact problems.  

Despite the problems previously discussed, if the finite element model contains very small 

or stiff elements, the efficiency of explicit integration decreases once the time increment of 

the entire mesh will be set by those elements. In these cases, some special techniques are 

necessary to perform the explicit simulations. One of these techniques is called mass scaling, 

where the mass of those elements is increased. The other technique is called subcycling, 

where a smaller time step is used for those elements (Belytschko, Liu et al., 2000). Mass 

scaling has been used when high frequencies are not important as for quasi-static simulations. 

Regarding subcycling method, the domain is divided into subdomains and, each subdomain is 

integrated with its own stable time step (Belytschko, Liu et al., 2000). 

Explicit methods could be used to perform quasi-static simulations (e.g. simulation of 

tensile test) when the inertia effects  are neglected but the ratio between kinetic  energy and 

internal energy is less than 10% (ABAQUS 6.10 User Manual, 2010). 

 

 10%k

i

E
E

  (38) 

 

To solve dynamic problems the finite difference method allows writing the speed and 

acceleration as:  

 

      
1i i

i

u u
u

t








  (39) 

 

      
1i i

i

u u
u

t









 
  (40) 
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With 0 , 1   . These constants come from an integration algorithm, assuming the 

hypothesis that the speed and acceleration are a linear combination of the interval limits speed 

and acceleration. In other words: 

 

       
1

1
i i i

u u u


 
 
      (41) 

 

       
1

1
i i i

u u u


 
 
      (42) 

 

Assuming 1
2   , the speed and acceleration are the average values of the interval. 

Using 1
2   in (38) and (39) yields: 

 

         
1 1

1
i i i i

u u u t u t 
 
          (43) 

 

           2 2

1 1

1 1
1

2 2i i i i i
u u u t u t u t 

 
           (44) 

 

Where   ( 0 1  ) is another constant. Applying (42), (43) and (44) to the motion 

equation despite damping effects the dynamic problems can be defined as:  

 

        M u K u F   (45) 

 

To solve the dynamic problem, it is possible to apply either the explicit or implicit 

methods. Table 4 presents a simple schema of those methods. 
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Table 4: Explicit vs. Implicit integration algorithm. 

Explicit Implicit 

0   in (44) 

        2

1

1

2i i i i
u u u t u t


       

 

        1
u M F K u

      

 

        
1 1

1
i i i i

u u u t u t 
 
          

 

Start estimating: 

     
1

(1 )
i ii

u u u t

       

        2

1

1
(1 )

2i i i i
u u u t u t


         

 

     
1 11i ii

u u u t
 
      

       
   

1 12
21 1 1 1

21

2
i i

i i i i

u u
u u u t u

t



 

   

      



    

With last relation in the dynamic equation: 

           
1

2 21 1 1

2 2
i i i

M M
u F u K

t t 



  

                  
  

 

It is important to verify that an implicit algorithm requires the calculation of the stiffness 

matrix inversion. However, it is not necessary for an explicit algorithm. Also for an implicit 

method, with 
1i

u


, it is necessary to correct the initial value for the displacement and speed 

vectors. Thus, an iterative method, e.g. Newton-Raphson, is necessary to be used. 

In the next section, the explicit algorithm used in ABAQUSTM/Explicit is explained in  

further details. 

2.8.4 EXPLICIT SIMULATIONS VIA ABAQUSTM 

As mentioned before, the explicit method has been used to overcome some problems 

produced by the implicit method. 

ABAQUSTM/Explicit is established by using the explicit integration rule with lumped 

mass-matrix. The equation of motion is integrated by using the central difference method. 

This method is developed from central difference formulas by u andu : 

 

  1 12
1

2

1i i i

i
u u u

t

 


 


  (46) 
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Where: 

 
1 11 2 2i ii iu u t u

       (47) 

The acceleration is: 

 

 
   1 11 1 1 12 22 2

1 1 1 1
2 2 2 2

i ii i i ii i
i

i i i i i

t u u t u uu u
u

t t t t t

   

   

          
        

   (48) 

 

For equal time steps, ubecomes: 

 

 
 

1 1

2

2i i i
i

i

u u u
u

t

    
  

  (49) 

 

The nodal velocities and displacements update can be obtained without solving any 

equations, once the mass matrix is diagonal. “In explicit method, the time integration of the 

discrete momentum equations does not require the solution of any equations” (Belytschko, 

Liu et al., 2000).  

The equation of motion is: 

 

  1i i iu M F I   (50) 

 

The time increment must satisfy
max

2
t

w
  , where maxw the maximum element eigenvalue 

is. In Belytschko, Liu & Moran (2000), it is possible to observe further details about 

algorithm for explicit simulation as described below: 

1. Set initial conditions and parameters ( 0 0 0, ; 0, 0, 0u u i t    ) and compute M ; 

2. Get force; 

3. Compute the initial accelerations:  11 2ii i dampu M f C u
   ; 

4. Update time:  1 11 12 2
1

,
2

i ii i i it t t t t t
      ; 

5. Update first partial nodal velocities :  1 1 1
2 2 2i i ii iu u t t u

       ; 
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6. Enforce the velocity boundary conditions: if node I on 
iv : 

1
2i

iIu u
     

7. Update nodal displacements:
1 11 2 2i ii iu u t u

      ; 
8. Get force; 

9. Compute 1ia  ; 

10. Update second partial nodal velocities   1 11 1 12 2i ii i iu u t t u
        ; 

11. Check the energy balance for step 1i  ; 
12. Update 1i i   
13. Output; if simulation is not done back to step 4 

Subroutine Get force: 

1. Initialize 0if  , critt   ; 

2. Compute global external forces i
extf ; 

3. Loop over elements: 
a. Gather both element nodal displacements and velocities; 

b. int, 0i
ef  ; 

c. Loop over quadrature points Q  

i. If 0i  , go to iv; 

ii. Compute measures of deformation:      1
2 , ,

i i i
Q Q QD F E  

; 

iii. Compute the stress  i
Q   using the constitutive equation; 

iv. int, int, |
Q

i i
e ef f f    ; 

d. Compute external nodal forces on element: ,ext i
ef ; 

e. , int,i ext i i
e e ef f f  ; 

f. Compute e
critt , if e

crit critt t   then e
crit critt t   ; 

g. Scatter i
ef to global if ; 

4. End Loop over elements; 
5. critt t    

 

In fact, numerous methods to solve problems, where the inertia is relevant, are available at 

ABAQUSTM. However, in summary, ABAQUS/Standard has used implicit operators for 

integration of the equations of motion and ABAQUS/Explicit has used the central difference 

method as commented earlier. In implicit dynamic analysis, as required to invert the 

integration operator matrix (see the algorithm for implicit dynamics – Table 4), a set of non-

linear equilibrium equations must be solved for every time increment. On the other hand, for 

explicit dynamic analysis (see the explicit dynamic algorithm – Table 4), the displacements 
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and velocities are known in the beginning of the time increment. Therefore, the global mass 

matrix and stiffness matrix have not been inverted. 

In addition, regarding the element types, ABAQUS/Explicit offers fewer elements than 

ABAQUS/Standard and when a nonlinear analysis is carried out, the user must consider the 

length of the time step, once the response is compared to the stability limit. 

Finally, just out of curiosity, ABAQUSTM allows using of nonphysical material properties, 

e.g. negative mass value, negative damping and negative stiffness. Sometimes, these material 

nonphysical properties are used to adjust the FE model. 

2.9 CONCLUSIONS 

This chapter described the development of a new material model for unidirectional long 

fiber composite laminates based on CDM. 

The differences between the proposed material model and other classical material models 

are: 

 Degradation of elastic properties for fiber under compression is more accurate in 

the proposed model, once the equation used fits better the experimental data; 

 The damage onset surface is based on experimental data; 

 As for fiber direction (direction 1) under compression, the elastic properties 

degradation for compression of transverse direction is also more accurate in this 

model; 

 The damage parameters d2 and d6 calculation are dependent on the ply orientation 

accounting the influence of shear stress and transverse stress on the damage 

evolution. 

To verify the material model performance, firstly the model will be applied to simulate 

flat carbon fiber composite coupons under simple loading conditions, and then, it will be 

checked for more complex loading conditions as the four point bending. At last, the model 

performance will be evaluated to simulate the impact on carbon fiber filament winding 

cylinders. 
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3 EXPERIMENTS: FAILURE MECHANISMS 

 

A set of experiments in this work consists of characterizing the material elastic properties 

and determining the strength values for the carbon fibers composite material used in this 

research. Another set of experiments is used to identify the material model parameters as the 

damage variables d2 and d6, and to evaluate the potentialities of the model as well. 

Therefore, the experiments can be subdivided into two main groups: 

characterization/identification and evaluation. Regarding the evaluation experiments, they are 

subdivided into quasi-static and dynamic experiments (impact tests). 

3.1 QUASI-STATIC TESTS 

Table 5 shows the quasi-static tests performed in this work. This table shows the type of 

test (compression or tensile), the coupon lay-up, the ASTM standard used as well as the 

material parameters obtained by each type of test. 

 

Table 5: Quasi Static Experiments 

Test Standard 
Dimensions 

[mm] 
Number of 
specimens 

Material 
Parameters 

Tensile 0o ASTM D3039 250 x 15 x 1 5 TXE ,, 1211   

Tensile 90o ASTM D3039 175 x 25 x 2 5 TYdE ,, 222  

Tensile ±67.5o N.A. 175 x 25 x 2 5 2d  and 6d  

Tensile 5o N.A. 175 x 25 x 2 5 2d  and 6d  

In-plane Shear ±45o ASTM D3518 250 x 25 x 2.7 5 
y

SdSG 1261212 ,,,  

Compression 0o ASTM D3410 150 x 10 x 2 7 
00 11,, CC XX

Compression 90o ASTM D3410 150 x 25 x 2 7 
CDC EY ,,

022  

Compression 30o N.A. 150 x 25 x 2 7 2d  and 6d  

Compression 15o N.A. 150 x 25 x 2 7 2d  and 6d  

 

The reason for choosing the off-axis and angle-ply coupons is to study the coupling 

effects between 12  and 22  and how these stresses affect the damage evolution. Figure 12 
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Table 6: Identification and validation experiments 

Test Laboratory Type
Tensile 0o USP(*) and KUL(**) Identification and Validation 

Tensile 90o USP(*) and KUL(**) Identification and Validation 
Tensile ±67.5o KUL(**) Identification 

Tensile 5o KUL(**) Identification 
In-plane Shear ±45o USP(*) Identification 

Compression 0o KUL(**) Identification and Validation 
Compression 90o KUL(**) Identification and Validation 

4-Point Bending 30o KUL(**) Validation 
(*) USP: Material Engineering Department at University of Sao Paulo (Brazil) 

  (**) KUL: Materials Engineering Department at KU Leuven (Belgium) 

 

3.1.1.1 Materials and Methods 

All tensile, compression, bending and shear tests are considered as quasi-static 

experiments. Those tests have been performed by using conventional, off-axis and angle-ply 

coupons. All coupons have been manufactured by using a filament winding process. Having 

two larger faces, the parallelepiped shape mandrel allows the plate wounding. Almost flat 

laminate plates made of carbon fiber with epoxy resin have been manufactured. After that, the 

plates are cured in a controlled oven. Then, in the final of this process, it is possible to obtain 

almost flat plates with a single curvature, which radius is around 7657 mm. Those almost flat 

plates have been cut into coupons, following the dimensions provided by the American 

Society for Testing and Materials (ASTM) standards ( (ASTM D3039, 2006), (ASTM D790, 

2008)) as commented earlier. It is important to highlight that the manufacturing processes 

described above have been carried out by the Brazilian Navy Technology Center in São Paulo 

(CTM-SP). Due to an agreement between Brazilian Navy Technology Center in São Paulo 

(CTM-SP) and Aeronautic Structural Group of Engineering School of São Carlos 

(Aeronautical Engineering Department – University of Sao Paulo – Brazil), all information 

about the manufacturing processes and material is classified. Therefore, the elastic properties 

and strength values cannot be shown in this work. In order to aid the readers for 

understanding the mechanical behavior of composite material obtained by CTM-SP, it is 

possible to mention that the CTM’s material is similar (elastic and strength values) to the 

composite material investigated by Tita (2003) during his Ph.D. Thesis. The specimens 

manufactured and studied by Tita (2003) were made of prepreg M10 from HexcelTM. In fact, 

they were unidirectional carbon fibers with epoxy resin and the fiber volume ratio was equal 
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to 63%. The elastic properties and strength values are shown either in Table 7 or by Tita, 

Carvalho, & Vandepitte (2008). 

 

Table 7: Elastic properties and strength values (Tita V. , 2003) 

Elastic Properties 

E11 127 GPa 

E22 10 GPa 

G12 = G13 544 GPa 

G23 3.05 GPa 

υ12 = υ13 0.34 

υ23 0.306 

Density 1580 kg/m3 

Strength Values 

XT 1400 MPa 

XC 930 MPa 

YT 47 MPa 

YC 130 MPa 

S12=S13 53 MPa 

S23 89 MPa 

 

After obtaining the composite specimens from CTM-SP, some experiments have been 

performed in the laboratory of Material Engineering Department of Engineering School of 

São Carlos (University of Sao Paulo – Brazil) (Figure 15). The test machine was an EMIC, 

which provided the force and displacement data. The strain measurements were carried out by 

using strain gages and Digital Image Correlation (DIC) technique. In order to perform DIC, 

the coupons were painted white and black, what was spread to make small marks on the 

coupons surface. A CANON (EOS 50D) camera was used. It had 400 mm lens, an aperture of 

f/4.5 and a focus distance close to 1.5 m. LED lights were used to illuminate the specimens 

during the tests, avoiding heat transfer. The images obtained from the CANON camera were 

analysed by CorrelliQ4 software (Hild & Roux, 2008). The black marks on the coupon surface 

were used to measure the displacement fields and strain fields were obtained from 

displacement fields gradients.  
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( ,0)

( ,0) 0
u l

v l
y


 


 (54) 

 (0,0) 0u   (55) 

 0( ,0) xu l l  (56) 

 

where 0
x is the far field axial strain. Also, the boundary conditions only constrain the 

displacement at the center line of the coupons ends.  

The shear stress is assumed to be constant along the length (x direction - Figure 21) of the 

coupon and it is an unknown function of y. 

 

 1( )xy f y   (57) 

 0xyxx

x y

 
 

 
 (58) 

 0yy yx

y x

  
 

 
 (59) 

 

Integrating the plane stress equilibrium equations (EQ. (58) and EQ.(59)) and using EQ. 

(57), the expressions for the normal stresses components are: 

 

 '
1 2( ) ( )x xf y f y     (60) 

 ( )y g x   (61) 

 

where 2 ( )f y  and ( )g x are functions of their respective arguments. Using the previous 

results with the compatibility equations (EQ.(62)) leads to  the third-order differential 

equation (EQ.(63)). 

 

 , , ,2 xy yx xx yy yy xx     (62) 

 '' '' '' ''
11 1 11 2 16 1 22( ) ( ) 2 ( ) ( ) 0S xf y S xf y S xf y S g x      (63) 
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where 11S , 22S and 16S are terms of the laminate compliance matrix. The solution for this 

partial differential equation, which satisfies the boundary conditions, is: 

 

 2 2
1 0( ) ( )f y C y h   (64) 

 216
2 0 1 2

11

( ) 2
S

f y C y C y C
S

     (65) 

 ( ) 0g x   (66) 

 

The stresses are: 

 

 216
0 1 2 0

11

2 2x

S
C y C y C C xy

S
       (67) 

 0y   (68) 

  2 2
0xy C y h    (69) 

 

where 0C , 1C and 2C are unknown integration constants. These constants may be 

determined by using both the boundary conditions (EQ. (53) to EQ. (56)) and the strain-

displacement relations shown below. 

 

 x

u

x
 




 (70) 

 y

v

y
 




 (71) 

 xy

u v

y x
  

 
 

 (72) 

 

The strains in terms of stress, considering 0y  , are: 

 

 11 16x x xyS S     (73) 
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 12 26y x xyS S     (74) 

 16 66xy x xyS S     (75) 

 

The integration of EQ.(70) using EQ.(67), EQ.(69) and EQ.(73) provides the u 

displacement. The integration of EQ. (71) using EQ.(67), EQ. (69) and EQ.(74) gives the v 

displacement. By using some steps explained by Herakovich (1998), it is possible to 

determine the integration constants. Regarding the displacements along the centerline, y=0, 

(Figure 21), it is obtained: 

 

  2
11 2 16 0u S C S C h x   (76) 

 
  11 0 2

6

S C x l x l x
v

 
  (77) 

 

Thus, the stress x  in the center-line is given by: 
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      

 (78) 

  

And, the shear stress is given by: 

 

 

16

11
2

66

11

6

6
xy x

S

S

S l
S h

 

 
  

 
      

  

 (79) 

 

Once the strains have been measured by using either strain gages or DIC, it is possible to 

verify the effect of the shear stress in the results.  
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Finally, the effect of coupons curvature has not been modeled for the tensile tests, once it 

is very small. In fact, the test machine grips straight the coupons and the stresses created by 

this phenomenon are very small. 

3.1.2 COMPRESSION TESTS 

Compression tests are rather complicated to perform, since buckling is very difficult to 

avoid. In order to minimize the buckling phenomenon, the coupons span must be small 

enough and still have sufficient length to allow measuring the strains without Saint-Venant 

effects.  

Despite the negligible effect of coupons curvature for the tensile tests, this initial 

curvature affects the compression results and other non-acceptable failure modes may occur. 

For example, it is possible to identify end-crushing, decohesion of tab adhesive, failure inside 

the tab area and delaminations (ASTM D3410, 2003), which are unacceptable failure modes 

for compression tests (Figure 26). 

3.1.2.1 Materials and Methods 

As in the tensile tests, the coupons for compression tests have been produced  by filament 

winding process and, the almost flat composite laminate plates have been manufactured (with 

radius around 7657 mm) by using a parallelepiped shape mandrel. Again, the plates have been 

cured in a controlled oven. After that, the almost flat plates have been cut into coupons, 

following the dimensions provided by the ASTM D3410 (2003) standards. 

The dimensions for 0o, 90o, 30o and 15o compression test coupons are shown in Table 5. 

Table 6 shows where the tests were performed and why. As previously explained for tensile 

tests, the off-axis orientation has been chosen in order to study different failure modes and 

how shear stress ( 12 ) and normal stress ( 2 ) interact during the damage process. 

Although the dimensions have been according to the standards, the compression tests of 

off-axis coupons have also been submitted to unknown shear stress ( xy ) due to non-zero 

terms in the bending-stretching coupling matrix (laminate stiffness matrix B). Despite 

knowing that the h
l  ratio (EQ.(48) and EQ.(49)) may reduce the influence of shear stress, 

the span in compression tests must be as small as possible to avoid buckling. 
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On the other hand, as commented before, most of 0o coupons failed inside the grips or 

showed end-crushing. Only the coupon defined as CDP 0–3 (Figure 29) showed an acceptable 

failure mode, but its behavior is rather similar to the other coupons. Another explanation 

could be related to fiber misalignment during the manufacturing process, once only small 

difference in the orientation could affect the results significantly (Yokozeki, Ogasawara, & 

Ishikawa, 2006). Table 10 shows the results and other test remarks. In fact, for the material 

model, the elastic properties have been obtained by the tensile tests and not by the 

compression ones. 

 

Table 10: Compression 0o coupons - normalized results. 

Cou pon 
Normalized 

Stress 

Normalized 

Strain 
Test speed [mm/min] Area [mm2] 

CDP 0-1 -0.85 -0.43 0.5 22.52 

CDP 0-2 -1.00 -1.00 0.5 20.36 

CDP 0-3 -0.91 -0.39 0.5 21.45 

CDP 0-4 -0.75 -0.30 0.5 22.58 

CDP 0-5 -1.00 -0.87 0.5 21.41 

CDP 0-6 -1.00 -0.90 0.5 21.91 

CDP 0-7 -0.99 -0.97 0.5 22.05 

Average -0.93 -0.69 - 21.63 

 

Compression tests of specimens with fibers at 90o showed to be very difficult to perform, 

once buckling took place for almost all coupons. Two experimental normalized results are 

shown in Figure 30 as well as  an upper (EQ.(82)) and lower (EQ.(81)) critical buckling load. 

The lowest limit buckling load is 0.31 of the experiments maximum lad and the highest limit 

is 1.24. In this case, the experiments results are closer to the highest limit than those for 

compression 0o coupons.   

The strength values are rather low compared to literature values for compression. Figure 

30 only shows the two best results out of seven tests. Again, the initial coupon curvature 

straightened by the machines fixtures makes the coupon behave as a beam-column and it 

buckles with a lower load than for a straight coupon one.  Although the strength values are 

low, these results have been used for the model development.  

It is important to observe that for 90o compression, the behavior is similar to 0o coupons, 

i.e. non-linear elastic behavior and almost no inelastic strains have been verified. This 
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3.2 IMPACT TESTS 

Despite the static behavior of composites being quite well established, it is not possible to 

say the same for impact loads (Zukas, Nicholas, Swift, Greszczuk, & Curran, Impact 

Dynamics, 1982). For example, ASTM D7139 (2007) can be used to guide the impact test for 

composite flat coupons. However, there is not a standard for impact test on composite 

cylinders. Moreover, several studies of composite plates under impact have been addressed by 

some researchers (Donadon, Iannucci, Falzon, Hodgkinson, & Almeida (2008), Khalili, 

Soroush, Davar, & Rahmani (2011), Xiao (2007), Tita, Carvalho, & Vandepitte (2008)), but 

only few studies were performed, regarding impact on curved geometry (Kobayashi & 

Kawahara (2012), Ballère, Viot, Lataillade, Guillaumat, & Cloutet (2009), etc).  

3.2.1 INTRODUCTION 

The usage of composite materials in aeronautical industry has increased considerably in 

the last decades, even in large civil aircrafts as previously commented. Both high stiffness and 

low weight are the driving factors (Williams, Vaziri, & Poursartip, 2003). Considering the 

structural shapes and component functionality, the intrinsic anisotropy of components allows 

achieving an optimal material performance. This is the reason why pressure vessels are an 

important application of composite materials. In fact, composite vessels design guidelines 

were established more than 40 years ago and it has been recommended high safety factors in 

order to avoid failures, mainly in pressurized vessels (Kobayashi & Kawahara, 2012).  

Among several causes of damage, failures caused by impact loading is a special category. 

Composite structures are generally more susceptible to impact damage than similar metallic 

structures. Impact loads may cause internal damage in composite laminates, what is hardly 

detected by visual inspection, because the damage is very small, e.g. matrix cracking, 

delamination and/or fiber breakage. However, this internal damage may cause a severe 

reduction in the structural strength (Abrate S. , 1998) and, many different parameters affect 

the structural response. Not only the initial kinetic energy of the impactor is an important 

parameter, but also the mass and the impact velocity. As reported by Abrate S. (1998), small 

mass at high velocity produces different damage patterns compared to the impact caused by  

large mass at low velocity, even if both impactors hit the target (composite structures) at equal 

kinetic energy. Normally, in low velocity impact, the damage starts with matrix cracking, 
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which evolves to delaminations in the interface of plies with different orientations. Despite 

the high strength in fiber direction, out-of-plane stresses caused by impact loads due to either 

a  bird strike or a dropped tool may lead to severe damage. In metallic structures, this kind of 

damage is easier to be detected differently from what happens to carbon fiber composite 

structures (Ballère, Viot, Lataillade, Guillaumat, & Cloutet, 2009).  

There are several testing standards (tensile, compression, shear, bending, fatigue, impact, 

etc) for flat composite coupons. The standards ASTM D7136 for composite and ASTM 

D5628 for rigid plastics provide the guides to perform the impact test on flat coupons. Several 

researchers ( (Tita, Carvalho, & Vandepitte, 2008), (Abrate S. , 2001) (Christoforou & Yigit, 

2009), (Menna, Asprone, Caprino, Lopresto, & Prota, 2011), (Quaresimin, Ricotta, Martello, 

& Mian, 2013), etc) have also investigated impact problems on flat composite plates. 

However, there are few publications about impact on curved composite structures ( (Minak, 

Abrate, Ghelli, Panciroli, & Zucchelli, 2010) (Ballère, Viot, Lataillade, Guillaumat, & 

Cloutet, 2009) (Minak, Abrate, Ghelli, Panciroli, & Zucchelli, 2010)) and, there is no standard 

for impact tests on curved composite coupons. Because of the absence of standards, each 

experimental test presented in earlier research work should be considered as a unique 

analysis, once those research works have shown different test conditions, e.g. different types 

of coupons fixture. 

Part of the present work consists of experimental analysis in transverse impact tests, 

which is carried out in carbon fiber filament wound cylinders in order to investigate the effect 

of some parameters on the impact response. Thus, anisotropy, energy level, boundary 

conditions and cylindrical shape have been evaluated by experimental tests. Three different 

cylinder lay-ups were manufactured by using the filament winding process previously 

described, and two energy levels for the impact tests were applied by using a drop tower 

equipment. The difference of the response among each lay-up and the influence of energy 

level have been analyzed in details. 
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Table 13: Cylinders lay-up and average thickness. 

Identification Lay-up Thickness [mm] 

Type A [90 / 60 / 60 / 90 / 60 / 60 / 90]S   3.49 

Type B [90 / 30 / 30 / 90 / 30 / 30 / 90]S   3.25 

Type C [90 / 30 / 30 / 60 / 60 / 30 / 30]S    3.54 

 

Due to the filament winding process, the ply thicknesses depend on the fiber orientation as 

shown in Table 14.  

 

Table 14: Ply thicknesses for each cylinder type. 

Type A Type B Type C 

Orientation 
Thickness 

[mm] 
Orientation 

Thickness 

[mm] 
Orientation 

Thickness 

[mm] 

      

90°(*)  0.29 90°(*) 0.28 90°(*) 0.25 

60°  0.29 30° 0.245 30° 0.25 

-60°  0.29 -30° 0.245 -30° 0.25 

90°  0.25 90° 0.24 60° 0.26 

60°  0.25 30° 0.245 -60° 0.26 

-60°  0.25 -30° 0.245 30° 0.25 

90°  0.25 90° 0.205 -30° 0.25 

90°  0.25 90° 0.205 -30° 0.25 

-60°  0.25 -30° 0.245 30° 0.25 

60°  0.25 30° 0.245 -60° 0.26 

90°  0.25 90° 0.24 60° 0.26 

-60°  0.23 -30° 0.225 -30° 0.25 

60°  0.23 30° 0.225 30° 0.25 

90°(**)  0.17 90°(**) 0.16 90°(**) 0.21 

Average per 

layer 
0.249 

Average per 

layer 
0.232 

Average per 

layer 
0.249 

 (*) outer layer; (**) inner layer. 
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31 J impact tests on Type A cylinders (Figure 50) show that the force increases quickly 

close to 5.2 ms and then a sudden force drop occurs. After that, the force increases again and a 

new sudden drop occurs. The maximum force peaks (around 2500 N) occur from 7 ms to 7.5 

ms for all coupons. Just after this interval, the force drops again. The maximum force peak 

takes place around 0.0078 s and the maximum displacement at 11.1 ms (response delay of 3.3 

ms). This trend repeats close to 8.7 ms of the impact event. A similar behavior was registered 

by Minak et al. (2010). This part of peaks and troughs may be an indication of the 

initialization of delaminations between several layers. After this period of time (from 4.7 ms 

to 8.7 ms), the unstable delamination propagation may cause further oscillations in the force 

vs. time history, as observed by Schoeppner and Abrate (2000) for flat coupons. Figure 50 

shows that the maximum force level does not occur in the first peak and that the maximum 

force value does not occur in the same time of the maximum displacement either. The same 

behavior has already been observed for 8.4 J impact tests as previously commented  

Figure 51 shows the amount of energy, which is transferred from the impactor to the 

coupons. When compared to type A coupons tested at 8.4 J, in this case (at 31 J), there is a 

different behavior, because during the initial phase, when the impactor loses part of the 

kinetic energy, the slope of the curve changes. Thus, firstly, the slope decreases at 23.8 J (8.19 

ms) and, then (at 26 J), the slope increases again (Figure 51) to a value closer to the first 

slope. This phenomenon occurs because the impact energy level produces a lot of damage in 

the coupons. For example, matrix cracking and delaminations  have been visible as well as a 

few fiber failures, which have been detected only near the impact area (Figure 52). The 

impactor also produces a small dent mark on the coupon (inelastic deformation). 
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Table 18: Results summary for type A cylinders (31 J). 

Coupon 
Maximum force peak 

[N] 

Maximum displacement [mm]  

(absolute value) 

1 2388.9 16.0

2  2319.3 16.2

3  2563.5 16.3

4  2270.5 16.3

Average 2385.6 16.2

Standard Deviation 128.2 0.2

 

The ratio between elastic energy and dissipated energy is around 0.98 (Table 19). Thus, 

for type A cylinders (31 J), more energy was dissipated than restored to the impactor. The 

main sources of unrecoverable energy consist of not only the failure mechanisms discussed 

earlier, but also the material damping, mainly related to the epoxy matrix. 

 

Table 19: Ratio between elastic energy (Ee) and dissipated energy (Ed) – Type A cylinders (31 J) 

Coupon Ee/Ed 

1 0.84

2  1.11

3  0.97

4  0.97

Average 0.98

 

3.2.3.2 Results for Cylinder Type B 

As explained in the previous section, type A cylinders impacted under 8.4 J did not show 

any detectable damage close to the impacted area. Thus, this section firstly presents the results 

for type B cylinders under 8.4 J, also. As verified for type A cylinders, the C-Scan image 

(Figure 53(a)) shows that there is not any damage for type B.  
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Figure 54 shows force vs. time history of a finite element simulation for type B cylinders 

under 8.4 J impact test. The finite element analysis has been carried out by using 

ABAQUSTM/explicit. The composite cylinder was modeled  by using 4 node homogeneous 

reduced integration elements (S4R) and the steel base was modeled by using a 4 node 

homogenous hexahedron elements. For the impactor, a 3-node discrete rigid element was 

used. The ABAQUSTM general contact algorithm regarding hard contact normal behavior was 

used to model the interactions between the cylinder and the base as well as between the 

cylinder and the impactor head. Details about the finite element analyses can be found at 

Ribeiro et al. (2012). It is important to highlight that this simulation did not include neither 

damage models nor progressive failure analysis. The oscillatory behavior observed in the 

response of the structure has not been related to any kind of damage. Moreover, the finite 

element simulations show that there is a response delay provided by the base (reaction force) 

compared to the input force provided by the impactor (Figure 54). When the impactor just hits 

the cylinder, the input force increases very fast, but there has been no reaction in the support 

(base) yet. After 0.6 ms, the reaction force in the base increases, but the force in the impactor 

decreases. The next force peak of the impactor corresponds to a decrease of the base reaction 

force. This trend repeats until 3.0 ms of the impact event, after this time, there are no clear 

correlations. It indicates that there is a delay of the response between the support reaction and 

the impactor. The explanation of this effect is the velocity of the wave propagation from the 

impact point to the base. 

Figure 55 shows the force vs. time and displacement vs. time for type B cylinders under 

8.4 J impact. The repetitions have produced nearly identical results. The trend of peaks and 

troughs is similar to type A cylinder, but for type B cylinders, the maximum peak force occurs 

closer to the maximum displacement data (around 0.6 ms) than type A cylinders (around 2.6 

ms). 
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Table 20 summarizes the results for force, displacement and strain for type B cylinders 

under 8.4 J of impact. The maximum displacement and the minimum strain are larger than the 

values presented by type A cylinders. 

 

Table 20: Maximum force, displacement and strain for type B cylinders (8.4 J). 

Coupon 
Maximum force 

peak [N] 

Maximum 

displacement [mm]  

(absolute value) 

Minimum strain [%] 

1 1342.8  7.4 -1.031 

2  1333.0  7.6 -1.025 

4  1228.0  8.0 -1.010 

Average  1301.3  7.7 -1.022 

Standard Deviation  63.6  0.3 0.018 

 

As observed for type A, the average response delay between strain gages “1” and “2” for 

type B (8.4 J) is around 1.5 ms (Figure 57). This value is not so different from that found in 

type A cylinders (1.3 ms). Table 21 shows the response delay between strain gages “1” and 

“2” for type B cylinders under 8.4 J impact test. In this case, it has not been possible to 

measure the delay for coupon 3. The average delay between the response of strain gages “1” 

and “2” for type B is around 1.5 ms. Thus, the response delay for type B cylinders (under 8.4 

J impact test) is 20% higher than type A cylinders (under 8.4 J impact test), which indicates 

the influence of the cylinder lay-up in the stress wave velocity. Since the stress wave has been 

faster in fiber direction, it is concluded that cylinder type A shows the stress wave velocity 

faster than that in the other cylinders because its lay-up has fibers at 90º and 60º. 
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3.2.3.4 Comparison of Results 

Type C cylinders present higher load peaks (Table 30 and Table 31) than other cylinder 

types. However, in 8.4 J impact tests, the average values of forces were close to each other 

over all cylinder types.  

 

Table 30: Maximum force peak (8.4 J). 

Cylinder Type 
Maximum peak 

load [N] 

Difference

100Typei Type A

Ttype A

V V

V


  

Type A 1368.4 -

Type B  1301.7 -4.9%

Type C  1402.6 2.5%

 

Table 31 shows the values of the maximum load peak and the differences among type A 

and the other types. This table shows that for the same impact energy, type C cylinders have 

an average force 40.7% higher than type A cylinders, and type B cylinders have an average 

force 13.6% higher than type A cylinders. These differences did not occur in 8.4 J impact 

tests. 

Table 31: Maximum force peak (31 J). 

Cylinder Type 
Maximum peak 

load [N] 

Difference

100Typei Type A

Ttype A

V V

V


  

Type A 2385.6 -

Type B  2710.0 13.6%

Type C  3356.9 40.7%

 

Type B cylinders present higher displacement (Table 32 and Table 34) than other cylinder 

types. All comments for Type A cylinders can also be considered for Type C cylinders. 

Average results were rather close both for 8.4 J and 31 J impact tests. On the other hand, the 

strain data present a considerable dispersion as shown in Table 32. 
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Table 32: Maximum displacement (absolute values) for 8.4 J. 

Cylinder Type 
Maximum absolut 

displacement [mm] 

Difference

100Typei Type A

Ttype A

V V

V


  

Type A 7.2 - 

Type B  7.7 6.9% 

Type C  7.4 2.8% 

 

Table 33: Minimum strain (strain gage 1 – 90o) for 8.4 J. 

Cylinder Type 
Minimum strain 

[%] 

Difference

100Typei Type A

Ttype A

V V

V


  

Type A -0.761 - 

Type B  -1.022 34.3% 

Type C  -1.107 45.5% 

 

Table 34: Maximum displacement (absolute values) for 31 J. 

Cylinder Type 

Maximum absolut 

displacement 

[mm] 

Difference

100Typei Type A

Ttype A

V V

V


  

Type A 16.2 - 

Type B  16.4 1.2% 

Type C  16.0 -1.2% 

 

Regarding the damaged area, type A cylinders were more damaged than the others, mainly 

in the internal surface. The other cylinders types did not show damage in the internal surface. 

Delaminations, matrix damage and indentation marks have also been detected in type C 

cylinders. 

The response delay in type A cylinders has the lowest value and type C produces the 

highest value. Type A has the lay-up with fiber angles close to 90o, which are stiffer for hoop 

stress than type B and C. Besides, type C has only two layers with 90o, what means that it is 
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more flexible in the hoop direction. Therefore, the stress wave propagates faster in type A 

than in types B and C, considering the hoop direction. 

Table 35 shows the average delay value between the strain gages 1 and 2 for cylinders 

type A, B and C. 

 

Table 35: Delay between strain gages for 8.4 J. 

Cylinder Type Delay [s] 

Difference

100Typei Type A

Ttype A

V V

V


  

Type A 0.00127 -

Type B  0.00155 22.7%

Type C  0.00165 29.9%

 

Considering the average values of ratio between elastic to dissipated energy under 8.4 J 

impact for all cylinders types (Table 36), the differences among type B, C and type A are very 

significant. Type B and C cylinders restore almost all energy to the impactor and almost no 

damage occurs. On the other hand, type A cylinders restore much less energy due to internal 

damage process, which has not been detected by the C-scan analysis. 

 

Table 36: Energy ratio for 8.4 J. 

Cylinder Type Ee/Ed 

Difference

100Typei Type A

Ttype A

V V

V


  

Type A 1.51 -

Type B  6.98 362.2%

Type C  10.33 584.1%

 

Finally, there is a comparison between the average values of elastic to dissipated energy 

ratio under 31 J impact tests for all cylinders types (Table 37). The difference between type B, 

C and A is not as pronounced as shown by 8.4 J impact test. At 31 J energy level, type B and 

C cylinders restore more energy to the impactor than they dissipate, and type A cylinders 
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restore less energy to the impactor. All cylinder types show several failure mechanisms after 

the impact under 31 J. 

 

Table 37: Energy ratio for 31 J. 

Cylinder Type Ee/Ed 

Difference

100Typei Type A

Ttype A

V V

V


  

Type A 0.98 - 

Type B  1.30 32.6% 

Type C  1.30 32.6% 

 

3.2.4 IMPACT TESTS CONCLUSIONS 

The results of impact tests in a set of cylinders show that the stacking sequence is a very 

important parameter in the cylinder impact behavior. Type A cylinders are more susceptible 

to damage than types B or C.  

Although C-scan has not detected any damage for type A cylinders under 8.4 J impact 

test, some other phenomena could be evaluated by using the graphics. For instance, the delay 

between the maximum force peak and the maximum displacement and the delay between the 

maximum force peak and the minimum strain is very similar to the delay pattern shown by 

type A cylinders under 31 J impact test. Thus this off-set between maximum force value and 

maximum displacement could work as an indicator of damage. Furthermore, the strongest 

indication of damage on type A cylinder caused by 8.4 J impact test is the ratio between 

elastic and dissipated energy, once the energy ratio shown by type A cylinders was different 

from other cylinders types.  

Cylinders type B and C have not dissipated a considerable amount of energy due to the 

impact test. Besides the delay between their maximum force value and maximum 

displacement (or minimum strain) has been much lower than that for type A cylinders.  

Considering 31 J impact test, all coupons have shown several damaged mechanisms, such 

as delaminations, matrix cracking and dent marks. Furthermore, for all types, the off-set 

between the maximum force and maximum displacement has been considerable. Therefore, 
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the mentioned delay can also be regarding a damage indicator, since it has not been detected  

in the elastic response obtained from 8.4 J impact tests (cylinders type B and C). 

Furthermore, for 31 J impact energy, the kinetic energy has been transferred from the 

impactor to the cylinders in at least two slope curves. This change of slope indicates that a 

more severe mechanism of damage takes place. It is important to highlight that this behavior 

has not been detected in all cylinders types under 8.4 J impact test. In those cases, the energy 

from the impactor has been transferred to the cylinders in one slope curve.  

Finally, it has also been shown that the lay-up does not have an important effect neither in the 

maximum displacement nor in the total impact time in all investigated cylinder types at the 

same energy level. 

 

 

 

 

 



 

4 FINITE ELEMENT ANALYSES 

 

After the development of the damage model and the identification of the model 

parameters, it was possible to implement the entire mathematical formulation with all 

parameters adequately specified. 

In order to evaluate the material model, it is necessary to perform nonlinear material FE 

(Finite Element) analyses by using ABAQUSTM and the UMAT or VUMAT subroutines. 

Moreover, the step size and mesh density are very important in the convergence process of the 

numerical analyses. Thus, step size and mesh convergence tests have been performed to find 

the optimum model performance to simulate the damage process. Also, as observed in the 

experiments, the failure mechanisms occurred in small displacements applied to the coupons; 

so nonlinear geometric effects have not been considered neither in the FE tensile nor in four 

point bending analyses. On the other hand, geometric non-linearity has been used for both 

compression and impact analysis. 

4.1 TENSILE RESULTS 

The FE model for [0o]10 tensile tests had the same dimensions of the coupons used for the 

experiments, but only the length between the grips was modelled (Figure 68), once the model 

geometry is simple and the results are not affected by those boundary conditions. For the FE 

mesh, 4-node fully integrated homogeneous shell elements have been used (defined in 

ABAQUSTM as S4 , which each layer was 0.2 mm thick and had three integration points along 

the thicknes)s. Also, the material properties for each layer have been obtained by the 

experiments. The boundary conditions for tensile tests (0o and 90o coupons) were applied in 

order to simulate the restrictions imposed by the grips and the displacement controlled in one 

extremity of the coupon. The terms Ux, Uy and Uz are the displacements in x (red arrow), y 

(green arrow) and z (blue arrow), respectively. The terms Rx, Ry and Rz are the rotations 

around x, y and z, respectively (Figure 68).  

Since the bending moment to straighten the almost flat coupon by the machine fixtures 

does not produce a high stress state on the coupon, this effect might be neglected in the the FE 

analyses. 
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The difference is calculated regarding the average of the tensile maximum stress reached 

during the experiments for each tested coupon and the maximum stress reached by the FE 

model during the simulations for each case (element size and step size). 

Considering off-axis 5o coupons under tensile load, Figure 74 shows xx  vs. xx  for both 

experiments and computational simulation. In this case, the load is supported not only by the 

fibers, but also by the matrix. Since the load increases, the ply stresses in local orientation 

also increase until failure. The failure process in off-axis 5o coupons is a mixed mode of fiber 

and matrix failure as shown in Figure 75. The failure process initiates in some fibers, which 

are under high stress, as verified during the experiments. This effect is simulated by the 

failure of some elements under high stress in the FE model. Then, the stress field is 

redistributed for the other finite elements. Due to high loads to be supported by fibers, when 

the fiber failure mechanisms occur, the matrix is not capable to support the loads and fails in a 

brittle way (ED > EDC ). 
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Table 40: Tensile [5o]10 results for numerical and experimental analyses. 

Coupon 
Maximum stress 

[MPa] 
Strain at maximum stress 

CDP 5-1 896.64 0.01242 
CDP 5-3 785.85 0.00850 
CDP 5-5 940.41 0.01162 

Experimental Average 874.30 0.01085 
Numerical Prediction 890.90 0.01175 

DIfference % 1.9 6.8 
( ) %Difference Experiments average Numerical Prediction Experiments average   

4.2 COMPRESSION RESULTS 

As previously mentioned, the compression behavior of composite materials is different 

from those for the tensile ones. In order to verify the model capacity to simulate the failure 

under compression, numerical results have been compared to experimental compression tests 

for off-axis 15o and 30o coupons. Also, as commented for off-axis tensile tests, the off-axis 

compression tests yield a biaxial stress state with normal stress ( xx ) and shear stress ( xy ) 

fields. 

The sensitivity studies are shown in Figure 76. The step size had strong influence on the 

model performance rather than on the element size. Figure 76(b) shows that for maximum 

step size greater than 0.03 (3% of the prescribed displacement), there is no difference in the 

Error for step size greater than 0.03 due to the convergence issues. In this case, the FE model 

with combination of 1.0 mm element size and 0.01 maximum for step size (i.e. 1% of the 

prescribed displacement for each increment) showed better results. 

In the compression tests, the differences are too high in most of the cases (higher than 

10%) and the step size analysis had shown a huge influence for the FE model accuracy 

(Figure 76 (b)). Besides, if the amount of the maximum prescribed displacement decreases 

from 1% to 0.5% applied to each increment, the model accuracy will improve significantly.  

 



148           

Figure

Difference

The dif

during the 

model duri

Figure 

15o coupon

Figu

 

                  

e 76: Compr

(Experime

fference is 

experimen

ing the simu

77 shows 

ns under com

ure 77: Stress

                  

(a) 

ression 15o co

ments average

calculated r

nts for each

ulations for 

xx  vs. xx

mpression l

s vs. strain fo

                  

oupons - fini

ana

min imum stres

regarding th

h tested cou

each case (

experimen

loading. 

or compressio

                  

ite element m

alysis (b)

ss Simulatio

he average 

upon and th

(element siz

ntal test and

 

on [15o]10 re

                  

mesh sensitiv

)ns Experime

of the tensi

he maximum

ze and step s

d the compu

sults – exper

                  

(b) 

vity analysis 

ments average

ile maximum

m stress rea

size). 

utational res

rimental vs. s

       CHAPT

(a) and step 

min imum stres

m stress rea

ached by th

sults for off

 

simulation. 

TER 4 

 

size 

%ss  

ached 

he FE 

ff-axis 



4 FI

In

load.

unde

the fa

 

 

T

case,

was e

 

E

D

 

F

limit

(i.e. 

mode

INITE ELEME

n this case,

. However 

er tension, d

failure proce

Table 41 su

, the maxim

equal to 2.2

Table

Coup

CDP 
CDP 
CDP 
CDP 

Experiment
Numerical P

Differen
(Difference 

Figure 79 sh

t. As expect

0.5% of the

els. 

ENT ANALY

, similar to 

the fiber f

due to fiber 

ess is differe

ummarizes t

mum error fo

2%. 

e 41: Compre

pon 

15-2 
15-3 
15-4 
15-5 

tal Average 
Prediction 
nce % 
(Experiments

hows the st

ted, the FE 

e prescribed

YSES             

5o off-axis

failure proce

kinking and

ent as show

Figure 78: C

the experim

or stress wa

ession [15o]10

average Nu

tudy for me

model with

d displacem

                  

s coupons u

ess is more

d micro-buc

wn in Figure 

Compression 

mental resu

as equal to 1

0 results for n

Maximum
[MP
-393
-424
-414
-407
-409
-417

1.
umerical Predi

esh converg

h 0.5 mm el

ment for each

                  

under tensio

e complex 

ckling, whic

78. 

15o coupon 

lts as well 

1.7% and, fo

numerical an

m stress 
Pa] 
3.32 
4.86 
4.33 
7.33 
9.96 
7.02 
7 

)iction Exper

gence as we

ement size 

h increment

                 

on, the fiber

than that in

ch leads to 

 

failure. 

as the num

or the strain

nd experimen

Stra

riments averag

ell as for th

and 0.005 f

t) showed b

                  

rs support m

n 5o off-ax

lower failur

merical resu

n at maximu

ntal analyses

ain at maxim

-0.009
-0.010
-0.008
-0.007
-0.009
-0.009

2.2 
%ge  

he maximum

for maximu

better results

            149

most of the

xis coupons

re loads; so

ults. In this

um stress, it

. 

mum stress

93 
01 
88 
77 
90 
92 

m step size

um step size

s than other

9 

e 

s 

o 

s 

t 

e 

e 

r 



150           

 

Figure 79

Difference

The dif

during the 

model duri

The off

shown in 

difference 

than the di

 

                  

9: Compressi

(Experime

fference is 

experimen

ing the simu

f-axis 30o c

Figure 80. 

between th

fference ob

                  

(a) 

on 30o coupo

ments average

calculated r

nts for each

ulations for 

oupons com

In this ca

he load sup

btained by [5

                  

ons - finite e
a

min imum stres

regarding th

h tested cou

each case (

mpression re

se, fibers s

pported by f

5o]10 and [15

                  

element (a) m
analysis 
ss Simulatio

he average 

upon and th

(element siz

esults in exp

still suppor

fibers and t

5o]10. 

                  

mesh sensitiv

)ns Experime

of the tensi

he maximum

ze and step s

periments an

rt more loa

the load su

                  

(b) 

ity analysis a

ments average

ile maximum

m stress rea

size). 

nd numeric

ad than the 

pported by 

       CHAPT

and (b) step 

min imum stres

m stress rea

ached by th

cal simulatio

matrix, bu

 matrix is l

TER 4 

 

size 

%ss  

ached 

he FE 

on are 

ut the 

lower 



4 FI

 

T

mode

maxi

fail d

 

E

D

 

D

geom

cross

capac

the c

INITE ELEME

Figure 80:

Table 42 su

el has a rea

imum stress

due to buckl

Table

Coup

CDP 
CDP 
CDP 
CDP 

Experiment
Numerical P

Differen
(Difference 

Despite the 

metry also a

sing all the 

city is lowe

coupon failu

ENT ANALY

: Stress vs. st

ummarizes 

asonable per

s is rather h

ling and the

e 42: Compre

pon 

30-1 
30-2 
30-3 
30-4 

tal Average 
Prediction 
nce % 
(Experiments

differences

affects the 

gage lengt

er than the f

ure is govern

YSES             

train for com

the results 

rformance t

igh. As prev

e model pres

ession [30o]10

average Nu

s of load su

failure pro

th between 

fibers, the f

ned by the m

                  

mpression [30

for 30o co

to predict th

viously men

sents a softe

0 results for n

Maximum
[MP
-145
-127
-130
-125
-132
-142

7.
umerical Predi

upported by

ocess. In th

the test ma

failure load

matrix. 

                  

0o]10 results –

upons unde

he maximum

ntioned , th

ening after m

numerical an

m Stress 
Pa] 
5.80 
7.90 
0.40 
5.20 
2.33 
2.49 
7 

)iction Exper

y each phase

he case of 3

achine grips

for 30o cou

                 

– experiment

er compress

m stress, bu

e 30o coupo

maximum s

nd experimen

Stra

riments averag

e (fiber and

30o coupon

s. Since the

upons is low

                  

tal vs. simula

sion. In thi

ut the error f

ons under c

stress peak. 

ntal analyses

ain at maxim

-0.036
-0.025
-0.014
-0.025
-0.025
-0.014
44.9 

%ge  

d matrix), th

ns, there ar

e matrix loa

wer than for

            151

 

ation. 

is case, the

for strain at

ompression

. 

mum stress

62 
54 
43 
57 
54 
4 

he coupons

e no fibers

ad carrying

r 15o. Thus,

 

e 

t 

n 

s 

s 

g 

, 



152                                                                                                                              CHAPTER 4 

It is important to mention that the 30o off-axis coupons compression test did not only fail 

due to “pure” compressive loads, but also due to buckling, mostly in the end of the test (under 

relative high loads). On the other hand, in off-axis 15o coupons, buckling has not been 

detected until being close to the failure. Thus, the buckling phenomenon could explain the 

differences observed after the failure of 30o off-axis coupons. 

4.3 FOUR-POINT BENDING RESULTS 

Despite the simplicity of FE models used for both tension and compression tests, the FE 

model for four point bending is more complex. In this case, it is required to use contact 

algorithm (Figure 81) between the coupon and the test device, due to non-zero terms in the 

bending-stretching coupling matrix. Thus, it is not possible to make a simpler model without 

contact algorithm. 

As for the simulation of tensile tests, 4-node fully integrated shell elements (S4) were used 

again to model the “flat” filament wound laminate. Each one of the ten layers was 0.2 mm 

thick with three integration points (top, medium and bottom point) for each layer analyse. 

Also the material model has been used for each layer calculations. 

The parts of the four-point-bending device in contact with the coupon have been modelled 

by analytical rigid surfaces (represented by the blue cylinders in Figure 81, whose radius was 

5.0 mm). The boundary conditions have been applied at the cylinder reference points (RP). 

For the inner cylinders, prescribed displacement in z direction (blue arrow) has been applied 

and the other displacements (Ux=Uy=0) and rotations around x and z axis (Rx and Rz) were 

restricted at their respective reference points – RP (Figure 81). For the outer cylinders, all the 

displacements (Ux, Uy and Uz) and rotations around x and z axis (Rx and Rz) were also 

restricted at their respective reference points. The contact interactions between the analytical 

rigid surfaces (blue cylinders) and flat filament wound coupon (shell elements) have been 

modelled by using Hard Contact for simulating the normal interactions and Penalty Method 

(with friction coefficient of 0.1) for modelling of the tangential interactions. In fact, there 

would be no influence on the simulations results, if the friction coefficient were changed to 

0.3. It is important to highlight that the solver performs the analysis with the geometric non-

linear modulus deactivated. Otherwise, the numerical simulations would diverge from the 

experimental results, showing a stiffer behavior. Also, the small coupon curvature has not 

been  considered in the FE analyses. 
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results is only 1.61% at maximum force. Therefore, it is concluded that the material model 

can be applied to simulate accurately intra-ply failure of flat filament wound composite 

laminates. It can be used to assist the design of composite structures made by filament 

winding process. Another important advantage is that the model parameters are not so 

complicated to be identified. This characteristic makes this model very attractive to be applied 

to the industrial environment. However, the damage model cannot predict delaminations yet.  

 

4.5  IMPACT ANALYSES 

This part shows the material model applied to simulate impact on filament winding 

cylinders. Since the 31 J impact showed more damage, all the simulations and analyses have 

been performed at this impact energy level. 

Several numerical tests have been carried out to verify the influence of mesh density, 

element type (quadrilateral or triangular), contact algorithm and damping effects. The results 

and discussions are presented in the next sections.  

4.5.1 MATHEMATICAL FORMULATION 

The response of unidirectional carbon fiber composite for low velocity impact may be 

regarded as rate-independent. Thus, it is not necessary to modify the material model used in 

the previous chapter, what was applied to quasi-static simulations. However, it is important to 

highlight that specified user material subroutines, defined as VUMAT, have been developed 

to be linked to ABAQUSTM/explicit.  

4.5.2 FINITE ELEMENT MODELS 

The impact tests on composite cylinders have been simulated by using 

ABAQUSTM/explicit. The finite element model boundary conditions are shown in Figure 

86(a). In the cylinder bottom, the z direction nodes displacements are restricted ( 0ZU  ) to 

simulate the contact with the V-block (Figure 43 and Figure 86(a)). In the impactor head, the 

displacements in x (Ux) and y (Uy) directions are restricted as well as the rotations about x 
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(a) (b) 

Figure 89: Hard contact (a) and exponential pressure-overclosure relationship (b). 

 

The mesh presented at Figure 87(b) has been used for these analyses in order to keep the 

simulation time reasonable and the conclusions can be extended for the most refined mesh. 

The same boundary and initial conditions have been used for all the models. General contact 

has been used for hard contact to simulate normal behavior and surface-to-surface for 

softening behavior. 

Table 44 summarizes the case studies for softening behavior. The results for the different 

contact properties are shown in Figure 90 for type A cylinders. This figure also shows the 

experimental results to assist the analysis of the contact influence on the numerical 

simulations. 

 

Table 44: Contact parameters sensitivity study 

Case
0p  

[Pa]

0c
 

[m] 

C1 1011 0.0001 

C2 1015 0.0001 

C3 105 0.0001 

C4 1011 0.001 

C5 1011 0.00001

 

Observing the analysis in Figure 90, based on the initial part of the impact force history 

(from 4.5ms to 6.5 ms), it can be observed that all the contact laws provide good predictions. 

In fact, they start to diverge from the time around 6.5 ms, for all FE models, which used the 

surface-to-surface contact algorithm (softening contact). Thus, they overestimated the next 

force peak. After that, this contact algorithm can smooth all the high frequencies oscillations 

of the force history. Moreover, the clearance factor ( 0c ) showed to be more relevant than the 

initial pressure ( 0p ). It is clear in Figure 90, where the softening contact did not provide good 

results, despite the combination of the parameters.  
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process as damage (matrix and fiber damage and delaminations), but the other part is 

dissipated by damping.  

Composite materials damping is dependent on several factors, such as: fiber volume 

fraction, composite lay-up, environmental factors, force magnitude, etc. (Zabaras & Pervez, 

1990). Furthermore, the structure geometry has an important influence on the impact 

response. 

As commented before, ABAQUSTM provides the Rayleigh’s damping model for direct 

integration dynamic analysis to simulate energy dissipation through the damping phenomenon 

(Simulia, 2010). In fact, for finite element analysis, damping is treated as a matrix, which can 

be dealt with either as a material property or as a numerical object to oppose the excitation 

forces (Kyriazoglou & Guild, 2007). 

Since damping modifies the finite element model behavior, it is necessary to evaluate its 

influence on the impact force history. Several values for low frequency Rayleigh’s parameter 

( ) have been analyzed by three different cylinders (Type A, Type B and Type C), once the 

damage mechanisms are different for each cylinder lay-up. The   values range from zero (no 

damping) up to unrealistic values in order to model correctly the final part of the impact event 

(e.g. 1800). 

The stiffness proportional parameters at high frequency (  ) for all cylinders were set to 

“zero” in order to obtain the suitable fit between experimental and numerical results. This 

parameter makes the high frequency force oscillations smoother. Also, in order to avoid the 

increase of the simulation time, this parameter was set to “zero”, because the stable time 

integration for explicit simulations could be affected (Dassault Systèmes Simulia Corp, 2010).  

All the studies presented forward have used the same mesh density and normal hard 

contact behavior combined to general contact algorithm.  

 

4.5.2.3.1 Type A damping effect. 

Figure 91 shows the results for type A cylinders impactor force history.  
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As already shown, the fiber damage has only been detected in layer 14 (from 0.0 mm to 

0.2 mm). From this figure, it is observed that the matrix damage intensity has been 

considerably high in layer 14, once d2 has the highest value. On the other hand, the shear 

damage in layer 14 has been low.  

The shear damage has been higher from 0.45 mm to 0.65 mm and, from 2.6 mm to 2.8 

mm. Furthermore, the cylinder type B was more damaged in its inner layer. The cylinder had 

some matrix damage in the layer where the impactor touched, but it was smaller than that in 

layer 14. 

 

4.5.3.2.3 Results for Type C cylinders 

The results for type C are presented in Figure 127. At the beginning of the impact, the FE 

model was capable to capture the first high load peak (at 4.8 ms) with reasonable accuracy. 

Then, both the numerical and experimental force decreased to 500 N but at different time (5.0 

ms for experiments and 5.3 ms for simulation). The simulated force increased again creating a 

second force peak and, the experimental force decreased to almost 0 N. 

After that, the simulated force dropped to 0 N but the experimental force increased 

showing a peak. The simulated force remained null and, the experimental force dropped to a 

value close to 0 N. From this point, the force for both cases increased and, the experiments 

showed the highest force peak. At this point of the impact event (6.7 ms), the FE model 

resulted on a smoother pattern than the experimental data.   
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Finally, a detailed investigation of damage for each ply must be performed on the 

cylinders to verify the model accuracy to predict damage and its extension. Also, a 

delamination criterion must be implemented in the material model. Despite the lack of a 

delamination criterion, the intra-ply model has predicted  both the damage and the type of 

damage in the investigated cylinder structures very well.  
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5 FINAL CONCLUSIONS AND FUTURE PERSPECTIVES 

 

Regarding the mathematical formulation of the new material model based on Continuum 

Damage Mechanics (CDM), it is possible to conclude that the FE model has shown a good 

performance, because it predicted the lamina failure as well as simulated the progressive 

failure of long fibers unidirectional composite laminates with certain accuracy using not such 

long computational time. Moreover, the material model developed in this work represents a 

new approach to detect the damage onset on composite lamina and its evolution accounting 

the influence of ply orientation. This can be confirmed by the comparisons among both 

numerical and experimental results.   

Regarding the implementation of the material model proposal, it is concluded that 

FORTRAN subroutines linked to the commercial finite element program ABAQUSTM have 

been implemented satisfactorily, despite some software limitations. Thus, user material 

subroutines defined as UMAT (for quasi-static simulations), and as VUMAT (for explicit 

dynamic simulations) are adequate to be used in a new material model implementation and to 

simulate the composite structure behavior as well. The advantage of using those subroutines is 

that the FE model construction and analyses of the results are aided by the ABAQUSTM pre-

processor (e.g. mesh algorithm; complex geometries), solver (e.g. contact algorithms) and 

post-processor tools (e.g. strain and stress gradient visualization in each layer). 

Considering the set of experiments, it is feasible to conclude that they have been adequate 

to characterize the material elastic constants, to determine the strength limits, as well as to 

identify the damage model parameters and to evaluate the proposed material model 

potentialities and limitations. The UD carbon fibers coupons used in this work have 

beenmanufactured by using filament winding process. Due to manufacturing process, the 

coupons have shown some curvature, which produces some effects. These effects were a 

negligible for quasi-static tensile and four- point bending tests, but they have been considered 

for compression tests, once the coupon behaves as a beam-column decreasing the critical load 

for a perfect straight coupon. The impact tests had shown many important results, regarding 

the behavior of cylinders. Also, those tests represent a real challenge to be simulated by FE.  

Considering the Finite Element Analyses in order to simulate the experiments, mainly 

based on the comparison between the numerical analyses and the experimental results, it has 

been possible to discuss the advantages and disadvantages of the investigated computational 
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models, showing the influence of simulation parameters (e.g. analysis step size and mesh 

density). The material model was checked to simulate the failure behavior of unidirectional 

composite laminates under tension, compression and bending loadings. For this set of quasi-

static tests, the material model has shown good results, even to predict the compression tests, 

where buckling occurs in almost all tests. Moreover, material model reproduced the beginning 

of the impact tests very well. However, the final of the numerical impact response need to be 

improved. In fact, the material model showed some limitations, mostly for the impact on 

cylinders, where the lack of delamination criteria as well as the absence of information about 

cylinders damping effects. 

Based on the conclusions described above, it is possible to highlight some perspectives for 

future works by: 

 Studing damping phenomena of the composite cylinder, using dynamic 

experiments and other numerical models; 

 Formulating a new finite element, including delaminations and extended 

formulation. For example, it is possible to implement this new element via UEL 

(User Element). In other words, this subroutine in FORTRAN can be linked to the 

program ABAQUSTM, and the FE model can be performed by using a new finite 

element; 

 Performing indentation tests on composite cylinders and comparing to the 

numerical analyses in order to evaluate the material model for this loading case; 

 Including delamination mode only in the material model, i.e. improving the 

UMAT in order to simulate the separation of plies observed during the impact 

tests. 
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APPENDIX I – UMAT CODE 

      SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD, 
     1 RPL,DDSDDT,DRPLDE,DRPLDT, 
     2 STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CMNAME, 
     3 NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT, 
     4 CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,KSTEP,KINC) 
C 
      INCLUDE 'ABA_PARAM.INC' 
C 
      CHARACTER*80 CMNAME 
       
      DIMENSION STRESS(NTENS),STATEV(NSTATV), 
     1 DDSDDE(NTENS,NTENS),DDSDDT(NTENS),DRPLDE(NTENS), 
     2 STRAN(NTENS),DSTRAN(NTENS),TIME(2),PREDEF(1),DPRED(1), 
     3 PROPS(NPROPS),COORDS(3),DROT(3,3),DFGRD0(3,3),DFGRD1(3,3), PS(3), 
     4 AN(3,3) 
 
      double precision E11, E22, nu12, G12, nu21,  Xt, Xc, d1, TF2, d2, 
     1 TF6, d6, Y0, YC, Y0t, YCt, b, a, alpha, beta, R0, Y, R, f, p, 
     2 point_a, point_b, Y2C, starin1, teta, PS, AN, S12, E11c 
 
 
      parameter(Xt=XX,Xc=XX, Y0=0.09, YC=2.07,  
     1 Y0t=0.092,YCt=29.2, R0=15.0, epsilon0=0.003, S12=XX, 
     2 Y2T=0.3) 
      
      parameter (b=1.02, alpha=1.0, beta=3.0, np=10, a=0.5) 
      dimension orientation(np) 
C     Variables for read input file in order to assemble the orientation 
C     layer matrix 
      integer point, nc, ply 
      real(8) ori, thick, gamma1, gamma2, gamma3, gamma, dfdt1, dfdt2, 
     1 dfdt3, ep1a, ep1b, dep1, DP, ef, ep2_p, ep12_p 
C     Vari veis para energia 
      double precision Ed, Ed_rup 
C      parameter (Ed_rup=2.5) 
      
C     Variables for matrix damage under compression 
      double precision m_f, m_y, su_y, su_f, S12_f, S12_y, K_y 
 
C      parameter (m_f=70.0, m_y=62.5, S12_f=80.0, S12_y=47.0) 
      parameter (m_f=XX, S12_f=XX,  
     1 S12_y=XX) 
 
C      parameter(job = '3BP090.inp', part = 'composite') 
 
C     ****************************************************************** 
C     PLY ORIENTATION 
      orientation(1)=90.0 
      orientation(2)=90.0 
      orientation(3)=90.0 
      orientation(4)=90.0 
      orientation(5)=90.0 
      orientation(6)=90.0 
      orientation(7)=90.0 
      orientation(8)=90.0 
      orientation(9)=90.0 
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      orientation(10)=90.0 
       
       
       
      teta=abs(orientation(layer)) 
       
c      teta=30.0 !orientation(LAYER) 
C     ****************************************************************** 
C     *********************************************************** 
C     MATERIAL PROPERTIES 
C     *********************************************************** 
 
      E11 = props(1) 
      E22 = props(2) 
      nu12 = props(3) 
      G12 = props(4) 
 
      nu21 = (props(2)/props(1))*props(3) 
 
C     Inicialization of variables 
 
      d1=0.0 
      d2=0.0 
      d6=0.0 
      ep12_p=0.0 
      ep2_p=0.0 
 
      if (statev(5).EQ.0.0) then 
        p=0.0 
      else if  (statev(5).ne.0.0) then 
        p=statev(5) 
      end if 
 
      if (statev(6).ne.0.0) then 
        d1 = statev(1) 
        d2 = statev(2) 
        d6 = statev(3) 
        E11 = statev(11) 
        E22 = statev(12) 
      end if 
      if (statev(7).ne.0.0) then 
        ep12_p=statev(8) 
        ep2_p=statev(9) 
      end if 
      if (E11.lt.0.03*props(1)) then 
        E11=0.03*props(1) 
      end if 
      K_y = statev(13) 
C     *********************************************************** 
C     CONSTITUTIVE LAW 
C     *********************************************************** 
      do 10 i=1,3 
        do 20 j=1,3 
          ddsdde(i,j) = 0.0; 
 20     continue 
        stress(i) = 0.0; 
 10   continue 
  
 
       
      ddsdde(1,1) = (E11*(1.0-d1)) / (1.0-(nu12*nu21)*(1.0-d2)*(1.0-d1)) 
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      ddsdde(2,2) = (E22*(1.0-d2)) / (1.0-(nu12*nu21)*(1.0-d2)*(1.0-d1)) 
      ddsdde(2,1) = ((1.0-d2)*nu21*E11*(1.0-d1)) / (1.0-(nu12*nu21)* 
     1 (1.0-d2)*(1.0-d1)) 
      ddsdde(1,2) = ddsdde(2,1) 
      ddsdde(3,3) = G12*(1.0-d6) 
       
      stress(1) = ddsdde(1,1) * (stran(1) + dstran(1)) + 
     1            ddsdde(1,2) * (stran(2) + dstran(2)) + 
     2            ddsdde(1,3) * (stran(3) + dstran(3)) 
      stress(2) = ddsdde(2,1) * (stran(1) + dstran(1)) + 
     1            ddsdde(2,2) * (stran(2) + dstran(2)) + 
     2            ddsdde(2,3) * (stran(3) + dstran(3)) 
      stress(3) = ddsdde(3,1) * (stran(1) + dstran(1)) + 
     1            ddsdde(3,2) * (stran(2) + dstran(2)) + 
     2            ddsdde(3,3) * (stran(3) + dstran(3)) 
 
C     *********************************************************** 
C     Herakovich CAP. 9 - Damage Mechanics 
C     *********************************************************** 
C     *********************************************************** 
C     Strain Energy 
C     *********************************************************** 
      if (stress(2).gt.0.0) then 
C 
         Ed = 0.5*(abs(stress(2)*(stran(2)))+abs(stress(3)*(stran(3)))) 
 
      else if (stress(2).lt.0.0) then 
C 
          Ed = 0.5*(abs(stress(2)*(stran(2)))+abs(stress(3)*(stran(3)))) 
      end if 
 
C     Fiber failure - Max tensile or Max Compression 
 
      if (stress(1).gt.0.0) then 
       
         ff = ((stress(1)/Xt)**2.0) 
 
         if (ff.ge.1.0) then 
 
           d1=0.99 
 
C            
           if (d1.lt.statev(1)) then 
              d1=statev(1) 
           end if 
            
           statev(6)=10.0 
 
         end if 
          
      else if (stress(1).lt.0.0) then 
 
         ff = (stress(1)/Xc)**2.0 
 
         if (ff.ge.1.0) then 
          
C            
               E11 = ((Xc)/abs(stran(1)+ 
     1          dstran(1)))*(1.0-(26.32436237*(stran(1)+dstran(1))+ 
     2          0.349393774)) + (26.32436237*(stran(1)+dstran(1))+ 
     3          0.349393774)*props(1) 
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C 
           
           if (E11.gt.props(1)) then 
              E11=props(1) 
           end if 
 
 
           if (E11.le.(0.01*props(1))) then 
C            if 
              E11=0.01*props(1) 
 
 
           end if 
            
           statev(6)=10.0 
            
         end if 
      end if 
 
C     Matrix damage 
 
C     Failure criteria 
 
      if (stress(2).ge.0.0) then 
          Ed_rup=2.5*10.0**6.0 
          m_y=62.5*10.0**6.0 
      else if (stress(2).lt.0.0) then 
          Ed_rup=2.5*10.0**6.0 
          m_y=62.5*10.0**6.0 
      end if 
 
      su_y=sqrt(((stress(2)**2.0)+(stress(3)**2.0)))- 
     1 (-S12_y + ((2*S12_y)/(1+((abs(stress(2))/m_y)**3.0)))) 
      
 
 
       
 
C     Verification of failure criteria and evolution of plastic surface 
      if (su_y.gt.0.0) then 
 
 
C     Thermodynamic forces 
 
         if (stress(2).ge.0.0) then 
            TF2 = sqrt((stress(2)**2.0)/(2.0*props(2)*((1.0-d2)**2.0))) 
         else if (stress(2).lt.0.0) then 
            TF2 = 0.0 
         end if 
          
         TF6 = sqrt((stress(3)**2.0)/(2.0*props(4)*((1.0-d6)**2.0))) 
 
 
C     Matriz tensile damage evolution parameter calculation 
C         if ((Y.gt.Y0t).and.(stress(2).gt.0.0)) then 
          if ((statev(19).EQ.0.0).and.(stress(2).gt.0.0)) then 
             statev(19)=(-0.000215*teta + 0.18752)*TF2 
c             
          end if 
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          if (statev(20).EQ.0.0) then 
 
              statev(20)=(0.0019*teta+0.363)*TF6 
 
          end if 
 
          if ((su_y.gt.0.0).and.(stress(2).gt.0.0)) then 
 
           d2 = (-0.000215*teta + 0.18752)*TF2 - statev(19) 
 
      
 
             if ((NPT.EQ.1).and.(KSPT.EQ.1).and.(layer.EQ.1)) then 
c               
             end if 
             if (d2.lt.statev(2)) then 
                 d2=statev(2) 
             end if 
             if ((d2.ge.0.99).or.(Ed.ge.Ed_rup).or. 
     1       (stress(2).gt.65)) then 
                 d2=0.99 
                 d6=0.99 
 
             end if 
             statev(6)=10.0 
         end if 
 
              d6 = (0.0019*teta+0.363)*TF6 - statev(20) 
 
            if (d6.lt.statev(3)) then 
                d6=statev(3) 
            end if 
            if ((d6.gt.0.99).or.(Ed.ge.Ed_rup)) then 
                d6=0.99 
                d2=0.99 
 
            end if 
            statev(6)=10.0 
 
 
      end if 
       
      if (stress(2).lt.0.0) then 
       
 
             TF2 = sqrt((stress(2)**2.0)/(2.0*props(2)*((1.0-d2)**2.0))) 
 
             if (stran(2)+dstran(2).gt.0.0) then 
               if (su_y.gt.0.0) then 
            d2 = (-0.000227*teta + 0.1973861)*TF2*(0.95/1.0)- statev(19) 
 
                  if (d2.lt.statev(2)) then 
                    d2=statev(2) 
                  end if 
                  if ((d2.ge.0.99).or.(Ed.ge.Ed_rup)) then 
                     d2=0.99 
                     d6=0.99 
 
                  end if 
                  statev(6)=10.0 
               end if 
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             else if (((stran(2)+dstran(2)).lt.0.0).and. 
     1        (su_y.gt.0.0)) then 
      
                   if (statev(13).EQ.0.0) then 
                       K_y=abs(stress(2)/m_y) 
                       statev(13)=K_y 
                   end if 
 
                   E22 = (((m_y*K_y)/abs(stran(2)+dstran(2)))* 
     1              (1.0-0.09258)+0.09258*props(2)) 
 
 
                  if (E22.gt.props(2)) then 
                     E22=props(2) 
                  end if 
 
 
                  if ((Ed.ge.Ed_rup)) then 
                    d2=0.99 
                    d6=0.99 
                    E22 = props(2) 
                    statev(6)=10.0 
c 
                  end if 
                  statev(6)=10.0 
 
             end if 
 
      end if 
       
      if (d2.lt.statev(2)) then 
          d2=statev(2) 
      end if 
      if (d6.lt.statev(3)) then 
          d6=statev(3) 
      end if 
 
      statev(1) = d1 
      statev(2) = d2 
      statev(3) = d6 
      statev(4) = a 
      statev(5) = p 
      statev(8)=ep12_p 
      statev(9)=ep2_p 
      statev(11)=E11 
      statev(12)=E22 
       
 
       
      RETURN 
      END 
 

 

 



 

APPENDIX II – VUMAT CODE 

c 
c User subroutine VUMAT 
      subroutine vumat ( 
c Read only - 
     *     jblock, ndir, nshr, nstatev, nfieldv, nprops, lanneal, 
     *     stepTime, totalTime, dt, cmname, coordMp, charLength, 
     *     props, density, strainInc, relSpinInc, 
     *     tempOld, stretchOld, defgradOld, fieldOld, 
     *     stressOld, stateOld, enerInternOld, enerInelasOld, 
     *     tempNew, stretchNew, defgradNew, fieldNew, 
c Write only - 
     *     stressNew, stateNew, enerInternNew, enerInelasNew ) 
c 
      include 'vaba_param.inc' 
c 
      dimension jblock(*), props(nprops),density(*), coordMp(*), 
     1     charLength(*), strainInc(*), 
     2     relSpinInc(*), tempOld(*), 
     3     stretchOld(*), 
     4     defgradOld(*), 
     5     fieldOld(*), stressOld(*), 
     6     stateOld(*), enerInternOld(*), 
     7     enerInelasOld(*), tempNew(*), 
     8     stretchNew(*), 
     9     defgradNew(*), 
     1     fieldNew(*), 
     2     stressNew(*), stateNew(*), 
     3     enerInternNew(*), enerInelasNew(*) 
c 
      character*80 cmname 
 
      parameter ( 
 
     *     i_umt_nblock = 1, 
 
     *     i_umt_npt    = 2, 
 
     *     i_umt_layer  = 3, 
 
     *     i_umt_kspt   = 4, 
 
     *     i_umt_noel   = 5 ) 
 
      call  vumatXtrArg ( jblock(i_umt_nblock), 
     *     ndir, nshr, nstatev, nfieldv, nprops, lanneal, 
     *     stepTime, totalTime, dt, cmname, coordMp, charLength, 
     *     props, density, strainInc, relSpinInc, 
     *     tempOld, stretchOld, defgradOld, fieldOld, 
     *     stressOld, stateOld, enerInternOld, enerInelasOld, 
     *     tempNew, stretchNew, defgradNew, fieldNew, 
     *     stressNew, stateNew, enerInternNew, enerInelasNew, 
     *     jblock(i_umt_noel), jblock(i_umt_npt), 
     *     jblock(i_umt_layer), jblock(i_umt_kspt)) 
 
      return 
      end 
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c 
      subroutine vumatXtrArg ( 
c Read only - 
     *     nblock, ndir, nshr, nstatev, nfieldv, nprops, lanneal, 
     *     stepTime, totalTime, dt, cmname, coordMp, charLength, 
     *     props, density, strainInc, relSpinInc, 
     *     tempOld, stretchOld, defgradOld, fieldOld, 
     *     stressOld, stateOld, enerInternOld, enerInelasOld, 
     *     tempNew, stretchNew, defgradNew, fieldNew, 
c Write only - 
     *     stressNew, stateNew, enerInternNew, enerInelasNew, 
c Read only extra arguments - 
     *     nElement, nMatPoint, nLayer, nSecPoint ) 
      include 'vaba_param.inc' 
c 
      dimension props(nprops), density(nblock), coordMp(nblock,*), 
     1     charLength(nblock), strainInc(nblock,ndir+nshr), 
     2     relSpinInc(nblock,nshr), tempOld(nblock), 
     3     stretchOld(nblock,ndir+nshr), 
     4     defgradOld(nblock,ndir+nshr+nshr), 
     5     fieldOld(nblock,nfieldv), stressOld(nblock,ndir+nshr), 
     6     stateOld(nblock,nstatev), enerInternOld(nblock), 
     7     enerInelasOld(nblock), tempNew(nblock), 
     8     stretchNew(nblock,ndir+nshr), 
     9     defgradNew(nblock,ndir+nshr+nshr), 
     1     fieldNew(nblock,nfieldv), 
     2     stressNew(nblock,ndir+nshr), stateNew(nblock,nstatev), 
     3     enerInternNew(nblock), enerInelasNew(nblock) 
c 
c Documentation of extra arguments: 
c  nElement: Array of internal element numbers 
      dimension nElement(nblock), nLayer(nblock),nMatPoint(nblock) 
c  nMatPoint: Integration point number 
c  nLayer   : Layer number for composite shells and layered solids 
c  nSecPoint: Section point number within the current layer 
c 
      character*80 cmname 
       
      double precision E11, E22, nu12, G12, nu21,  Xt, Xc, d1, TF2, d2, 
     1 TF6, d6, Y0, YC, Y0t, YCt, b, a, alpha, beta, R0, Y, R, f, p, 
     2 point_a, point_b, Y2C, starin1, teta, PS, AN, S12, E11r,E22r,  
     3 E11c, E22c, d2_0, d6_0 
      integer flag 
      parameter(Xt=XX,Xc=XX, Y0=0.09, YC=2.07,  
     1 Y0t=0.092,YCt=29.2, R0=15.0, epsilon0=0.003, S12=53.0*10**6, 
     2 Y2T=0.3) 
C     314.0 
      parameter (b=1.02, alpha=1.0, beta=3.0, np=10, a=0.5) 
      dimension orientation(np), strain(3), ddsdde(3,3) 
C     Variables for read input file in order to assemble the orientation 
C     layer matrix 
      integer point, nc, ply, cp 
      real(8) ori, thick, gamma1, gamma2, gamma3, gamma, dfdt1, dfdt2, 
     1 dfdt3, ep1a, ep1b, dep1, DP, ef, ep2_p, ep12_p 
C     Vari veis para energia 
      double precision Ed, Ed_rup 
      parameter (Ed_rup=XX) 
      
C     Variables for matrix damage under compression 
      double precision m_f, m_y, su_y, su_f, S12_f, S12_y, K_y 
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      parameter (m_f=XX, m_y=XX,  
     1 S12_f=XX, S12_y=XX) 
      
C     State variables list 
c     state 1 - d1 
c     state 2 - d2 
c     state 3 - d6 
c     state 4 - E11 
c     state 5 - E22 
c     state 6 - flag 
c     state 7 - K_y 
c     state 8 - d2_0 
c     state 9 - d6_0 
c     state 10 - strain11 
c     steate 11 - strain22       
 
C      parameter(job = '3BP090.inp', part = 'composite') 
 
C     ****************************************************************** 
 
C     ****************************************************************** 
C     *********************************************************** 
C     MATERIAL PROPERTIES 
C     *********************************************************** 
 
      E11 = props(1) 
      E22 = props(2) 
      nu12 = props(3) 
      G12 = props(4) 
       
      nu21 = (props(2)/props(1))*props(3) 
c 
      do 100 km = 1, nblock 
       
C     PLY ORIENTATION 
       
      orientation(1)=90.0 
      orientation(2)=60.0 
      orientation(3)=-60.0 
      orientation(4)=90.0 
      orientation(5)=60.0 
      orientation(6)=-60.0 
      orientation(7)=90.0 
      orientation(8)=90.0 
      orientation(9)=-60.0 
      orientation(10)=60.0 
      orientation(11)=90.0 
      orientation(12)=-60.0 
      orientation(13)=60.0 
      orientation(14)=90.0 
       
       
       
      teta=abs(orientation(nLayer(1))) 
   
c 
C     Inicialization of variables 
      if (stateOld(km,6).lt.0) then 
        stateOld(km,6) = 0 
      end if 
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      d1=0.0 
      d2=0.0 
      d6=0.0 
      E11r=1.0 
      E22r=1.0 
      d2_0=0.0 
      d6_0=0.0 
      flag = stateOld(km,6)    
 
      if (flag.gt.5) then 
        d1 = stateOld(km,1) 
        d2 = stateOld(km,2) 
        d6 = stateOld(km,3) 
        E11r = stateOld(km,4) 
        E22r = stateOld(km,5) 
        d2_0 = stateOld(km,8) 
        d6_0 = stateOld(km,9) 
      end if 
 
      if (E11.lt.0.03*props(1)) then 
        E11=0.03*props(1) 
      end if 
      K_y = stateOld(km,7) 
C     *********************************************************** 
C     CONSTITUTIVE LAW 
C     *********************************************************** 
      do 10 i=1,3 
        do 20 j=1,3 
          ddsdde(i,j) = 0.0; 
 20     continue        
 10   continue 
  
 
      if ((nElement(km).EQ.883).and.(nMatPoint(km).EQ.1) 
     1 .and.(d2.ne.0.0)) then 
        write(*,*)d2, d2_0, nMatPoint(km) 
      end if 
     
      ddsdde(1,1) = (E11*E11r*(1.0-d1)) / (1.0-(nu12*nu21)*(1.0-d2)* 
     1 (1.0-d1)) 
      ddsdde(2,2) = (E22*E22r*(1.0-d2)) / (1.0-(nu12*nu21)*(1.0-d2)* 
     1 (1.0-d1)) 
      ddsdde(2,1) = ((1.0-d2)*nu21*E11*E11r*(1.0-d1))/(1.0-(nu12*nu21)* 
     1 (1.0-d2)*(1.0-d1)) 
      ddsdde(1,2) = ddsdde(2,1) 
 
      ddsdde(3,3) = G12*(1.0-d6)       
 
      
 
C     Stresses calculations 
 
      stressNew(km,1) = stressOld(km,1) + 
     1            ddsdde(1,1) * (strainInc(km,1)) + 
     2            ddsdde(1,2) * (strainInc(km,2)) + 
     3            ddsdde(1,3) * (strainInc(km,4)) 
      stressNew(km,2) = stressOld(km,2) + 
     1            ddsdde(2,1) * (strainInc(km,1)) + 
     2            ddsdde(2,2) * (strainInc(km,2)) + 
     3            ddsdde(2,3) * (strainInc(km,4)) 
      stressNew(km,3) = stressOld(km,3) + 0.0 
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      stressNew(km,4) = stressOld(km,4) + 
     1            ddsdde(3,1) * (strainInc(km,1)) + 
     2            ddsdde(3,2) * (strainInc(km,2)) + 
     3            ddsdde(3,3) * (strainInc(km,4)) 
 
C     strains       
      strain(1) = stateOld(km,10) + strainInc(km,1) 
      strain(2) = stateOld(km,11) + strainInc(km,2) 
      strain(3) = stateOld(km,12) + strainInc(km,4) 
 
 
C     *********************************************************** 
C     Herakovich CAP. 9 - Damage Mechanics 
C     *********************************************************** 
C     *********************************************************** 
C     Strain Energy 
C     *********************************************************** 
      if (stressNew(km,2).gt.0.0) then 
         Ed = 0.5*(abs(stressNew(km,2)*(strain(2)))+ 
     1   abs(stressNew(km,4)*(strain(3)))) 
 
      else if (stressNew(km,2).lt.0.0) then 
          Ed = 0.5*(abs(stressNew(km,2)*(strain(2)))+ 
     1   abs(stressNew(km,4)*(strain(3)))) 
      end if 
 
C     Fiber failure - Max tensile or Max Compression 
 
      if (stressNew(km,1).gt.0.0) then 
       
         ff = ((stressNew(km,1)/Xt)**2.0) 
 
         if (ff.ge.1.0) then 
 
           d1=0.99 
 
           if (d1.lt.stateOld(km,1)) then 
              d1=stateOld(km,1) 
           end if 
            
           flag = 10 
 
         end if 
          
      else if (stressNew(km,1).lt.0.0) then 
 
         ff = (stressNew(km,1)/Xc)**2.0 
 
         if (ff.ge.1.0) then 
          
 
               E11c = ((Xc)/abs(strain(1)))* 
     1          (1.0-(26.32436237*strain(1)+ 
     2          0.349393774)) + (26.32436237*strain(1)+ 
     3          0.349393774)*props(1) 
      
              E11r=E11c/props(1) 
           
           if (E11r.gt.1.0) then 
              E11r=1.0 
           end if 
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           Flag = 10 
 
            
         end if 
      end if 
 
C     Matrix damage 
 
 
      su_y=(sqrt(((stressNew(km,2)**2.0)+(stressNew(km,4)**2.0)))- 
     1 (-S12_y + ((2*S12_y)/(1+((abs(stressNew(km,2))/m_y)**3.0))))) 
      
 
       
 
C     Verification of failure criteria and evolution of plastic surface 
      if (su_y.gt.0.0) then 
 
 
C     Thermodynamic forces 
 
         if (stressNew(km,2).ge.0.0) then 
            TF2 = sqrt((stressNew(km,2)**2.0)/ 
     1      (2.0*props(2))) 
         else if (stressNew(km,2).lt.0.0) then 
            TF2 = 0.0 
         end if 
         if (TF2.lt.10.0**-4.0) then 
            TF2 = 0.0 
         end if 
         TF6 = sqrt((stressNew(km,4)**2.0)/ 
     1    (2.0*props(4))) 
         if (TF6.lt.10.0**-4.0) then 
            TF6 = 0.0 
         end if 
C     Matriz tensile damage evolution parameter calculation 
 
          if ((stateOld(km,8).EQ.0.0).and. 
     1     (stressNew(km,2).gt.0.0)) then 
             d2_0 =(-0.000215*teta + 0.18752)*TF2           
          end if 
           
          if (stateOld(km,9).EQ.0.0) then 
              d6_0 =(0.0019*teta+0.363)*TF6           
          end if 
 
          if ((su_y.gt.0.0).and.(stressNew(km,2).gt.0.0).and. 
     1     (d2_0.gt.0.0)) then 
 
           d2 = (-0.000215*teta + 0.18752)*TF2 - d2_0 
           if (d2.lt.0.0) then 
              d2=0.0 
           end if 
 
             
             if (d2.lt.stateOld(km,2)) then 
                 d2=stateOld(km,2) 
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             end if 
             if ((d2.ge.0.99).or.(Ed.ge.Ed_rup)) then  
 
                 d2=0.99 
 
             end if 
             flag = 10 
         end if 
C     Matriz shear damage evolution parameter calculation 
         if (d6_0.gt.0.0) then 
              d6 = (0.0019*teta+0.363)*TF6 - d6_0 
              if (d6.lt.0.0) then 
                 d6=0.0 
              end if 
C              stateNew(km,3)=d6 
         end if      
 
 
            if (d6.lt.stateOld(km,3)) then 
                d6=stateOld(km,3) 
            end if 
            if ((d6.gt.0.99).or.(Ed.ge.Ed_rup)) then 
                d6=0.99 
 
            end if 
            flag = 10 
 
 
      end if 
       
      if ((su_y.gt.0.0).and.(stressNew(km,2).lt.0.0)) then 
       
 
             TF2 = sqrt((stressNew(km,2)**2.0)/ 
     1         (2.0*props(2))) 
 
             if (strain(2).gt.0.0) then 
               if ((su_y.gt.0.0).and.(stateNew(km,8).gt.0.0)) then 
            d2 = (-0.000215*teta + 0.18752)*TF2 - d2_0 
            if (d2.lt.0.0) then 
               d2=0.0 
            end if 
 
                  if (d2.lt.stateOld(km,2)) then 
                    d2=stateOld(km,2) 
                  end if 
                  if ((d2.ge.0.99).or.(Ed.ge.Ed_rup)) then 
                     d2=0.99 
 
                  end if 
                  flag = 10.0 
               end if 
             else if (((strain(2)).lt.0.0).and. 
     1        (su_y.gt.0.0)) then 
      
                   if (stateOld(km,7).EQ.0.0) then 
                       K_y=abs(stressNew(km,2)/m_y) 
                       stateNew(km,7)=K_y 
                   end if 
                   
                   E22c = (((m_y*K_y)/abs(strain(2)))* 
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     1              (1.0-0.09258)+0.09258*props(2)) 
                  E22r=E22c/props(2) 
 
                     
                  if (E22r.gt.1.0) then 
                     E22r=1.0 
 
                  end if 
                   
                  if ((Ed.ge.Ed_rup)) then 
                    d2=0.99 
 
                  end if 
                  flag = 10 
 
             end if 
 
      end if 
       
      if (d2.gt.1.0) then 
          d2=0.99 
      end if 
      if (d6.gt.1.0) then 
          d6=0.99 
      end if 
 
      stateNew(km,1) = abs(d1) 
      stateNew(km,2) = abs(d2) 
      stateNew(km,3) = abs(d6) 
      stateNew(km,4) = E11r 
      stateNew(km,5) = E22r 
      stateNew(km,6) = flag 
      stateNew(km,8) = d2_0 
      stateNew(km,9) = d6_0 
      stateNew(km,10) = strain(1) 
      stateNew(km,11) = strain(2) 
      stateNew(km,12) = strain(3) 
       
      if (stateNew(km,2).lt.10.0**-6.0) then 
         stateNew(km,2) = 0.0 
      else if (stateNew(km,3).lt.10.0**-6.0) then 
         stateNew(km,3) = 0.0 
      end if 
       
      stateNew(km,13)=TF2 
      stateNew(km,14)=TF6 
      stateNew(km,15)=su_y 
      stateNew(km,16)=Ed 
       
       
       
  100 continue 
       
      RETURN 
      END 
c 
 

 


