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Resumo

SOUSA, V. C. Efeitos de molas com memória de forma superelásticas no comportamento
aeroelástico de uma seção típica: aplicações em atenuação passiva de vibrações e coleta de
energia. 2016. 190f. Doutorado – Escola de Engenharia de São Carlos, Universidade de São
Paulo, São Carlos, 2016.

A modelagem, análise e verificação experimental de uma seção típica aeroelástica com dois
graus de liberdade e molas com memória de forma superelásticas são apresentadas. O foco é
investigar os efeitos da histerese pseudoelástica das molas com memória de forma nos compor-
tamentos de flutter e pós-flutter da seção típica. A cinética das transformações de fase nas molas
com memória de forma é descrita por uma versão modificada de modelos fenomenológicos am-
plamente conhecidos. O modelo de molas helicoidais com memória de forma é baseado em
teoria clássica de molas (com a hipótese de cisalhamento puro) e modificado para representar
os efeitos não lineares de transformação de fase. A seção transversal do fio da mola com memó-
ria de forma é representada por uma distribuição radial e linear de deformações de cisalhamento
e por distribuições radiais e não lineares de tensões cisalhantes e de frações martensíticas. As
equações de movimento de uma seção típica linear são modificadas para incluir as molas com
memória de forma. Um modelo aerodinâmico linear não estacionário é utilizado para se de-
terminar as cargas aerodinâmicas. O modelo proposto é representado em espaço de estados e
resolvido com um método Runge-Kutta. Mostra-se, numérica e experimentalmente, que a his-
terese pseudoelástica de molas com memória de forma pode ser efetivamente explorada para
melhorar o comportamento aeroelástico de uma seção típica ao transformar oscilações instáveis
de flutter em oscilações estáveis e de amplitudes aceitáveis em uma faixa de velocidades do es-
coamento, provendo um método útil de controle aeroelástico passivo. Como o comportamento
aeroelástico modificado (pela histerese pseudoelástica) é atrativo para a coleta de energia do es-
coamento, um acoplamento eletromecânico é modelado no grau de liberdade de deslocamento
linear, juntamente com uma carga resistiva no domínio elétrico do problema para se estimar
a potência elétrica gerada. A exploração da histerese pseudoelástica das molas com memória
de forma é mais atrativa para a performance da coleta aeroelástica de energia do que o uso de
não linearidades concentradas típicas (como o enrijecimento não linear do aço) em termos de
melhoria na potência elétrica gerada.

Palavras-chave: Vibrações mecânicas. Aeroelasticidade. Ligas com memória de forma. Gera-
ção de energia.



Abstract

SOUSA, V. C. Effects of superelastic shape memory springs on the aeroelastic behavior of
a typical airfoil section: passive vibration attenuation and energy harvesting applications.
2016. 190f. Tese (Doutorado) – Escola de Engenharia de São Carlos, Universidade de São
Paulo, São Carlos, 2016.

The modeling, analysis and experimental verification of a two-degree-of-freedom typical
aeroelastic section with superelastic shape memory alloy springs are presented. The focus is to
investigate the effects of the pseudoelastic hysteresis of the shape memory alloy springs on the
flutter and post-flutter behaviors of the typical section. The shape memory alloy phase transfor-
mation kinetics is described by a modified version of well-known phenomenological models.
The shape memory alloy spring model is based on classical spring design (with the pure shear
assumption) and modified to account for the nonlinear effects of phase transformation. The
cross-section of the shape memory alloy wire is represented by a linear radial distribution of
shear strain and nonlinear radial distributions of shear stress and martensitic fraction. The
equations of motion of a linear typical section are modified to include the shape memory al-
loy springs. A linear unsteady aerodynamic model is employed to determine the aerodynamic
loads. The proposed model is cast into state-space representation and solved with a Runge-
Kutta method. It is numerically and experimentally shown that the pseudoelastic hysteresis of
shape memory alloy springs can be effectively exploited to enhance the aeroelastic behavior of a
typical section by replacing unstable flutter oscillations by stable oscillations of acceptable am-
plitudes over a range of airflow speeds, providing a useful method of passive aeroelastic control.
Since the modified aeroelastic behavior is attractive for wind energy harvesting purposes, elec-
tromechanical coupling is also modeled in the plunge degree-of-freedom along with a resistive
load in the electrical domain for electrical power estimation. The exploitation of the shape
memory alloy pseudoelastic hysteresis is more attractive for airfoil-based wind energy harves-
ting performance than the use of typical concentrated nonlinearities (e.g., hardening steel) in
terms of enhanced electrical power output.

Keywords: Mechanical vibrations. Aeroelasticity. Shape memory alloys. Energy harvesting.
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CHAPTER

1
Introduction

The use of smart materials as sensors, actuators, and their combined application for seve-

ral engineering problems has been widely reported in the literature. More recently, the energy

harvesting potential from dynamical systems using a transduction mechanism of a smart ma-

terial has also been investigated. Leo (2007) defines smart materials as those that exhibit cou-

pling between different physical domains. Common examples are the piezoelectric materials,

that present coupling between mechanical and electrical domains, and shape memory alloys

(SMAs), that exhibit coupling between mechanical and thermal domains (or between mecha-

nical and magnetic domains in some cases). There are several different smart materials (such

as the magnetostrictive materials exhibiting coupling between magnetic field and mechanical

motion, electrostrictive materials exhibiting coupling between electric field and mechanical

motion, or even electrochromic materials, that present interesting use for systems that incor-

porate controlled color changes) that are not the main focus of this dissertation and will not be

discussed in details this work.

Vibration control researches are among the most popular use of smart materials in engi-

neering applications reported in the literature. In general, the main control techniques using

the smart materials are the passive and active ones. Active control systems involve the use of

smart materials as actuators along with sensors, control laws and external energy sources to pro-

duce an actuation signal to cancel vibrations. In passive control, dissipation of vibration energy

without increasing the total energy of a primary system is observed. In the first case (active

27
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systems) the amount of power required for actuation and the additional hardware are among

the main issues of the control system, although large control authority is in general achieved.

On the other hand, simple passive systems (in general they do not required complex hardware)

present reduced control authority or limited frequency bandwidth.

Although different smart materials are available, SMAs have received growing attention in

vibration control problems. For active control problems, the shape memory effect (the property

by which very large mechanical strains can be recovered by heating the material above a critical

temperature and leading to large contractions in the material) enables the use as thermomecha-

nical actuators. SMA elements have also been investigated in passive control problems since

their hysteretic behavior (related to the pseudoelastic effect) provides energy dissipating and

damping capabilities. The stress-induced hysteretic behavior of SMAs is related to austenite-

martensite phase transformations when the alloy is subjected to cyclic stress-strain loading at a

relatively high temperature (LAGOUDAS, 2008).

The effectiveness of the pseudoelastic hysteresis of SMAs for passive structural damping

has been investigated in the literature to enhance the vibration performance and safety of ci-

vil structures (JANKE, 2005; IBRAHIM, 2008; OZBULUT; HURLEBAUS; DESROCHES,

2011). In a recent work, Bhowmick and Mishra (2015) proposed an SMA-based damper for

seismic vibration mitigation in which a ferrous SMA (namely, a Fe-Ni-Co-Al-Ta-B alloy) exhi-

bits an impressive recoverable strain on the order of 12%, in contrast with the usual 6 7%

of Ni-Ti alloys and 5% of Cu-Al-Be alloys. Gandhi and Chapuis (2002) presented the influ-

ence and effectiveness of an SMA damper on the dynamic behavior of a clamped-free beam

with tip mass under varying excitation force amplitudes. Rezaei Da, Kadkhodaei and Nahvi

(2012) investigated the nonlinear free vibration and damping of a clamped-clamped Euler-

Bernoulli beam with embedded pre-strained SMA wires employed in the pseudoelastic state.

SMA-based vibration isolation devices with adaptive capabilities have also been reported in the

literature. These adaptive absorbers simultaneously use the variation of mechanical properties

due to temperature-induced phase transformations and energy dissipation related to the hystere-

tic behavior related to stress-induced transformations (AGUIAR et al., 2013; MISHRA; GUR;
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CHAKRABORTY, 2013; MANI; SENTHILKUMAR, 2015).

Several constitutive models have described the behavior of SMA elements such as wires and

fibers (TANAKA; KOBAYASHI; SATO, 1986; LIANG; ROGERS, 1990; BRINSON, 1993).

Researchers have also employed such models to represent the behavior of SMA helical springs.

The models range from simple equivalent one-dimensional models (LIANG; ROGERS, 1997;

AGUIAR; SAVI; PACHECO, 2010; AN et al., 2012) to accurate solutions considering the com-

plex stress and strain distributions in the springs (MIRZAEIFAR; DESROCHES; YAVARI,

2011; BAGHANI; NAGHDABADI; ARGHAVANI, 2012; SALEEB et al., 2013; FROST et

al., 2015). In general, the simple equivalent models have good correspondence to experimental

results for springs with large spring index and small helix angle (AGUIAR; SAVI; PACHECO,

2010; AN et al., 2012). Enemark, Savi and Santos (2014) presented an experimentally verified

modeling of an SMA spring using an updated Brinson’s model (with a new smooth hardening

function and a new sub-loop function) to describe the behavior of the SMA spring.

The literature also includes publications reporting use of SMA elements to modify the beha-

vior of aeroelastic systems. Before discussing some topics related to SMA and aeroelasticity,

a brief discussion related to linear and nonlinear aeroelastic system is included. Although dif-

ferent static and dynamic aeroelastic phenomena are reported (THEODORSEN, 1935; BIS-

PLINGHOFF; ASHLEY; HALFMAN, 1955; HODGES; PIERCE, 2002; DOWELL, 2015),

flutter is certainly the most investigated one due to its catastrophic nature. Flutter is a dyna-

mic aeroelastic phenomenon related to interactions of inertial, elastic and aerodynamic forces.

When a linear aeroelastic system is considered, the usual linear aeroelastic behavior is verified.

The system is stable for airflow speeds smaller than the linear flutter speed (or critical speed).

Theoretically, the linear system is critically damped at the linear flutter speed and strongly de-

pendent on the initial conditions. Any further increase in the airflow speed (above the critical

one) leads to instability: self-sustained aeroelastic oscillations with increasing amplitude. Often

nonlinearities are present in aeroelastic systems in the forms of (1) free play, or bilinear stiff-

ness due to loosely connected components, (2) material and geometric nonlinearity (typically

yielding nonlinear stiffness effect) (3) dry friction and other forms of nonlinear damping, (4)
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(a) (b)

Figure 1 – Two types of LCO response due to (a) supercritical and (b) subcritical bifurcations
with changing airflow speed (Uc is the linear flutter speed).

and aerodynamic nonlinearities. The presence of such nonlinearities may result in limit-cycle

oscillations (LCO) at airflow speeds above (Figs. 1(a) and 1(b)) or below (Fig. 1(b)) the linear

flutter speed. The LCO mechanism in Fig. 1(b) leads to both stable (solid line) and unstable

(dashed line) LCO below the linear flutter speed and it is not preferred in a real aircraft. Howe-

ver, as reported by Dowell (2015), sometimes nonlinearities are welcome in aeroelastic systems

since the catastrophic linear flutter behavior above the linear flutter speed can be replaced by

LCOs of acceptable amplitudes. Such modified behavior has been also reported in the literature

of wind energy harvesting as an important source of persistent electrical power and it deserves

separate investigation.

Traditional anti-flutter techniques such as mass balance and structural reinforcement usually

introduce significant weight penalties. In the first case, the goal is to reduce the offset between

center of mass of a lifting surface and the elastic axis (or the offset between the center of

mass and hinge line of a control surface). In the second case, additional stiffness is added to

the structure through reinforcement elements that also lead to additional mass. In this regard,

modern strategies considering smart materials (SMAs in the particular case of this work) for the

enhancement of the aeroelastic behavior of structures have been pointed out in the literature as

topics that deserve investigation. The literature also includes publications reporting the use of

SMA elements to modify the behavior of aeroelastic systems.

Tawfik, Ro and Mei (2002) report a study on the thermal post-buckling and aeroelastic

behavior of SMA-reinforced panels. A nonlinear finite element model of thermal post-buckling

of SMA-reinforced plates is presented. The effects of the SMA fibers in enhancing the stiffness
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and the critical buckling temperature as well as in suppressing thermal post-buckling deflection

of the composite plates are reported. The model is also extended to include dynamic terms

and the effects of SMA fibers on the aeroelastic behavior of the plate are discussed. Yun,

Kim and Kim (2006) present a study on the stability augmentation of helicopter rotor blades

using the (passive) hysteretic damping of SMA wires. Experimental tests on the effects of

preload as well as of cyclic loading amplitude and frequency on the damping behavior of SMA

wires are followed by an investigation on helicopter’s aeroelastic and ground resonance stability.

Bachmann et al. (2012) compare the use of SMA wires and the use of piezoelectric shunt circuits

as strategies for passive damping augmentation in open rotor composite fan blade prototypes of

complex geometry. The authors also report that pre-straining superelastic SMAs is necessary for

fully exploiting the passive damping associated with the pseudoelastic behavior. Additionally,

piezoelectric shunt damping (resonant circuit and nonlinear switching circuit) increases the

damping of the blade further than the SMA, however, with the drawback of more additional

weight for the structure.

Barzegari et al. (2012) present the modeling and analysis of a nonlinear cantilever wing

with embedded SMA wires under unsteady aerodynamic loads. The stability margin is increa-

sed and amplitude of LCOs is reduced since the equivalent stiffness of the wing increases with

increasing induced in-plane load of SMA wires at a temperature above austenite finish tempe-

rature. In another paper, Barzegari, Dardel and Fathi (2015) report the aeroelastic control of

a cantilever wing with embedded SMA wires and piezoelectric actuators. The SMA wires are

employed to generate in-plane loads and increase the total stiffness of the wing. Simultaneously,

piezoelectric actuators are employed for active control using the state-dependent Riccati equa-

tion method. The required active control input is significantly reduced in the cases of flutter and

LCO suppression (when compared to the case of aeroelastic control using only piezoelectric

actuators) due to the increased stiffness related to the SMA wires.

The literature has also reported the use of SMAs in other aerospace problems. Hartl and La-

goudas (2007) review the aerospace applications of SMAs actuators in fixed-wing and rotorcraft

cases. Bil, Massey and Abdullah (2013) and Barbarino et al. (2014) present reviews on SMA
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actuators for morphing aircraft concepts. This work adds to the field of aeroelasticity by inves-

tigating the effects of the hysteretic response of SMAs on the dynamic aeroelastic behavior of a

two-degree-of-freedom (2-DOF) typical airfoil section (the classical airfoil). The SMA springs

are introduced in the pitch DOF of the typical section, while the plunge DOF is supported by li-

near elastic steel springs. The well-known lumped parameter aeroelastic equations governing a

2-DOF typical section (BISPLINGHOFF; ASHLEY; HALFMAN, 1955; HODGES; PIERCE,

2002; DOWELL, 2015) are modified to include the phase transformation effects of the SMAs.

The SMA behavior is represented based on classical models, mainly on the works of Liang

and Rogers (1990, 1992, 1997) and Brinson (1993). Additional features are included mainly

based on the works of Bucchi et al. (2014) and Poorasadion et al. (2014) and described later

in Chapter 2. The two-state approximation of Edwards, Ashley and Breakwell (1979) to the

classical aerodynamics of Theodorsen (1935) is used to determine the unsteady aerodynamic

loads (pitch moment and lift).

The numerical model of the 2-DOF typical section with SMA springs is employed for

several analyses. An original typical section that has linear steel springs for the pitch and

plunge DOFs is used as a reference case (the same geometric and dynamical properties are

assumed for the original typical section and for the typical section with SMA springs). First,

the effects of the hysteretic behavior of the SMA springs under different preload levels on the

aeroelastic behavior of the typical section are investigated over a range of airflow speeds (from

the linear flutter speed of the reference typical section to the largest airflow speed with LCOs

of acceptable amplitude). The linear aeroelastic behavior of the original typical section (stable

below the linear flutter speed and unstable above the flutter speed) using steel springs is modified

to a nonlinear aeroelastic behavior due to the pseudoelastic hysteresis when the SMA springs

are employed under certain levels of preloads. The catastrophic unstable post flutter regime of

the linear case (typical section with linear steel springs in pitch) is replaced by stable LCOs of

acceptable amplitudes (that are related to the preload applied to the SMA springs). Later, the

effects of different assumptions for the cross-sectional representation of the coiled SMA wire

on the aeroelastic behavior of the typical section are also discussed. It is important to note,

however, that the aeroelastic behavior of the previous cases is only investigated for an SMA
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spring with specific constitutive properties and geometry. Therefore, the third analysis extends

the previous investigations and performs a parametric study in order to assess the effects of the

constitutive properties of the SMAs (pseudoelastic hysteresis) on the aeroelastic behavior of

a typical section. The effects of different characteristics of SMAs such as loop sizes, critical

stress levels and tensile-compressive asymmetry are investigated by using six different sets of

parameters previously presented in the literature. In practice, an optimum set of properties could

be obtained by proper choice of materials, fabrication routes and heat treatment procedures

(ELAHINIA et al., 2012).

Finally, the predicted aeroelastic behavior for a specific set of SMA parameters is expe-

rimentally verified in wind tunnel tests. In general, the simulations and experimental results

show that the pseudoelastic hysteresis of SMA springs can enhance the aeroelastic behavior of

the typical section by transforming unstable flutter oscillations into stable LCOs over a range of

airflow speeds.

Another focus in this work is to explore the modified aeroelastic behavior of a typical

section due to the pseudoelastic hysteresis of SMA springs for wind energy harvesting. The

recent literature in the field of wind energy harvesting reports several research efforts in order to

enable geometrically scalable and low-profile flow energy harvesters. The goal is to power small

electronic components for applications ranging from health monitoring in aircraft and rotorcraft

structures to wireless sensors located in high wind areas. Bluff body-based and airfoil-based

configurations combined with an appropriate transduction mechanism are convenient ways to

create persistent aeroelastic oscillations for wind energy harvesting (ELVIN; ERTURK, 2013).

The bluff body - PVDF (polyvinylidene fluoride) membrane configuration tested under wa-

ter by Allen and Smits (2001) appears to be the earliest implementation of a piezoelectric based

flow energy harvester. In the last five years, the problem of flow energy harvesting has received

great attention. For the piezoaeroelastic problem of energy harvesting from airflow excitation of

a cantilevered plate with embedded piezoceramics, De Marqui Jr, Erturk and Inman (2010) and

De Marqui Jr et al. (2011) presented finite-element models based on the vortex-lattice method

(De Marqui Jr; ERTURK; INMAN, 2010) and the doublet-lattice method (De Marqui Jr et al.,
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2011) of aeroelasticity (BISPLINGHOFF; ASHLEY; HALFMAN, 1955; DOWELL, 2015).

Time-domain simulations (De Marqui Jr; ERTURK; INMAN, 2010) were given for a canti-

levered plate with embedded piezoceramics for various airflow speeds below the linear flutter

speed and at the flutter boundary. Frequency-domain simulations (De Marqui Jr et al., 2011)

considering resistive and resistive-reactive shunt circuits were also presented focusing on the

linear response at the flutter boundary. Bryant and Garcia (2011) studied the aeroelastic energy

harvesting problem for a 2-DOF typical section by using the finite state theory of Peters, Ka-

runamoorthy and Cao (1995), while Erturk et al. (2010) presented an experimentally validated

lumped-parameter model for a wing-section (airfoil) with piezoceramics attached onto plunge

stiffness DOF using Theodorsen’s unsteady aerodynamic model (THEODORSEN, 1935) for

piezoelectric power generation at the flutter boundary. Sousa et al. (2011) investigated the non-

linear version of the same experimental setup of Erturk et al. (2010). In order to increase the

operating envelope of the wind energy harvester, hardening cubic nonlinearity and free play

were combined to keep the oscillation amplitudes at an acceptable level over a range of airflow

speeds while reducing the cut-in speed.

The interest in nonlinear aeroelastic systems for wind energy harvesting has increased

(BAE; INMAN, 2015; ABDELKEFI; NAYFEH; HAJJ, 2012a, 2012b; ABDELKEFI; HAJJ,

2013) in the last years. Bae and Inman (2015) investigated the piezoaeroelastic behavior of a

2-DOF typical section with free play and cubic nonlinearity separately in the pitch DOF. The

effect of pitch-to-plunge frequency ratio on the nonlinear aeroelastic behavior is discussed as

well as the use of stable LCOs for wind energy harvesting. In an experimental investigation,

Abdelkefi, Nayfeh and Hajj (2012a) showed that the cut-in speed of subcritical instability de-

creases with increasing free play gap of an airfoil section. Abdelkefi, Nayfeh and Hajj (2012b)

exploited the nonlinear piezoaeroelastic behavior of wind energy harvesting avoiding subcritical

Hopf bifurcations and also presented (ABDELKEFI; HAJJ, 2013) a comprehensive nonlinear

analysis of piezoaeroelastic wind energy harvesters.

As an alternative to airfoil-based and cantilevered wing-based configurations, St. Clair et

al. (2010) presented a design that uses a piezoelectric beam embedded within a cavity under
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airflow. More recently, Perez et al. (2015) proposed a new flow energy harvester by coupling

the fluttering effect to an electret-based converter. The flow-induced movements of a membrane

are converted into electricity due to an electret-based electrostatic converter. Vortex-induced

oscillations of piezoelectric cantilevers located behind bluff bodies were investigated by Pobe-

ring, Ebermeyer and Schwesinger (2009) and Akaydin, Elvin and Andreopoulos (2010a, 2010b)

through experiments and numerical simulations.

Tang et al. (2009) presented a rigorous analysis of the energy transfer from fluid to structure

for self-excited vibrations under axial flow over a cantilever. Piezoelectric energy harvesting

from LCOs under axial flow over a cantilever beam has also been discussed by Dunnmon et

al. (2011). Kwon (2010) considered a T-shaped cantilever beam that causes vortex-induced

vibration of a cantilever in response to axial flow. In a similar configuration, Zhao, Tang and

Yang (2016) investigated the use of a beam stiffener in three different types of harvesters based

on galloping, vortex induced vibration and flutter. The effect of the stiffener is to increase the

electromechanical coupling, leading to an enhanced performance over the conventional designs

without the beam stiffener. Recent efforts have also employed electromagnetic induction for

converting aeroelastic vibrations into electricity through flutter (DIAS; De Marqui Jr; ERTURK,

2013; DIAS; De Marqui; ERTURK, 2015), wake galloping (JUNG; LEE, 2011) and bluff body-

based oscillations (ZHU et al., 2010).

As previously discussed, the pseudoelastic hysteresis of SMA springs leads to stable LCOs

over a range of airflow speeds creating a post-flutter regime. Stable flow induced oscillations

over a range of airflow speeds are attractive for persistent power generation in wind energy har-

vesting cases (ERTURK et al., 2010). The literature of wind energy harvesting reports the use

of concentrated structural nonlinearities (e.g., freeplay and polynomial nonlinearities) to create

stable LCOs over a range of airflow speeds as source of persistent electrical power (SOUSA

et al., 2011; ABDELKEFI; NAYFEH; HAJJ, 2012a, 2012b; ABDELKEFI; HAJJ, 2013; BAE;

INMAN, 2015). The nonlinear aeroelastic behavior due to the pseudoelastic hysteresis of SMA

explored in this work is a different mechanism that enhances the electroaeroelastic performance

of an airfoil based wind energy harvester. Therefore, as the last case study, the modified ae-
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roelastic behavior of the typical section (due to the SMAs) is exploited as an innovative wind

energy harvesting device. Piezoelectric coupling is added to the plunge DOF and a load re-

sistance is considered in the electrical domain to estimate the electrical power output. The

interaction between the aeroelastic behavior and electrical power generation is investigated for

a range of preload values applied to the SMA springs and for a range of load resistances (from

short circuit to open circuit conditions) in the electrical domain of the problem. Enhanced

electroelastic performance is observed when compared with nonlinear wind energy harvesting

considering typical sections with hardening springs as sources of nonlinearities.

1.1 Content Overview

In this chapter, the field of study was introduced along with a brief literature review. It was

highlighted that, among several aeroelastic phenomena, flutter is particularly important due to

its potentially destructive nature. Strategies to counter-act flutter which employ smart materials

were also briefly described. The pseudoelastic hysteresis of SMAs was then introduced as

another mechanism for the enhancement of the flutter response of a typical aeroelastic section.

Chapter 2 provides a basis for the SMA phase transformation behavior along with the SMA

spring modeling. Chapter 3 provides the analytical description of the typical section model. A

state-space model which includes the coupled equations of motion of the typical section (with

SMA springs) and the unsteady aerodynamic model employed for the determination of the

aerodynamic loads is presented.

Chapter 4 addresses the general aeroelastic behavior of the typical section with SMA springs

at the flutter boundary and also at post-flutter regime. The effects of preloading the SMA springs

are mainly of concern. Chapter 5 discusses the aeroelastic behavior of the typical section when

different sets of SMA constitutive properties are considered. Attractive SMA characteristics

(for the enhancement of the aeroelastic behavior of the typical section) are pointed out in that

chapter. Chapter 6 discusses the effects of considering SMA springs of different geometries by

changing the coil diameter, the wire diameter and the number of active coils.
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Chapter 7 presents the experimental verification of the aeroelastic behavior of a typical

section model. Parameter-identification tests are described for both the SMA springs and the

typical section model. Aeroelastic tests are then presented for different levels of preload ap-

plied to the SMA springs and increasing airflow speeds. The effects of preload at the flutter

boundary and at post-flutter regime are of concern.

Chapter 8 proposes a novel mechanism for airfoil-based wind energy harvesting over a

range of airflow speeds by using superelastic SMAs (instead of the exploitation of structural

nonlinearities such as polynomial stiffening, for example).

Chapter 9 summarizes concluding remarks for this work. A brief review of the proposed

model along with the most pertinent findings is presented. Suggestions for future work are

presented.

Appendices are included to provide additional information. Appendix A describes the La-

grange equations for the piezoaeroelastic system. Appendix B presents the matrices of the

aerodynamic model while Appendix C presents the Theodorsen (1935) constants (required for

the aerodynamic matrices of Appendix B).

1.2 Overview of the Main Contributions

This work adds to the field of aeroelasticity by presenting the modeling of a typical aero-

elastic section with SMA springs along with numerical and experimental case studies. Recent

works from the literature on aeroelasticity and smart materials have focused mainly on the use

of piezoceramics. The literature on general vibration control and smart materials have focused

on the use of piezoceramics and also SMA elements. A few number of works, however, has

proposed the use of SMA elements in aeroelasticity. Therefore, this work presents basic studies

concerning the general aeroelastic behavior of the typical section with SMA springs, the effects

of preloading the springs, the effects of considering different SMA constitutive properties and

the effects of different spring geometries. An experimental verification of the most general case

is presented, confirming some of the numerical predictions. In short, this work shows that SMA
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elements have potential for being employed in aeroelastic applications to enhance the flutter

and post-flutter behaviors.

The association of a typical aeroelastic section with SMA elements enables the exploitation

of many distinct mechanisms for the enhancement of the aeroelastic behavior of the typical

section. One can, for example, exploit the superior loss factor of SMA elements (with respect

to that of conventional materials such as steel) to increase the linear flutter speed of the typical

section. One can also exploit the ability of controllable change of elastic properties of the

SMAs to modify the flutter behavior of the typical section by adaptively adjusting its frequency

characteristics. Dynamic structural reinforcement is also possible by exploiting the change of

elastic properties (e.g., by increasing structural stiffness through heating of SMA elements).

This work, however, focuses on the use of the pseudoelastic hysteresis of SMA springs as a

fully passive damping mechanism to modify the aeroelastic behavior of the typical section.

This work also proposes the use of the pseudoelastic hysteresis of superelastic SMA ele-

ments (springs) as a novel mechanism to enable aeroelastic energy harvesting over a range of

airflow speeds, in contrast with many recent works from the literature that employ concentrated

structural nonlinearities (such as polynomial stiffening) for the same purpose. The proposed

configuration of typical section with SMA springs can generate much more electrical power

than the same typical section with a hardening steel spring (and the same amount of piezo-

electric material). No other work in the literature (from other authors) reports on a similar

mechanism.
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2
Shape Memory Materials, Metallic Alloys

and Springs

This chapter introduces fundamental concepts of shape memory materials and models of

SMAs. The macroscopic behavior of SMAs is of concern. In the end of the chapter, the mode-

ling of SMA helical springs is discussed and the model assumed in this work is presented. This

model will be later added to the governing equations of the 2-DOF typical section in order to

investigate the effects of the pseudoelastic damping on the aeroelastic behavior of the system.

A “shape memory” material can change its shape through external stimuli such as tempe-

rature (BUEHLER; WANG, 1968), magnetic field (KIEFER; LAGOUDAS, 2005) and several

other forms of excitation (MENG et al., 2013). Among different materials which exhibit shape

memory behavior are the shape memory polymers (LIU et al., 2014; SCALET et al., 2015)

and the SMAs (such as the CuAlBe, CuZnAl, CuAlNi, CuAlZnMn and NiTi alloys) (HUANG,

2002; POORASADION et al., 2014). The near-equiatomic NiTi alloys usually exhibit attractive

properties (with reasonable cost) and are widely used in academy and industry.

2.1 General Aspects of SMAs

An SMA element usually exhibits two different nonlinear phenomena: the shape memory

effect and pseudoelastic effect, which are exploited depending on the application. The shape

39
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memory effect is observed when the SMA is substantially deformed at a relatively low tempe-

rature and is later heated to recover its initial (undeformed) shape. If a mechanical constraint

(e.g., clamped ends, springs or dead weights) impedes the SMA of freely recovering its initial

shape upon heating, internal stresses are generated. Such stresses are the mechanisms behind

SMA actuators. The other effect, the pseudoelastic effect (or pseudoelasticity), is observed

when the SMA is deformed at a relatively high temperature and recovers its initial shape as the

deforming force is removed. If such a high temperature is below the room temperature, that

SMA can be named “superelastic” by some authors (as throughout this work), although pseu-

doelastic and superelastic are synonyms for other authors. A shape memory material exhibiting

the pseudoelastic effect exhibits a very large hysteresis loop in the stress-strain curve.

The reversible behavior of SMAs is related to cooperative atom movements at its crystal-

lographic microstructure during the deformation, characterizing a diffusionless process. This

way, the atoms may return to their original position during the shape recovery (BUEHLER;

WANG, 1968; LAGOUDAS, 2008).

2.2 Phase Transformations in SMAs

The SMA behavior may be represented by the transition between two different crystallo-

graphic phases: the austenitic (or parent) phase (A) and the martensitic (or product) phase (M).

The phase transformation (from A to M) is due to a shear distortion of the crystallographic

lattice, known as martensitic transformation. During the transformation, each single martensi-

tic crystal may assume a particular orientation or variant: “twinned” (Mt) or “detwinned” (Md).

Thus, forward phase transformations (from A to M) are denoted by A→M, A→Mt or A→Md

in this study. Similarly, reverse phase transformations (from M to A) are denoted by M→ A,

Mt→ A or Md→ A.

The twinned (or self-accommodated) martensite may be induced by low temperature while

the detwinned (or reoriented) martensite may be induced by mechanical stress. The SMA tem-

perature, however, affects the level of mechanical stress required for a stress-induced phase

transformation. As well, the level of stress also affects the temperatures at which phase trans-
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formations take place. This relationship between temperature and mechanical stress is described

next in Sections 2.2.1 and 2.2.2.

2.2.1 Stress-Free Phase Transformation

An SMA element initially at austenitic phase and in the absence of stress and deformation

is of concern1. Its crystallographic structure may change from austenite to martensite if the

material is cooled down. This process may result in the formation of several variants (yielding

twinned martensite), depending on the considered alloy. The arrangement of the variants takes

place in such a way that the macroscopic shape change is negligible. If the same SMA element

(currently in the martensitic phase) is heated, the austenitic phase is recovered. As well, there is

no macroscopic shape change since the material had no initial deformation. The microstructure

of the SMA element, however, has changed from austenite to twinned martensite and then to

austenite again.

Four critical temperatures may be associated with the (stress-free) phase transformation pro-

cess. In a forward phase transformation, the change from austenite to twinned martensite begins

at the martensite start temperature (Ms) and finishes at the martensite finish temperature (M f ).

In a reverse phase transformation, the change from twinned martensite to austenite begins at the

austenite start temperature (As) and finishes at the austenite finish temperature (A f ).

2.2.2 Phase Transformation with Applied Stress

By considering that an SMA element is initially cooled down below M f in the absence of

stress and deformation, such an SMA is in a twinned martensite phase. If the SMA temperature

is then increased such that Ms < T < As, no phase transformation is expected to occur (neither

forward or reverse), and the SMA maintains its current state. By assuming that enough me-

chanical loading is applied, resulting in a mechanical stress of magnitude σ , a conversion of

twinned to detwinned martensite (Mt→Md) takes place, yielding a macroscopic shape change.

The deformed configuration is preserved after the removal of the mechanical loading, and the

1This assumption is frequent throughout this thesis and is usually implicit.
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Md phase is preserved as well. By increasing the SMA temperature above A f , the austeni-

tic phase, and hence the SMA initial shape, are recovered. The SMA may be cooled down

again, with no shape change. On the other hand, by considering the SMA heated above A f in a

stress-free condition (yielding an initial austenitic phase) and then subject to enough mechanical

loading, cooling it down yields a phase transformation from austenite to detwinned martensite,

with a corresponding shape change. Heating the SMA again yields a shape recovery while that

same mechanical loading is still applied. This behavior (related to the shape memory effect) is

widely exploited by SMA-based actuators. A stress-induced phase transformation followed by

a shape recovery due to heating is illustrated in Fig. 2.

Figure 2 – Behavior of an SMA element during stress-induced phase transformation followed
by a shape recovery promoted by heating.

The critical temperatures for phase transformation (described in Section 2.2.1) increase

with applied stress. Such stress-dependent critical temperatures are denoted by Mσ
s , Mσ

f , Aσ
s

and Aσ
f . In addition, there are minimum stress values for the onset and completion of a stress-

induced phase transformation, denoted by σmin
s and σmin

f , respectively. Depending on the SMA

temperature, the actual stress levels for the onset and completion of a stress-induced phase

transformation may be higher than these minimum values. Such stress values are denoted by σM
s

and σM
f . The austenitic phase may be recovered in the presence of stress when the mechanical

loading decreases from σA
s to σA

f . If T ≥ Aσ
f , the shape recovery is complete (characterizing the
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pseudoelastic effect). If Aσ
s < T < Aσ

f , the shape recovery is only partial (characterizing a form

of the shape memory effect).

Some aspects that determine the critical temperatures for phase transformation are briefly

discussed in Section 2.2.3.

2.2.3 Brief Note on the Critical Temperatures for Phase Transformation

SMAs may be produced to exhibit specific critical temperatures. The alloy composition

along with proper heat and mechanical treatments are determining factors (MELTON, 1990;

LIU et al., 2008; ELAHINIA et al., 2012; ANDANI et al., 2014; HABERLAND et al., 2014).

Sczerzenie and Gupta (2004) report that the critical temperatures of a quenched NiTi SMA

increase almost linearly from −150 ◦C to 100 ◦C (approximately) as its Ti-content increases

from 48.5% to 50.5% (also approximately). The referred study also report that the critical

temperatures of an aged SMA (of similar composition) exhibit a moderate increase between

10 ◦C and 40 ◦C for an increase of Ti-content between 48.5% and 49.5%. Between 49.5%

and 50.5% of Ti-content, both processes (quenching and ageing) result in very similar critical

temperatures. The refered study also point out the As temperature as the most reliable critical

temperature for the characterization of an SMA because only a small standard deviation was

found upon hundreds of differential scanning calorimetry (DSC) tests.

A rigorous experimental analysis by Frenzel et al. (2010) resulted in conclusive findings re-

garding the effects of the Ni/Ti ratio on the thermal characteristics of NiTi SMAs. The authors

report that Ni-rich alloys exhibit lower criitical temperatures, in agreement with the findings

of Sczerzenie and Gupta (2004)). A linear relationship with slope of -83 K·(at.%Ni)−1 was

reported for quenched samples with 49.8% to 50.8% Ni. Frenzel et al. (2010) also provided

expressions for the critical temperatures in terms of the Ni-concentration. Therefore, conside-

ring the findings reported by the authors (Frenzel et al. (2010) as well as Sczerzenie and Gupta

(2004)), it is possible to determine a NiTi ratio in order to obtain suitable critical temperatures

for specific SMA-based applications. For example, the NiTi ratio can be calculated in order to

have SMA springs exhibiting pseudoelasticity at room temperature and avoid the use of external
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heat sources, as in some of the applications to be discussed along the next chapters of this work.

2.2.4 A Note on Thermal Effects in SMAs

Forward phase transformations in SMAs are exothermic due to the release of latent heat

while reverse phase transformations are endothermic due to the absorption of latent heat (LA-

GOUDAS, 2008). When the loading rate is sufficiently small, the heat exchange with the envi-

ronment during the forward phase transformation allows one to assume isothermal conditions.

As the loading rate increases, the isothermal assumption fails due to the temperature variation

related to convective heat. In such a case, the SMA temperature (1) increases above its initial

value during the forward phase transformation (according to the loading rate); (2) decreases due

to convection when that phase transformation ceases; (3) further decreases (in a more suddenly

way, according to the rate of unloading) when the reverse phase transformation takes place (pos-

sibly leading the SMA temperature to below its initial value); (4) increases to the initial value

(e.g., the ambient temperature) when the reverse phase transformation ceases.

In brief, temperature changes affect the critical stresses for phase transformations in SMAs,

as will be described in Section 2.3.3. With temperature-dependent critical stresses, the SMA

behavior becomes more difficult to be predicted. Some works focus specifically on that aspect

of SMAs (ELAHINIA; AHMADIAN, 2005a, 2005b). Other works assume isothermal condi-

tions for simplicity, despite the thermal effects mentioned above, as in the case of this work.

In the case studies that will be later presented, the predicted phase transformations are small

(incomplete) in all cases. Since the thermal effects are mostly verified during phase transforma-

tions and the phase transformations are small in all cases of this work, isothermal conditions are

assumed (as negligible temperature variations would be observed for such conditions). In order

to justify the decision for the isothermal assumption of this work, Appendix D is included with a

brief comparison between isothermal and non-isothermal conditions concerning the aeroelastic

behavior of the typical section.
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2.3 SMA Model

This section presents the SMA model employed in this work. The general behavior of the

SMA material is described based mainly on the well-known works of Liang and Rogers (1990,

1992, 1997), Brinson (1993) and also on more recent contributions by Bucchi et al. (2014) and

Poorasadion et al. (2014). The SMA constitutive behavior and the phase transformation kinetics

for an SMA element subjected to uniaxial loading are based on Liang and Rogers (1990) and

Brinson (1993). The modification of the case for uniaxial loading to a case of shear stress-

strain behavior (in order to model SMA helical springs) is based on Liang and Rogers (1992,

1997). The SMA model (based on the classical works referred above) is modified to account for

asymmetry behavior between tensile-compressive loadings based on the work of Poorasadion

et al. (2014) (by separating the stress variable into positive and negative components). The

model is further modified based on the work of Bucchi et al. (2014) to represent cross-sectional

distributions of shear strain, shear stress and martensitic fraction along the radius of the coiled

SMA wire (to produce a helical spring).

2.3.1 Thermomechanical Constitutive Modeling of SMAs

A variety of different constitutive models has been proposed aiming the prediction of the

complex thermomechanical behavior of SMAs. Regardless the variety of available models,

constitutive models with external (observable) and internal (non-observable) state variables are

widely employed. A combination of external and internal variables can be considered to des-

cribe the thermodynamic state of an SMA material undergoing phase transformation. Although

different thermodynamical internal variables can be choosen, an additional internal variable can

be introduced to represent the martensitic volume fraction in the SMA material (LAGOUDAS,

2008). This is the case for the well-known constitutive models of Tanaka, Kobayashi and Sato

(1986), Liang and Rogers (1990) and Brinson (1993) (employed in this work).

Tanaka-based SMA models (TANAKA; KOBAYASHI; SATO, 1986; LIANG; ROGERS,

1990; BRINSON, 1993) have been widely employed to represent the behavior of SMAs with

reasonable correspondence with experimental verifications. In short, Tanaka, Kobayashi and
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Sato (1986) proposed a thermomechanical constitutive equation to represent the macroscopic

material behavior along with exponential functions to represent the phase transformation ki-

netics. Liang and Rogers (1990) modified the exponential functions of Tanaka, Kobayashi

and Sato (1986) to cosine functions. The latter, however, considered only two distinct SMA

material phases, namely austenite and stress-induced martensite. In addition, it was assumed

that the material properties, such as the elastic modulus, are constant (independent of the cur-

rent material phase). Brinson (1993) modified the model of Liang and Rogers (1990) by pro-

posing a distinction between stress-induced (reoriented) and low-temperature-induced (self-

accommodated) martensitic phases, allowing the representation of shape memory behaviors at

low temperatures (in particular, the shape memory effect). In addition, non-constant material

properties were considered in Brinson (1993). Since the required parameters for such models

can be obtained by uniaxial stress-strain tests conducted at a few different temperatures, they

are widely employed for the modeling of engineering applications since difficult-to-measure

parameters (e.g., free energy) can be avoided (ELAHINIA; AHMADIAN, 2005a).

Many further improvements reported in the literature of SMAs (LIANG; ROGERS, 1997;

ELAHINIA; AHMADIAN, 2005a, 2005b; ENEMARK; SAVI; SANTOS, 2014; MEHRABI et

al., 2014; POORASADION et al., 2014) contribute to the use of such models also in up-to-date

state-of-the-art research.

2.3.2 A Brief Review of Brinson’s Model

Liang and Rogers (1990) presented the following constitutive relationship for a uniaxially

loaded SMA element,

σ −σ0 = D(ε− ε0)+Ω(ξ −ξ0)+Θ(T −T0) , (2.1)

where σ is the mechanical stress, D is the elastic modulus, ε is the axial strain, Ω is the phase

transformation factor, ξ is the martensitic fraction, Θ is the thermal expansion coefficient, T is

the material (SMA) temperature and subscript “0” denotes a reference state.

Brinson (1993) improved the model of Liang and Rogers (1990) by separating the marten-
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sitic fraction into two distinct components,

ξ = ξT +ξS, (2.2)

where ξT and ξS are the amounts of twinned and detwinned martensite, respectively. Secondly,

Brinson (1993) considered non-constant material functions. The elastic modulus was expressed

as a linear function of the martensitic fraction,

D(ξ ) = DA +ξ (DM−DA) , (2.3)

where DA is the elastic modulus at fully austenitic phase and DM is the elastic modulus at

fully martensitic phase. This martensite-dependent modulus, D(ξ ), however, had previously

appeared in Tanaka, Kobayashi and Sato (1986) and was also discussed (but not added to their

modeling approach) in Liang and Rogers (1990). The transformation factor was also expressed

in terms of the martensitic fraction, i.e., Ω(ξ ). The thermal expansion coefficient, Θ, was kept

independent of ξ due to its lower order of magnitude with respect to the elastic modulus (about

five orders lesser).

A differential form of the constitutive equation (Eq. (2.1)) for non-constant material func-

tions is,

dσ = D(ξ )dε +Ω(ξ )dξS +ΘdT, (2.4)

which yields,

σ −σ0 = D(ξ )ε−D(ξ0)ε0 +Ω(ξ )ξS−Ω(ξ0)ξS0 +Θ(T −T0) (2.5)

after integrating for a reference state. In this study, however, no (low) temperature-induced

phase transformation is considered (only pseudoelasticity is of concern), so that ξT = 0 and

thus ξ = ξS.

Brinson (1993) proposed the following kinetics functions to represent the martensitic frac-

tion during a forward phase transformation,

ξ =
1−ξ0

2
cos

{
π

σmin
s −σmin

f

[
σ −σ

M
f
]}

+
1+ξ0

2
, (2.6)
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and the following kinetic function during a reverse phase transformation,

ξ =
ξ0

2

{
cos
[

π

A f −As

(
T −As−

σ

CA

)]
+1
}
, (2.7)

where the hardening function is described by a cosine function, as in Liang and Rogers (1990).

Brinson’s model, however, accounts for the existance of a minimum value of stress below which

no stress-induced phase transformation is expected to occur (in agreement with a commonly

observed experimental behavior).

2.3.3 Modification of Brinson’s Model for Tension-Compression Asym-
metry

The literature (e.g., Achenbach, Atanackovic and Müller (1986), Gall et al. (1999), Tokuda

et al. (1999), Mehrabi, Kadkhodaei and Elahinia (2014), Poorasadion et al. (2014)) usually re-

ports an asymmetry behavior between tensile and compressive loadings when testing an SMA

specimen. Gall et al. (1999) relate such a phenomenon to the heat treatment and crystallo-

graphic orientation of the alloy. Experimental tests reported in the referred paper show that the

maximum recoverable strain and the critical transformation stress are strongly affected SMA

properties. Paiva et al. (2005) proposed an SMA constitutive model that accounts for tensile-

compressive asymmetry (and also plasticity, not considered in this work). The model presented

in the referred paper was verified by using experimental data from Gall et al. (1999). In another

investigation, Savi et al. (2008) considered the effects of asymmetry on the dynamical behavior

of an SMA oscillator.

In this work, asymmetry behavior is included so that its effects on the aeroelastic beha-

vior of the typical section can also be investigated. Although many different papers address

asymmetry behavior in SMAs, the modifications (concerning asymmetry) in the classical SMA

model employed in this work are based on Poorasadion et al. (2014).

PHASE TRANSFORMATION DIAGRAM

Fig. 3 displays a phase transformation diagram accounting for tensile-compressive asym-

metry behavior. Arbitrary SMA properties are used for illustration purposes. The SMA tem-
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perature (T ) axis starts at Ms because no self-accommodated (twinned) martensite formation

due to low temperature (i.e., below the martensite start temperature Ms) is considered in this

work2. Tensile behavior is represented above the zero-stress axis, and compressive behavior is

represented below that axis. The highlighted areas represent phase transformation regions. The

boundaries of the transformation regions at different slopes (comparing tensile behavior with

compressive behavior) are related to asymmetry effects. The SMA parameters which depend

on the loading direction are denoted with a superscript “∗”, which assumes “+” for tension and

“−” for compression. The stress-induced transformation regions (in blue, between solid lines)

are indicated by A→M∗D. The austenitic transformation regions (in yellow, between dashed

lines) are indicated by M∗D→ A.

Temperature

S
tr
es
s

 

 

Ms As Af

σmin−
f

σmin−
s

0

σmin+
s

σmin+
f

[A → M
+
D
]

⇑ σ

[M+
D]

C+
M

[M
+
D
→ A]

⇓ σ

[A]
C+
A

[A → M−
D ]

⇓ σ

[M−
D]

C−
M [M−

D → A]

⇑ σ
C−
A

σM∗
s σM∗

f σA∗
s σA∗

f

Figure 3 – SMA phase transformation diagram with tension-compression asymmetry.

By assuming a fully austenitic initial phase, T > Ms and increasing stress (σ ) in either

tension or compression, the stress-strain behavior is linear elastic while |σ | <
∣∣σM∗

s
∣∣, where

σM∗
s = σmin∗

s +C∗M(T −Ms). If |σ | ≥
∣∣σM∗

s
∣∣, stress-induced phase transformation takes place

2Please refer to Poorasadion et al. (2014) for a complete phase diagram.
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across a vertical path (assuming no temperature variation) until σ = σM∗
f , where σM∗

f = σmin∗
f +

C∗M(T−Ms), at which the detwinning process finishes and the SMA is fully martensitic. Further

increase in stress (exceeding σM∗
f ) yields linear elastic behavior with martensitic properties.

From that state and by decreasing the stress, linear unloading occurs while |σ |>
∣∣σA∗

s
∣∣, where

σA∗
s =C∗A(T −As). Further unloading will result in either (1) partial strain recovery if As ≤ T <

A f and σ reaches zero (related to the shape memory effect) or (2) complete recovery if T ≥ A f

and |σ | ≤
∣∣∣σA∗

f

∣∣∣ (related to pseudoelasticity). No phase transformation is considered outside

those regions and the martensitic fraction remains unchanged.

A method for the computation of the martensitic fraction which accounts for asymmetry in

tension and compression is described next.

STRESS-INDUCED (FORWARD) PHASE TRANSFORMATION

Poorasadion et al. (2014) decompose the stress-induced martensitic fraction into tensile

and compressive components: ξ = ξ++ξ−. Such components are denoted here by ξ ∗. In the

refered paper, a distinct set of functions for the determination of the martensitic fraction that

corresponds to each possible kind of phase transformation is presented. However, those func-

tions are similar to each other (with changes mostly in parameters) and can be represented in

a compact form. Here, an “independent” term and a “dependent” term are assumed. The “in-

dependent” term is directly related to the ongoing phase transformation, and is the first term

to be computed. The “dependent” term is then updated to conform to the constraint of total

martensitic fraction between zero and unity.

The “independent” term is given by,

ξ
indep =

1−Y ∗MD
2

+ξ
indep
0

1+Y ∗MD
2

, (2.8)

and the “dependent” term is,

ξ
dep = ξ

dep
0

1−ξ indep

1−ξ
indep
0

, (2.9)

where ξ indep = ξ+ and ξ dep = ξ− for tensile loading or ξ indep = ξ− and ξ dep = ξ+ for com-

pressive loading. The hardening functions of stress-induced martensitic fraction (in tension and
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compression), Y ∗MD, are represented by,

Y ∗MD = cos

(
π

σ −σM∗
s

σmin∗
f −σmin∗

s

)
, (2.10)

where σM∗
s = σmin∗

s + c(T, Ms), and c(T, Ms) = C∗M (T −Ms) for T > Ms or c(T, Ms) = 0

otherwise.

REVERSE PHASE TRANSFORMATION

The austenitic phase is recovered during unloading as the stress decreases from σA∗
s to σA∗

f .

In such a case, the martensitic fraction can be given by,

ξ =
ξ0

2
(Y ∗A +1) , (2.11)

where the corresponding hardening function, Y ∗A , is,

Y ∗A = cos
(

π
T −Aσ∗

s
A f −As

)
, (2.12)

and Aσ∗
s = As+σ/C∗A is the austenite critical start temperature for non-zero stress. The marten-

sitic components (in tension and compression) can be updated by ξ ∗ = ξ ∗0 (ξ/ξ0).

This compact representation of the phase transformation model is convenient for numerical

implementation. The equations can be wrapped in very few functions with a reduced number of

formal parameters, while only the input parameters have to be modified depending on the kind

of the ongoing phase transformation.

MECHANICAL CONSTITUTIVE RELATIONSHIP

The elastic modulus may assume different values for each possible phase, including the

stress-induced martensitic phase in compression (i.e., DA 6= D+
M 6= D−M). The modulus for an

arbitrary state of phase transformation is, therefore,

D(ξ ) = DA +ξ
+
(
D+

M−DA
)
+ξ

− (D−M−DA
)
, (2.13)

with all variables previously defined.

Since the maximum recoverable strain may change between tension and compression (GALL
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et al., 1999), the transformation factor becomes,

Ω
∗ (ξ ) =−ε

∗
LD(ξ ) , (2.14)

where the variables were also previously defined.

The constitutive equation of Brinson for non-constant material parameters and in differen-

tial form, Eq. (2.4), is rewritten as,

dσ = D(ξ )dε +Ω
+ (ξ )dξ

++Ω
− (ξ )dξ

− (2.15)

and by substituting Eq. (2.14) into Eq. (2.15), and integrating the resulting equation, a consti-

tutive relationship for SMAs accounting for asymmetry behavior may be obtained as,

σ −σ0 = D(ξ )ε−D(ξ0)ε0 +Ω
+ (ξ )ξ

+−Ω
+ (ξ0)ξ

+
0 +Ω

− (ξ )ξ
−−Ω

− (ξ0)ξ
−
0 (2.16)

for a given reference state (denoted by subscript “0”).

2.4 A Model for SMA Helical Springs

In this section, a model for SMA helical springs is presented. A pure shear assumption

is considered for relating the normal stress-strain behavior to shear stress-strain behavior. The

phase transformation model described in the previous section is used to introduce the nonlinear

SMA behavior into the spring model. A further improvement is included to represent cross-

sectional distributions of shear strain, shear stress and martensitic fraction along the radius of the

coiled SMA wire. Later, such a model will be used to add SMA springs to the (piezo)aeroelastic

model of the 2-DOF typical section considered in this work.

2.4.1 Mechanical Constitutive Relationship for Shear Behavior

Liang and Rogers (1997) adopted a pure shear approach for the modeling of SMA helical

springs. The normal and shear stresses (σ and τ , respectively) were related to each other as

σ =
√

3τ . Then a constitutive relation was obtained in terms of shear quantities. With a similar
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procedure, Eq. (2.16) is rewritten as,

τ− τ0 = G(ξ )γ−G(ξ0)γ0 +Ω
+
τ (ξ )ξ

+−Ω
+
τ (ξ0)ξ

+
0 +Ω

−
τ (ξ )ξ

−−Ω
−
τ (ξ0)ξ

−
0 , (2.17)

where G is the shear modulus, γ is the shear strain and Ω∗τ = −γ∗LG(ξ ), in which γ∗L is the

maximum recoverable shear strain of the SMA. The elastic modulus and shear modulus are

related to each other by,

G(ξ ) =
D(ξ )

2(1+µP)
, (2.18)

where µP is Poisson’s ratio. Thus, Eq. (2.13) is rewritten as,

G(ξ ) = GA +ξ
+
(
G+

M−GA
)
+ξ

− (G−M−GA
)
, (2.19)

where GA is the fully austenitic shear modulus and G∗M represents the shear moduli of the fully

detwinned martensitic phases.

One should note the constitutive mechanical relationship for asymmetry behavior presen-

ted in Section 2.3.3 is expressed in general terms (for an arbitrary SMA element subjected to

uniaxial tensile or compressive loading). Due to the particular case of SMA helical springs con-

sidered in the aeroelastic problem of this work, the modification of Eq. (2.16) to shear behavior

was presented in Eq. (2.17). Therefore, it is assumed onward in this work that “tensile loading”

represents positive (shear) stress values related to the elongation of the SMA springs. Similarly,

“compressive loading” represents negative (shear) stress values related to the compression of

the SMA springs.

2.4.2 Modeling of the SMA Springs

Based on classical spring design (BUDYNAS; NISBETT, 2014), Liang and Rogers (1997)

presented a model for SMA helical springs. One of their assumptions is that the shear stress,

shear strain and martensitic fraction are constant along the radius of the coiled SMA and their

respective values are the ones observed at the surface of the wire. Thus, the shear stress is given

by,

τ =
2FR
πr3 , (2.20)
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where F is an applied (external) force, R is the mean coil radius of the spring and r is the radius

of the wire used to fabricate the spring.

The shear strain

γ =
τ

G
=

2FR
πr3G

(2.21)

is obtained from the torsion version of the Hooke’s law.

The angle between two element sections is,

dϕ =
γdx

r
, (2.22)

and the angular deflection of an end of the wire with respect to the other end is,

ϕ =
∫ 2πRN

0

γ

r
dx =

4FR2N
r4G

, (2.23)

where N is the number of active coils of the spring. The total spring deflection is,

y = ϕR =
4FR3N

r4G
, (2.24)

and the spring stiffness is, therefore,

k =
F
y
=

r4G
4R3N

, (2.25)

that is modified to

k (ξ ) =
r4

4R3N
G(ξ ) (2.26)

when an SMA spring is modeled.

The constitutive relation of Eq. (2.17) is rewritten as,

τ = G(ξ )γ +Ω
+
τ (ξ )ξ

++Ω
−
τ (ξ )ξ

− (2.27)

when no initial stress or strain are assumed.
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Solving Eq. (2.27) for γ ,

γ =
1

G(ξ )

(
τ−Ω

+
τ (ξ )ξ

+−Ω
−
τ (ξ )ξ

−) (2.28)

and combining with y = R
∫ 2πRN

0
γ

r dx (obtained from Eqs. (2.23) and (2.24)), leads to

y =
2πR2N
rG(ξ )

(
τ−Ω

+
τ (ξ )ξ

+−Ω
−
τ (ξ )ξ

−) , (2.29)

that is the SMA spring deflection.

The SMA spring deflection in terms of the applied force is given by

y =
4R3N

r4G(ξ )
F− 2πR2N

rG(ξ )

(
Ω

+
τ (ξ )ξ

++Ω
−
τ (ξ )ξ

−) (2.30)

when Eq. (2.20) is used in Eq. (2.29).

The SMA spring model is modified in the next section to represent distributions of shear

strain, shear stress and martensitic fraction along the radius of the coiled SMA wire.

2.4.3 Cross-Sectional Representation of the Coiled SMA Wire

The cross-section of the coiled SMA wire is represented by several annular regions (Fig.

4). This approach has been used in the literature (BUCCHI et al., 2014; RAO; SRINIVASA,

2015) to improve the representation of SMA spring behavior represented by models such as the

one described in the previous section.

For large enough mechanical loading, the annular regions may have distinct phase transfor-

mation states. Fig. 4(a) displays the cross-sectional distribution of martensitic fraction for an

arbitrarily loaded SMA spring (initially at austenitic phase). Three regions are represented: (1)

an austenitic core, (2) a mixed austenitic-martensitic region and (3) a fully martensitic (outer)

region. Fig. 4(b) displays the distributions for 5 and 15 annular regions (top and bottom rows,

respectively). The shear strain is displayed on the left, the shear stress on the middle and the

martensitic fraction on the right. The blue dashed lines (from the center to the wire surface)

represent the distribution profile of the corresponding quantity along the radius.
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Figure 4 – Cross-sectional representation of the coiled SMA wire – (a) martensitic fraction (de-
tail) and (b) shear strain (left), shear stress (middle) and martensitic fraction (right).

The distribution of shear strain is assumed linear along the wire radius and given by,

γ (rrc) =
(rrc

r

)
γ

max, (2.31)

where rrc is a radial coordinate and,

γ
max =

ry
2πNR2 , (2.32)

is the shear strain at the outer annular region of the SMA spring (from Eqs. (2.21) and (2.24)).
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Usually, the shear stress is unable to induce phase transformation at the inner most regions,

so that an austenitic core may be present in the coiled SMA wire. At that core, linear behavior

is verified for austenitic properties. As the radial coordinate reaches a critical value, given by

(AGUIAR; SAVI; PACHECO, 2010),

rcrit =
πNR2τM∗

s
ryG(ξ )

, (2.33)

stress-induced phase transformation takes place and the distribution of shear stress becomes

nonlinear. In such a case, mixed austenite and martensite are present in the SMA and the

martensite-dependent properties assume intermediate values (between their fully austenitic and

fully martensitic values) in the phase transformation region. If the stress-induced phase trans-

formation is completed, as in the outer regions of Fig. 4, linear elastic behavior is verified for

martensitic properties.

The total martensitic fraction is estimated by a weighted average in which the contribution

of each annular region is proportional to its area,

ξ =
n

∑
j=1

A j

r2 ξ j, (2.34)

where

A =

{
rrc1

2 {
rrc j

2− rrc j−1
2}∣∣ j=2..n

}
(2.35)

is related to the area of each annular region. It is clear that such an assumption yields to a

lower martensitic fraction than that obtained when a constant value (equal to the maximum) is

assumed.
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3
Model of a Piezoelectrically Coupled

Typical Aeroelastic Section

Aeroelastic phenomena such as flutter and LCOs can be studied by considering a typical

section model as that displayed in Fig. 5 (BISPLINGHOFF; ASHLEY; HALFMAN, 1955;

HODGES; PIERCE, 2002; DOWELL, 2015). The typical section can undergo plunge and

pitch displacements (as illustrated in Fig. 6), denoted by h and α , respectively, when subjected

to an airflow speed (U∞). The plunge displacement is measured at the elastic axis (positive

downward). The pitch angle is measured about the elastic axis (positive clockwise).

Figure 5 – A 2-DOF typical aeroelastic section model (with piezoelectric coupling).

The elastic axis is defined from the midchord position of the typical section chord line

(a dashed line from the leading edge to the trailing edge in Fig. 5) and is positive in the aft

58
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Figure 6 – Motion of a typical section.

direction. Such a distance (in semichords) is denoted by c (omitted in Fig. 5). The semichord

length is b and the dimensionless distance (in semichords) between the elastic axis and the

center of gravity (CG) is xα . It is usual in aeroelasticity to normalize the aeroelastic parameters

by the span length l. Thus, the stiffness per unit of span length of the plunge and pitch DOFs are

kh and kα , respectively (subscript h denotes the plunge DOF while subscript α denotes the pitch

DOF). Viscous damping is assumed and, similarly, represented by dh and dα (also defined per

unit of span length and omitted in Fig. 5 for clarity). The unsteady aerodynamic lift per unit of

span length, L, acts at the aerodynamic center of the typical section. For subsonic regime, such

a location is at the quarter-chord length of the typical section. The unsteady pitching moment

per unit of span length, Mα , acts at the elastic axis of the typical section. In the particular case

of this study, the elastic axis is also at the quarter-chord of the typical section.

In our Laboratory of Aeroelasticity, typical section models have been considered for the

investigation of aeroelastic phenomena such as flutter and LCOs. The general goals are to

mitigate those oscillations or to exploit them for airfoil-based wind energy harvesting. In both

instances, smart materials (mainly piezoceramics) are used (ERTURK et al., 2010; SOUSA et

al., 2011; DIAS; De Marqui Jr; ERTURK, 2013; D’ASSUNÇÃO; De Marqui Jr, 2015). In this

work, the goal is the investigation of the effects of pseudoelastic hysteresis of SMA springs on

the aeroelastic behavior of a 2-DOF typical section. Based on the general aeroelastic behavior of

the typical section with SMA springs that will be presented later in the next chapters, two

distinct applications are proposed: 1) passive control of aeroelastic oscillations and 2) envelope

enhancement of an airfoil-based wind energy harvester.

As previously discussed in the Introduction, the effects of different preload levels applied

to the SMA springs as well as the effects of geometric nonlinearities and SMA constitutive pro-

perties are first investigated. Later, piezoelectric coupling is added to the typical section with
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SMA elements for wind energy harvesting and the performance is compared to previously pu-

blished airfoil-based wind energy harvester with concentrated nonlinearities. Therefore, the

derivation presented in this chapter considers a 2-DOF typical section with SMA springs and

also electromechanical coupling in the plunge DOF. This derivation leads to the most general

case investigated in this work (wind energy harvesting) and the electromechanical coupling is

not considered in the other case studies. For this reason, piezoelectric coupling (indicated by

“PZ” in Fig. 5) is included in the derivation of the typical section model presented in the next

section, yielding a piezoaeroelastic typical section model. A resistive load is considered in the

electric domain to estimate the electrical power output, also indicated in Fig. 5.

3.1 Derivation of the Equations of Motion of the Typical Sec-
tion

The coupled equations of motion of the piezoaeroelastic typical section with electromecha-

nical coupling considered in the plunge DOF are derived by using Lagrange’s Method. Hamil-

ton’s Principle applied to an electroaeroelastic system yields (ERTURK; INMAN, 2011),

∫ t2

t1
(δTE −δUE +δWie +δWnce +δWnca +δWsd)dt = 0, (3.1)

where δ denotes the first variation of a functional. Thus, δTE , δUE and δWie denote, respec-

tively, the variations of the total kinetic, potential and (internal) electrical energies, all of them

expressed as per unit of span length. δWnce, δWnca and δWsd are the non-conservative compo-

nents of the virtual work due to the electrical charge, aerodynamic loads and structural damping,

respectively (also per unit of span length).

The kinetic energy component is1,

TE =
1
2

mt ḣ2 +
1
2

Iα α̇
2 +mxαbḣα̇, (3.2)

where m is the pitch DOF mass per unit of span length and mt is the total mass (pitch and

plunge) per unit of span length. In the case of a non-ideal typical section model, the masses of

1Detailed derivation can be found in Trickey (2000).
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the plunge and pitch DOFs may differ from each other as will be shown later in Chapter 7 for

the experimental model (due to the mass of the springs and components attaching the typical

section to a stationary frame). Moreover, Iα is moment of inertia of the typical section (per unit

of span length) with respect to the elastic axis. Overdot denotes time derivative.

The potential energy component due to the elastic springs and to an equivalent stiffness

related to the piezoelectric material is,

UE =
1
2

khh2 +
1
2

kαα
2− 1

2
θ

l
hv, (3.3)

where θ is the electromechanical coupling term and v is the voltage across the resistive load con-

sidered in the electrical domain.

The internal electrical energy component is,

Wie =
1
2

Ceq
p

l
v2, (3.4)

where Ceq
p is the equivalent capacitance of the piezoceramic layers2.

The non-conservative components of the virtual work are,

δWnce =
Q
l

δv (3.5)

δWnca =−Lδh+Mαδα (3.6)

δWsd =−dhḣδh−dα α̇δα, (3.7)

where Q is the electrical charge.These quantities are expressed as per unit of span length.

The Lagrange equations for the piezoaeroelastic typical section are represented by,

d
dt

(
∂T
∂ q̇i

)
− ∂T

∂qi
+

∂U
∂qi
− ∂Wie

∂qi
= Qi (i = 1, . . . , n), (3.8)

where qi is a generalized coordinate and Qi is a non-conservative force (details in Appendix

2According to the experimental configuration employed in Sousa et al. (2011) and assumed to be the same in
this work.
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A). By applying Eq. (3.8) to the typical section, yields,

d
dt

(
∂TE

∂ α̇

)
− ∂TE

∂α
+

∂UE

∂α
− ∂Wie

∂α
= Mα −dα α̇ (3.9)

d
dt

(
∂TE

∂ ḣ

)
− ∂TE

∂h
+

∂UE

∂h
− ∂Wie

∂h
=−L−dhḣ (3.10)

d
dt

(
∂TE

∂ v̇

)
− ∂TE

∂v
+

∂UE

∂v
− ∂Wie

∂v
=

Q
l
. (3.11)

By replacing TE , UE , Wie, δWnce, δWnca and δWsd (defined by Eqs. (3.2) to (3.7)) into Eqs.

(3.9) to (3.11), and by taking the time derivative of Eq. (3.11) and also employing Ohms’s law,

Q̇ = v/Rl , where Rl is the resistive load, yields,

Iα α̈ +mxαbḧ+dα α̇ + kαα = Mα (3.12)

mxαbα̈ +(m+m f )ḧ+dhḣ+ khh− θ

l
v =−L (3.13)

Ceq
p v̇+

v
Rl

+θ ḣ = 0, (3.14)

which are the electromechanically coupled equations of motion of the piezoaeroelastic typical

section.

In the next section, Eqs. (3.12) to (3.14) are represented in dimensionless state-space form.

3.2 Dimensionless Representation of the Equations of Mo-
tion in State-Space Form

By rewritting Eqs. (3.12) to (3.14) in dimensionless terms, one may establish similarities

between models in different scales (BISPLINGHOFF; ASHLEY; HALFMAN, 1955). Another

advantage is that a class of models may be analyzed instead of a particular model (HEMATI,

1995). The representation of the equations of motion in state-space form, in turn, is convenient

for their solution by using numerical methods such as the Runge-Kutta scheme (used in the

simulations presented throughout this work).
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3.2.1 Nondimensionalization of the Equations of Motion

The parameters assumed for the nondimensionalization of Eqs. (3.12) to (3.14) are the typi-

cal section mass (per unit of span length) and the semichord length (m and b, respectively). To

introduce the dimensionless terms of Theodorsen (1935), Eq. (3.12) is multiplied by (mb2)−1

and Eq. (3.13) is multiplied by (mb)−1. Since electromechanical coupling is considered here,

Eq. (3.14) is multiplied by ṽ(mb2l)−1, where ṽ is assumed as 1 Volt. Thus,

r2
α α̈ + xα

¨̄h+
dα

mb2 α̇ + r2
αω

2
αα =

Mα

mb2 (3.15)

xα α̈ +µ
¨̄h+

dh

m
˙̄h+ω

2
h h̄− θ ṽ

mbl
v =− L

mb
(3.16)

Ceq
p ṽ3

mb2l
υ̇ +

ṽ2

mb2lRl
υ +

θ ṽ
mbl

˙̄h = 0, (3.17)

where rα is the radius of gyration divided by the semichord, h̄ = hb−1 is the dimensionless

plunge displacement (in semichords), ωα and ωh are the uncoupled natural frequencies of the

pitch and plunge DOFs, respectively, µ =mt/m is the ratio of the translating mass to the rotating

mass and υ = vṽ−1 is the dimensionless voltage.

A dimensionless time is also considered and defined as,

t̄ = ωht,

where t is the dimensional time.

The time derivatives are related to each other as,

dx
dt

= ωh
dx
dt̄

,

or, equivalently,

ẋ = ωhx′,

where x is an arbitrary time-dependent variable (α , h or v in this study) and the prime (′) denotes

differentiation with respect to the dimensionless time. The second derivative is,

ẍ = ω
2
h x′′.
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Thus, Eqs. (3.12) to (3.13) are also multiplied by ω
−2
h and Eq. (3.14) is multiplied by ω

−3
h .

The dimensionless equations of motion are, therefore,

r2
αα
′′+ xα h̄′′+ζαα

′+η
2
αr2

αα = M̄α (3.18)

xαα
′′+µ h̄′′+ζhh̄′+ h̄−χυ =−L̄ (3.19)

ψυ
′+λ

−1
υ +χ h̄′ = 0, (3.20)

where ζα = dα(mb2ωh)
−1 and ζh = dh(mωh)

−1 are the damping ratios of the pitch and plunge

DOFs (per unit of span length), respectively, and ηα is the pitch-to-plunge frequency ratio

(ηα = ωαω
−1
h ).

The dimensionless capacitance is ψ =Ceq
p ṽ3(mb2lω2

h )
−1, the dimensionless electromecha-

nical coupling term is χ = θ ṽ(mblω2
h )
−1 and the dimensionless resistive load is λ =mb2lω3

h Rl ṽ−2.

A dimensionless electrical power is defined as p̄ = υ2λ−1.

The dimensionless aerodynamic loads are expressed as M̄α = Mα(mb2ω2
h )
−1 and L̄ =

L(mbω2
h )
−1.

3.2.2 Representation of the Equations of Motion in State-Space Form

Eqs. (3.18) to (3.20) may be represented in state-space form as,
I 0 0

0 M 0

0 0 ψ




x′s

x′′s

υ ′

+


0 −I 0

K B −Θe
T

0 Θe λ−1




xs

x′s

υ

=


0

F

0

, (3.21)

where I is a 2x2 identity matrix. Vector xs = { α h̄ }T represents the structural states (su-

perscript T denotes a transposed vector). Vector Θe = { 0 χ } contains the electromechanical

coupling term. Vector F = { M̄α L̄ }T represents the aerodynamic loads. Matrices M, K

and B contain the dimensionless inertial, stiffness and damping parameters. These matrices are
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given,

M =

 r2
α xα

xα µ

 (3.22)

K =

 r2
αη2

α 0

0 1

 (3.23)

B =

 ζα 0

0 ζh

 . (3.24)

The unsteady aerodynamic model used in this study is described (and included in Eq.

(3.21)) in the next section.

3.3 Unsteady Aerodynamic Model for Arbitrary Airfoil Mo-
tions

The unsteady aerodynamic model employed for the determination of the pitching moment

and lift is based on the work of Edwards (1977). In short, the referred study presents a state-

space model (which is convenient for numerical solution) valid for arbitrary airfoil motions.

This is in contrast with the classical Theodorsen (1935) model, from which Edwards’ model

was derived, that is valid only for harmonic motion. Edwards’ model was previously used

(and experimentally verified) in Sousa et al. (2011), where structural nonlinearities, and hence

nonlinear aeroelastic behavior, were of concern. As well, nonlinear behavior is expected in this

work (including post-flutter LCOs) and the same aerodynamic model is employed.

Incompressible subsonic flow without flow separation effects (hence, small pitch angles) is

assumed. In Theodorsen (1935)3, the velocity potential due to the flow around the typical sec-

tion is split into non-circulatory and circulatory portions. The non-circulatory portion satisfies

a time-dependent boundary condition which accounts for the presence of the typical section in

the flow field. This portion is obtained by a distribution of doublets (sources and sinks) in both

the upper and lower surfaces of the typical section. The circulatory portion satisfies the “Kutta

3Theodorsen (1935) originally derived expressions for a 3-DOF typical section (including a control surface).
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condition”, in which pressure and velocity should be finite and continuous at the trailing edge

of the typical section. This portion is obtained by a vortex pattern placed on both the typical

section and its wake. Bernoulli theorem for unsteady flow is then employed to determine the lo-

cal pressures acting on the typical section. By integrating such pressures, the pitching moment

and lift are obtained as,

Mα =−ρb2

 π
(1

2 −a
)

Ubα̇ +πb2 (1
8 +a2) α̈−

α̇πbḧ

+2ρUb2
π
(
a+ 1

2

)
C(κ) f (t), (3.25)

L =−ρb2 (Uπα̇ +π ḧ−πbaα̈
)
−2πρUbC(κ) f (t), (3.26)

where U is the airflow speed (the subscript ∞ is dropped for convenience in this section), ρ is

the air density, C(κ) is known as the Generalized Theodorsen function and f (t) is given,

f (t) =Uα + ḣ+b
(1

2 −a
)

α̇. (3.27)

Theodorsen’s function, C(κ), represents the effects of vortex shedding at the trailing edge

of the typical section (PENG; ZHU, 2009) and depends on the “reduced” frequency κ =ωb/U .

The reduced frequency is an indication of the relative “unsteadiness” of the flow (EDWARDS,

1977), and also introduces the limitation of harmonic motion (ALIGHANBARI, 1995; CON-

NER, 1996). A workaround for such a limitation was proposed in Wagner (1925). Instead of

assuming that the typical section motion starts at t = −∞ (as in the original Theodorsen’s mo-

del), it was assumed that the motion starts at t = 0, so that the aerodynamic formulation may

be represented in the Laplace domain. Step inputs in the pitch angle were also assumed for

the derivation of the circulatory loads. Finally, by a sum of elementary solutions, the unsteady

aerodynamic loads associated with arbitrary motions could be determined. Alighanbari (1995)

provides a comprehensive description of Wagner’s procedure. Another workaround is requi-

red, however, since the final expression of Wagner’s function is not convenient for numerical

solution.

The exponential approximation of Jones (1938) to Wagner’s function,

φ(s)≈C0 +C1eC3s +C2eC4s, (3.28)
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is commonly used in the literature (BISPLINGHOFF; ASHLEY; HALFMAN, 1955), and was

also used in Edwards (1977). Although having no physical meaning, such equation reproduces

the Wagner’s function almost exactly, being widely accepted for engineering purposes (JONES,

1939; EDWARDS; ASHLEY; BREAKWELL, 1979)4. The coefficients are C0 = 2µa, C1 =

−0.33µa, C2 = −0.67µa, C3 = −0.0455 and C4 = −0.3, where s = Ut/b (THEODORSEN,

1935; JONES, 1938) and µa represents the additional (virtual) mass. For a typical section,

µa = π , and by normalizing by 2π , yields,

φ(s)≈ 1−0.165e−0.0455s−0.335e−0.3s. (3.29)

By employing Eq. (3.29) along with additional treatments envolving Duhamel’s integral

and Padé approximants (EDWARDS, 1977; ALIGHANBARI, 1995; TRICKEY, 2000), the

C(κ) f (t) term of Eqs. (3.25) and (3.26) may be replaced by,

C(κ) f (t)≈ (C0 +C1 +C2) f (t)+C3C4 (C1 +C2)xa1 +(C1C3 +C2C4) ẋa2 , (3.30)

where two aerodynamic states, xa1 and xa2 , are included in the model. Such states are given by,

ẋa =

(
U
b

)
S1xs +S2ẋs +

[
−C3C4

(
U2

b

)
(C3 +C4)

(U
b

) ]
xa, (3.31)

where xa = { xa1 xa2
}T . Vectors S1 and S2 are related to the circulatory aerodynamics and

are given in Appendix B.

Two terms are added to Eqs. (3.12) and (3.13), relating the structural domain to the aerody-

namic domain. In matrix form, such terms are,

D = RS3, (3.32)

where R and S3 are also related to the circulatory aerodynamics (given in Appendix B).

Eqs. (3.31) and (3.32) are differentiated with respect to the dimensionless time defined in

Section 3.2.1 and included in Eq. (3.21). The resulting (dimensionless) piezoaeroelastic model

4Jones (1939) depicts such a correspondence for several aspect ratios, including infinite ratio as in the case of
a typical section. Edwards, Ashley and Breakwell (1979) provide a comparison with the exact solution.
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is presented,

I 0 0 0

0 M̃ 0 0

0 0 Ĩ 0

0 0 0 ψ





x′s

x′′s

x′a

υ ′


=



0 I 0 0

−K̃ −B̃ D̃ ΘT
e

Ẽ1 Ẽ2 F̃p 0

0 −Θe 0 −λ−1





xs

x′s

xa

υ


(3.33)

where M̃ is the inertial matrix, K̃ is the stiffness matrix and B̃ is the damping matrix. Such

matrices have both structural and aerodynamic contributions, and are given,

M̃ = M− ρb2

m
Mnc, (3.34)

K̃ = K− ρb2

m

(
U

ωhb

)2(
Knc +

1
2

RS1

)
, (3.35)

B̃ = B− ρb2

m

(
U

ωhb

)(
Bnc +

1
2

RS2

)
, (3.36)

where the non-circulatory contributions to mass, stiffness and damping, are Mnc, Knc and Bnc,

respectively. The circulatory contributions are related to vectors R, S1 and S2. Matrices Ẽ1, Ẽ2

and F̃p (in Eq. (3.33)) correspond to the two first-order equations of the aerodynamic model, and

D̃ is the dimensionless version of D (in dimensionless time). All of the aerodynamic matrices

(and vectors) are given in Appendix B. Such matrices are defined in terms of the Theodorsen

constants, given in Appendix C.

Eq. (3.33) may be expressed as,

x′ = Ax, (3.37)

in which,

A =



0 I 0 0

−M̃−1K̃ −M̃−1B̃ M̃−1D̃ M̃−1ΘT
e

Ĩ−1Ẽ1 Ĩ−1Ẽ2 Ĩ−1F̃p 0

0 −ψ−1Θe 0 −(ψλ )−1


, (3.38)

and x = { xs x′s xa υ }T .

In the next section, Eq. (3.37) is modified to replace the linear torsional spring of the pitch
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DOF by SMA helical springs.

3.4 Typical Section Model with SMA Springs

Fig. 7 displays a schematic model of a typical aeroelastic section with SMA helical springs

at the pitch DOF. A rigid rod (assumed without mass) is attached to the elastic axis. The SMA

springs are perpendicularly attached to the ends of that rod. The other ends of the SMAs are

assumed fixed with respect to pitch motions (yielding spring deflections) but move along with

plunge motions. The SMAs are attached at a distance w from the elastic axis.

Figure 7 – A schematic model of a typical aeroelastic section with SMA helical springs at the
pitch DOF.

The equations of motion are rewritten according to the configuration of Fig. 7 as,

r2
αα
′′+ xα h̄′′+ζαα

′+ϑ (α,ξ1,ξ2) = M̄α (3.39)

xαα
′′+µ h̄′′+ζhh̄′+ h̄−χυ =−L̄ (3.40)

ψυ
′+λ

−1
υ +χ h̄′ = 0, (3.41)

where the (dimensionless) elastic restoring moment term of Eq. (3.18), η2
αr2

αα , is replaced by

ϑ (α,ξ1,ξ2). The latter is the (dimensionless) resulting moment due to the SMA springs, and

is given by,

ϑ (α,ξ1,ξ2) =
w

mlb2ω2
h
[− f sma

1 (α,ξ1)+ f sma
2 (α,ξ2)] , (3.42)
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where subscript 1 and 2 denote the SMA springs S1 and S2, respectively. Thus, ξi represents the

martensitic fraction of each SMA spring (i assumes 1 or 2). This notation is also used for any

other SMA property which depends on the martensitic fraction. It is also worth mentioning that

the distance w may change to adjust the resulting moment. This will be useful later in Chapters

5 and 6 to obtain a moment which is equivalent to that due to the (ideal and linear) torsional

spring defined in Fig. 5 (of stiffness kα ) when different SMA springs are considered. In such a

case, the distance w may be estimated by,

w =

√
kα l

2k(ξ )
. (3.43)

Based on the SMA spring model described in Section 2.4.2, the spring forces are estimated

by,

f sma
i (α,ξi) = k (ξi)yi (α)+Y (ξi) , i = 1 or 2, (3.44)

where the equivalent stiffness k (ξ ) of an SMA spring was previously defined in Eq. (2.26).

Moreover, yi (α) denotes the axial deflection of the SMA springs. For small pitch angles, the

spring deflections may be approximated by,

y1 (α)∼= y0−wα (3.45)

y2 (α)∼= y0 +wα, (3.46)

where y0 is an initial deflection due to the presence of mechanical preload.

In Eq. (3.44), Y (ξ ) accounts for the effects of phase transformation on the spring force.

Based on the equations of Section 2.4.2 (mostly on Eq. (2.30)), this term is given by,

Y (ξ ) =−πr3

2R
G(ξ )ξ εres. (3.47)

The SMA model is complete at this point and may be included into the (linear) state-space

model of Eq. (3.37). The resulting (and nonlinear) state-space equation is,

x′ = Ax+axc, (3.48)
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where,

a =



0 0 0 0

−M−1K1 M−1K2 0 0

0 0 0 0

0 0 0 0


, (3.49)

and

xc =

{
y1 (α) 1 y2 (α) 1 0 0 0

}T

. (3.50)

Matrices Ki are given by,

Ki =
w

mlb2ω2
h

 k (ξi) Y (ξi)

0 0

 , i = 1 or 2. (3.51)

Since the torsional stiffness terms related to the SMAs are included in matrix a, the term

related to the ideal torsional spring is excluded from Eq. (3.23) for consistency, yielding,

Ks =

 0 0

0 1

 . (3.52)

3.5 Iterative Procedure for the Determination of the Mecha-
nical Stress and Martensitic Fraction

In the previous section, the aeroelastic model was modified to include the SMA springs

to the pitch DOF of the system. The pseudoelastic hysteresis of the SMAs is related to phase

transformations which affect the martensitic fraction. The change from austenite to martensite

is induced by stress due to mechanical loading, increasing the martensitic fraction. During

mechanical unloading, internal stresses are generated by an attempt of shape recovery related

to the austenitic transformation (assuming T ≥ A f ), thus decreasing the martensitic fraction.

An attempt of solving the constitutive equation (Eq. (2.16)) for the shear stress in terms of the

shear strain, however, results in a mutual dependence between stress and martensitic fraction,

σ (ξ ) = f (ξ (σ)).
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This section describes the method employed in this work to determine the (shear) stress

and the martensitic fraction of the SMAs. Since the same method is applied for both SMA

springs of Fig. 7, the distinction between the springs (Si, where i = 1 or 2) is omitted. The

method assumes that the stress and the martensitic fraction are initially unknown. On the other

hand, the pitch angle of the typical section is known at each time step of the solution. By using

Eqs. (3.45) and (3.46), the spring deflections are calculated in terms of the pitch angle. By also

assuming a fully austenitic initial phase (thus, ξ = 0) and rewritting Eq. (2.29) as,

γ (yi,α) =
r

2πR2N
yi(α), (3.53)

the shear strain at the perimeter of the coiled SMA wire may be estimated in terms of the spring

deflection. By assuming, a priori, the linear relation of Eq. (2.21) (Hooke’s law for torsion,

τ = Gγ), the corresponding shear stress may be estimated. The computed value, however,

is used only for verification purposes (not for determining the stress state of the SMA). It is

used to check if the SMA is in a phase transformation condition (nonlinear regime). A stress-

induced phase transformation is detected if,

τ
M
s ≤ τ ≤ τ

M
f and ξ̇ > 0, (3.54)

while an austenitic phase transformation is detected if,

τ
A
s ≥ τ ≥ τ

A
f and ξ̇ < 0, (3.55)

at each time step of the aeroelastic solution.

By considering that one of the above conditions is true, the next step is the computation of

possible values for the martensitic fraction (by using an iterative procedure). If Eq. (3.54) is

true, then Eq. (2.8) is used to compute the martensitic fraction which corresponds to different

values of shear stress in the range,

τteste =
[
τ

M
s , τ

M
f
]

(3.56)
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and if Eq. (3.55) is true, then Eq. (2.11) is used for the range,

τteste =
[
τ

A
s , τ

A
f

]
(3.57)

while pairs of shear stress and martensitic fraction, along with the shear strain obtained by

Eq. (3.53) and also the current state of the SMA, are verified in the constitutive equation (Eq.

(2.17)). The pair which satisfies that equation represents the current shear stress and martensitic

fraction of the SMA. The martensite-dependent properties of the SMA may then be updated.

If no phase transformation is taking place (i.e., both conditional Eqs. (3.54) and (3.55)

are false), the SMA spring behavior is assumed linear elastic as that of a conventional spring

(made of an inactive material such as steel). In such a case, no special treatment (the iterative

procedure described above) is necessary because there is no change in the martensitic fraction.



CHAPTER

4
Effects of the SMA Pseudoelastic

Hysteresis on the Aeroelastic Behavior of

the Typical Section

This chapter reports three case studies using the previously described models. In the first

case study, the constitutive behavior of an SMA is discussed. In the second case, the effect

of preloaded SMA springs on the aeroelastic behavior of the typical section at the linear flut-

ter speed is investigated. In the third case study, the effect of preloaded SMA springs on the

aeroelastic behavior of the typical section in the post-flutter regime is investigated. The SMA

parameters shown in Table 1 are used in the simulations of all cases. The parameters are based

on Aguiar et al. (2013) and are estimated for a commercially available SMA spring that is sui-

table for the physical dimensions of an existing experimental typical section described in Sousa

et al. (2011). Most of this chapter (excepting the last section) describes the model behavior

assuming that the shear strain, shear stress and martensitic fraction are homogeneous across

the cross-section of the coiled SMA wire. The last section discusses the effects of different

cross-sectional assumptions.

74
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Table 1 – SMA constitutive properties.

Property Value Unit
M f 302 K
Ms 315 K
As 316 K
A f 331 K
CM 4 MPa·K−1

CA 6 MPa·K−1

σmin
s 100 MPa

σmin
f 170 MPa

εres 6.7 %
GM 11.5 GPa
GA 14.5 GPa
µP 0.3 –

4.1 Simulation of the Constitutive Behavior of an SMA Ele-
ment

In this case study, the SMA behavior is described for different conditions of the material

temperature and shear stress. The effect of temperature on the transformation stresses was

described in Section 2.2.2 and is displayed in Fig. 8 for the SMA properties of Table 1. The

stress-induced phase transformation starts when τ ≥ τmin
s (where τmin

s = σmin
s /
√

3) and comple-

tes only for τ ≥ τmin
f (where τmin

f = σmin
f /
√

3). The critical stresses are constant when T ≤Ms.

For T > Ms, the critical stresses increase with increasing temperature and a linear relation is

assumed.

Fig. 9 shows the shear stress-strain behavior for different temperatures. In all cases, 100%

initial austenitic phase is assumed. The curves for T < A f exhibit a residual strain after a

complete unloading, which is related to the shape memory effect. The hysteretic behavior for

T ≥ A f is related to pseudoelasticity. As expected, the hysteresis loop moves upward in the

stress-strain plane as the temperature increases. Additionally, the area inside the hysteresis loop

decreases with increasing temperature due to higher values of CA with respect to CM (see Table

1).

The particular case of T = A f (in Fig. 9) is detailed in Fig. 10. The stress represents a
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Figure 8 – Critical shear stresses for phase transformation: constant for T ≤ Ms and a linear
function of temperature for T > Ms.

mechanical loading-unloading cycle. As the stress increases from τM
s up to τM

f , the martensite

fraction grows from 0% to 100% (Fig. 10(a)). After the complete phase transformation, the

SMA mechanical properties remain unchanged. During mechanical unloading, the austenitic

phase is recovered when the stress decreases from τA
s to τA

f . The SMA is fully austenite and

exhibits no residual deformation when completely unloaded. The corresponding change in

shear modulus is shown in Fig. 10(b). The change in the material properties and increase of

the inelastic strain are related to the hysteretic behavior shown in Fig. 9, which is related to the

energy dissipation.
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Figure 10 – Mechanical loading-unloading cycle and corresponding (a) martensite fraction and
(b) shear modulus for T = A f (arbitrary loading rate).

4.2 Effect of Pseudoelastic Hysteresis on the Aeroelastic Beha-
vior of a Typical Section

The effect of the pseudoelastic hysteresis of SMA springs on the aeroelastic behavior of a

typical section is investigated and discussed. The material properties provided in Table 1 and the

properties of the typical section given in Table 2 are used. The dimensionless parameters of Ta-

ble 2 are based on dimensional (physical) parameters from Sousa et al. (2011), who considered

an airfoil whose semichord length is 0.125 m. The SMA coil springs considered have 0.95 mm

wire diameter, 8 mm coil diameter and 16.5 active coils. The SMA springs are 36.7 mm long

with the minimum allowed length of 20 mm. The SMA temperature is assumed constant at 331

K in all simulations. At such a temperature, the SMA is fully austenite for a stress-free state.
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The corresponding stiffness of each coil spring is k = 175 N·m−1 (using w = 85 mm, please

check Fig. 7). The critical stresses for the phase transformation are τM
s = 95 MPa, τM

f = 135

MPa, τA
s = 52 MPa and τA

f = 0 MPa (see Fig. 8). In all simulations the initial condition is

assumed a plunge displacement (h0 = 10 mm or h̄0 = 0.08).

Table 2 – Aeroelastic parameters used in the simulations.

Parameter Value Unit
l 0.5 m
b 0.125 m
c -0.5 –

xα 0.256 –
m 1.542 kg·m−1

m f 2.548 kg·m−1

Iα 0.0072 kg·m
kα 5.08 N·rad−1

kh 4200 N·m−2

ζα 0.088 –
ζh 0.0035 –

4.2.1 Effect of Pseudoelastic Hysteresis on the Aeroelastic Behavior of the
Typical Section at the Linear Flutter Speed

In this case study, the effect of pseudoelastic hysteresis on the aeroelastic behavior of the

typical section at the linear flutter speed is investigated. It is important to remember that the

linear steel spring usually employed in the pitch DOF of a typical section was replaced by a

pair of SMA springs. When linear steel springs are considered in the typical section the usual

linear aeroelastic behavior is verified: the typical section is stable for airflow speeds smaller

than the linear flutter speed and unstable for airflow speeds larger than the linear flutter speed.

The same linear aeroelastic behavior is verified when no stress-induced phase transformations

are achieved in the SMA springs replacing a linear steel spring. This way, the term “linear

flutter speed” refers to the flutter boundary of a typical section with steel springs or the flutter

boundary of the modified typical section (with SMA springs) when no stress-induced phase

transformations are achieved.

Fig. 11 displays the flutter boundary, pitch and plunge displacements as well as shear stress
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Figure 11 – Real part of the plunge DOF eigenvalue for increasing airflow speed (a), (b) dimen-
sionless plunge DOF time response, (c) dimensionless pitch DOF time response,
(d) shear stress versus change in the length of SMA spring S1.

of each SMA spring introduced in the pitch DOF. Fig. 11(a) shows the real part of the eigenvalue

for the plunge DOF (λh) for increasing airflow speed (U∞). The linear flutter speed (ULF ) is

predicted as 11.6 m·s−1, in agreement with Sousa et al. (2011). The dimensionless plunge and

pitch time histories at the linear flutter speed are shown in Figs. 11(b) and (c). The pitch SMA

springs are subjected to deformations due to the pitch displacement, reaching the maximum

length of 47.7 mm and minimum length of 25.7 mm (larger than the minimum allowed length

of 20 mm). The maximum achieved shear stress of each coil spring in the pitch DOF is (Fig.

11(d)), which is lower than the critical stress for the onset of the phase transformation (95 MPa).

Therefore, the typical section with SMA springs behaves exactly as a linear aeroelastic system

(since stress-induced phase transformations are not achieved). The amplitudes of oscillation

(the pitch displacement in particular) would be excessively large in order to reach the critical

stress value. Therefore, a set of preload values is considered ( f0 = 1.5, 2.0, 2.5, 3.0, 3.5, 4.0

and 4.5 N symmetrically for both springs) in this work to fully use the damping capability of

SMAs and investigate its effect on the aeroelastic behavior of the typical section.

The aeroelastic behavior of the typical section at the linear flutter speed with increasing



80

(a)

−0.05
0
0.05

1.5 2 2.5 3 3.5 4 4.5

−0.05

0

0.05

f0 [N]

h̄

d
h̄
/d

t̄

(b)
0 1 2 3 4 5

0.05

0.1

0.15

0.2

f0 [N]

P
lu
n
ge

am
p
li
tu
d
e

 

 

Steel
SMA

(c)

−0.1
0

0.1
1.5 2 2.5 3 3.5 4 4.5

−0.05

0

0.05

f0 [N]

α

d
α
/d

t̄

(d)
0 1 2 3 4 5

0.1

0.15

0.2

0.25

0.3

0.35

f0 [N]

P
it
ch

am
p
li
tu
d
e

 

 

Steel
SMA

Figure 12 – The aeroelastic displacements decrease as the preload increases and contributes
more significantly to the occurrence of phase transformation – (a) plunge DOF
phase projections, (b) plunge amplitude (reduction of 54%), (c) pitch DOF phase
projections, (d) pitch amplitude (reduction of 56%). In (b) and (d) the amplitudes
for a linear (elastic) steel spring with equivalent effective stiffness is shown for
comparison.

preload is shown in Fig. 12. Fig. 12(a) to (d) shows that both plunge and pitch displacements

decrease with increasing preload on the SMA springs (for preload values larger than 1.7 N). For

the preload value of 4.5 N, the plunge amplitude is 54% smaller than the plunge amplitude of

the typical section with no preload on the SMA springs (Fig. 12(b)) and the pitch amplitude

is 56% smaller than the pitch amplitude of Fig. 12(d). However, the pitch and plunge DOFs

become less sensitive to the variations in the preload values for f0 > 4 N.

For comparison purposes, the plunge and pitch amplitudes of a typical section with a pair

of steel springs in pitch DOF (that gives the same pitch elastic moment of the SMA springs with

no preload) is also presented in Figs. 12(b) and (d). Pitch and plunge amplitudes are insensitive

to applied preload on the steel springs. Moreover, the same mechanical outputs are obtained for

preload values smaller than 1.5 N of both cases. Effects due to preload other than stress increase

(which would be expected also for steel springs, e.g., friction) are neglected because of the low

forces involved.
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The variation of the resulting shear stress (due to preload and pitch displacement contribu-

tions) with increasing preload level is shown in Fig. 13. The pitch angle required for stress-

induced phase transformation (leading to pseudoelastic effect) decreases with increasing pre-

load value. For preload values larger than 2 N, the resulting shear stress is enough to induce

the onset of forward phase transformations (τ > τM
s ). The transformations lead to a hysteretic

behavior of the SMA springs and, consequently, to the aeroelastic behavior presented in Fig.

12. Very large pitch angles would be required for stress-induced phase transformation in the

range 0≤ f0 ≤ 1.5 N. Consequently, the typical section with SMA springs behaves as a linear

aeroelastic system (as well as the one with steel springs) for this preload range. For f0 ≥ 2 N,

the resulting shear stress is almost constant (and slightly larger than τM
s , the dotted line in Fig.

13) since the shear stress is quite constant when the martensitic plateau (transformation region)

is reached. In addition, one should note that the amount of shear stress due to pitch displacement

is the same for 0 ≤ f0 ≤ 2 N and decreases with increasing preload value since the aeroelastic

displacements decrease for preload values larger than 2 N (Fig. 12). For f0 ≥ 4 N, the resulting

shear stress is almost fully due to preload on the SMA spring.
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Figure 13 – Steady-state shear stress split into two portions: one due to preload and another due
to pitch displacement at its maximum at the linear flutter speed (phase transforma-
tion occurs for f0 ≥ 2 N). The resulting shear stress exhibits no expressive increase
as the SMA springs operate in the transformation region.

The particular case of f0 = 3 N is shown in Fig. 14 (the case with no preload, f0 = 0 N, is

also shown for reference). Figs. 14(a) and (b) show the dimensionless plunge and pitch time

histories obtained slightly above the linear flutter speed of Fig. 11(a). The unstable behavior
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for f0 = 0 N (growing oscillations) is converted to LCOs when the preload value is increased

to 3 N. Fig. 14(c) to (f) shows the corresponding change in the length of SMA spring S1, the

shear stress, the martensite fraction and the stiffness (due to the change in the shear modulus),

respectively. Fig. 14(g) shows the shear stress against the length of the SMA spring.

Figs. 15(a) and (b) show a detail of the shear stress and a detail of the corresponding mar-

tensite fraction, respectively, for the case of Fig. 14 ( f0 = 3 N). Critical stresses are displayed

and an incomplete phase transformation can be observed.

Fig. 12(c) shows that the equilibrium position of the steady-state pitch response chan-

ges with increasing preload. By increasing the preload value, the critical stress for a com-

plete reverse phase transformation (τA
f ) (unloading) is never reached. After the first forward

phase transformation the martensitic fraction is always larger than zero. Additionally, the SMA

springs undergo different stress states due to the initial condition (h̄0 = 0.08 or h0 = 10 mm).

Although symmetric springs with respect to the chord line are assumed, an imbalance in the

martensite fraction occurs. Since the elastic modulus of SMAs depends on the martensite frac-

tion, the springs exhibit a small difference in stiffness, which leads to different equilibrium

positions. However, it is important to remember that the previously discussed aeroelastic beha-

vior (Figs. 12 and 13) is only related to the damping capabilities of the preloaded SMA springs

(not due to the small stiffness variation). Fig. 16 confirms such a behavior by showing the pitch

response for f0 = 4.5 N and two different initial conditions, namely h̄0 = 0.08 and h̄0 =−0.08.
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Figure 14 – Aeroelastic response and material behavior for f0 = 3 N and U∞ =ULF – (a) plunge
displacement, (b) pitch displacement, (c) change in the length of SMA spring S1, (d)
shear stress, (e) martensite fraction, (f) stiffness and (g) shear stress versus change
in the length of SMA spring S1. The case with no preload ( f0 = 0 N) is shown for
comparison.



84

(a)
5 10 15

0

20

40

60

80

100

120

140

t̄

τ
[M

P
a]

• ← τA
s

• ← τM
s

• ←
τ
A
f

• ← τM
f

 

 

Steel
SMA

onset of
direct PT

end of
direct PT

end of
reverse PT

onset of
reverse PT

(b)
5 10 15

0

0.5

1

1.5

2

t̄

ξ
[%

]

A

A
→

M

A +M

M
→

A

onset of
direct PT

end of
reverse PT

end of
direct PT

onset of
reverse PT
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Figure 16 – Pitch response for f0 = 4.5 N and different directions of the initial condition applied
to the plunge DOF (h̄0 = 0.08 and h̄0 =−0.08)

4.2.2 Effect of Pseudoelastic Hysteresis on the Aeroelastic Behavior of the
Typical Section at the Post-Flutter Regime

The effect of pseudoelastic hysteresis of SMA springs on the aeroelastic behavior of the

typical section at the linear flutter boundary was discussed in the previous case study. Pitch and

plunge amplitudes decrease with increasing preload on the SMA springs. Also, unstable aeroe-

lastic motions at an airflow speed slightly above the linear flutter speed were converted to LCO

due to the nonlinear (hysteretic) response of the preloaded SMA springs (above certain preload

value). The presence of nonlinearities in aeroelastic systems often results in bifurcations with

LCOs above or below the linear flutter speed (DOWELL, 2015). Sometimes, nonlinearities

are welcome in aeroelastic system since the catastrophic linear flutter behavior above the linear

flutter speed can be replaced by LCOs of acceptable amplitudes. Therefore, this case study
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investigates the effect of pseudoelastic hysteresis of preloaded SMA springs on the aeroelastic

behavior of the typical section at the post-flutter regime. The same set of preload values of

Section 4.2.1 is considered. Due to the limitations of the aerodynamic model employed to cal-

culate the aerodynamic loads (linear aerodynamics that is valid for small mechanical motions),

the aeroelastic behavior is investigated in this case study for airflow speeds ranging from the

linear flutter speed up to 15 m·s−1 (about 30% above the linear flutter speed). In this range, the

maximum plunge displacement is always smaller than twice the initial condition in the plunge

(h̄ < 2h̄0; h̄ = 0.08), and the pitch displacement is smaller than 0.2 radians (for specific preload

value).

Fig. 17(a) shows the variation of the maximum airflow speed that satisfies the limiting so-

lution (in terms of pitch and plunge amplitudes) with increasing preload on the SMA springs.

Fig. 17(b) shows the resulting shear stress (due to preload induced stress and pitch-induced

stress) for each maximum airflow speed that satisfies the limiting solution of Fig. 17(a). Linear

aeroelastic behavior is verified for preload values smaller than 1.5 N since stress-induced trans-

formations are not verified for this range of preloads and pitch displacement. Therefore, the

typical section is unstable for any airflow speed higher than 11.6 m·s−1 (the linear flutter speed)

and stable for airflow speeds below the linear flutter speed. Persistent and bounded oscillations

of acceptable amplitude (LCOs) are obtained for the gray area of Fig. 17(a). For airflow speeds

larger than the limiting solution, the response amplitude becomes very large (LCOs of large

amplitudes) and the aerodynamic model is not valid. Since the aeroelastic displacements at the

post-flutter regime are larger than the displacements at the flutter boundary (since the aerodyna-

mic loads increase with airflow speed), the shear stress contribution due to pitch displacement

is slightly larger in Fig. 17(b) than in Fig. 13 (τ exceeds the τM
s line) for preload values larger

than 1.5 N (nonlinear aeroelastic behavior). The resultant shear stress is also constant for larger

preload values due to the same reasons discussed in the previous case study.

Fig. 18(a) to (f) shows the time histories of dimensionless plunge displacement, dimen-

sionless pitch displacement, elongation of SMA spring (S1), shear stress, martensitic fraction,

and stiffness of pitch DOF for f0 = 3 N and U∞ = 14 m·s−1. The elongation of the spring (Fig.
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Figure 17 – Airflow speeds at which persistent oscillations with maximum acceptable ampli-
tudes occur for increasing preload (a); resulting shear stress (b) – the contribution
due to preload is the same as in Fig. 13, whereas the pitch contribution is more
expressive due to larger aeroelastic displacements at higher airflow speeds (on the
left).

18(c)) and the corresponding shear stress (Fig. 18(d)) show that stress-induced phase transfor-

mation is achieved due to the preload condition at the airflow speed of 14 m·s−1. Although the

martensitic fraction (Fig. 18(e)) is approximately 3%, LCOs of acceptable amplitude are veri-

fied in the post-flutter regime due to the nonlinear pseudoelastic behavior of the SMA springs

(Fig. 18(g)).

Fig. 19 shows the variation of the shear stress of one of the SMA pitch springs for increasing

preload levels at the linear flutter speed and also at the highest airflow speed for LCOs of

acceptable amplitude (limiting solution of Fig. 17(a)) under a post-flutter condition. The springs

(S1 and S2 in Fig. 7(b)) are under loading-unloading conditions due to the harmonic motion of

the typical section at the flutter speed or harmonic motion of LCOs in post-flutter condition. The

upper boundaries in Fig. 19 (preload-induced stress plus pitch displacement-induced stress) are

related to forward phase transformations (loading stages). In such case, the elongation of spring

S1 is due to pitch displacements in the opposite direction to the preload. The lower boundaries

are related to reverse phase transformations (unloading stages) and the resultant stress is the

preload induced stress minus the stress from the negative extreme of the pitch displacement

(maximum spring shortening). During unloading stages, the pitch motion has the same direction

of the preload. Depending on the preload level, the spring can be under tension for the entire

pitch range. Therefore, positive stress values may also be observed in the lower boundaries of

Fig. 19 as the preload increases. The full recovery of the austenitic phase is not observed in the
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Figure 18 – Aeroelastic response for f0 = 3 N and U∞ = 14 m·s−1 – (a) plunge displacement,
(b) pitch displacement, (c) deformation of SMA spring S1, (d) shear stress, (e)
martensitic fraction, (f) spring stiffness, (g) shear stress versus change in the length
of spring S1.
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unloading stages of Fig. 19 due to the positive stresses related to larger preload values.
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Figure 19 – Shear stress for SMA spring S1 for different preload levels and U∞ ≥ULF . Upper
boundaries are related to the forward phase transformation (loading cycles) and
lower boundaries are related to the reverse phase transformation (unloading cycles).

Fig. 20(a) shows the martensitic fractions of springs S1 and S2 and Fig. 20(b) shows the

stiffness of each spring obtained at both linear flutter speed and limiting solution of each preload

in the post-flutter regime. The stiffness of the each spring is identical in the post-flutter regime

for the range of preloads considered. At the linear flutter speed, the martensitic fraction and

the stiffness of S1 and S2 springs are different for higher preload values. Since the pitch and

plunge displacements increase with increasing airflow speed, the austenitic phase recovery is

more evident for U∞ > ULF (the lower boundary in Fig. 19). Therefore, the effect of preload

and initial condition on the equilibrium position of the pitch steady-state response at the linear

flutter speed (Figs. 12(c) and 16) is not observed in the post-flutter condition (Figs. 18(b) and

20(a) and (b)). The aeroelastic behavior of the typical section at the flutter boundary or at post-

flutter condition is insensitive to a variation of stiffness shown in Fig. 20(b) (assuming that

no hysteretic behavior is present). Therefore, the hysteretic response of the SMA springs (and

consequently the damping capabilities of the SMA springs) is the specific factor modifying the

aeroelastic behavior of the typical section.
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Figure 20 – Steady-state material properties of the two SMA springs – (a) martensitic fractions
and (b) stiffness. The imbalance of the material properties between the two springs
is evident for U∞ =ULF when f0 > 3 N and negligible for U∞ >ULF .

4.2.3 A Discussion on the SMA Spring Behavior for the Flutter Boun-
dary and Post-Flutter Cases

Fig. 19 displays the resulting shear stress of the flutter boundary case (of Section 4.2.1) in

constrast with that of the post-flutter case (of Section 4.2.2) for increasing preload. Differently

from Figs. 13 and 17(b), both tensile and compressive stages of loading are represented in Fig.

19. The airflow speeds considered in the post-flutter case are those of the limiting curve of Fig.

17(a).

The resulting shear stress in loading stages is of concern. From Fig. 7, a positive pitch an-

gle tends to compress the SMA spring S1 and to extend S2. As well, a negative pitch angle tends

to extend S1 and to compress S2. Moreover, if the current pitch angle is positive and the angular

motion is in the clockwise direction, the pitch angle is increasing. If the pitch angle is negative

and the angular motion is in the counter-clockwise direction, the pitch angle is increasing as

well, but in opposite sense. Assuming, in the one hand, that the pitch angle increases in the

positive (clockwise) sense, S2 is subject to tensile loading. Assuming, on the other hand, that

the pitch angle increases in the negative sense, S1 is subject to tensile loading. Such stages of

tensile loading are valid for both preloaded and non-preloaded springs1. The upper boundaries

of the areas of Fig. 19 represent the shear stress during tensile loadings.

During an angular motion which tends to compress an SMA spring, the level of preload

1The purpose of preloading the SMAs is to bias the stress state towards the critical stress for the onset of
stress-induced phase transformation.
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(which imposes tensile loading) will determine if that spring is being actually compressed or

unloaded. For small values of preload, the shear stress related to the pitch angle may be larger

(in magnitude) than the shear stress due to preload. In such a case, the resulting shear stress is

negative and represents a stage of compressive loading. This behavior is verified in Fig. 19 for

negative values of τ . If the preload is increased, the compressive shear stress related to the pitch

angle may become smaller than the tensile shear stress due to the preload. The resulting shear

stress is, therefore, positive and represents that the SMA spring is once again subject to tensile

loading. In such a circunstance, the pitch angle is no longer compressing the spring; it is simply

unloading the spring (i.e., counter-acting the preload). This behavior is also verified in Fig. 19

for positive values of τ in the lower boundaries of the areas.

In the cases in which the pitch angle counter-acts the preload, the SMA spring is not fully

unloaded (due to the considered level of preload). The resulting shear stress remains greater

than zero for the complete pitch cycle. As a consequence, the partial M→ A phase trans-

formation described in Section 4.2.1 is verified. By observing Fig. 19, however, the contrast

between the resulting shear stresses of the flutter boundary and post-flutter cases makes evident

the reasons for the superior recovery of the austenitic phase of the post-flutter case comparing

with that of the flutter boundary case. Since the aeroelastic displacements are larger in the

post-flutter regime (than at the linear flutter speed), the unloading related to the pitch angle that

counter-acts the preload is also more expressive. The M→ A phase transformation is almost

complete in the post-flutter case. The difference between the martensitic fractions of the two

SMA springs is negligible. The corresponding stiffness of the SMA springs is, therefore, prac-

tically the same. Fig. 20(a) displays the martensitic fractions of the two SMA springs for the

flutter boundary and post-flutter cases. Fig. 20(b) displays the corresponding stiffness. That

behavior discussed along with Fig. 16 is also negligible in the post-flutter regime.
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4.3 Analysis of Different Assumptions for the Cross-Sectional
Representation of the Coiled SMA Wire

So far in this chapter, the aeroelastic behavior of the typical section with SMA springs was

investigated by considering that the shear strain, shear stress and martensitic fraction are ho-

mogeneously distributed (i.e., constant) along the radius of the coiled SMA wire. However, an

improved assumption that represents non-homogeneous cross-sectional distributions was des-

cribed in Section 2.4.3 and a comparison between both assumptions is presented next. In both

cases, the SMA properties of Aguiar et al. (2013) are considered.

The effects of preloaded SMA springs on the aeroelastic behavior of the typical section os-

cillating at its linear flutter speed reported in Section 4.2.1 are reviewed in Fig. 21(a) (for the

homogeneous assumption). Important points are: 1) the aeroelastic behavior is affected by the

SMAs only when phase transformations do occur; 2) the aeroelastic displacements decrease

(non-monotonically) with increasing preload; 3) the equilibrium position changes with incre-

asing preload (a side effect due to the SMAs). The case for f0 = 4 N is considered in Fig.

21(b) for an increasing number of annular regions. One single region is equivalent to the ho-

mogeneous assumption. Two or more regions represent the non-homogeneous assumption. The

negative peak amplitudes (dashed curves in red) are mirrored (absolute values) to be compared

with the positive peaks (solid curves in blue) so that the changes in the equilibrium position

are highlighted. The cross-sectional distributions of shear strain, shear stress and martensitic

fraction for the cases of 1, 3, 5, 10, 20 and 30 annular regions of Fig. 21(b) are shown in Fig.

22.

The effects of different cross-sectional scenarios on the post-flutter behavior are also con-

sidered. The maximum airflow speeds which satisfy the prescribed limiting aeroelastic dis-

placement (α < 0.2 rad) are shown in Fig. 23 for increasing number of annular regions. The

aeroelastic displacements are greater at the post-flutter regime than at the flutter boundary. The

phase transformations are also more expressive and therefore the effect of the number of annu-

lar regions is more significant on the model predictions. The predicted limiting airflow speed

decreased from 14.7 m·s−1 for the homogeneous assumption (or one single annular region) to
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Figure 21 – Aeroelastic behavior of the typical section for the same model parameters and
two different assumptions for the cross-sectional representation of the coiled SMA
wire – (a) effects of preload and (b) effects of the number of annular regions.

12.8 m·s−1 for the non-homogeneous assumption with 30 annular regions.

Overall, the aeroelastic behaviors predicted by both (homogeneous and non-homogeneous)

assumptions qualitatively agree. The main differences are related to the amplitudes of oscilla-

tion at the flutter boundary and to the limiting airflow speed at the post-flutter regime (for the

same preload levels). Since the transformation of austenite into martensite predicted by the for-

mer approach is less expressive than that for the latter approach, the effects of the pseudoelastic

hysteresis are also less pronounced. The homogeneous assumption underestimates the amplitu-

des of oscillation at the flutter boundary in less than 5% if compared with the non-homogeneous

assumptions. A decrease of 47% of pitch and plunge amplitudes is predicted when the homoge-

neous assumption is considered while the non-homogeneous assumption predicts an attenuation

around 45% in pitch and plunge (both cases for 4 N of preload, i.e., at the imminence of phase

transformation for the considered set of model parameters). The limiting airflow speed is ove-

restimated in 12% (from 27% above the linear flutter speed to 13%), also for 4 N of preload.

The side effect of changes in the equilibrium position shown in Fig. 16 (Section 4.2.1) also

becomes less expressive as the number of annular regions is greater than about five (Fig. 21).

The homogeneous assumption, although less realistic, may provide a good insight on the

general model behavior with less computational effort (Fig. 24, for the cases of Fig. 21(b)). The

non-homogeneous assumption, on the other hand, provides a better insight on the internal state
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Figure 22 – Cross-sectional distributions of shear strain, shear stress and martensitic fraction
for 1, 3, 5, 10, 20 and 30 annular regions.
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Figure 23 – Maximum airflow speeds with increasing number of annular regions at the post-
flutter regime.

of the material and therefore a more realistic prediction of the model behavior. Concerning the

computational cost for the non-homogeneous assumption, it is worth mentioning that Fig. 24

was obtained by simulating the system using no parallel computation features (single-threaded

process was used). However, since the properties of each of the considered cross-sectional

annular regions are independent from each other in the particular modeling approach of this

work, multithreaded code can be used to resolve several annular regions simultaneously. This

way, the simulation time can be significantly reduced. Depending on the number of available

processors, the simulation time for several annular regions can be comparable to the simulation

time for one single region.

Concerning the overestimations on the benefits of the SMAs on the aeroelastic behavior
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Figure 24 – Normalized simulation time for increasing number of annular regions (normalized
by the elapsed time when considering one single annular section).

of the typical section (at and above the flutter speed), two main consequences can be discus-

sed: 1) when the airflow speed is not increased above the linear flutter speed (of the reference

case), slightly larger aeroelastic displacements (comparing with the smaller displacements for

the homogeneous assumption) do not represent a potentially catastrophic condition since the

displacements remain bounded within acceptable levels; 2) when the airflow speed is increased

above the flutter speed, upon the initial disturbance the aeroelastic displacements will increase

until a LCO is reached (due to the SMAs undergoing phase transformation), whose amplitude

can be within a safety limit (from a structural health standpoint) depending on the assumed

airflow speed. If the speed is too large, that safety limit will be exceeded, possibly leading to

structural failure (in terms of a physical model). For this reason, the non-homogeneous assump-

tion provides a smaller (in terms of maximum speed) post-flutter regime (from 27% to 13% in

the maximum airflow speed, avoiding possible structural collapse), while both the homogeneous

and non-homogeneous assumptions yield similar behaviors at the flutter boundary.



CHAPTER

5
Effects of Different SMA Constitutive

Properties on the Aeroelastic Behavior of

the Typical Section

It is important to note that the aeroelastic behavior in the previous chapters was only inves-

tigated for an SMA spring with specific constitutive properties and geometry. There is a lack of

discussion concerning the effects of different properties of the SMA elements on the aeroelastic

behavior of a typical section. Therefore, this chapter extends the investigation and performs

a parametric study in order to assess the effects of the constitutive properties of the SMAs

(pseudoelastic hysteresis) on the aeroelastic behavior of a typical section. The effects of dif-

ferent characteristics of SMAs such as loop sizes, critical stress levels and tensile-compressive

asymmetry are investigated by using six different sets of parameters previously presented in

the literature. In practice, an optimum set of properties could be obtained by proper choice of

materials, fabrication routes and heat treatment procedures (ELAHINIA et al., 2012).

5.1 Description of the Considered Sets of SMA Constitutive
Properties

Six different sets of SMA properties are displayed in Tab. 3. Those properties represent

a varied selection of materials from the literature which have been experimentally evaluated.

95
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Thus, scenarios that account for different hysteresis loop sizes, transformation slopes, transfor-

mation temperatures and critical stresses can be exploited.

Table 3 – Sets of shape memory alloy properties.

Reference / Gillet Gall Tokuda Aguiar Sameallah Savi Units
Parameter (G98) (G99) (T99) (A13) (S14) (S15)

Alloy CuAlBe TiNi CuAlZnMn NiTi CuAlBe NiTi
Ms 168 270 238 315 248 298 K
As 169 303 243 316 250 290 K
A f 183 318 258 331 260 303 K
C∗A 2.9, -2.3 3.5 3, (-2.2) (6) (3.5) (5.6) MPa·K−1

C∗M 2 8, -5 1, (-1) 4 2.2 (5.6) MPa·K−1

σmin∗
s 60 60, -5 70, 0 100 35 (100) MPa

σmin∗
f 720, -440 160, -260 188, -220 170 220 (575) MPa

ε∗L 3.5, -3 3.4, -2.1 1.6, -1.46 6.7 4.9 7 %
D∗M 10 11, 80 26, 33 29.9 19.5 22 GPa
DA 73.2 39 34.9 37.7 60 46 GPa

(-2.2, -1) Changed from -3 and -0.2; (6) changed from 13.8; (3.5) averaged; (5.6, 100, 575) estimated.

The refered works of Tab. 3 are Gillet, Patoor and Berveiller (1998), Gall et al. (1999),

Tokuda et al. (1999), Aguiar et al. (2013), Sameallah et al. (2014) and Savi et al. (2015). The

acronyms are used in the figures to identify the corresponding set of SMA properties (e.g., G98

stands for Gillet, Patoor and Berveiller (1998)). The properties of Gillet, Patoor and Berveiller

(1998), Gall et al. (1999) and Tokuda et al. (1999) have data related to compressive loading (the

properties with a second value), so that asymmetry behavior may be investigated. Symmetry is

assumed for unavailable compressive properties. Values in brackets are missing in the referred

papers and were estimated here, or yield somewhat atypical behavior when considered in the

present model and were slightly changed. Those modified values, however, are consistent with

the typical ranges for SMA properties reported on the literature (MELTON, 1990; HUANG,

2002).

The critical stress values given in Tab. 3 are the minimum values for stress-induced phase

transformation. The actual critical values for the onset and completion of phase transformations

depend on the SMA temperature. The temperature is assumed equal to A f throughout this
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study, since this is the minimum temperature at which pseudoelasticity is expected to occur.

The resulting critical stresses are given in Tab. 4.

Table 4 – Derived SMA critical stresses for phase transformations.

Reference / Gillet Gall Tokuda Aguiar Sameallah Savi Units
Parameter 1998 1999 1999 2013 2014 2015

σM∗
s 90 444, -245 90, -20 164 62 130 MPa

σM∗
f 750, -470 544, -500 208, -240 234 247 605 MPa

σA∗
s 41, -32 53 45, -33 90 37 76 MPa

One may note that some transition temperatures are below the room temperature. However,

as mentioned in Section 2.2.3, alloying combined with adequate heat and mechanical treatments

may achieve desired properties with good accuracy for engineering purposes (MELTON, 1990;

FRENZEL et al., 2010; HABERLAND et al., 2014). Moreover, the presented model would

predict the same behavior for other temperature values as long as the temperature differences

(e.g., between Ms and A f ) are kept.

5.1.1 Constitutive Behavior of the Different Sets of SMA Properties

The constitutive behavior (stress-strain) for each set of SMA properties of Table 5 is shown

in Fig. 25(a). These figures are obtained by solving the SMA constitutive equation (Eq. (2.16))

for a prescribed input stress value and by assuming the SMA at its stress-free austenite finish

temperature (A f ). One should note that the constitutive behavior of an SMA element in Fig. 25

is displayed in terms of normal stress-strain behavior rather than the shear behavior or spring

elongation (when referring to the SMA helical springs). The same scale is used in all plots of

Fig. 25 to contrast the shape and size of the hysteresis loops of each set of SMA properties.

Asymmetry behavior related to compressive loading is shown for the properties of Gillet, Patoor

and Berveiller (1998), Gall et al. (1999) and Tokuda et al. (1999) and is presented as dashed

lines. Symmetry is assumed when some parameters are not available for compressive loading.

The mutual dependence between stress and temperature (or transformation slopes) usually ob-

served in SMAs (BRINSON, 1993) is represented in Fig. 25(b) for each set of SMA properties.

The temperature axis ranges from 10% below M f up to 30% above A f .
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Figure 25 – Constitutive behavior for the sets of SMA parameters – (a) stress-strain behavior
and (b) phase transformation slopes.

5.1.2 Description of Derived SMA Spring-Related Properties

To derive all the necessary SMA properties, the spring geometry and also some details of

the aeroelastic model are defined. The aeroelastic parameters considered in this chapter are the

same of Table 2. In all cases (of Table 3), the same damping properties of the conventional steel

springs of Sousa et al. (2011) are assumed in order to analyze only the effects of the pseudo-

elastic hysteresis (on the aeroelastic behavior of the typical section), although the damping of

SMAs, especially in the martensitic phase, are usually larger than that of conventional materials

(LIANG; ROGERS, 1997; VAN HUMBEECK, 2003). In addition, the same Poisson’s ratio

(µP = 0.3) is assumed in all cases of this thesis. Properties related to twinned martensite are

not considered since only pseudoelasticity is of concern. The thermal coefficient of expansion

is not necessary due to the isothermal assumption of this work and also because its effects are

negligible with respect to other effects.

The SMA spring geometry is assumed as R = 4 mm, r = 0.475 mm, N = 16.5 and L =

38 mm. Such a geometry yields the spring-related parameters shown in Table 5. The distance

w (defined in Fig. 7(b)) is adjusted to keep the same elastic restoring moment in the pitch DOF

for all cases, so that the linear aeroelastic behavior (with the SMA springs behaving as linear

steel springs) is also the same. This way, the same spring geometry can be considered in all
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cases of this chapter. As the distance w changes, the amplitude of the axial deflection (of the

SMA springs) induced by the pitch motion also changes. This fact is negligible (comparing

with other factors in the model), and the hysteresis may be more expressive for smaller spring

elongations depending on the set of SMA properties, as discussed later. For reference purposes,

however, the amplitude of axial deflection (named yα ) induced by the greatest peak-to-peak

pitch amplitude reported here (0.4 rad) is shown in Table 5 for each case. As well, the preload

required for taking the shear stress (at the outer surface of the SMA wire) at its critical value

for the onset of forward phase transformation is provided for each spring ( f crit
0 is the preload f0

such that τ (r)≈ τM+
s ). Thus, the SMA springs are initially in fully austenitic phase in all cases

since the critical stress is not exceeded.

Table 5 – Derived SMA spring-related parameters.

Reference / Gillet Gall Tokuda Aguiar Sameallah Savi Units
Parameter 1998 1999 1999 2013 2014 2015

k 339 181 162 175 278 213 N·m−1

w 61.2 83.8 88.6 85.3 67.6 77.2 mm
yα 24.5 33.5 35.4 34.1 27 30.9 mm
f crit
0 2.2 10.8 2.2 4 1.5 3.2 N

5.2 Analysis of the Aeroelastic Behavior of the Typical Sec-
tion for the Different Sets of SMA Properties

The aeroelastic behavior of the typical section is investigated in this section for the different

SMA properties of Table 3 along with the related properties of Tables 4 and 5, and the aeroelas-

tic parameters of Table 2. The analyses consider both the linear flutter speed and the post-flutter

regime. The general aeroelastic behavior is discussed in Section 5.2.1 and a more detailed

discussion on the most attractive cases is presented in Section 5.2.2. In certain cases, the ae-

roelastic behavior is modified by stress-induced phase transformation in compressive loading,

allowing a discussion on the effects of tension-compression asymmetry. SMA characteristics

that are attractive for the aeroelastic problem are briefly discussed in Section 5.2.3.
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5.2.1 Aeroelastic Behavior Considering Different Sets of SMA Properties

The general aeroelastic behavior of the typical section with SMA prings using the different

sets of SMA constitutive properties is presented in Fig. 26 (non-preloaded SMA springs cases

in Fig. 26(a) and preloaded ones in Fig. 26(b). The general behavior is discussed and the most

attractive cases are discussed in the next section. No phase transformation is achieved during

the aeroelastic simulations at the airflow speed of 11.6 m·s−1 (or U∞/ULF = 1 in Fig. 26) when

the properties of Gall et al. (1999), Aguiar et al. (2013) and Savi et al. (2015) are considered.

Therefore, the linear aeroelastic behavior is observed for such conditions and amplitudes of

pitch and plunge displacements are constant and similar to the assumed initial condition (in

plunge in the case of this study). For such sets of parameters, the system is unstable for airflow

speeds above 11.6 m·s−1 and, therefore, they were not included in Fig. 26. Fig. 26(b) provides

the model predictions for the post-flutter regime (the x-axis is the airflow speed normalized by

the linear flutter speed of the reference case) when the preloaded SMA springs are considered.

In general, the range of airflow speeds with acceptable amplitude is increased (compared to the

cases of Fig. 26(a)) since phase transformations are achieved for any pitch displacements due

to the preload. For the same set of properties, the peak amplitude of displacements at a certain

airflow speed is always smaller in Fig. 26(b) than in Fig. 26(a).

In order to clarify the effects observed in Fig. 26, the time responses of the different cases

considered in Fig. 26 at an airflow speed slightly larger than the linear flutter speed (of the

linear version of the typical section, 11.6 m·s−1) are shown in Figs. 27(a) and (b) for no preload

and in Figs. 27(c) and (d) for applied preload. In Figs. 27(a) and (b), the responses obtained for

the properties of Gall et al. (1999), Aguiar et al. (2013) and Savi et al. (2015) are the same that

is obtained for a linear case (assuming steel springs rather than SMA springs), with the steady-

state amplitudes depending on the initial conditions (slightly increasing over time due to the

unstable nature of the flutter phenomenon). In Figs. 27(c) and (d), similar behavior is observed

when the properties of Gall et al. (1999) are considered. The unstable flutter behavior is replaced

by stable LCOs when no preload on the SMA springs is considered for the properties of Gillet,

Patoor and Berveiller (1998), Sameallah et al. (2014) and Tokuda et al. (1999) (Figs. 27(a) and
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Figure 26 – Dimensionless pitch and plunge peak amplitudes and spring elongation for the
SMA properties of Tab. 3 and increasing airflow speed. Non-preloaded SMA
springs in (a) and preloaded springs in (b).

(b)). The amplitudes observed in Figs. 27(c) and (d) are smaller than the ones observed in Figs.

27(a) and (b) due to the preloads applied to the springs in each case.

The aeroelastic behavior is sensitive to the SMA properties and the considered preload level

at both the linear flutter speed and post-flutter regime. It is worth mentioning that the maximum

airflow speed with acceptable amplitudes predicted for the properties of Aguiar et al. (2013) is

lower than that reported in Chapter 4 due to the different assumptions for the cross-section of

the coiled SMA wire (as discussed earlier in Section 4.3).
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Figure 27 – Aeroelastic behavior of the typical section over time for different sets of SMA pro-
perties – (a) plunge and (b) pitch displacements for no preload and for applied
preload (c, d). G99, A13 and S15 are represented by the same curve in (a, b), as
well as G98, T99 and S15 in (c, d).
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5.2.2 A Discussion on the Attractive Cases

The previous section (Figs. 26 and 27) shows that the flutter behavior at the linear flutter

speed and the catastrophic unstable oscillations above the linear flutter speed may be replaced

by stable LCOs due to the pseudoelastic hysteresis of the SMA springs over a range of airflow

speeds. As previously discussed, the amplitude of the LCOs is sensitive to the SMA properties

and considered level of applied preload, for example. Therefore, the pseudoelastic hysteresis

may be used to attenuate aeroelastic oscillations over a range of airflow speeds. The sets of SMA

properties that lead to the largest attenuation are discussed (for either with or without preload

applied to the SMA springs). Since the modifications in the aeroelastic behavior are only due

to the pseudoelastic hysteresis of the SMAs, the phase transformation kinetics is discussed next

to explain the enhanced aeroelastic behavior.

Considering the time response for the properties of Tokuda et al. (1999) presented in Fig.

27(a) (at the flutter boundary and without preload), the behavior of the SMA springs along

one cycle of oscillation is addressed next. The typical section motion represented in Fig. 28

(magnified two times) corresponds to one cycle of the transient aeroelastic response, at which

phase transformations are more pronounced. As the typical section oscillates, the SMA springs

S1 and S2 undergo opposite movements with very similar behavior throughout the complete

cycle and, therefore, only S1 is considered in the discussion for brevity. The surfaces of Fig.

28 represent, respectively, the distributions of shear strain (linear), shear stress (nonlinear) and

martensitic fraction (mixed) in the cross-section of the coiled SMA wire of spring S1 during

that cycle. The r-axis is the running coordinate along the wire radius (normalized by the wire

radius, i.e., r̄ = rrc/r), t-axis is the dimensionless time corresponding to a complete cycle of

the pitch DOF and the z-axis is the shear stress in the upper figures (τ-axis) and the martensitic

fraction in the lower figures (ξ -axis). The shear stress is normalized by the critical value for the

onset of forward phase transformation in tensile loading (τ/τM+
s ).

The SMA spring is subject to tensile loading in the first half of the cycle and to compressive

loading in the second half. The valley encompassed by a dashed curve in the shear stress

surface is the stress-induced martensitic plateau related to compressive loading. The dashed
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Figure 28 – Typical section motion during one transient cycle of oscillation at the flutter boun-
dary for the SMA properties of Tokuda et al. (1999) without preload. The surfaces
represent the cross-section of the coiled SMA wire.

curve indicates the critical radius for phase transformation. Outside the critical radius, the shear

stress is a linear function of the radial coordinate. The lower figures show the cross-sectional

distributions at the time instant of the most expressive martensitic formation. The dashed lines

represent the way the quantities are distributed along the wire radius.

In the particular case of Fig. 28, stress-induced phase transformations occur only for com-

pressive loading because τM−
s � τM+

s for the considered set of SMA properties. As the aero-

elastic behavior evolves from transient to steady-state and the plunge and pitch displacements

decrease (Fig. 27), the phase transformations become less pronounced because the stress-state

experienced by the SMA springs (directly related to the pitch motion) also decreases (Fig. 29).

For brevity, the case of the flutter boundary and preloaded SMA springs will be discussed later

only for the properties of Sameallah et al. (2014), which is more attractive. The post-flutter case

for the properties of Tokuda et al. (1999) is discussed next.

The post-flutter time responses at the airflow speeds of 12.3 m·s−1 and 12.8 m·s−1 for the
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Figure 29 – Phase transformation behavior from transient to steady-state response for the SMA
properties of Tokuda et al. (1999). Normalized shear stress (τ/τM+

s ) and martensitic
fraction (ξ ).

SMA properties of Tokuda et al. (1999) are shown in Fig. 30(a) for both no preload and ap-

plied preload, respectively. The airflow speed can be increased about 6% and 10%, respectively,

above the linear flutter speed and the oscillations still respect the limiting solution assumed in

this work (Fig. 26(d)). A diagram with the normalized maximum shear stress (at the surface of

the coiled SMA wire) in terms of the spring elongation is shown in Fig. 30(b). The steady-state

cross-sectional distributions of shear stress and martensitic fraction for the case with no preload

are shown in Figs. 31(a) and (b), respectively. In addition to the increase in the compressive

stress-induced phase transformation due to larger aeroelastic displacements, some phase trans-

formation related to tensile loading is also predicted. The cross-sectional distributions for the

case with applied preload are shown in Figs. 31(c) and (d). Dashed lines in the r− τ plane

represent the effect of preload. Due to preload, compressive behavior is no longer achieved in

this case.

The cases for the properties of Sameallah et al. (2014) at the flutter boundary (presented

earlier in Fig. 27) are of concern. For no preload, stress-induced phase transformations are
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Figure 30 – Post-flutter behavior for the SMA properties of Tokuda et al. (1999), without and
with applied preload – (a) time responses of the plunge and pitch DOFs and (b)
SMA spring elongation versus the normalized maximum shear stress.

(a) (b)

(c) (d)

Figure 31 – Post-flutter behavior for the SMA properties of Tokuda et al. (1999). Steady-state
cross-sectional distributions of shear stress and martensitic fraction for no preload
(a, b) and applied preload (c, d). Dashed lines in the r−τ plane represent the effect
of preload.
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(a) (b)

(c)

Figure 32 – Cross-sectional distributions of shear stress and martensitic fraction for the SMA
properties of Sameallah et al. (2014) during a complete pitch cycle at the flutter
boundary and with no preload. Transient (a, b) and steady-state (c) cycles.

predicted in both tensile and compressive stages in a well-balanced way due to the assumed

symmetry (since only the properties related to tensile loading are available). The phase trans-

formation behavior during the transient response, which is more evident, is shown in Figs. 32(a)

and (b). For the steady-state response, the martensitic fraction is negligible (omitted in Fig. 32)

and the shear stress distribution is quite linear (Fig. 32(c)). In spite of exhibiting two phase

transformations during one single pitch cycle, the total hysteretic dissipation is less expressive

than that for the properties of Tokuda et al. (1999) during one pitch cycle and no preload (be-

cause of the lower critical stress in compressive loading). However, when preload is considered,

this set of properties yields the largest attenuation among the cases reported here (Fig. 33). In

such a case, the SMA springs are under tensile loading during the complete cycle (despite the

axial deflection being in opposite sense to preload in the second half of the cycle) and hence

there is some unrecovered martensite in the SMAs during the steady-state response (Fig. 33(d)).

The post-flutter behavior for the SMA properties of Sameallah et al. (2014) is of concern.

The maximum airflow speed with acceptable amplitudes may increase about 13% for no preload

and 15% for applied preload. The corresponding time responses are shown in Fig. 34(a). The
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(a) (b)

(c) (d)

Figure 33 – Cross-sectional distributions of shear stress and martensitic fraction for the SMA
properties of Sameallah et al. (2014) during a complete pitch cycle at the flutter
boundary and with applied preload. Transient (a, b) and steady-state (c, d) cycles.

hysteretic behaviors are represented in Fig. 34(b). Stress-induced phase transformations are

predicted in both the tensile and compressive stages of loading for no preload, being much

more pronounced than in the flutter boundary case (without preload). For applied preload,

compressive loading is also achieved (in contrast with the same case for the properties of Tokuda

et al. (1999), although being unable to exceed τM−
s and induce phase transformation. The

austenitic phase is fully recovered during unloading (in contrast with the flutter boundary case).

The cross-sectional distributions of shear stress and martensitic fraction during a complete

steady-state cycle of the pitch DOF are shown in Fig. 35 for no preload and applied preload

cases. The martensitic plateau and hence the martensitic fraction are expressive in both cases.
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Figure 34 – Post-flutter behavior for the SMA properties of Sameallah et al. (2014). No pre-
load and airflow speed of 13.1 m·s−1. With applied preload and airflow speed of
13.3 m·s−1. Plunge and pitch displacements (a). Normalized maximum shear stress
versus spring elongation diagram (b).

(a) (b)
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Figure 35 – Cross-sectional distributions of shear stress and martensite fraction for the SMA
properties of Sameallah et al. (2014) during a complete steady-state pitch cycle of
the post-flutter case. No preload (a, b) and with applied preload (c, d).
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5.2.3 General Effects of SMA Parameters on the Aeroelastic Behavior

Having discussed the general aeroelastic behavior for the different sets of SMA properties

(Figs. 26 and 27) as well as some details of the transformation kinetics of some specific cases

(Figs. 28 to 35), it is important to discuss the effects of some particular parameters (of each set)

on the flutter behavior of Figs. 26 and 27. Fig. 26(a) (no preload) shows that for airflows speeds

slightly above the linear flutter speed (of the reference linear configuration) the properties of

Tokuda et al. (1999) yield the smallest amplitudes (compared to the properties of Gillet, Patoor

and Berveiller (1998) and Sameallah et al. (2014)). Table 4 shows that the properties of Tokuda

et al. (1999) have a expressively lower compressive critical stress when compared to the critical

stress of Gillet, Patoor and Berveiller (1998), resulting in phase transformations at lower pitch

angles. However, the properties of Tokuda et al. (1999) lead to a quite small hysteresis loop

(Fig. 25), thus limiting its energy dissipating capability, while the properties of Gillet, Patoor

and Berveiller (1998) lead to a much larger hysteresis. The latter, on the other hand, has very

high stress levels for the completion of phase transformation, what avoids the full exploitation

of the hysteretic behavior in the aeroelastic problem (the pitch angle is unable to induce signi-

ficant phase transformations in such a case). Therefore, larger hysteresis loop is not a sufficient

condition for enhanced aeroelastic behavior. The SMA properties of Sameallah et al. (2014) yi-

eld intermediate aeroelastic amplitudes at the flutter vicinity (Fig. 26(a)) and wider post-flutter

regime (up to 12.5% above the linear flutter speed) with the smallest amplitudes. This enhanced

aeroelastic behavior is promoted by an attractive combination of low critical stresses, for both

the onset and completion of phase transformation (Table 4), with a considerable recoverable

strain (Table 3), thus producing a hysteresis loop with a reasonable area which can be more

effectively exploited at smaller aeroelastic displacements than that for the properties of Gillet,

Patoor and Berveiller (1998). It is also worth noting that the relatively high elastic modulus ob-

tained from the properties of Sameallah et al. (2014) produces a (also relatively) stiffer spring.

At the limiting airflow speed, the spring elongation is no more than 40% of its natural length

(Fig. 26(a)), which is usually held by practical SMA springs.

Concerning the preloaded cases of Fig. 26(b), most of the property sets (Gillet, Patoor
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and Berveiller (1998), Tokuda et al. (1999), Aguiar et al. (2013) and Savi et al. (2015)) yi-

elds an overall similar aeroelastic behavior at airflow speeds slightly above the linear flutter

speed (differences in the spring elongation are, however, evident in Fig. 26(b)). The properties

of Sameallah et al. (2014) (combination of low critical stresses for both the onset and comple-

tion of phase transformation with a considerable recoverable strain results in a hysteresis loop

with a reasonable area) yield the more attractive aeroelastic behavior also in this case (lowest

LCO amplitudes and wider post-flutter regime). The limiting airflow speed of such a case is al-

most 15% above the linear flutter speed. Despite the preloaded condition, the spring elongation

(for this set) is similar to that for the non-preloaded case. This is related to the spring stiffness

as well as to low aeroelastic amplitudes induced by this set of parameters.

In order to illustrate the problem, the properties of Gall et al. (1999) should be discussed.

The high critical stresses require large pitch motions for the occurrence of phase transformation

(please note the difference between the martensite start and austenite finish temperatures in

Table 3). Therefore, for non-preloaded case suing the properties of Gall et al. (1999) in Fig.

26(a), the typical section behaves as a linear aeroelastic system since very large pitch angles

would be required for any phase transformation (in contrast with the properties of Gillet, Patoor

and Berveiller (1998), Tokuda et al. (1999) and Sameallah et al. (2014)). Although some phase

transformation is observed for the preloaded condition (Fig. 26(b)), it is unable to yield any

mitigation of the aeroelastic oscillations because the pitch contribution to the stress-state of the

SMAs is negligible. Thus, no enhanced aeroelastic behavior is verified for this property set.

It is fair, however, mentioning that the large hysteresis of the SMA of Gall et al. (1999) could

be attractive for a different application other than the proposed aeroelastic configuration of this

study.

5.3 Additional Analyses

5.3.1 Effects of the Initial Conditions Applied to the Typical Section

In all cases presented so far in this chapter, the preload is such that the shear stress at the

outer surface of the coiled SMA wire almost achieves the critical level for the onset of forward
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phase transformation (in tensile loading). In such a case, small pitch motions would be enough

to induce some amount of phase transformation. However, it was not discussed so far how the

pseudoelastic hysteresis affects the aeroelastic response for different motions from small up to

relatively large pitch displacements. Different initial conditions (from up to ) applied to the

plunge DOF of the typical section at its flutter boundary (when the system is marginally stable)

are considered in Fig. 36.

In Fig. 36(a), no preload is considered, while in Fig. 36(c) the same preload of the previous

cases is considered. The results show that the aeroelastic response is insensitive to the initial

conditions when phase transformations (nonlinearities) are predicted (Fig. 36(c)). If phase

transformations do occur (all cases of Fig. 36(c)), the model becomes practically insensitive

to the initial conditions, with a quite linear but negligibly small increase in amplitudes for

increasing initial condition (details in Fig. 36(d)). In such cases, the steady-state aeroelastic

responses approach the same response previously reported in Fig. 27. Dashed lines represent

the initial condition-dependent linear behavior that would take place by replacing the SMAs by

conventional steel springs. In addition, there is a frequency change related to change in stiffness

of SMA springs for the cases in which phase transformation occurs. In contrast, the linear cases

are in phase.

Figs. 36(e) and (f) show the normalized maximum shear stress in terms of the spring elon-

gation for transient cycles of the cases of Figs. 36(a) and (c), respectively. The differences in

the hysteretic behavior are only due to the magnitude of the pitch displacement. The hystere-

sis loops become much less pronounced (not shown in Fig. 36) as the steady-state aeroelastic

response is achieved (the pitch DOF in particular, also omitted in Fig. 36).
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Figure 36 – Time response of the plunge DOF for the SMA parameters of Sameallah et al.
(2014) and different initial conditions. No preload (a, b) and with applied preload
(c, d). Transient shear stress versus spring elongation for no preload and applied
preload (e, f).
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5.3.2 A Note on Intermediate Preload Levels

By considering intermediate preload levels (arbitrary values between zero and τM+
s ), no

further enhancement to the aeroelastic behavior (with respect to the cases above) was predicted

by the proposed model. On the other hand, specific values of preload yield the same aeroelastic

behavior than that for a critical preload (at the proximity of τM+
s ). In such cases, one single lar-

ger hysteretic loop (induced only by tensile loading) is replaced by two smaller loops (induced

by both tensile and compressive stages of loading). This could be beneficial, for example, for

improving the fatigue response of the SMAs since the stresses, and hence the transformation

strains, are lower.



CHAPTER

6
Effects of the Geometric Properties of

the SMA Springs on the Aeroelastic

Behavior of the Typical Section

Effects of geometric properties of the SMA springs on the aeroelastic behavior of the ty-

pical section are investigated in this chapter. An analysis for the identification of physically

achievable spring geometries is conducted first. A typical range of helical spring indices C

between 4 and 12 is considered. Both the wire diameter (d) and the spring mean coil diameter

(D) are modified (not simultaneously) in such a way the index C is in the range of 4 up to 12

considering small increments. Since C =D/d, by assuming d constant (and equal to its nominal

value, 0.95 mm) the corresponding coil diameters (Dvar) range from 3.8 to 11.4 mm. Similarly,

for constant D (and equal to 8.0 mm) the range of wire diameters (dvar) is between 0.67 and

2.0 mm.

From Eq. (2.26), two ranges of (austenitic) SMA spring stiffness are obtained for Dvar and

dvar as kD = [60, 1600] N·m−1 and kd = [40, 3400] N·m−1, respectively and for 16.5 active

coils. Please note that kD and kd are the spring constants that are combined according to the

scheme presented in Fig. 7 to give the pitch stiffness of the typical section. To maintain the same

elastic restoring moment in pitch, and therefore the same aeroelastic behavior (assuming all the

other parameters constant), the distance w in Fig. 7 has to be adjusted accordingly. However,
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Figure 37 – SMA spring stiffness (k) and the corresponding distance w between the elastic
axis and the SMA springs for increasing coil diameter (a) and wire diameter (b).

due to design constraints and also to impractical geometries in an eventual experimental setup,

the ranges of stiffness k and distances w have to be limited to a certain range of values.

Fig. 37 displays the spring stiffness (k) and required distance w with the variation of D (Fig.

37(a)) and with the variation of d (Fig. 37(b)). Fig. 37(a) shows that the spring stiffness decre-

ases with increasing spring mean coil diameter (D) and, therefore, w increases with increasing

D in order to keep a constant pitch stiffness. On the other hand, the spring stiffness increases

with increasing wire diameter (d) and, therefore, w decreases with increasing d in order to keep

the resulting pitch stiffness constant.

Another strategy to obtain the same restoring moment in the pitch DOF rather than mo-

difying the distance w is by changing the number of active coils (N) simultaneously to the

variation of the spring mean coil diameter or simultaneously to the variation of the wire diame-

ter to keep the nominal SMA spring stiffness. This way, the resulting stiffness, and hence w,

are the same despite changes in wire or coil diameters. The number of active coils is calcula-

ted by solving Eq. (2.26) for N and by using k = 175 N·m−1 along with Dvar and dvar. Once

again neglecting impractical values, Fig. 38 displays the number of coils for varying diameters.

The number of active coils decreases with increasing spring mean coil diameter (D) while the

number of active coils increases with increasing D, in both cases resulting in a constant spring

stiffness and, consequently, the same pitch restoring moment for the typical section.

Based on Figs. 37 and 38, the analysis of the effects of geometric nonlinearities of SMA
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Figure 38 – Number of active coils (N) for varying coil (D) and wire (d) diameters.

springs on the aeroelastic behavior of the typical section is performed for a reduced number of

cases, either by assuming Dvar between 7 mm and 11 mm, or by assuming dvar between 0.7

mm and 1.1 mm. In all cases considered in this chapter preloaded SMA springs are considered,

so that phase transformations are induced by small pitch displacements. The critical preload

(at the imminence of phase transformation) is estimated by solving Eq. (2.20) for the force in

terms of the critical stress (i.e., F = f crit
0 and τ = τM+

s ).

Fig. 39 displays the steady-state peak amplitudes of the plunge and pitch DOFs at the linear

flutter speed of the reference case, both normalized by the aeroelastic response of the reference

case (that same of the previous chapters, denoted here as h̄ref and αref). The number of coils

of the SMA springs in pitch is fixed (N = 16.5) and both the resulting stiffness k (due to the

variation of D or d, as displayed in Fig. 37) and distance w are changed (corresponding to the

cases of Fig. 37) to keep the pitch restoring elastic moment constant. Fig. 39(a) shows that

the pitch and plunge amplitudes increase with increasing D. However, the amplitudes of the

preloaded case are always smaller than the amplitudes of the reference case. Moreover, the

combination of D = 7 mm and the respective w (from Fig. 37(a)) leads to the smallest pitch and

plunge amplitudes. A similar behavior is observed for the variation of d and w in Fig. 39(b).

However, small wire diameter (d) leads to smaller pitch amplitudes than small values of D.
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Figure 39 – Steady-state aeroelastic behavior for different SMA spring diameters (with variable
stiffness and constant number of coils).

Fig. 40 displays the pitch and plunge peak amplitudes for the case previously discussed in

Fig. 38 (spring stiffness kept constant and modifying the number of active coils (and D or d)

to keep the pitch stiffness constant. The pitch and plunge amplitudes are always smaller than

the amplitudes of the reference case. The amplitudes decrease with increasing D (Fig. 40(a)),

and consequently decreasing N (Fig. 38) while the amplitudes increase with increasing d (Fig

40(b)) and decreasing N (Fig. 38).

By comparing the predicted amplitudes of the cases of Figs. 39 and 40, one should note

that the smallest ptich and plung amplitudes are obtained in Fig. 40(b) (d = 0.7 mm and N =

5). Decreasing the wire diameter is the most favorable condition to achieve phase transforma-

tion and improve the pseudoelastic damping for the case of this discussion. Fig. 41 displays the

time response of the plunge and pitch DOFs for three different cases at the linear flutter speed:

1) for the reference case (without preload, which exhibits larger amplitudes), 2) for the nominal
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Figure 40 – Steady-state aeroelastic behavior for different SMA spring diameters (with constant
stiffness and variable number of coils).

geometry with applied preload (which corresponds to the reference case with added preload,

and exhibits intermediate amplitudes), and 3) for the case which yields the smallest aeroelastic

amplitudes. Clearly, the effect of pseudoelastic hysteresis of the SMA springs on the aeroelastic

behavior of the typical section can be enhanced by adjusting the spring geometric properties.
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Figure 41 – Time response of the plunge and pitch DOFs for the reference case (without pre-
load, with larger amplitudes), the nominal geometry with applied preload (with
intermediate amplitudes) and the case which yields the smallest amplitudes.



CHAPTER

7
Experimental Verification of the

Aeroelastic Behavior of the Typical

Section with SMA Springs

This chapter presents the experimental verification of the aeroelastic behavior of the typical

section with SMA springs. The experiments were conducted at the Laboratory of Aeroelasti-

city of the Department of Aeronautical Engineering of the São Carlos School of Engineering

(University of São Paulo, Brazil). In the next sections, all the apparatus, instrumentation and

experimental tests are described.

7.1 General Description of the Experimental Apparatus

The experimental typical section model is slighly different from that proposed in Fig. 7 in

such a way the rigid rod is placed along the chordwise direction, as displayed in Fig. 42 (only

one SMA spring is shown for clarity). This way, some unnecessary extra mass (due to a larger

rod) is avoided.

The blower wind tunnel of Fig. 43 was employed during the experimental tests of the 2-

DOF typical section. A Pitot tube associated with a micromanometer (Vectus Importatum) is

installed in the tunnel nozzle (of 50 x 50 cm). Fig. 44 shows the measured (and the corrected)
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Figure 42 – Sketch of the typical section design employed for the experimental model.

airflow speed for a range of electrical motor rotations. The variation of airflow speed with

electrical motor rotation is linear. Since the maximum rotational speed of the electrical motor

is 850 rpm, the maximum airflow speed is around 26 m·s−1. The typical section is placed at the

tunnel nozzle as shown in Fig. 45. Fig. 45 shows the experimental setup used for investigating

the linear and nonlinear piezoaeroelastic behavior of the typical section. The plunge stiffness is

due to the four elastic beams with clamped-clamped end conditions. The free ends of the elastic

beams are connected to metal plates at the top and the bottom. Therefore, the experimental

setup in this work slightly deviates from the ideal definition of a typical section (where springs

are assumed massless), yielding the fixture mass (m f ) defined in Eq. (3.13). A shaft (or pitch

axis) is mounted to the upper and the lower plates through a pair of bearings. The pitch stiffness

is given by the combined SMA springs (displayed in Fig. 42).
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Figure 43 – Blower wind tunnel (picture).
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Figure 44 – Verification of the wind tunnel airflow speed capability.
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(a) (b)

Figure 45 – Photography of the typical section model. Views from the leading edge (a) and
trailing edge (b).
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7.1.1 Instrumentation Used in the Experiments

The pitch angle is measured by a two-channel HEDS-9000 optical incremental encoder

(from Avago Technologies) with a two-inch HEDS-9000-T00 codewheel (from US Digital).

The codewheel has 2000 counts per revolution, yielding 0.18 mechanical degrees per count.

The encoder signal is read by a dSPACE DS1104 R&D controller board with a CP1104 con-

nector panel (from dSPACE GmbH) through a digital input channel. The MATLAB/Simulink

and ControlDesk softwares are used for controlling the data acquisition (not for the numerical

simulation of the aeroelastic model with SMAs). In Simulink, the “DS1104_MASTER_ENC”

and “DS1104_ENCOD_POS” blocks (from RTI dSPACE library) are placed in a model and

adjusted according to the encoder type (a single-ended TTL device). The real-time operation of

the dSPACE system (through the Simulink model) requires a few specific simulation parameters

to be set: the use of a fixed-step solver, discrete time, no block reduction and no code reuse. The

step size (of the Simulink model) had to be increased as the complexity of the model increased.

In the case of this study, the smallest time step was found (by trial and error) as 8×10−4 s (the

complete model reads one analogue channel and one digital channel simultaneously). For any

smaller time steps, the data acquisition did not start (no apparent error or warning is thrown).

The plunge displacement is measured with a single strain gage1 bonded on one of the beam

springs of the plunge DOF. The strain gage is connected in a quarter-bridge scheme (thus with

unity bridge factor2) to a HBM MGCplus AB22A amplifier system (from Hottinger Baldwin

Messtechnik). The input characteristics (calibration curve) of the strain gage are adjusted by

measuring the electrical signal from the sensor (with the MGCplus Assistant software) for no

displacement and for a known displacement. One of the analogue outputs of the HBM system

(the BNC connector at the front panel, Vo1) is connected to one of the analogue inputs of the

dSPACE system, so that the data acquisition of both the rotary encoder (pitch DOF) and strain

gage (plunge DOF) are performed over the same time basis. The HBM system analogue output

is adjusted to range from -10 V up to +10 V as the plunge displacement (related to the strain gage

1A CEA-13-240UZ-120 constantan alloy (Cu-Ni) strain gage from Micro-Measurements (Vishay Precision
Group) with resistance of 120.0±0.3% Ω and gage factor of 2.120±0.5% (at 24 ◦C).

2Hannah and Reed (1992).
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deformation) goes from +50 mm up to -50 mm. The dSPACE system scales its analogue input

by a factor of 0.1, yielding an input signal between -1 V and +1 V when read by the Simulink

model. Thus, the scaling of the (dSPACE) input signal is corrected in the Simulink model for

both the 0.1 scaling factor above and also according to the strain gage input characteristics. The

total gain is 50.

The ambient temperature is measured with a thermocouple associated with a multimeter

(Minipa ET-2082C). The ambient temperature is important for two reasons: 1) to estimate the

local air density and therefore to correct the measurement of the airflow speed; 2) to estimate

the temperature of the SMA springs, since no other form of thermal activation than the air

temperature (e.g., Joule heating) is used to obtain the austenitic phase.

7.2 Identification of the Experimental Parameters

7.2.1 SMA Properties

This section describes the experimental determination of the SMA properties. Before any

aeroelastic test, two SMA springs were tested. One of them has a transformation temperature

(reported by the manufacturer3) of 45 ◦C. The other, referred as “air temperature” by the ma-

nufacturer, 20 ◦C. Both springs have the same geometry. The wire diameter is 0.98 mm and the

mean coil diameter is 13.78 mm. The number of active coils is 13.5 (arbitrarily chosen).

FORCE-DISPLACEMENT TESTS

A DC power supply (Instrutherm FA-2030) was used to heat the 45 ◦C spring through Joule

heating. A universal testing machine (Instron 5985, dual column floor model for 250 kN) was

used to provide displacement-controlled mechanical loadings to the springs. A load cell (Alfa

SV-50, with 50 kg of capacity), smaller than that of the testing machine, was placed in a series

configuration to provide accurate measurements on the order of about ten Newtons. The HBM

amplifier system (described in Section 7.1.1) was used for the aquisition of the load cell data.

A Canon EOS 50D 15.1 MP digital camera (with objective lenses 28, EF 135 mm) was used to

3Kellogg’s Research Labs.
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photograph the spring elongation during the tests. A FLIR ThermaCAM T360 infrared camera

was used to verify the SMA temperature. A thermometer (Contemp UT325, along with a K-

type4 thermocouple) was used to measure the ambient temperature. This apparatus is shown in

Fig. 46.

Figure 46 – Photography of the experimental apparatus for testing the SMA springs.

The force-displacement curves for the two tested SMA springs are displayed in Figs. 47(a)

(for the 45 ◦C spring) and 47(b) (for the 20 ◦C spring). The springs were tested in three cases:

with maximum extensions of 100, 140 and 160 mm. An arbitrary loading rate of 100 mm·min−1

was used in all cases. The tests were conducted at an ambient temperature of 26 ◦C. The

springs were heated and allowed to cool down to the ambient temperature before the tests.

Only the 45 ◦C spring was kept heated during the tests (after the initial heating and cooling

procedure). An electrical current of 2 A was applied. As displayed in Fig. 48, the 45 ◦C spring

experienced expressive temperature drops while being elongated due to convective heat transfer.
4Chromel (+), Alumel (-).
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Figure 47 – Experimental force-displacement curves for the two tested SMA springs: the 45 ◦C
spring in (a) and the 20 ◦C spring in (b).

Such temperature drops resulted in large (permanent) residual deformations because the SMA

temperature went below A f while the spring was being elongated (one should remember that

there is a limit for the shape recovery). One may also observe that the area of the hysteretic

loops of the 45 ◦C spring (Fig. 47(a)) are smaller than those for the 20 ◦C spring. This is

an indication of T � A f , which significantly increases the critical stresses (thus resembling

to linear elastic behavior). Despite this, the SMA temperature went much below A f with the

elongation. Overall, the 20 ◦C spring exhibited a more attractive behavior and was chosen for

the aeroelastic tests.
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Figure 48 – Infrared pictures of the 45 ◦C SMA spring during the test.

ESTIMATION OF THERMO-MECHANICAL PROPERTIES

Based on the force-displacement curves of Fig. 47(b) (for the 20 ◦C spring at 26 ◦C of

ambient temperature), some of the SMA properties can be estimated. The austenitic spring

stiffness is estimated from the linear elastic region as kA≈ 85 N·m−1. From Eq. (2.26), the SMA

fully-austenitic shear modulus is calculated as GA = 29.3 GPa. Hence, from Eq. (2.18), DA =

76.1 GPa. The fully-martensitic modulus is of little importance here (even for the simulations),

but usually is two to three times lesser than the austenitic modulus. The force at the beginning

of the forward phase transformation is about 5.5 N. From Eq. (2.20), τM
s is estimated as 209

MPa. The force at the end of the reverse phase transformation is about 2.4 N. Also from Eq.

(2.20), τA
f is estimated as 91 MPa5.

The critical temperatures can also be estimated (for simulation purposes). Assuming A f =

20 ◦C (reported by the manufacturer) and observing that usually (A f − 20 ◦C) ≤Ms ≤ (A f −

10 ◦C) (c.f., Table 3), one can expect 0 ◦C ≤Ms ≤ 10 ◦C. A mean value of (A f −Ms) for all of

the property sets of Table 3 (excluding that of Gall et al. (1999)) yields about 14 ◦C. Equally

spacing Ms, As and A f (an arbitrary assumption), yields Ms = 6 ◦C, As = 13 ◦C and A f = 20 ◦C.

5Although no DSC tests were conducted to determine the accurate phase transformation temperatures, τA
f > 0

is a strong evidence of T > A f (i.e., pseudoelasticity is ensured at room temperature, as required for the proposed
aeroelastic application of this study).
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Besides the critical stresses and temperatures, the stress-temperature slopes can also be

estimated. Since τA
f is expected to be zero when the SMA temperature is the A f temperature,

and by assuming a linear relationship between the critical stresses and temperature (as depicted

earlier in Fig. 3), the austenitic stress-temperature slope is estimated as CA = τA
f /(T −A f ) ≈

15.1 MPa·◦C−1. Similarly, the martensitic slope is estimated as CM = (τM
s − τmin

s )/(T −Ms)≈

7.6 MPa·◦C−1 by assuming τmin
s ≈ 60 MPa (commonly found in the literature, c.f., Table 3).

Moreover, τmin
f , εL and µP are assumed to be 100 MPa, 6.7% and 0.3, respectively (also from the

literature). These values of stress, temperature and phase transformation slopes are useful for

predicting the SMA behavior (when no DSC and/or temperature-controlled stress-strain tests

are available), although they are not essential for the experimental tests.

Considering the experimental typical section, in order to keep the distance between the

elastic axis and the SMA springs suitable, a stiffer spring (about twice the stiffness above) is

desired. Therefore, the number of active coils is reduced to 7 (picture of Fig. 49, with extra

coils for the attachment of the springs). The corresponding (austenitic) stiffness is estimated

as 181 N·m−1 (from Eq. (2.26)). The spring deflection at the beginning of the forward phase

transformation will be about 31 mm (Eqs. (2.21) and (2.24)). For such a spring deflection, the

ratio y/N is about 4.4 mm per coil (the ratio is 11.4 mm for the largest hysteresis loop of Fig.

47(b)). For such level of deflection per coil, the simplified spring model of Section 2.4.2 (which

neglects quantities such as the tensile component of stress in the spring) is considered valid for

the purposes of this study. This new (stiffer) spring is the one employed in the pitch DOF of the

typical section during the experimental tests to be described in Section 7.2.2.

Figure 49 – Photography of the SMA springs used in the aeroelastic tests.
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7.2.2 Typical Section Parameters

INERTIAL PROPERTIES

The airfoil mass is 0.789 kg (without the SMA fixture). The SMA fixture (the portion which

rotates) adds 54 g to the airfoil mass. The total mass, including fixtures that attach the airfoil

to the stationary frame, is 2.084 kg. This total mass is the mass that translates during plunge

displacements. The CG was determined by equilibrating the typical section on a 1 mm-thick

beam and measuring the distance between the mean thickness of that beam and the center of the

elastic axis. Such a distance is 25.8 mm. A steel rod was placed inside the typical section (near

the trailing edge, at the three-quarter chord length, and along the span length) to offset the CG

in the aft direction, so that increasing the coupling between the plunge and pitch DOFs and

therefore decreasing the linear flutter speed.

The moment of inertia (Iα ) was determined by placing the typical section horizontally in a

free-to-rotate condition (photography of Fig. 50). An arbitrary input angle was applied and the

oscillation was measured (with the rotary encoder and the dSPACE system). The period of os-

cillation, Tα , was determined as 0.7413 s. By using a pendulum equation, Tα = 2π
√

Iα/(mgd),

where m is the rotating mass, g is the local gravity acceleration (9.7876 m·s−2) and d is the dis-

tance between the elastic axis and the CG, the moment of inertia was determined as 3.0×10−3

kg·m2.
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Figure 50 – Photography of the typical section in a pendulum configuration for the measure-
ment of the moment of inertia.

DAMPING AND FREQUENCY PROPERTIES

From the logarithmic decrement method (CRAIG, 1981), the damping ratio may be appro-

ximated by,

ζ =
1

2π
ln

uP

uQ
, (7.1)

for small damping (ζ < 0.2) and where uP and uQ are two successive peak displacements. From

free-vibration tests (Fig. 51) and by using Eq. (7.1), the damping ratio of the plunge DOF was

determined as ζh = 0.0079. Also from Fig. 51, the damped circular natural frequency of the

plunge DOF is ωd
h = 27.32 rad·s−1 (or 4.35 Hz).

The damping ratio is also defined as,

ζ =
c

ccrit
, (7.2)

where c is the damping coefficient and,

ccrit = 2mωn = 2
√

km, (7.3)

is the critical damping, in which ωn is the undamped natural frequency (ωh and ωα for the

plunge and pitch DOFs, respectively).
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Figure 51 – Free-vibration test for the plunge DOF.

The experimental determination of the undamped natural frequency by using the static-

displacement method considers a simple spring-mass system (CRAIG, 1981). A body of weight

W (due to the local gravity g) is supported by a spring of stiffness k. The magnitude of the

spring force equals to the weight (with opposite direction) for the static displacement ust (at

static equilibrium). Thus, kust = mg. Since ω2
n = k/m, then ω2

n = g/ust. An arbitrary weight

of 600 g (5.87 N for the local gravity g = 9.7876 m·s−2) was hang on the plunge springs. A

scheme with pulleys, one of them movable and attached to one end of the elastic axis, was used.

A nylon rope6 (supporting the weight) was tied to the other end of the elastic axis. Thus, the

actual weight experienced by the plunge springs was three times greater (17.62 N). The static

displacement was measured as 8.25 mm. Thus, ωh = 34.44 rad·s−1 (or 5.48 Hz). From Eq.

(7.3), ωh is calculated as 31.74 rad·s−1 (or 5.05 Hz).

The same test above was used for the calibration of the strain gage bonded on one of the

plunge stiffness beams to measure the plunge displacement. The static displacement for in-

creasing weight is displayed in Fig. 52. One should remember the plunge springs experience

three times that loading due to the pulley configuration. This test is also useful for verifying the

linearity of the plunge springs. The complete test, from the unloaded (and undeformed) initial

state up to the end of the free-vibration test is displayed in Fig. 53.

6With diameter of 0.37 mm and load capacity of 8 kg.
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Figure 52 – Static displacement test for the plunge DOF.
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Figure 53 – Static displacement test followed by a free-vibration test.
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Similar tests were performed for the pitch DOF. The SMA springs (with seven active coils)

were attached to the plunge DOF fixture, so that the SMAs can move along with the plunge

displacement(Fig. 54). The other ends of the SMAs were attached at 88 mm from the elastic

axis by a rigid shaft (Fig. 55). The SMAs were tested at room temperature (26 ◦C), initially in

the austenitic phase (heated before the tests to ensure the austenitic phase). From Fig. 56 and

Eq. (7.1), the damping ratio of the pitch DOF is 0.0927. The damped period of oscillation is 0.3

s. The corresponding (damped) circular natural frequency is ωd
α = 20.94 rad·s−1 (or 3.33 Hz).

Although only the pseudoelastic behavior is of concern in this study, it is known (LIANG;

ROGERS, 1997; Van Humbeeck, 2003) that the damping properties of SMAs change with the

martensitic fraction7. For comparison purposes, however, the free-vibration test (of the pitch

DOF with SMA springs) was performed also at low temperature. In such a test, the room

temperature was 17 ◦C and the SMA springs were cooled down with ice for a few minutes

before the test (the ice was removed right before the input angle). A more rigorous test with

the particular SMAs of this study would require a room temperature below 0 ◦C to ensure

a fully (twinned) martensitic phase. Thus, one may assume the SMAs had a mixed phase

with austenite and twinned martensite (probably with more martensite than austenite due to the

cooling procedure). The free-vibration test at low temperature is also displayed in Fig. 56. From

Eq. (7.1), the damping ratio of the pitch DOF at low temperature (in the martensitic phase) is

more than 0.15, which could be even greater if a fully martensitic phase was ensured.

Based on Fig. 57 and Eq. (2.26), the SMA spring (austenitic) stiffness is about 180 N·m−1,

which is close to the expected (theoretical) value of 181 N·m−1. For an arbitrary load of 3.7 N

(375 g), within the linear elastic regime, the static deflection of the SMA spring was measured

as 20.1 mm. Thus, from the static displacement method, ωα = 22.04 rad·s−1 (or 3.51 Hz). From

Eq. (7.3), the theoretical ωα is 22.12 rad·s−1 (or 3.52 Hz). Fig. 57(a) includes a curve obtained

from the rotary encoder data and another curve obtained from the comparison of pictures. Fig.

57(b) displays a picture of the test.

7Many of the SMA properties change with the martensitic fraction, such as the elastic properties, damping
properties, electrical properties (e.g., specific resistivity), acoustic properties, etc.
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(a) (b)

Figure 54 – Pitch DOF with SMA springs (picture). Views from the leading edge (a) and trailing
edge (b).

Figure 55 – Distance between the SMA springs and the elastic axis (picture).
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Figure 56 – Free-vibration tests for the pitch DOF.
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Figure 57 – Static displacement test for the pitch DOF. Experimental data (a) and photography
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7.2.3 Summary of the Experimental Model Parameters

The experimental aeroelastic parameters are summarized in Table 6. As well, the experi-

mental SMA constitutive properties are displayed in Table 7.

Table 6 – Experimental aeroelastic parameters.

Symbol Value Unit Description

b 0.125 m Semichord length
l 0.50 m Span length
c -0.5 – Elastic axis distance from midchord (per b)

xα 0.2064 – CG distance from elastic axis (per b)
m 0.843 kg Rotating mass (pitch DOF)
mt 2.084 kg Translating mass (plunge DOF)
Iα 0.0030 kg·m2 Moment of inertia
kα 2.858 N·m Equivalent pitch DOF stiffness
kh 2100 N·m−1 Plunge DOF stiffness
ζα 0.0927 – Damping ratio of the pitch DOF
ζh 0.0079 – Damping ratio of the plunge DOF
ωα 30.87 rad·s−1 Undamped pitch natural frequency
ωh 49.91 rad·s−1 Undamped plunge natural frequency
rα 0.4772 – Radius of gyration (per b)
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Table 7 – Experimental SMA constitutive properties.

Property Value Unit
Ms 279 K
As 286 K
A f 293 K
CM 7.6

√
3 MPa·K−1

CA 15.1
√

3 MPa·K−1

σmin
s 100 MPa

σmin
f 170 MPa

εres 6.7 %
DM 38 GPa
DA 76 GPa
µP 0.3 –

7.3 Effect of Pseudoelastic Hysteresis on the Aeroelastic Beha-
vior of a Typical Section

In this section, the aeroelastic behavior of the experimental typical section model with SMA

springs is described. Different levels of preload are considered8. First, the experimental linear

flutter speed is determined by measuring the pitch and plunge displacements for increasing air-

flow speeds, arbitrary initial conditions and small preload applied to the SMA springs. After

having determined the linear flutter speed, the aeroelastic displacements are measured for incre-

asing airflow speeds at fixed preload values applied to the SMA springs. This way, the effects of

pseudoelastic hysteresis of the SMA springs on the aeroelastic behavior are investigated. When

the measured aeroelastic displacements become larger than the acceptable limits previously

defined (in Section 4.2.2), the procedure is repeated for a slightly larger spring pre-deflection

(yielding larger preload).

In all tests, the ambient temperature was between 24 ◦C and 27 ◦C (around 26 ◦C in most of

the cases). Although the SMA springs were not directly exposed to the airflow, acrylic covers

were employed to avoid forced convection effects. Moreover, a heat gun was employed to keep

the temperature inside the acrylic cover constant (although the heat flux was not directed to the

8The preload level is always larger than the unloading phase due to the pitch angle (during half of one cycle of
oscillation), so that the SMA springs are always in tensile loading.
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springs). Before any test, the SMA springs were heated for about 10 s and allowed to cool down

to the room temperature.

7.3.1 General Aeroelastic Behavior at the Flutter Boundary

In this section, the general aeroelastic behavior of the typical section is verified for airflow

speeds that are around the theoretical linear flutter speed of a typical section defined by the

aeroelastic parameters of Table 6. First, a small preload is applied to the SMA springs so that

linear aeroelastic behavior (flutter) can be observed (since the SMA springs will be working

in the linear elastic region). Later, the preload level is increased so that nonlinear aeroelastic

behavior (stable LCOs) can be observed due to the pseudoelastic hysteresis of the SMA springs.

SMALL PRELOAD (LINEAR AEROELASTIC BEHAVIOR)

Although SMA elements exhibit nonlinear behaviors when phase transformations are taking

place, it was shown in previous chapters that SMAs can also exhibit linear elastic behaviors for

small preloads. This way, the typical section behaves as a linear aeroelastic system (for small

preload values) and has a well-defined flutter boundary (or linear flutter speed). From linear

theory (e.g., eigenvalue analysis), the theoretical linear flutter speed of the experimental typical

section (with the parameters of Table 6) is 13.3 m·s−1. In this section, the aeroelastic behavior of

the typical section is experimentally verified for airflow speeds around the flutter boundary.

A pre-deflection of 17 mm is applied to the SMA springs considered in the experimental

typical section model of this work. Since the spring stiffness is 85 N·m−1 in the linear elas-

tic regime (austenitic), the preload is approximately 3 N. Since the considered SMA springs

undergo stress-induced phase transformation for mechanical loads of 5.5 N or larger (Section

7.2.1), the pitch angle during the wind tunnel tests should not exceed 9 degrees to ensure linear

elastic behavior (or 14 mm of spring deflection due to the pitch angle). Since the natural length

of the SMA springs is 11 mm9, the actual limit is slightly smaller to avoid reaching a state of

compactation of the springs.

9The difference from the natural length of the previous tests (7 mm) is due to the stabilized behavior of the
SMA springs after a number of cycles.
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The experimental verification is performed for a range of airflow speeds around the theo-

retical linear flutter speed. At each airflow speed, initial plunge displacements are applied to

the typical section (from small displacements up to larger displacements) and the time response

measured. If stable aeroelastic behavior is verified (damped oscillations), the airflow speed is

slightly increased and the procedure is repeated. As the airflow speed approaches the theoreti-

cal critical one, the typical flutter behavior is verified (defining the experimental linear flutter

speed). Fig. 58 shows the time history of the plunge displacement at different airflow speeds

(slightly below the linear flutter speed). Fig. 59 shows the plunge and pitch displacements at

13.0 m·s−1 (slightly above the linear flutter speed).
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Figure 58 – Experimental plunge displacement in time for different airflow speeds (slightly be-
low the linear flutter speed) and small preload applied to the SMA springs.
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Figure 59 – Experimental plunge and pitch displacements in time at slightly above the linear
flutter speed and for small preload applied to the SMA springs.

In Fig. 58, the time history of the plunge displacement for the airflow speed of 12.5 m·s−1

shows that the system is stable. Although the typical section is stable at 12.7 m·s−1 and



142

12.8 m·s−1, the decaying behavior is different from the one observed at 12.5 m·s−1 (since the

total damping is larger in this case due to aerodynamic damping). Moreover, at 12.8 m·s−1 the

displacements are around the initial condition for a time period before the oscillations are dam-

ped out. It is also possible that the typical section settles onto a flutter-like behavior around that

airflow speed for large enough initial condition (DOWELL, 2015). At 13.0 m·s−1 (Fig. 59), the

typical section is unstable. However, it is important to say that in some cases the oscillations are

damped out at this airflow speed and in some cases the amplitudes slightly increase along the

time. This is expected since the typical section is marginally stable at the flutter boundary. The

unstable cases (with increasing amplitudes) are an evidence of linear behavior, although SMA

springs are considered in the model (without any phase transformation in the SMA springs for

the considered preload level).

LARGER PRELOADS (NONLINEAR AEROELASTIC BEHAVIOR)

The preload applied to the SMA springs is increased for the next tests so that stress-

induced phase transformations can take place at small aeroelastic displacements. This way,

the nonlinear aeroelastic behavior of the typical section (due to the pseudoelastic hysteresis of

the SMA springs) can be verified for airflow speeds around the flutter boundary.

A pre-deflection of 25 mm is imposed to the SMA springs, which corresponds to about

4.5 N of preload (or about 80% of the critical preload). Fig. 60 displays the time history of

the plunge displacement measured for a range of airflow speeds. Self-sustained aeroelastic

oscillations are observed at the airflow speed of 13 m·s−1, as in the previous case (with small

preload). However, the amplitudes at 13 m·s−1 in Fig. 59 are growing over time while in Fig.

60 the amplitudes (also at 13 m·s−1) are constant, evidence of the aeroelastic behavior of the

typical section being modified by the pseudoelastic hysteresis of the SMA springs.

The aeroelastic behavior of the typical section with SMA springs is also verified for diffe-

rent initial conditions. In agreement with the numerical predictions of Section 5.3.1, the typical

section settles onto LCOs with amplitudes that depend mainly on the level of preload. Such a

behavior is displayed in Fig. 61 for the same conditions of Fig. 60 (and 13 m·s−1).

The post-flutter regime is experimentally verified in the next section.
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Figure 60 – Experimental plunge displacement in time for different airflow speeds (constant
preload level).
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7.3.2 Post-Flutter Behavior of the Typical Section

Fig. 62 shows the time history of the plunge displacement over a range of airflow speeds.

The preload applied to the SMA springs is 4.5 N (the same preload of Figs. 60 and 61) and

the plunge displacement is acquired for a few minutes for each airflow speed. Persistent and

bounded oscillations (LCOs) are observed due to the pseudoelastic hysteresis of the SMAs. If

linear steel springs were employed, the linear aeroelastic system would be unstable for such

range of airflow speeds. Therefore, stable LCOs replace unstable oscillations due to the hyste-

retic behavior of the SMA springs. Fig. 63 displays a detailed view of plunge displacement at

different airflow speeds of Fig. 62. The plunge amplitude of the LCO increases with increasing

airflow speed. The system is unstable after 13.7 m·s−1.
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Figure 62 – Experimental plunge displacement for 80% of the critical preload and increasing
airflow speed.
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Figure 63 – Experimental plunge displacement for 80% of the critical preload and increasing
airflow speed (detail).

Fig. 64 displays the plunge displacement for the SMA springs with a pre-deflection of

28 mm (about 5.0 N of preload, or about 90% of the critical value). Fig. 65 shows detailed

views of the bounded oscillations (stable LCOs) for some of the tested airflow speeds. Since

the employed preload is 90% of the critical one, smaller pitch displacements (if compared to

the previous case, preload of 4.5 N) leads to phase transformation and pseudoelastic hysteresis

of SMA springs. Therefore, the range of airflow speeds with LCOs of acceptable amplitude is

also increased (the maximum airflow speed is 14 m·s−1).
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Figure 64 – Experimental plunge displacement for 90% of the critical preload and increasing
airflow speed.
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Figure 65 – Experimental plunge displacement for 90% of the critical preload and increasing
airflow speed (detail).

The preload is further increased to 5.5 N and the procedure is repeated. Fig. 66 displays

the plunge displacement for a pre-deflection of 31 mm (which yields a preload around the

critical value of 5.5 N). As in the previous cases, stable LCOs replace the unstable aeroelastic

behavior in the post-flutter regime. Fig. 67 shows detailed views of LCOs of some of the

airflow speeds. The maximum airflow speed with LCOs of acceptable amplitudes is increased

to 14.6 m·s−1, since any pitch displacement induces phase transformation and pseudoelastic

hysteresis.
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Figure 66 – Experimental plunge displacement for the critical preload and increasing airflow
speed.
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Figure 67 – Experimental plunge displacement for the critical preload and increasing airflow
speed (detail).

Fig. 68 displays the plunge displacement for a pre-deflection of 34 mm, which yields a

preload slightly above the critical value (since the SMA springs are operating in the martensitic

plateau for such a preload condition). As well, details are shown in Fig. 69.
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Figure 68 – Experimental plunge displacement for slightly above the critical preload and incre-
asing airflow speed.
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Figure 69 – Experimental plunge displacement for slightly above the critical preload and incre-
asing airflow speed (detail).

The root mean square (RMS) of the plunge displacement with increasing airflow speed is

shown in Fig. 70. The bifurcation plots of Fig. 70 include all the previous cases of Figs. 62 to

69. The range of airflow speeds with LCOs of acceptable amplitudes increases with increasing

preload values (applied to the SMA springs). Moreover, for each airflow speed, the amplitude

of LCOs decrease with increasing preload due to the pseudoelastic behavior os SMAs. Also, it

is worth observing that the preload level does not affect the linear flutter speed (since the same

preload is applied to both SMA springs). The RMS value of the plunge displacement is consi-

dered due to the amplitude variations (related mainly to uncontrolled environmental conditions

which affect the temperature of the SMA springs).
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Figure 70 – RMS amplitudes of the plunge displacement for increasing airflow speeds and dif-
ferent preload levels.

Fig. 71 displays a detail of Fig. 70 that includes simulation results for the SMA properties

of Table 7. The discrepancies can be assigned mainly to the SMA properties being unknown

(the properties were estimated from a simple tensile test, therefore not rigorously determined).

It is interesting to note, however, that the experimental behavior is superior to the predicted

behavior (in terms of smaller LCO amplitudes) at larger airflow speeds.
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Figure 71 – Detail of the RMS amplitudes of the experimental plunge displacement for increa-
sing airflow speeds and different preload levels along with simulation results.

7.3.3 Further Discussions on the Experimental Behavior of the Typical
Section with SMA Springs

Undesired temperature variations are pointed as the main cause of the unexpected behaviors

observed during the experimental tests (especially the changes in the amplitudes of the aeroe-
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lastic displacements, shown in the previous section). One may remember from the previous

chapters that the critical stresses for phase transformations increase with increasing tempera-

ture. This way, as the temperature of the SMA springs increases, an ongoing phase transforma-

tion (or in the proximity of taking place) may be ceased (or delayed) as well as stable LCOs

replaced by unstable flutter oscillations. As the pitch angle increases or the temperature drops,

the phase transformations can restart, transforming the unstable flutter oscillations once again

into stable LCOs (the amplitudes may also become excessively large before the phase transfor-

mations resume, yielding an unacceptable case). It is also possible that the temperature of the

SMAs decreases along a test, allowing that the stress-induced phase transformations take place

earlier (and possibly improving the effects of the pseudoelastic hysteresis on the aeroelastic

behavior of the typical section). On the other hand, an excessive temperature drop may avoid

the complete recovery of the austenitic phase of the SMAs. In such a circumstance, unexpected

aeroelastic behavior may also take place (possibly allowing the onset of unstable oscillations).

Thus, a thermally isolated chamber for the SMA springs improves the experimental behavior of

the typical section.

The overall behavior of the typical section with SMA springs, however, is in good agre-

ement (qualitatively) with the numerical predictions of the previous chapters (in particular, to

those of Fig. 26), in spite of the SMAs considered in the experimental tests having different

constitutive properties. As observed in Fig. 26, different SMA constitutive properties yield

distinct aeroelastic behaviors and the effects of preloaded SMA springs (with distinct sets of

parameters) are similar in all cases (i.e., most of the considered property sets are able to reduce

the aeroelastic amplitudes at the flutter boundary and also to allow stable post-flutter regimes,

as observed for the SMA springs considered in the experimental tests). One should note that

the theoretical model (and associated numerical predictions) presented in the previous chapters

predicts similar aeroelastic behavior verified during the experimental tests, although different

SMA springs (with some unknown constitutive properties) are employed in each case (numeri-

cal simulations and experiments).

As final remarks on the experimental behavior of the SMA springs, it is interesting menti-
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oning that the same SMA springs were used for all tests (including several tests which are not

reported here). Spring replacement was not necessary since no SMA spring failure was obser-

ved or exhibited degradation along the tests (a few hundreds of tests were performed, and the

total time operating under LCOs is around a few hours). The SMA springs were kept under

pre-tensioning for several days (reaching a few weeks). However, no significant permanent de-

formation in addition to that due to the first dozens of loading cycles (before cyclic stabilization)

was observed. One should also remember that no excessively large preload or pitch angles were

applied to the SMA springs, thus yielding only partial phase transformations.



CHAPTER

8
Airfoil-Based Piezoelectric Energy

Harvesting by Exploiting the

Pseudoelastic Hysteresis of Shape

Memory Alloy Springs

The analysis of an electromechanically coupled typical section with SMA springs for wind

energy harvesting is addressed in this chapter. A 2-DOF (namely, pitch and plunge) airfoil

is considered and piezoelectric coupling is added to the plunge DOF1. A load resistance is

assumed in the electrical domain of the problem to estimate the electrical power output. As in

the previous chapters, SMA coil springs are modeled in the pitch DOF of the typical section. A

Ni-Ti alloy that exhibits pseudoelasticity at room temperature is assumed, avoiding the use of

external power sources. The effects of preload values of the SMA springs and resistive power

generation on the aeroelastic behavior of the wind energy harvester are investigated at the flutter

boundary and in a post-flutter regime. Since the nonlinear kinetics of the austenite-to-martensite

phase transformation changes the typical linear flutter behavior to stable LCOs over a range of

airflow speeds, an innovative and important source of persistent electrical power is presented.

The assumption of constant values of shear strain, shear stress and martensitic fraction in the

1The same electromechanical properties of Sousa et al. (2011) are assumed in this work.
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cross-section of the coiled SMA wire is employed in this chapter, as in Chapter 4. As well, the

same aeroelastic parameters and spring geometry of Chapter 4 are assumed here (Table 2). Most

of the SMA constitutive properties are also the same (those of Table 1). The only differences are

in the critical temperatures for phase transformation, since superelastic springs are assumed in

this case. The difference is simply to illustrate that no power consumption mechanisms would

be required in a practical application. The same electrical and electromechanical properties of

Sousa et al. (2011) are assumed here (i.e., equivalent capacitance of a parallel association of the

piezoceramic layers, 120 nF, and the electromechanical coupling term, 1.55× 10−3 N·V−1).

Such parameters are, however, based on previous works from the literature (ERTURK; IN-

MAN, 2008; ERTURK et al., 2010). The stress-temperature behavior of the considered SMA

is displayed in Fig. 72.
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Figure 72 – Stress-temperature relationship of the SMA considered in the energy harves-
ting problem.

8.1 Electroaeroelastic Behavior of the Typical Section with
SMA Springs at the Flutter Boundary

The electroaeroelastic behavior of the airfoil-based wind energy harvester with SMA springs

is investigated at the linear flutter speed of the 100 kΩ resistive load (taken arbitrarily2) and for

increasing preload applied to the SMA springs. Fig. 73 shows the shear stress behavior of

the SMA spring with its elongation. The dashed line is the elongation required for a complete

2The same resistive load is used in Sousa et al. (2011), so that some comparisons can be made.
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stress-induced phase transformation (obtained by using the constitutive relationship with a pres-

cribed stress input). The continuous line represents the shear stress due to the pitch angle at the

linear flutter speed of the 100 kΩ resistive load (11.85 m·s−1). It is clear that no phase trans-

formation is predicted since the SMA springs are operating in the linear elastic region. The

elastic restoring mechanism is due to linear elastic moment (with the fully austenitic shear mo-

dulus) and the typical section behaves as a linear aeroelastic system. Preload is then assumed

to bias the shear stress towards the critical value for phase transformation, so that the SMA

pseudoelastic hysteresis can be effectively exploited.
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Figure 73 – Shear stress with the elongation of the SMA springs in the energy harvesting pro-
blem.

The peak amplitudes of the pitch angle and plunge displacement for the case above and in-

creasing preload is displayed in Fig. 74. For f0 <= 3 N, no phase transformation is achieved and

the linear aeroelastic behavior is verified. For f0 > 3 N, stress-induced phase transformations

take place. In such a case, flutter oscillations are converted into stable LCOs, the dependence

on the initial conditions desappear and the amplitudes of the LCOs decrease for increasing pre-

load. Figs. 75(a) and (b) display the aeroelastic response over time for three different preload

conditions (from Fig. 74). Fig. 75(c) displays the electrical power output for the preload values

of 3.5 N and 4.0 N.
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axis, dashed line) in the energy harvesting problem.
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8.2 Electroaeroelastic Behavior of the Typical Section in the
Post-Flutter Regime

The presence of nonlinearities in aeroelasticity often results in bifurcations with LCOs

above or below the linear flutter speed (DOWELL, 2015). Nonlinearities may be welcome

since the catastrophic linear flutter behavior above the linear flutter speed can be replaced by

stable LCOs. The previous case study shows that unstable motions around the linear flutter

speed can be replaced by LCOs due to phase transformations of the SMA springs. Moreover,

it is shown in previous chapters that the presence of preloaded SMA springs in the pitch DOF

of the typical section may lead to stable LCOs over a range of airflow speeds above the linear

flutter speed. In practice, persistent oscillations over a range of airflow speeds are a favorable

condition for wind energy harvesting. In this case study, the modified post-flutter regime (due to

pseudoelastic hysteresis of SMAs) is investigated for wind energy harvesting, in contrast with

the usual mechanisms reported in the literature of aeroelastic energy harvesting such as concen-

trated structural nonlinearities (e.g., hardening springs) (SOUSA et al., 2011; ABDELKEFI;

NAYFEH; HAJJ, 2012a, 2012b; ABDELKEFI; HAJJ, 2013; BAE; INMAN, 2015).

The same set of preload values and resistive loads of the previous case (at the flutter boun-

dary) are considered. The aeroelastic behavior is investigated for airflow speeds from the linear

flutter speed up to 14 m·s−1. For some conditions in this range of airflow speeds, the predicted

aeroelastic amplitudes become unacceptably large for any resistive load or preload level. As in

the previous chapters, the limiting pitch angle is assumed as 0.2 rad and for the same reasons.

It is important to note, however, that for an airfoil in a power-extraction condition, the peak

efficiency is verified for large-amplitude oscillations (KINSEY; DUMAS, 2008). Thus, further

performance enhancement might be obtained outside the range of airflow speeds or oscillation

amplitudes considered in this study (the goal here is to present and discuss a different nonlinear

mechanism from the usually ones employed in the literature for wind energy harvesting, and no

optimizations are of concern).

The aeroelastic behavior of the typical section with increasing preload on the SMA springs

and Rl = 100 kΩ is displayed in Fig. 76. For any preload value and airflow speed smaller than
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11.85 m·s−1 the oscillations are damped with time. Linear behavior is predicted for preload

values smaller than 2.5 N, showing that stress-induced phase transformations are not achieved

for this range of airflow speeds, preload values and the assumed SMA properties. As well,

no phase transformations are predicted in the unstable region (while the limiting pitch angle is

respected). Since the aeroelastic displacements in post-flutter regime are larger than those at

the flutter boundary, the resulting (shear) stress on the SMA springs reaches the martensitic

plateau for f0 > 2.5 N. For this range of preload, the pseudoelastic hysteresis leads to stable

LCOs which are useful for wind energy harvesting. The dashed line in Fig. 76 represents the

maximum airflow speed that satisfies the limiting solution for each of the considered preload

values. For preload values larger than 4.5 N, the bias stress itself reaches the martensitic plateau

and since the discussion is limited to negligible initial martensitic fraction, no further preload

is considered. The largest LCO amplitudes which respect the assumed limiting solution are

obtained for 13.8 m·s−1 (for the considered resistive load). In the range of stable LCOs with

larger amplitudes (region above the dashed line for f0 > 2.5 N), however, the nonlinear electro-

elastic dynamics of the piezoelectric material should be considered for an accurate estimation

of electrical outputs (LEADENHAM; ERTURK, 2014).
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Figure 76 – Limiting airflow speeds for acceptable aeroelastic displacements with increasing
preload (in the energy harvesting problem).

The peak amplitudes of the electroaeroelastic variables in the post-flutter regime are dis-

played in Fig. 77 for different preload values and Rl = 100 kΩ (all points are from the steady-

state response). The range of airflow speed of each case (preload) is due to the limiting solution

(in terms of pitch and plunge displacements). For any preload value, the aeroelastic displace-
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Figure 77 – Electroaeroelastic behavior for increasing airflow speed, different preload conditi-
ons and Rl = 100 kΩ – (a) peak amplitude of the pitch angle, (b) peak amplitude
of the plunge displacement, (c) SMA spring elongation, (d) peak amplitude of the
voltage and (e) the corresponding electrical power output.

ments, as well as the voltage and the electrical power output, increase with increasing airflow

speed (due to the increasing aerodynamic loads). It is clear from Fig. 77 that mechanical and

electrical outputs are highly sensitive to the preload value on the SMA springs. At a fixed air-

flow speed, the outputs decrease with increasing preload value (due to the increased hysteretic

dissipation promoted by the SMAs, as previously discussed throughout this study). Thus, the

power output could be enhanced at a specific airflow speed by adjusting the preload, i.e., the

performance of the wind energy harvester could be adjusted to an existing airflow speed (availa-

ble in the target environment) through the modification of preload since the same power output

can be obtained for different preload values and different airflow speeds (Fig. 77(e)).
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Figure 78 – Aeroelastic responses in time for f0 = 3.5 N, Rl = 100 kΩ and different airflow
speeds – (a) pitch angle, (b) plunge displacement, (c) electrical power output and
(d) hysteretic behavior of the SMA springs.

Fig. 78(a) to (c) displays the pitch angle, plunge displacement and electrical power output

in time for f0 = 3.5 N, Rl = 100 kΩ and three different airflow speeds (U∞ = 12.0 m·s−1,

U∞ = 12.5 m·s−1 and U∞ = 13.0 m·s−1). For any speed, the amplitudes increase until the

first stress-induced phase transformation takes place. Upon the first phase transformation, the

subsequent ongoing transformations lead to stable LCOs in the post-flutter regime (Figs. 78(a)

and (b)) and, therefore, to continuous power generation (Fig. 78(c)). Fig. 78(d) displays the

corresponding (steady-state) hysteretic behavior of the SMA spring (shear stress with spring

elongation). Although no complete loops are observed, the area of the loop increases with

increasing airflow speed, as expected (due to larger displacements), thus contributing to more

expressive phase transformations and therefore to stable LCOs over wider post-flutter regimes.

Fig. 79 displays the effects of the resistive load on the electroaeroelastic behavior of the

typical section with SMA springs for U∞ = 13 m·s−1 and f0 = 3.5 N (only peak amplitudes are

shown for clarity). As previously discussed, LCOs of acceptable amplitudes are observed at this

speed and preload due to the nonlinear behavior of the SMA springs. Fig. 79(a) shows that the

plunge displacement and the pitch angle decrease with increasing resistive load until Rl = 250
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Figure 79 – Effects of the electrical boundary condition on the aeroelastic behavior for U∞ =
13 m·s−1 and f0 = 3.5 N – (a) plunge displacement (left axis, continuous line) and
pitch angle (right axis, dashed line); (b) voltage (left axis, continuous line) and
electrical power output (right axis, dashed line).

kΩ. When the resistive load is further increased the aeroelastic displacements also increase.

Fig. 79(b) shows that the voltage output increases with increasing resistive load in the entire

range. The power output increases for resistive loads from (close to) the short-circuit condition

up to 250 kΩ (the global optimum resistive load) and decreases as the resistive load is further

increased (towards the open-circuit condition). In the vicinity of Rl = 250 kΩ, the aeroelastic

displacements are approximately 10% smaller than those for the short-circuit condition. In

such a case the predicted power output exceeds 90 mW (Fig. 79(b)). For U∞ = 14 m·s−1 and

f0 = 4.5 N (the largest values of airflow speed and preload that respect the limiting solution),

the optimum resistive load delivers 120 mW of peak electrical power.

For comparison purposes, Sousa et al. (2011) report a power output of about 30 mW for

Rl = 100 kΩ (the optimum resistive load in the referred paper) and U∞ = 14 m·s−1 when a

polynomial stiffening nonlinearity (one hundred times stiffer than the nominal torsional stiff-

ness) was modeled in the pitch DOF of the same typical section considered in the case of this

chapter (however, with steel springs in the referred paper). The nonlinear hardening effect (of

the polynomial steel spring) also promotes the conversion of unstable flutter oscillations into

stable (persistent) LCOs in the post-flutter regime. In this study (in which SMA springs are

considered), a power output of 80 mW is obtained for Rl = 100 kΩ and U∞ = 14 m·s−1 (the

same conditions of Sousa et al. (2011)). The enhanced performance shows that the nonlinear

aeroelastic behavior of the typical section promoted by the pseudoelastic hysteresis of the SMA

springs can be more attractive for airfoil-based wind energy harvesting than the nonlinear beha-
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vior associated with hardening steel springs.

One should note that the addition of SMA springs to the typical section produces stable

LCOs at the expense of additional energy dissipation. As discussed throughout this study,

however, even when incomplete phase transformations take place (yielding small energy dissi-

pation), unstable flutter oscillations are replaced by stable LCOs. Moreover, it was shown that

negligible variations in the stiffness of the pitch DOF are predicted for increasing preload be-

cause only small, partial, phase transformations are of concern (Fig. 19). Therefore, at the same

airflow speed, the combination of small energy dissipation with constant pitch elastic moment

(when SMA springs are added) allows larger LCOs than those obtained for a hardening steel

spring is employed. This way, at the same airflow speed more energy flows from the fluid to the

structure of the typical section with SMA springs than in that case of the typical section with

hardening nonlinearity. Since the systems compared in this study have the same amount of

piezoelectric material for mechanical-to-electrical energy conversion, the system that enhances

the energy flow from the fluid to the structure at the same airflow speed has more mechanical

energy available to promote piezoaeroelastic energy harvesting and, consequently, will deliver

more electrical power. The use of the pseudoelastic hysteresis of SMA springs as the source

of nonlinearity of an airfoil-based wind energy harvester enhances the ability of the system to

take energy from the airflow, which will be later converted to electricity by the piezoelectric

material.



CHAPTER

9
Summary and Conclusions

9.1 Conclusions

This work presents the modeling, analysis and experimental verification of a 2-DOF typi-

cal aeroelastic section with superelastic SMA elements (springs). The focus is on the effects

of the pseudoelastic hysteresis of the SMA springs on the aeroelastic behavior of the typical

section since the hysteretic behavior (of the SMAs) introduces a nonlinear restoring mechanism

related to reversible stress-induced phase transformations, from a parent (austenitic) phase to

a product (martensitic) phase. SMA helical springs are considered in the pitch DOF of the ty-

pical section (while linear elastic steel springs are considered in the plunge DOF) for (1) the

modification of unstable linear behavior to stable nonlinear behavior (i.e., transforming flutter

oscillations into LCOs) and (2) the exploitation of the modified behavior (unstable to stable) to

promote airfoil-based wind energy harvesting over a range of airflow speeds. Due to the second

purpose, electromechanical (piezoelectric) coupling is also modeled (in the plunge DOF of the

typical section) along with a resistive load in the electrical domain of the problem (to estimate

the electrical power output).

The SMA phase transformation kinetics is described by a modified version of the well-

known Brinson’s model (BRINSON, 1993). A model for SMA helical springs based on the

pure shear assumption is derived following Liang and Rogers (1997) and modified to repre-

sent additional SMA behaviors (BUCCHI et al., 2014; POORASADION et al., 2014). Based
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on Poorasadion et al. (2014), tensile-compressive asymmetry behavior is included in the SMA

modeling. Based on Bucchi et al. (2014), the cross-section of the coiled SMA wire is repre-

sented by radial distributions of shear strain, shear stress and martensitic fraction. Isothermal

conditions are assumed since the predicted phase transformations are incomplete and a small

region in the inelastic plateau is achieved, so that latent heat effects are assumed negligible.

The equations of motion of a linear typical section are modified to include the SMA springs (in

the pitch DOF). The unsteady aerodynamic loads are obtained based on the model of Edwards

(1977), who proposed a state-space representation to Jones (1938)’ approximation to Wagner’s

indicial function (an adaptation of the model of Theodorsen (1935) for arbitrary airfoil moti-

ons). The nonlinear governing equations are cast into a state-space representation (including

the aerodynamic equations and the SMA springs) and solved with a Runge-Kutta method.

The general aeroelastic behavior of the typical section with SMA springs is discussed in

Chapter 4. The effects of preloading the SMA springs are of concern at both the linear flutter

speed and at post-flutter regime. At the linear flutter speed, it is shown that for small preload va-

lues the typical section behaves like a linear aeroelastic system (with linear elastic steel springs

in pitch DOF). The aeroelastic behavior for such a case is assumed as a reference since the aero-

elastic behavior is not modified by the pseudoelastic hysteresis of the SMA springs. For larger

preload values, stress-induced phase transformations are verified at relatively small aeroelastic

displacements. Therefore, the linear aeroelastic behavior is modified due to the nonlinear hys-

teretic behavior of the SMA springs. The pitch and plunge amplitudes decrease with increasing

preload due to the enhanced damping capabilities related to the pseudoelastic hysteresis of the

material under preload. When the critical preload values are employed, the pitch and plunge

amplitudes are significantly smaller (50% or more, in some cases) than the amplitudes predicted

for the linear case (without preload). At the post-flutter regime, the catastrophic linear flutter

behavior is replaced by stable LCOs of acceptable amplitudes (for a specific range of preload

values) due to the energy dissipating and damping capabilities of the SMA springs. The hystere-

tic response of the SMA springs increases the upper limit of the post-flutter speed of acceptable

response amplitude (according to the criteria of maximum acceptable amplitude assumed in this

work) by about 30%.
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A parametric study is presented in Chapter 5. The effects of the SMA pseudoelastic hys-

teresis on the aeroelastic behavior of the typical section are investigated when six different sets

of SMA constitutive properties (from the literature) are assumed. The non-homogeneous cross-

sectional distributions (described in Section 2.4.3) is considered for improved representation of

the SMA behavior. For each of the property sets, the aeroelastic behavior is compared for a

range of airflow speeds in the post-flutter regime and for preloaded and non-preloaded SMA

springs. Overall, it is shown that the aeroelastic behavior is sensitive to the set of SMA proper-

ties and also to the level of preload. Specific sets lead to enhanced aeroelastic behavior at both

the flutter boundary (with smaller aeroelastic amplitudes) and post-flutter regime (over a wider

range of airflow speeds while the amplitudes remain bounded to acceptable limits). It is shown

that the LCO amplitudes in the post-flutter regime are related to a combination of initial condi-

tions, airflow speed and preload applied to the SMA springs, and are strongly affected by the

SMA properties. Moreover, the enhanced aeroelastic behavior of the typical section is associa-

ted with a combination of low critical stresses (for phase transformation), low stress-temperature

transformation slopes and proximity between the martensite start and austenite finish stress-free

temperatures. Such a combination yields more expressive phase transformations at small aeroe-

lastic displacements and therefore is attractive to the considered aeroelastic problem. The upper

limit of the post-flutter speed is about 15% larger than the linear flutter speed for a specific set

of SMA properties. For the same set considered in Chapter 4, the limiting post-flutter speed

is about 13% above the linear flutter speed, in contrast with the 30% above the linear flutter

speed of Chapter 4 (due to the improved SMA model described in Section 2.4.3).

In Chapter 6, the effects of the pseudoelastic hysteresis of SMA springs with different geo-

metries (wire and coil diameters) on the aeroelastic behavior of the typical section are investiga-

ted. Overall, the aeroelastic behavior of the typical section with SMA springs undergoing phase

transformation is sensitive to the geometric properties of the SMA springs. Expressive decrea-

ses in the aeroelastic amplitudes are predicted for specific spring geometries (usually with small

wire diameters or with fewer active coils). It is worth noting that the improvement is only due to

the proper choice of the spring geometry, which can be combined with a proper choice also of

SMA constitutive properties (as in Chapter 5) as well as of fabrication routes and heat treatment
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procedures (ELAHINIA et al., 2012) to further enhance the aeroelastic behavior of the typical

section.

The experimental behavior of a 2-DOF typical section model with preloaded SMA springs

is discussed (for a range of airflow speeds) in Chapter 7. A particular superelastic Ni-Ti SMA

spring (from Kellogg’s Research Labs) with a specific geometry is considered for the presen-

ted tests. The effects of preloading the springs are of concern. For distinct preload conditions

(starting with a small preload), the airflow speed is increased and arbitrary initial plunge dis-

placements are applied to the typical section. Unstable (flutter) oscillations took place at about

13 m·s−1. For larger preload levels, flutter oscillations are replaced by stable LCOs at both

the flutter boundary and post-flutter regime. The aeroelastic behavior of the typical section,

therefore, changed from potentially catastrophic (rapidly growing over time) to stable (with

persistent amplitudes), as numerically predicted in the previous chapters. Although most of

the experimental SMA properties are unknown, the experimental behavior of the typical sec-

tion (with SMA springs) qualitatively agrees with the numerical predictions. The upper limit of

the post-flutter speed is about 13% larger than the (experimental) linear flutter speed, which is

in good agreement with Chapter 5 (the highest airflow speed in that chapter is about 15% above

the linear flutter speed, while the mean limiting speed among the considered property sets in

that same chapter is about 11% above the linear flutter speed).

In Chapter 8, the piezoelectric coupling is considered (in the plunge DOF) along with pre-

loaded superelastic SMA springs (in the pitch DOF) to enable airfoil-based wind energy har-

vesting over a range of airflow speeds by exploiting the pseudoelastic hysteresis of the SMA

springs. As in the previous cases, it is shown that the aeroelastic behavior changes from linear to

nonlinear due to the hysteretic behavior of the SMA springs. The aeroelastic amplitudes and the

electrical power output decrease with increasing preload level due to the damping capabilities

related to the pseudoelastic hysteresis. However, it is important to note that unstable motions

around the flutter boundary are replaced by stable LCOs of acceptable amplitudes, allowing

persistent power generation. In the post-flutter regime, the catastrophic linear flutter behavior

is also replaced by LCOs of acceptable amplitudes. The upper limit of the post-flutter speed
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of acceptable response amplitude increases by 20% for the considered SMA properties. The

amplitudes of the mechanical and electrical outputs increase with increasing airflow speed for

any resistive load. The effect of the resistive load on the electroaeroelastic behavior of the wind

energy harvester with SMA springs is also reported. The amplitude of the aeroelastic displa-

cements decreases around 10% in the vicinity of the optimum resistive load (250 kΩ). The

maximum theoretical power output of 120 mW is obtained for the optimum resistive load at

14 m·s−1 and 4.5 N of preload. The power output reported for the resistive load of 100 kΩ and

preload value of 4.5 N is more than 160% larger than the power output reported in Sousa et al.

(2011) (that uses the same typical section with hardening springs in the pitch DOF). Therefore,

the numerical predictions reported in Chapter 8 show that the use of the SMA pseudoelastic

hysteresis can be more attractive for airfoil-based wind energy harvesting performance enhan-

cement than the use of hardening steel springs. It is also worth observing that the pseudoelastic

hysteresis of SMA elements is a novel mechanism to enable wind energy harvesting over a

range of airflow speeds.

In short, this work shows that the pseudoelastic hysteresis of SMA elements can be effecti-

vely exploited to enhance the aeroelastic behavior of a typical section model by replacing uns-

table flutter oscillations by stable oscillations of acceptable amplitudes over a range of airflow

speeds (starting at the flutter boundary of the typical section). This enhancement is predicted

by numerical simulations and verified with experimental tests. It is also shown that the enhan-

ced aeroelastic behavior depends mainly on the constitutive properties of the considered SMA

material, geometry of the SMA springs and level of preload applied to the springs. In parti-

cular, the post-flutter behavior of the typical section can be significantly enhanced by properly

choosing the properties of the SMA element considered in the typical section, geometry of the

springs and also the preload level. In practice, an optimum set of properties could be obtained

by proper choice of materials, fabrication routes and heat treatment procedures (ELAHINIA et

al., 2012) as well as a spring with an optimum geometry can be manufactured. Therefore, the

results of this study show that the pseudoelastic effects of SMAs can provide a useful passive

method of aeroelastic control.
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9.2 Suggestions for Future Work

Concerning the experimental parameter identification, DSC tests can be performed to de-

fine the actual transformation temperatures of the SMA springs as well as other thermal pro-

perties such as specific heat and latent heat. Temperature-controlled force-displacement tests

can be performed at different temperatures to determine the critical stresses for phase transfor-

mation and the stress-temperature relationship (the transformation slopes). With well defined

SMA constitutive properties, more reliable numerical simulations can be performed. In this

regard, different SMA constitutive models as well as more realistic spring models can be em-

ployed for better representation of the nonlinear behavior of SMA springs. A heat transfer

model can also be included in the proposed modeling to account for release and absorption of

latent heat (related to forward and reverse phase transformations, respectively) and convective

heat transfer effects. Since isothermal conditions are usually not guaranteed, a strain-rate de-

pendent model can also improve the predictions of the SMA behavior. Moreover, SMAs can

exhibit significant material anisotropy (tension-torsion coupling) during stress-induced phase

transformations (MEHRABI et al., 2014), while isotropy can be observed during linear elastic

regime. This work assumed isotropy throughout the SMA loading-unloading process despite

the presence of phase transformation. Therefore, the model of this work can be improved to

represent tension-torsion coupling during phase transformation.

With respect to experimental aeroelastic tests, SMA springs with different constitutive pro-

perties and different geometries (as discussed in previous chapters) can be employed for the

enhancement of the aeroelastic behavior of the typical section. In addition, different SMA ele-

ments (other than helical springs) can be considered. SMAs can also be considered in other (or

multiple) DOFs of the typical section. The larger damping capabilities of the martensitic phase

can also be exploited, as well as the ability of controllable change of elastic properties.

Concerning the electromechanically coupled typical section with SMA springs, several im-

provements can be made. For accuracy, the optimum resistive load should change with the

airflow speed in the numerical predictions presented in Chapter 8, which was not investigated

in this work. Nonlinear circuit techniques can be employed either to maximize the electrical
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power output or to maximize the damping augmentation of the system. In the energy harves-

ting configuration, concentrated structural nonlinearities (such as freeplay) can be introduced

to induce the appearing of subcritical oscillations, thus enlarging the range of airflow speeds

at which persistent oscillations take place (promoting continuous electrical power generation).

The combination of piezoceramics with SMAs can also be investigated to further enhance the

flutter and post-flutter behavior of the typical section, by decreasing the amplitudes of oscilla-

tion and increasing the upper speed limit in the post-flutter regime, respectively.
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APPENDIX A - Lagrange Equations for

the Piezoaeroelastic System

Hamilton’s Principle for an electromechanical system (in the absence of dissipative effects)

is given (ERTURK; INMAN, 2011),

t2∫
t1

(δT −δU +δWie +δWnc)dt = 0, (A.1)

where δT is the variation in the total kinetic energy, δU is the variation in the total potential

energy, δWie is the variation in the total electrical energy and Wnc is the virtual work due to the

non-conservative components of mechanical force and electrical charge.

The kinetic energy may be expressed in terms of generalized coordinates and their time-

derivatives as,

T = T (q1, q2, ..., qn, q̇1, q̇2, ..., q̇n), (A.2)

while the potential and electrical energies are expressed in terms of the generalized coordinates

only,

U =U (q1, q2, ..., qn), (A.3)

Wie =Wie (q1, q2, ..., qn), (A.4)

where qk represents each of the n coordinates of the considered system.

The variations of T , U and Wie are, respectively,

δT =
n

∑
k=1

(
∂T
∂qk

δqk +
∂T
∂ q̇k

δ q̇k

)
, (A.5)
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δU =
n

∑
k=1

∂U
∂qk

δqk, (A.6)

δWie =
n

∑
k=1

∂Wie

∂qk
δqk, (A.7)

and the virtual work Wnc is,

δWnc =
n

∑
k=1

Qkδqk, (A.8)

where Qk are non-conservative forces.

Hamilton’s Principle (Eq. (A.1)) becomes, therefore,

t2∫
t1

n

∑
k=1

[(
∂T
∂qk
− ∂U

∂qk
+

∂Wie

∂qk
+Qk

)
δqk +

∂T
∂ q̇k

]
dt = 0, (A.9)

by assuming δqk = 0 when t = t1 and t = t2.

By integrating (by parts) the last term of the equation above, Hamilton’s Principle may be

expressed as,

t2∫
t1

n

∑
k=1

[
∂T
∂qk
− ∂U

∂qk
+

∂Wie

∂qk
+Qk−

d
dt

(
∂T
∂ q̇k

)]
δqk dt = 0. (A.10)

For arbitrary virtual displacements, Eq. (A.10) reduces to the Lagrange electromechanical

equation,
d
dt

(
∂T
∂ q̇k

)
− ∂T

∂qk
+

∂U
∂qk
− ∂Wie

∂qk
= Qk, (A.11)

and the dissipative effects can be introduced into the model as non-conservative forces.



APPENDIX B - Matrices of the

Aerodynamic Model

The matrices which correspond to the non-circulatory aerodynamics are given (EDWARDS,

1977),

Mnc =


−π
(1

8 +a2) −2T13 πa

−2T13
T3
π

T1

πa T1 −π

 , (B.1)

Knc =


0 −(T10 +T4) 0

0 1
π
(T4T10−T5) 0

0 0 0

 , (B.2)

Bnc =


π
(
a− 1

2

)
2p+

(1
2 −a

)
T4 0

−p+T1 +
T4
2

T11T4
2π

0

−π T4 0

 . (B.3)

The matrices which correspond to the circulatory portion are given,

R =


2π
(
a+ 1

2

)
−T12

−2π

 , (B.4)

S1 =

[
1 T10

π
0

]
, (B.5)

S2 =

[ (1
2 −a

) T11
2π

1

]
, (B.6)
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S3 =

[
0.006825

(U
b

)2 0.10805
(U

b

) ]
. (B.7)

The matrices corresponding to the two augmented (aerodynamic) equations of the state-

space model (in dimensionless form) are given,

D̃ =
1

ω2
h

D, (B.8)

Ẽ1 =
1

ω2
h

(
U
b

) 0

S1

 , (B.9)

Ẽ2 =
1

ωh

 0

S2

 , (B.10)

F̃p =
1

ω2
h

 0 1

−0.01365
(U

b

)2 −0.3455
(U

b

)
 . (B.11)



APPENDIX C - Theodorsen Constants

The geometric constants required for the matrices of Appendix B (known as Theodorsen

constants) are given Theodorsen (1935),

T1 =−1
3

√
1− c2

(
2+ c2)+ ccos−1c, (C.1)

T2 = c
(
1− c2)−√1− c2

(
1+ c2)cos−1c+ c

(
cos−1c

)2
, (C.2)

T3 =−
(1

8 + c2)(cos−1c
)2

+ 1
4

√
1− c2cos−1c

(
7+2c2)− 1

8c
(
1− c2)(5c2 +4

)
, (C.3)

T4 =−cos−1c+ c
√

1− c2, (C.4)

T5 =−
(
1− c2)− (cos−1c

)2
+2c

√
1− c2cos−1c, (C.5)

T6 = T2, (C.6)

T7 =−
(1

8 + c2)cos−1c+ 1
8c
√

1− c2
(
7+2c2) , (C.7)

T8 =−1
3

√
1− c2

(
2c2 +1

)
+ ccos−1c, (C.8)

T9 =
1
2

[
1
3

(√
1− c2

)3
+aT4

]
, (C.9)

T10 =
√

1− c2 + cos−1c, (C.10)

T11 = cos−1c(1−2c)+
√

1− c2 (2− c) , (C.11)

T12 =
√

1− c2 (2+ c)− cos−1c(2c+1) , (C.12)

T13 =
1
2 [−T7− (c−a)T1] , (C.13)

T14 =
1
16 +

1
2ac, (C.14)

where a is defined for a typical section with a control surface (a is the dimensionless position
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of the control surface hinge line from the midchord). This is not the case of this study (since a

2-DOF typical section is considered) and hence the constants which depend on a are not used

by the matrices of Appendix B. All of the Theodorsen constants are presented, however, for a

sense of completeness. Furthermore, c is the dimensionless position of the elastic axis from the

midchord.



APPENDIX D - Isothermal and

Non-Isothermal Assumptions for the

SMA Behavior

For comparison purposes, a heat transfer model based on the works of Hadi et al. (2010) and

Faulkner (2000) was also included in the aeroelastic model of this work. The referred thermal

model includes heat storage, convective heat transfer, Joule heating and latent heat (release and

absorption of heat related to forward and reverse phase transformations, respectively). Based

on the referred works, the following heat transfer equation was considered,

mscpṪ =
V 2

R(ξ )
+msLhξ̇ −hcAc (T −T∞) (D.1)

where ms is the mass of the SMA spring, cp is specific heat, V is voltage, R is electrical resis-

tance of the SMA spring, hc is the convective heat transfer coefficient, Ac is the circumferential

area of the SMA spring, T is the SMA temperature, T∞ is the ambient temperature and Lh is the

latent heat. One may note the latent heat term is related to the rate of change in the martensitic

fraction, which also introduces loading rate dependency to the model.

The electrical resistance of the SMA can be expressed as function of the martensitic frac-

tion,

R(ξ ) = RA +ξ (RM−RA) (D.2)

where RA and RM are the electrical resistances of the fully austenitic and fully martensitic pha-

ses, respectively.

Moreover, the SMA spring considered in Hadi et al. (2010) is from the same manufacturer
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of the SMA spring employed in Aguiar et al. (2013). The SMA springs employed in both works

are very similar to each other and since this work assumed the SMA constitutive properties of

Aguiar et al. (2013) (and similar spring geometry), it is reasonable to assume that both SMA

springs have also similar thermal and electrical properties. Therefore, by employing the SMA

constituive properties of Aguiar et al. (2013) (the same properties employed in Chapter 4) and

the SMA thermal and electrical properties of Hadi et al. (2010) (displayed in Table 8), the

aeroelastic behavior of the typical section is presented next for both the isothermal and non-

isothermal assumptions. The aeroelastic parameters are also the same of Chapter 4.

Table 8 – SMA thermal and electrical properties.

Property Value Unit
ms 1.18×10−3 kg
cp 350 J ·kg−1 · ◦C−1

Lh 6025 J ·kg−1 · ◦C−1

RA 0.7246 Ω

RM 0.8197 Ω

hc 150 J ·m−2 · ◦C−1 · s−1

Ac 9.77×10−4 m2

For the simulations, the ambient temperature is assumed as 23 ◦C. For the considered para-

meters (Tables 1 and 8), an input voltage of 1.93 V yields to the steady-state SMA temperature

of 58 ◦C (which is the same value of A f in Table 1). The corresponding critical stresses are,

therefore, the same ones of Chapter 4. The initial plunge displacement and preload levels are

also the same.

Figs. 80 to 83 display the aeroelastic and SMA spring behaviors for the simulation pa-

rameters described above and isothermal and non-isothermal conditions. Non-preloaded and

preloaded SMA springs ( f0 = 0 N and f0 = 3 N, respectively) are considered for the typical

section at the flutter boundary. For the preloaded case, post-flutter regime is also considered.

The same conditions (preload levels and airflow speeds) were assumed in Chapter 4. One should

note that the results obtained for the isothermal and non-isothermal conditions are similar (with

negligible differences). Therefore, the isothermal assumption was employed throughout this

work (in all of the previous chapters).
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(a) (b)

Figure 80 – (a) Plunge and (b) pitch peak amplitudes (continuous lines: isothermal; dashed
lines: non-isothermal).

(a) (b)

Figure 81 – Behavior of the SMA springs – (a) elongation and (b) shear stress in time (continu-
ous lines: isothermal; dashed lines: non-isothermal).



188

(a) (b)

(c) (d)

(e)

Figure 82 – Behavior of the SMA springs – (a) shear stress-elongation diagrams (for f0 = 0 N
and 11.6 m·s−1, f0 = 3 N and 11.6 m·s−1 and also f0 = 3 N and 14 m·s−1), (b) detail
of the diagram for 14 m·s−1, (c) martensitic fraction, (d) stiffness and (e) electrical
resistance (continuous lines: isothermal; dashed lines: non-isothermal).
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(a) (b)

Figure 83 – Temperature variations (a) and the corresponding critical stress τM
s (b) (continuous

lines: isothermal; dashed lines: non-isothermal).

The effects of thermal expansion on the overall aeroelastic response are small and are not

considered in this work.
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