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ABSTRACT 

 

AMINI NIKAI, S. R. Effects of inter particle friction on the meso-scale hydrodynamics of 

dense gas-solid fluidized flows. 2018. 138p. Thesis (Doctor of Science) – São Carlos School of 

Engineering, University of São Paulo, São Carlos, 2018. 

 

Gas-solid fluidized bed reactors are widely applied in chemical and energy industries, and 

their design and scale-up are virtually empirical, extremely expensive and time consuming. This 

scenario has motivated the development of alternative theoretical tools, and two-fluid modeling, 

where gas and particulate are both treated as interpenetrating continuum phases, has appeared as a 

most promising approach. Owing to the large domains to be resolved in real-scale fluidized bed 

reactors, only filtered modeling approaches are feasible, and closure models become necessary to 

recover sub-grid effects that are filtered by the very coarse numerical grids that are imposed owing 

to computational limitations. Those closure models, which in hydrodynamic formulations account 

for filtered interphase momentum exchanges and filtered and residual stresses in the phases, can 

be derived from results of highly resolved simulations (HRS) performed over small size domains 

under refined numerical grids. One widely practiced approach consists of applying two-fluid 

modeling under micro-scale defined closures, generally known as microscopic two-fluid modeling. 

This approach includes microscopic closures for solid phase stresses derived from the kinetic 

theory of granular flows (KTGF), which accounts for kinetic-collisional effects only, and is 

adequate to dilute flows. Otherwise, the conventional KTGF does not account for interparticle 

friction effects, and its application to dense flow conditions is quite questionable. In this work a 

literature available modified version of KTGF is applied which also accounts for interparticle 

friction, and highly resolved simulations are performed for dense flow conditions in order to 

evaluate the effects of friction over relevant filtered parameters (namely effective drag coefficient, 

filtered and residual stresses). Ranges of domain average solid volume fractions and gas Reynolds 

numbers are considered (macro-scale conditions) embracing dense gas-solid fluidized flows from 

suspensions up to pneumatic transport. The MFIX open source code is used in all the simulations, 

which are performed over 2D periodical domains for a unique monodisperse particulate. The HRS 

results (i.e. meso-scale flow fields) are filtered over regions compatible with grid sizes in large 

scale simulations, and the relevant filtered parameters of concern are derived and classified by 
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ranges of other filtered parameters taken as independent variables (filtered solid volume fraction, 

filtered slip velocity, and filtered kinetic energy of solid velocity fluctuations, which are referred 

to as markers). Results show that the relevant filtered parameters of concern are well correlated to 

all of those filtered markers, and also to all of the imposed macro-scale conditions. Otherwise, 

interparticle friction showed no significant effects over any filtered parameter. It is recognized that 

this issue clearly requires further investigation notably regarding the suitability of the markers that 

were assumed for classifying the filtered results. The current work is intended as a contribution for 

future developments of more accurate closure models for large scale simulations of gas-solid 

fluidized flows. 

 

Keywords: Two-fluid modeling, Sub-grid modeling, Highly resolved simulation, Gas-solid flow, 

Fluidization, Particle-particle interaction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



13 

RESUMO 

 

AMINI NIKAI, S. R. Efeitos da fricção inter-partículas na hidrodinâmica de meso-escala de 

escoamentos gás-sólido fluidizados densos. 2018. 138p. Tese (Doutorado) – Escola de 

Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2018.  

 

Reatores de leito fluidizado de escoamento gás-sólido são largamente utilizados nas 

indústrias química e de energia, e o seu projeto e escalonamento são virtualmente empíricos, 

extremamente caros e demorados. Este cenário tem motivado o desenvolvimento de ferramentas 

teóricas alternativas, e a modelagem de dois fluidos, onde gás e particulado são ambos tratados 

com fases contínuas interpenetrantes, tem surgido como uma aproximação muito promissora. 

Devido aos grandes domínios a serem resolvidos em reatores de leito fluidizado de escala real, 

apenas aproximações de modelagem filtradas são viáveis, e modelos de fechamento tornam-se 

necessários para recuperar efeitos sub-malha que são filtrados pelas malhas numéricas grosseiras 

que são impostas devido as limitações computacionais. Estes modelos de fechamento, que em 

formulações hidrodinâmicas respondem principalmente por trocas de momentum filtradas entre 

fases e tensões filtradas e residuais nas fases, podem ser obtidos de resultados de simulações 

altamente resolvidas (SAR) realizadas em domínios de dimensões reduzidas sob malhas numéricas 

refinadas. Uma aproximação largamente praticada consiste na aplicação de modelagem de dois 

fluidos sob fechamentos definidos na micro-escala, genericamente conhecida como modelagem 

microscópica de dois fluidos. Esta aproximação inclui fechamentos microscópicos para tensões da 

fase sólida obtidos da teoria cinética dos escoamentos granulares (TCEG), que considera apenas 

efeitos cinéticos-colisionais, e é adequada para escoamentos diluídos. Por outro lado, a TCEG 

convencional não leva em conta efeitos de fricção interpartículas, e sua aplicação para condições 

densas de escoamento é bastante questionável. Neste trabalho aplica-se uma versão modificada da 

TCEG disponível na literatura que também leva em conta fricção interpartículas, e simulações  

altamente resolvidas são realizadas para condições de escoamentos densos visando avaliar os 

efeitos da fricção sobre os parâmetros filtrados relevantes (coeficiente de arrasto efetivo, tensões 

filtradas e residuais). Considera-se faixas de frações volumétricas de sólido e números de Reynolds 

do gás médios no domínio (condições de macro-escala) abrangendo escoamentos gás-sólido 

fluidizados densos desde suspensões até transporte pneumático. O código aberto MFIX é utilizado 
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em todas as simulações, que foram executadas sobre domínios periódicos 2D para um único 

particulado monodisperso. Os resultados das SAR (i.e., campos de escoamento de meso-escala) 

foram filtrados sobre regiões compatíveis com tamanhos de malha praticados em simulações de 

grandes escalas, e os parâmetros filtrados relevantes de interesse são calculados e classificados por 

faixas de outros parâmetros filtrados tomados como variáveis independentes (fração volumétrica 

de sólido filtrada, velocidade de deslizamento filtrada, e energia cinética das flutuações de 

velocidade da fase sólida filtrada, que são referidos como marcadores). Os resultados mostram que 

os parâmetros filtrados relevantes de interesse são bem correlacionados com todos os marcadores, 

e também com todas as condições de macro-escala impostas. Por outro lado, a fricção 

interpartículas não mostrou efeitos significativos sobre qualquer parâmetro filtrado. Reconhece-se 

que este aspecto claramente requer investigações adicionais, notadamente com respeito à 

adequação dos marcadores que foram considerados para classificação dos resultados filtrados. O 

trabalho corrente é posto como uma contribuição para o desenvolvimento futuro de modelos de 

fechamento mais acurados para simulações de grandes escalas de escoamentos gás-sólido 

fluidizados. 

 

Palavras-chave: Modelagem de dois fluidos, Modelagem sub-malha, Simulação altamente 

resolvida, Escoamento gás-sólido, Fluidização, Interações partícula-partícula 
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24 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



25 

LIST OF SYMBOLS 

 

 

Bgs   Nm-3  Fluctuation of gas-solid buoyancy force 

fC   -  Friction coefficient 

DC   -  Single particle drag coefficient 

pd   m  Particle diameter 

e   -  Restitution coefficient for particle-particle collisions 

effe   -  Effective restitution coefficient 

Fr
pd   -  Particle size based Froude number 

g   ms-2  Acceleration of gravity 

0g   -  Radial distribution function 

H   -  Drag coefficient correction 

I   -  Unit tensor 

coll,kJ   Jm-3s-1  Rate of dissipation of granular energy by collisional damping 

coll,fJ   Jm-3s-1  Rate of dissipation of granular energy by friction 

Jvis   Jm-3s-1  Rate of dissipation of granular energy by viscous damping 

k   m-2s-2  Kinetic energy 

L   m  Characteristic length 

f   Nm-3  Interface force 

P   Nm-2  Pressure 

Re   -  Reynolds number 

s   s-1  Strain rate tensor due to viscous plus pressure effects 

St   -  Stokes number 

t   s  Time 

T   K  Temperature 

u   ms-1  Velocity fluctuation in the horizontal direction 
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v   ms-1  Velocity fluctuation in the vertical direction 

v   ms-1  Velocity vector 

tv   ms-1  Terminal settling gas velocity 

y   m  Vertical (axial) Cartesian coordinate 

 

Greek letters 

 

   kgm-3s-1 Micro-scale gas-solid drag coefficient 

slip   Jm-3s-1  Rate of production of granular energy by gas-particle slip 

f   m  Filter size 

t   s  Time step 

p   -  Particle sphericity 

   m2s-2  Granular temperature 

sk   kgm-1s-1 Granular thermal conductivity 

   Nsm-2  Bulk viscosity 

   Nsm-2  Dynamic viscosity 

   kgm-3  Density 

σ   Nm-2  Deviatoric stress tensor 

   ms-1  Root mean square velocity 

τ   Nm-2  Reynolds-like stress tensor 

   -  Volume fraction 

 

Subscripts 

 

eff   -  Effective, or meso-scale related 

f   -  Fluid 

fil   -  Filtered 

g   -  Gas phase 
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i   -  Horizontal direction 

I   -  Interface 

j   -  Vertical direction 

  -  A generic phase, either s or g 

max   -  Maximum 

p   -  Particle 

res   -  Residual, or meso-scale related 

s   -  Solid phase 

slip   -  Slip 

susp   -  Suspension 

 

Other symbols 

 

-    Filtered or volume averaged 

     Dimensionless parameter 

    Dimensionless parameter, 

    Domain volume average 
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1 INTRODUCTION 
 

Fluidized-bed processes have operated commercially since the 1920s, beginning with the 

advent of the Winkler coal gasifier in Germany. Fluidized catalytic cracking units (FCCUs) for the 

production of high-octane gasoline and fluidized-bed reactors for making phthalic anhydride 

debuted in the 1940s (Cocco et al. 2014). Today, about three-quarters of all polyolefin are made in 

fluidized-bed processes. The development of a specialized zeolite catalyst for cracking heavy oil 

into various fractions enabled the commercialization of the FCC circulating fluidized beds (Leva 

et al. 1948). Fluidized beds are typically more complex to design, build, and operate than other 

types of reactors, such as packed-bed and stirred-tank reactors; scale-up of fluidized beds is highly 

expensive, time consuming and hard-working (Pangarkar 2014). Fluidized beds are prone to 

erosion and particle attrition caused by the moving particles. Solids losses can result in significant 

operating costs, especially when the solid particles are an expensive catalyst. The development of 

fluidized bed reactors is still a very much empirical science, based upon gradually scaled 

demonstration plants that involve both very high costs and excessive execution times (Wang et al. 

1999). The current research proposition ultimately intends to contribute in the context of replacing 

those very expensive demonstration plants by computational simulation. 

Accurate computational simulation of fluidized bed reactors requires accurate modeling, 

and no accurate modeling can be advanced without a rigorous description of the concerning very 

heterogeneous gas-solid flows. Those flows are characterized by very dynamic formation, 

composition and dissipation of entities such as gas bubbles and clusters of particulate, which 

manifest in a multitude of time and length scales, and profoundly affect mass transfer, heat transfer 

and chemical reaction rates. Owing to the commonly huge physical volumes that are involved in 

real scale fluidized bed reactors, only the so called large scale simulations (LSS) are feasible. LSS 

impose very coarse numerical grids, inside which any heterogeneity is filtered, and their effects are 

thereby lost. Therefore, if accuracy is desired, closure models must be added to the LSS 

formulations in order to recover sub-grid filtered effects. Generating sub-grid closures for LSS 

represents a formidable challenge for physicists and modelers. One way of performing that is 

through filtered results from Highly Resolved Simulations (HRS), where fine enough numerical 

grids are applied so that all possible scales of solid particle structures are captured. 
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The currently proposed research intends to contribute for the derivation of increasingly 

realistic filtered closure models for phase stresses and inter-phase interactions by means of 

computational experiment with microscopic two-fluid modeling, which is suitable for HRS of the 

concerning flows. 

In gas-solid fluidized flows, for solid volume fractions up to 40%, solid phase stresses 

arising from particle-particle collisions are usually modeled following an analogy with the kinetic 

theory of dense gases (Lun et al. 1984). The so called kinetic theory of granular flows (KTGF) 

assumes that the collisions are inelastic and mostly binary. Those assumptions are quite fine for 

dilute conditions, but KTGF requires revision for dense flow conditions. In dense flow regimes, 

which are frequently referred to as frictional regimes particle-particle contacts are dominated 

largely by enduring multiple frictional contacts and, thus, kinetic theory does not apply. 

In the current work the effects of frictional interactions among particles are considered in 

addition to the usual collisional effects usually accounted for by the conventional kinetic theory of 

granular flows. For that purpose, a modified version of KTGF is applied following on 

implementation developed by Berzi and Vescovi (2015) based on Chialvo et al. (2013) frictional 

model. The effects of the inclusion of frictional interactions on filtered parameters are evaluated 

having in view sub-grid model enhancement. A range of domain average solid fractions and gas 

Reynolds numbers are enforced which are typical of dense flow regimes. 

The present concern is turned to the application of high Stokes number particulates, which 

are typical of fluidized bed processes. A high Stokes number (frequently defined as the ratio of the 

particulate response time to the Kolmogorov time scale or other relevant time scales of the flow) 

means that the motion of individual particles is not affected by the carrying gas turbulence. The 

MFIX open source code is used in all the simulations, which are performed over 2D periodical 

domains for a unique high stokes number particulate. 

An overview is presented next on gas-solid fluidization basics and the continuum modeling 

approach which is followed in this work. Then the concerning literature is revised both on highly 

resolved simulations and frictional effects, and the objectives of research are briefly summarized.    
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1.1 Fluidization Regimes 

 

Gas-particle flows in fluidized beds exhibit a number of complex characteristics. 

Depending on the gas inlet conditions and particle properties, the fluidization of a bed of particles 

can fall into a number of different regimes (Figure 1). 

 

Figure 1 – Schematic representation of gas fluidized beds in different regimes. 

 

Source (Kunii and Levenspiel 2013) 

 

When inlet gas velocity is small, the gas will seeps through the particulate, and the bed of 

particles remains fixed. As the gas velocity is increased, so it is its drag effect over the particulate, 

and a stage is reached when the drag force exceeds the gravity on the particles. At this condition 

the particles start moving and colliding, and the bed expands. At this so called minimum 

fluidization condition, the two-phase suspension that is formed exhibits a fluid like behavior. The 

particular velocity at which the fixed bed begins to expand is defined as the minimum fluidization 

velocity. At gas velocities higher than the minimum fluidization velocity bubbles of gas arise which 

ascend through a dense “emulsion” phase. A further gas velocity increase disrupts the bubbles into 

nonuniform very irregular gas voids characterizing the so called turbulent regime. Even higher gas 

velocities push the particles into a fast or rapid fluidization regime, and the topology turns to be 

Minimum 
fluidizing 
regime 
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dominated by a dilute gas-solid flow full of particulate structures usually referred to as clusters. At 

still higher gas velocities the flow enters the pneumatic transport regime. 

The current work is mostly concerned with high density flow conditions, where frictional 

effects may become dominant. However, high density regions inside the flow happen in all 

fluidized regimes, so that current analysis stands independently of flow regime. 

Because of the importance of fluidized beds to the chemical industry, and the large amounts 

of capital invested in their operation, the ability to make engineering predictions of their 

performance characteristics is essential in design, planning, and optimization. Unfortunately, 

scaling up the experimental results from bench-scale fluidized beds is notoriously problematic 

(Kunii and Levenspiel 1991). The difficulty of scale-up is unsurprising considering the complex 

behavior exhibited by fluidized beds, which related to physical properties of the fluid and the 

particles, flow conditions, and vessel dimensions. Capturing all these effects with simple 

engineering correlations of operating conditions is impossible. Therefore, more rigorous and 

scientific models hold great practical value and have drawn increasing attention in the research 

community. 

 

1.2 Two – Fluid modeling of gas – solid flows 

 

In this work two-fluid modeling is applied, which is on Euler-Euler stile approach where 

the phases, fluid and particulate, are both treated as continuum phases, respectively called gas and 

solid phases. In this modeling framework, the gas and solid phases are inter-penetrating and locally-

averaged and inter phase interaction effects such as drag are considered in average as field effects. 

The volume averaged two-fluid model as derived by Anderson & Jackson (1968) is applied. The 

formulation requires closure modelling, notably for particulates treated as the continuum solid 

phase which requires the definition of suitable fluid properties. 

Closures are usually set in terms of topological laws, constitutive laws, and transfer laws 

(Drew and Lahey 1993; Arnold et al. 1990). Topological laws define the spatial distribution of 

phase-specific quantities such as phase fractions and mass flow rates. Constitutive laws describe 

the rheological approach and physical properties of different phases such as viscosities and 

pressures. Transfer laws equations that describe different interactions between phases at the 

interface such as momentum exchanges by drag. 
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In the two-fluid model based on the kinetic theory of granular flows, besides the continuity 

and momentum conservation equations for the two phases, an additional conservation 

pseudothermal energy is resolved. This equation is an analogy with the continuum energy 

conservation equation, and provides a granular temperature analogous to the thermodynamic 

temperature concept (Gidaspow 1994). The granular temperature is associated with the fluctuating 

motion of particles just like temperature is associated with the fluctuating motion of molecules. 

The kinetic theory of granular flows based two-fluid model, which is applied in the present work, 

is known to capture characteristics such as bubble-like voids in dense gas-particle flows, as well as 

clusters and streamers in dilute flows (Agrawal 2001). The two-fluid model under closures from 

the kinetic theory of granular flows is usually called microscopic two-fluid model approach. 

 

1.3 Literature 

 

1.3.1 Highly resolved simulations of gas-solid fluidized flows 

 

According to (Sundaresan 2000), two-fluid models including suitable filtered closures 

represent the most promising next generation models for multiphase reactors and, in this context, 

the formulation of realistic filtered models is a great challenge ahead. This particular issue has been 

addressed by a number of researchers on the basis of highly resolved computational experiments 

(or highly resolved simulations, HRS) with microscopic two-fluid modeling (Agrawal 2001; 

Andrews IV et al. 2005; Igci et al. 2008; Igci and Sundaresan 2011a; Milioli et al. 2013; 

Schneiderbauer and Pirker 2014; Sarkar et al. 2016). Besides making it clear the real necessity for 

filtered models, those works suggest that filtered models so produced from highly resolved 

computational experiments do require continuous improvement as more and more realistic 

approaches are pursued. The filtered models are also called meso-scale models since they are 

generated from computational experiments under grid refinements that are expected to capture all 

the solid phase scales of the flow, so that filtered meso-scale data can be derived. 

In most cases, reduced domains are considered, which are extracted from the free stream in 

the core of the flow field, and periodic boundaries are applied. As periodic boundaries are applied, 

an extra gas phase pressure gradient is imposed in the vertical direction in order to impose a flow 

driving force. It is usual to consider an extra gas phase pressure gradient to exactly compensate the 

gravity acting on the gas-solid mixture. This idea is brought from fundamental studies on the 
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instabilities that develop in gas-solid flows owing to inter-particle inelastic collisions, which 

ultimately lead to clustering (Goldhirsch et al. 1993; Tan and Goldhirsch 1997). While those studies 

are valid for quasi-static conditions, where the particulate arranges itself in low velocity 

suspensions, it has been commonly assumed that the cluster formation mechanism that prevails is 

also relevant to any flow topology, from bubbling, to turbulent, to rapid gas-solid flows. 

Following the above basic approach, Agrawal et al. (2001), Andrews IV et al. (2005), Igci 

et al. (2008), Igci et al. (2010), and Igci and Sundaresan (2011) developed highly resolved 

simulations aiming for filtered correlations for filtered and residual pressure and viscosity of the 

solid phase, and for the effective drag coefficient. Agrawal et al. (2001) characterized the Meso-

scale of the gas-solid flow as comprised of solid coherent structures with dimensions from 10 to 

100 times the particulate size. From their predictions the authors analyzed the effective drag 

coefficient, and the effective dynamic viscosity and pressure of the solid phase. 

As observed by van der Hoef et al. (2006), Agrawal et al. (2001) showed that grid 

refinements of the order of 10 times the particulate size provided grid independent predictions for 

a particular case. They also showed that vertical boundary conditions of free slip, partial slip and 

periodic, do produce similar flow topologies. 

Andrews IV et al. (2005) explicitly proposed ad hoc closures for the effective drag, residual 

viscosity and pressure of the solid phase. Igci et al. (2008) further extended the previous works of 

Agrawal et al. (2001) and Andrews IV et al. (2005), and showed that the filtered predictions depend 

on the sub-grid filter size. A posterior work also showed the filtered predictions to depend on the 

distance from walls(Igci and Sundaresan 2011b). Further extending the work reported in Igci et al. 

(2008), Igci and Sundaresan (2011) produced correlations for the filtered effective drag, pressure 

and viscosity of the solid phase, as a function of filter size and filtered solid volume fraction. 

The effective drag coefficient was expressed in the form of a drag coefficient correction 

relating the actual effective drag coefficient to the filtered micro-scale drag coefficient, as 

previously done, for instance, by Zhang and Vander Heyden (2002). Igci et al. (2012) tested the 

correlations presented in Igci and Sundaresan (2011), including the wall corrections proposed in 

Igci et al. (2010), in coarse grid simulations of a riser flow. The comparisons against empirical data 

showed qualitative agreement, while quantitative differences still remained.  

Following the same basics of the previous works, Parmentier et al. (2012) proposed a 

similar approach to deal with the filtered effective drag, except they did not apply periodic 
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boundaries but a small 2D bubbling bed configuration. Their correlations for the effective drag 

correction were alike those proposed in Igci and Sundaresan (2011), except for the inclusion of a 

macro-scale length scale in the filter size dependence of the drag coefficient correction. They also 

included a coarse grid dynamical adjustment analogous to the dynamic correction usually applied 

in large eddy simulation of turbulent flows. A test of their drag correction correlation in a coarse 

grid simulation of a bubbling bed set up recovered the correct bed expansion which came out from 

a highly resolved simulation. The model remained to be tested for more dilute flow configurations 

such as circulating fluidized beds. 

Ozel et al. (2013) extended the work of Parmentier et al. (2012) by incorporating vertical 

periodic boundaries over 3D bubbling bed conditions, and also by extending the development to 

include stresses analyses as done by Agrawal et al. (2001). Their conclusions were similar to those 

of Parmentier et al. (2012).  

In the above works (Agrawal 2001; Andrews IV et al. 2005; Igci et al. 2008; Igci and 

Sundaresan 2011a; Parmentier et al. 2012; Ozel et al. 2013), filtered parameters have been 

correlated to filter size and filtered solid volumetric fraction. It so happens that different patterns, 

ranging from very homogeneous to very heterogeneous, may occur for any particular values of 

filter size and filtered solid fraction. In order to account for the heterogeneity of the flow, Milioli 

et al. (2013) introduced an additional independent variable in filtered parameter correlation (named 

2nd marker, while the solid volumetric fraction was named 1st marker). Models for filtered and 

residual pressures and viscosities were proposed in analogy with the Smagorinsky’s turbulence 

viscosity model, thereby introducing the filtered scalar shear rate as 2nd marker. Also, a model for 

the effective drag coefficient correction was proposed including the filtered slip velocity as a 2nd 

marker. 

Ozarkar et al. (2015) applied the sub-grid models of Milioli et al. (2013) to a large scale 

simulation of a bubbling fluidized bed, and compared results to experiment. They found a very 

good agreement between experiment and predictions for both bed expansion and pressure drop 

through the height of the bed. Schneiderbauer and Pirker (2014) followed the same path as Milioli 

et al. (2013), and found similar results. 

Agrawal et al. (2013) extended the work of Milioli et al. (2013) by also proposing filtered 

models for the mass/heat diffusivity coefficient and for the interphase mass/heat transfer 
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coefficient; respectively accounting for the filtered scalar shear rate and the filtered slip velocity as 

2nd marker. 

Sarkar et al. (2016) developed new sub-grid models following the work of Milioli et al. 

(2013), except that based on 3D highly resolved simulations. Similar behavior of the effective drag 

coefficient correction, filtered and residual pressures and viscosities were observed, with some 

quantitative differences. Regarding the filtered and residual pressures and viscosities, a correlation 

to the filtered velocity as 2nd marker was also observed which was not seen on the previous results 

of Milioli et al. (2013). In addition to sub-grid model proposition, Sarkar et al. (2016) also 

developed a validation step by comparing predictions of a large scale simulation against experiment 

for a bubbling bed situation. A very good agreement between predictions and experiment was 

found for both bed expansion and pressure drop through the height of the bed. 

 

1.3.2 Interparticle friction in gas-solid flow modeling 

 

In two-fluid modeling, particulate phases are treated as continua, thereby requiring 

continuum properties to be defined. In microscopic two-fluid modeling this is done through the 

kinetic theory of granular flows (Jenkins and Savage 1983; Lun et al. 1984; Gidaspow 1994; Garzó 

and Dufty 1999).This theory is only valid for regions of dilute homogeneous flows, where 

collisional inelastic effects dominate particle-particle interactions. The real fluidized flows, 

however, are highly heterogeneous and comprise very dense regions that come close to particulate 

maximum packing. In these regions enduring frictional contact among particles predominate over 

collisional effects. Different procedures have been proposed for the treatment of transition regions 

between dilute and dense flows (Johnson and Jackson 1987; Schaeffer 1987; Syamlal et al. 1993; 

Srivastava and Sundaresan 2003; Chialvo and Sundaresan 2013; Berzi and Vescovi 2015).  

Some approximations look for either the simple replacement of collisional by frictional 

effects above some high solid fraction (Schaeffer 1987; Syamlal et al. 1993), the generalized 

composition of collisional and frictional effects irrespective of solid concentration (Johnson and 

Jackson 1987), or the composition of those effects only above some limit on solid 

fraction(Srivastava and Sundaresan 2003). 

Departing from a comparative analysis of those propositions, Pannala et al. (2009) 

performed two-fluid simulations using a simple heuristic interpolation between regions of 

collisional and frictional predominance to account for particle interactions. Through this procedure 
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they found results closer to experiment in comparison to the results under the previous assumptions, 

for a particular bin discharge application. 

Following a more rigorous line of development, da Cruz et al. (2005) carried out a 

collisional/frictional analysis in dense packs through dynamic molecular simulation. They defined 

and showed the relevance of the so called inertial number (ratio between inertial forces and 

pressure) for the collisional/frictional transition between dilute and dense regions. The propositions 

of da Cruz et al. (2005) were adapted and implemented by Schneiderbauer et al. (2012) into the 

kinetic theory of granular flows of Jenkins and Savage (1983), with some success. More recently, 

rheological models even more rigorous have been proposed, based on modifications of the kinetic 

theory of granular flows (Chialvo and Sundaresan 2013; Berzi and Vescovi 2015). 

Chialvo and Sundaresan (2013) used empirical frictional data to validate results of dynamic 

molecular simulations of homogeneous shear flows, which were then used to generate correlations 

for rheological parameters alternative to those provided by the granular kinetic theory of Garzó and 

Dufty (1999). Their developments provided new correlations incorporating the transition 

dilute/dense for the radial distribution function, and for effective viscosities and pressure for solid 

phases. 

Berzi and Vescovi (2015) built over the previous analyses of Jenkins and Berzi (2010) and 

Chialvo and Sundaresan (2013) by applying the same method, except that their developments were 

performed over the granular kinetic theory of Jenkins and Savage (1983). Their conclusions were 

similar to those of Chialvo and Sundaresan (2013). 

 

1.4 Objective 

 

In this work two different features are investigated regarding their effects over the meso-

scale hydrodynamics of dense gas-solid fluidized flows: (a) macro-scale conditions and (b) 

interparticle friction. The analysis are performed over filtered parameters derived from results of 

higher resolved simulations with microscopic two-fluid modeling. Regarding the macro-scale 

conditions, different gas flow average Reynolds number and solid fraction are enforced and 

relevant filtered parameters (such as the drag coefficient correction, filtered and residual viscosities 

and pressure) are evaluated as for the effects of those macroscopic features (the current concerning 

literature only shows analysis under low average gas Reynolds number typical of suspension like 

conditions). 
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Regarding interparticle friction, the usual closures for the microscopic two-fluid approach, 

which is provided by the kinetic theory of granular flows, is suitable for the inertial collisional-

kinetic regime only. Heterogeneous fluidized flow fields, however, which also present regions of 

very high particle concentrations close to packing, do require that frictional effects are also 

accounted for. A modified kinetic theory is applied, following literature, in order to add 

interparticle friction effects. The present research evaluate the behavior of relevant filtered 

parameters as frictional effects are also accounted for. 
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2 METHODOLOGY 
 

In this work a microscopic two-fluid model is used to perform highly resolved simulation 

of gas-solid fluidized bed, which includes a modification to account for interparticle friction. The 

concerning conventional formulation is described next, which is followed by the modified version 

including friction modeling. Following those description, a two-fluid filtered formulation is 

presented in order to define the relevant filtered parameters to be derived from the results of the 

intended highly resolved simulations ( filtered parameters whose behavior are evaluated regarding 

the effects of both the macro-scale flow conditions and friction inclusion). 

After all the formulation have been presented, then the numerical solution approach is 

described and the simulation set up defined (firstly for calibrating the frictional model, then to 

actually resolve the concerning gas-solid fluidized flows). To close this chapter, the filtering 

procedure is define which is applied for generating filtered parameters of concern. 

 

2.1 The conventional microscopic two-fluid model 

 

Two-fluid models are formally developed departing from conservative integral balances 

applied over control volumes including both phases. Leibniz and Gauss theorems are then applied 

over the integral balances providing local instantaneous conservative differential equations for both 

phases, and jump conditions describing interface interactions. It so happens that such formulation 

cannot be applied to particulate dispersed flows (since the inter-penetrating phases create 

discontinuities on each other so that the fundamental continuum hypothesis is violated). 

To go around this difficulty, averaging procedures are applied, where interface interactions 

are treated in average, as continuum field effects between the phases. The resulting equations are 

the so called two-fluid formulation. Different averaging procedures can be applied (time, 

volumetric and ensemble), which are usually assumed equivalent (ergodicity hypothesis), thereby 

providing the same averaged equations. A comprehensive development of the two-fluid 

formulation can be found, for instance in research of (Ishii 1975) and (Enwald et al. 1996). 

The two-fluid formulation considered in the present work is that developed by (Anderson 

and Jackson 1968) applying volumetric averaging, which was specially derived for gas-solid 

fluidized flows. The microscopic formulation that is used, which includes microscopic closures, is 

described next. 
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The continuity equations for the particle and gas phases are shown in Equations 2.1 and 2.2. 

Equations 2.3 and 2.4 show the particle and gas phase momentum balances, respectively. Here, ϕs 

is the volume fraction of solids; vs and vg are the velocities of the solid and gas phases, respectively; 

𝜌𝑠 and 𝜌𝑔 are the densities; 𝝈𝑠 and 𝝈𝑔 are the stress tensors associated with the two phases; f is the 

drag interaction force between the phases per unit volume (other interaction forces such as lift, 

virtual mass or history forces are disregarded as drag is dominant in gas-solid fluidized flows); and 

g is the specific gravity force. Equations 2.5, 2.6 and 2.7 describe the drag model used in our 

simulations (Gidaspow 1994). β, CD, d, 𝜇𝑔 and Reg denote the drag coefficient for the suspension, 

the single particle drag coefficient, the particle diameter, gas viscosity and Reynolds number, 

respectively. This expression for the drag coefficient β applies to homogeneous flows, developed 

by Wen and Yu (Wen 1966). 

The kinetic theory of granular flows provides a framework to write constitutive 

relationships for the particle-phase stresses, which are needed as closures for the momentum solid 

phase equations. The granular temperature, which appears in the kinetic-theory based constitutive 

model for the solid phase deviatoric stress tensor (See Equation 2.10), is given by the equation for 

pseudo-thermal energy (Equation 2.8). In this equation T is the granular temperature, q is the 

diffusive flux of pseudo-thermal energy (PTE), and the second and third terms on the right hand 

side quantify the rates of production of PTE by shear and gas-particle slip, respectively. The fourth 

and the fifth terms account for the rates of dissipation of PTE through inelastic collisions and 

viscous damping, respectively. Here e denotes the coefficient of restitution for particle-particle 

collisions. Equations 2.9 and 2.19 are the kinetic-theory based constitutive models for the diffusive 

flux of PTE and the rate of dissipation of PTE through inelastic collisions, respectively. 
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Table 1 – Microscopic two-fluid model (Agrawal 2001) 

Continuity and momentum conservation equations 
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Gas – Particle drag 
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Granular energy conservation equation 
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Pseudo – thermal energy flux vector (Lun et al. 1984) 
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Deviatoric stresses of the phases 
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constant 0g g                (2.12) 

Solid phase pressure 
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Kinetic - collisional granular viscosity 
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Rate of production of pseudo – thermal energy 

 

22

0.53

81 s g g s

slip

o p sg d T

 

 


 

v v
             (2.18) 

Rate of dissipation of pseudo – thermal energy 
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Radial distribution function 
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Volumetric continuity 

1g s                  (2.22) 
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2.2 The modified microscopic two-fluid model 

 

The microscopic two-fluid model is modified in the sense that the conventional kinetic 

theory of granular flows (KTGF), which provides closures for solid phase stresses, is modified to 

incorporate frictional effects. The conventional KTGF applies wherever kinetic-collisional effects 

are dominant and frictional effects are supposed not to be significant. Typical gas-solid fluidized 

flows, however, are very heterogeneous and present regions of high solid concentrations where 

friction may become relevant. 

In the current work the modification of the KTGF advanced by Berzi and Vescovi (2015) 

is applied, which is an adaptation of a previous approach developed by Chialvo and Sundaresan 

(Chialvo and Sundaresan 2013). Both of those approaches were discussed, implemented into the 

MFIX code, and tested by C.C. Milioli (Milioli 2016). Reported tests showed that both approaches 

give similar results, with Berzi and Vescovi’s implementation providing for more accurate results 

in dilute regions. 

The conventional KTGF was originally developed for describing the rheology of continuum 

solid phases derived from the motion of inelastic monodisperse spherical particulates, accounting 

for kinetic-collisional effects only (Jenkins and Savage 1983; Lun et al. 1984; Gidaspow 1994; 

Garzó and Dufty 1999). Such conditions are suitable for regions of the flow under dilute conditions, 

and modifications in the theory have been proposed for also embracing dense regions by 

introducing interparticle friction coefficients into the rheology description of the derived 

continuum solid phases (Chialvo and Sundaresan 2013; Berzi and Vescovi 2015). 

Chialvo and Sundaresan (2013) developed their frictional modifications over the 

conventional kinetic theory approach of Garzó and Dufty (1999). They performed discrete element 

method simulations for shear flows of frictional particles, and also continuum simulations under 

closures from the kinetic theory approach of Garzó and Dufty. Then they proposed modifications 

into Garzó and Dufty’s correlations so that the results of both simulations match. Specifically, they 

introduced additional frictional stresses, and replaced the original restitution coefficient and radial 

distribution function by an effective restitution coefficient and a modified radial distribution 

function, respectively. The new frictional stresses were formulated as a function of an interparticle 

friction coefficient and a term accounting for frictional generation. As a result, a modified algebraic 

KTGF model was advanced, with formulations composed of alternative equations providing 

smooth transitions between dilute and dense regions. 
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Berzi and Vescovi (Berzi and Vescovi 2015) simplified the modified KTGF of Chialvo and 

Sundaresan (2013) by taking care of transition and dense regions alone, where friction may be 

relevant, while dilute regions are treated through the conventional KTGF of Lun et al. (1984). 

Table 2 presents the modifications on the microscopic two-fluid model as applied in the 

current work. Basically, the correlations for the pressure and dynamic viscosity of the solid phase, 

and for the rate of dissipation of pseudo-thermal energy by collisions have been changed to account 

for friction. The pressure of the solid phase is modified by introducing a new radial distribution 

function which accounts for friction when the solid volume fraction goes above 0.4. The viscosity 

of the solid phase and the rate of dissipation of pseudo-thermal energy by collisions are both 

obtained by adding the respective kinetic parts (as provided by the conventional KTGF, given in 

Table 1) to new frictional parts, when the solid volume fraction goes above 0.49. Definitions for 

the various terms in the correlations in Table 2 can be found in Berzi and Vescovi (Berzi and 

Vescovi 2015).  

 

Table 2 – Modifications on the microscopic two-fluid model (Berzi and Vescovi, 2014). 
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2.3 Filtered two-fluid model 

 

Filtering operators applied over the two-fluid model conservative equations (Equations 2.1 

to 2.4) give rise to the filtered two-fluid model equations. In filtered formulations dependent 

variables, f(x, t), are described as a composition of a filtered part added to a sub-grid fluctuation or 

unresolved part, that is: 

     f , t f , t f , t X X X             (2.39) 

The filtered part is defined as: 

       

X

f , t f , t G d X X X X             (2.40) 

The filter function G(x) is a sub-grid space cut that limits the size of the smaller scales to 

be resolved. The sub-grid filter is usually made to match with the numerical grid volume V, so that 

𝐺(𝑥) = 1 𝑉⁄  for any 𝑋 ∈ 𝑉. Therefore, 

   
V

1
f , t f , t dV

V
 X X             (2.41) 

While filtering the two-fluid model equations some filtered products of dependent variables 

with phase fractions do appear which need to be developed. This is done by applying Favre or mass 

weighed averaging. For a phase l, either gas or solid. 
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As seen the equations of the filtered two-fluid model are presented in Table 3, the filtering 

procedure gives rise to two new terms in the momentum equations, in addition to those in the 

unfiltered conservative differential equations (as given in Table 1). One of the new terms accounts 

for the fluctuations on the buoyancy exerted by the gas over the solid phase. This buoyancy 

fluctuation is usually composed with the filtered drag thereby defining an effective interface 
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interaction force, usually referred to as effective drag force owing to the predominance of the drag 

in gas-solid fluidized flows. The other new term accounts for residual stresses in both the phases. 

 

Table 3 – Filtered two-fluid model. 
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Filtered volumetric continuity 
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Filtered deviatoric stresses and effective stresses 
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Residual stresses 
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Filtered drag force 

 f u - v                (2.53) 

Buoyancy fluctuation force 
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Effective drag force 
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The coefficient 𝛽eff given by Equation 54 is usually expressed in terms of a drag coefficient 

correction related to the filtered drag coefficient, 𝛽̅, given by the microscopic model in Equation 6 

as evaluated in terms of filtered variables (i.e. 𝜙̅𝑠, 𝜙̅𝑔, v,̃  ũ). The drag coefficient correction is 

defined as: 

eff1H



                           (2.56) 

Therefore, the effective drag force is cast as: 

   1gs H    B f u - v             (2.57) 

The filtered and residual pressures and viscosities, which account for the filtered deviatoric 

and residual stresses in Table 3, are given by: 
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shear,
res,

shear,

τ

2

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2.4 Numerical Procedure 

 

The complex system of coupled non-linear partial differential equations of the two-fluid 

models can only be solved by numerical procedures. There are different options available for that, 

such as the commercial codes CFX and Fluent, and the free open source code MFIX. All of those 

codes are stable, and widely used to solve two-phase flows under two-fluid modeling. Numerical 

models in commercial appliances like CFX and Fluent do not allow access to the source code, 

thereby preventing any modifications on formulations and boundary conditions. In the present 

work the MFIX code is used since it is free, and since it allows for code modifications, which are 

required. 

MFIX (Multiphase Flow with Interphase exchanges) (Syamlal et al. 1993) is a numerical 

code specific for gas-solid flow simulations, which includes two-fluid based formulations, 

developed and made available by NETL (National Energy Technology Laboratory, DOE-USA). 

Its source code is open so that any modifications and implementations on both formulation and 

boundary conditions are allowed. MFIX is a FORTRAN written parallelized code. The governing 

equations in MFIX’s two-fluid model are discretized through the finite volume method. The 

resulting numerical model is solved through a point by point numerical technique. Diffusive terms 

are discretized following the second order central differencing scheme. 

For advection terms there are various alternative discretizing methods, ranging from the 

first order upwind method up to higher order TVD procedures. The pressure-velocity coupling is 

solved through the SIMPLE algorithm. The numerical code of MFIX is fully described in (Syamlal 

et al. 1993; Cabezas-Gómez et al. 2006), and tested some of the discretization procedures for 

advective terms in MFIX, and found the Superbee procedure to provide the best results for the 

simulation of a particular riser flow. This procedure is followed in the current work. 
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2.5 Test of the friction model and set up of the interparticle friction coefficient  

 

Schneiderbauer et al. (2012) presents experimental results for a bin discharge application 

with a particulate size very close to that considered in the present work (See Table 5). Those results 

are used here with two different purposes: I. to evaluate the friction model implementation; II: to 

set up a suitable value for the interparticle friction coefficient to be applied on the simulations under 

fluidization conditions (See section 2.6). In order to do a bin discharge simulation is performed 

following Milioli (2016). 

Bin discharge is an application where frictional effects are dominant. Experiment shows 

that, as the process starts, the discharge rate quickly reaches a plateau that is kept constant until the 

bin is almost empty. The magnitude of the plateau of discharge rate is a function of the interparticle 

friction coefficient. 

The simulation of the bin discharge application was done with the MFIX two-fluid model 

including the modifications to account for friction, as described in section 2.2. The schematics of 

the bin discharge problem is given in Figure 2 and the details of the simulation parameters are 

provided in Table 4. The simulations were performed on a fine mesh with 16×120×8 grids in 3D, 

a resolution that ensures grid independence of the numerical solution. Alongside with partial-slip 

wall boundary conditions of Johnson & Jackson for the vertical boundaries, various interparticle 

friction coefficients were imposed (Cf = 0.0, 0.1, 0.2, 0.3, 0.5). The moment the simulation starts, 

solid starts discharging through the bin due to the effect of gravity. Figure 3 is an instantaneous 

snapshot of the solid discharge.   
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Figure 2 – Schematics of the bin discharge problem. 

 

 

Source: Elaborated by the author 
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Figure 3 – Snapshot of the bin discharge. 

 

 

Source: Elaborated by the author 

 

 

Table 4 – Bin discharge simulation parameters (Schneiderbauer et al. 2012) 

Physical properties of gas and solid Initial Conditions Boundary Conditions 

dp = 0.0875 cm Tg = 300 K Inlet gas Pressure =1.01 × 106g/cm. s2 

ρp = 2.5 g/cm3 Pg = 1.01 × 106 g/cm. s2 Outlet gas Pressure =1.01 × 106g/cm. s2 

ρg = 0.001224 g/cm3 Ps = 0 

𝑇 = 1 𝑐𝑚2 𝑠2⁄  

Vertical walls: Johnson&Jackson (partial 

slip) 

μg = 1.78 × 10−4 g/cm. s vg,x = vg,y = vg,z = 0 Horizontal wall insert (non-slip) 

e = 0.8 vs,x = vs,y = vs,z = 0  

 ϕs = 0.58 (in A)  

 ϕs = 0.0 (in B)  
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Figure 4 presents the computed temporal variation of the solid discharge rate (𝑚̇) for the 

various simulations under the different interparticle friction coefficient that were considered. At 

the beginning the discharge is characterized by a rapid increase of the mass flow rate, and a constant 

discharge rate is reached in less than 0.2 s. As seen, the expected plateau is reached even for         

𝐶f = 0, while its value does not match the experimental data (Schneiderbauer et al. 2012). It is 

known from experiment that the considered particulate presents an interparticle friction coefficient 

around 0.3, and that the plateau of solid discharge rate occurs at about 165 𝑔 𝑠⁄ . The present 

simulations, however, indicate that this plateau is found for a 𝐶f approaching 0, which is in 

disagreement with experiment. The mispredictions is possibly related to differences of conditions 

between experiment and simulations. The experiment is performed for real particles (not perfectly 

spherical), and for a narrow range of particle sizes. The simulations, on the other hand, are done 

for spherical particles and for a unique average particle size. In view of the observed discrepancy, 

the experimental 𝐶f = 0.3 is assumed in the current work. 

 

Figure 4 – Solid discharge rate in g/s as a function of time (s). 

 

 

Source: Elaborated by the author 
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2.6 Simulations Set up 

 

Highly resolved simulations (HRS) are carried out for a typical fluid catalytic cracking 

particulate in a 2D periodic domain, under domain average gas Reynolds numbers and particle 

concentrations covering dense gas-fluidized topologies. The relevant parameter values of physical 

properties of gas and solid can be found in Table 5. 

 

Table 5 – Physical properties of gas and solid 

Physical properties of gas and solid 

𝑑𝑝 7.5 × 10−6 𝑚 Particle diameter 

𝜌𝑠 1500 𝐾𝑔/𝑚3 Particle density 

𝜌𝑔 1.3 𝐾𝑔/𝑚3 Gas density 

𝜇𝑔 1.8 × 10−5 𝐾𝑔/𝑚. 𝑠 Gas viscosity 

𝑒 0.9 Coefficient of restitution 

𝑉𝑡 0.2184 𝑚/𝑠 Terminal settling velocity 

𝑉𝑡
2/𝑔 0.00487 𝑚 Characteristic length 

𝑉𝑡/𝑔 0.0223 𝑠 Characteristic time 

𝜌𝑠𝑉𝑡
2 71.55 𝐾𝑔/𝑚𝑠2 Characteristic stress 

𝐹𝑟𝑑𝑝 64.83 Froude number 

 

The simulations were done by imposing the domain average solid volume fraction 〈𝜙𝑠〉 at 

specific values for each simulation, 0.35, 0.45 and 0.50. 〈𝜙𝑠〉 is enforced through the initial 

conditions, and is kept constant through the simulations owing to continuity and to the periodical 

boundaries. The domain average gas Reynold number is also set constant in each simulation at 

controlled values. The domain average gas Reynolds number 〈𝑅𝑒𝑔〉 based on particle diameter is 

defined as: 

,
Re

g g y s p
p

g

v d 


                (2.64) 

In the simulations for different 〈𝜙𝑠〉, the ratio 〈𝑅𝑒𝑔〉 〈𝑅𝑒𝑔〉𝑠𝑢𝑠𝑝⁄  was set unchanged, at values 

1.00, 8.15, 16.30 and 24.45. This range was found suitable for producing streams closing towards 

pneumatic transport for the different 〈𝜙𝑠〉 that were enforced. 〈𝑅𝑒𝑔〉 〈𝑅𝑒𝑔〉𝑠𝑢𝑠𝑝⁄  stands for the ratio 

between the domain average gas Reynolds number and its value under suspension like conditions. 
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〈𝑅𝑒𝑔〉𝑠𝑢𝑠𝑝results from imposing a gas pressure gradient in the axial direction of the domain that 

exactly matches the gravity acting on the gas-solid mixtures. 

length

g
s s g g

P
g g

Y
   


              (2.65) 

Where Ylength is the length of the domain in the axial direction. Regarding the investigation 

of the effect of interparticle friction, all simulations were set for two different cases: Cf = 0 and 

Cf = 0.3. Table 6 shows the complete simulations schedule that was followed. 

 

Table 6 – Set up different simulation for fluidization 

  〈𝝓𝒔〉 

0.35 0.45 0.50 

  Interparticle friction coefficient (Cf) 

  0.0 0.3 0.0 0.3 0.0 0.3 

〈𝑹𝒆𝒈〉 〈𝑹𝒆𝒈〉𝒔𝒖𝒔𝒑⁄  

1.00 Sim1 Sim5 Sim9 Sim13 Sim17 Sim21 

8.15 Sim2 Sim6 Sim10 Sim14 Sim18 Sim22 

16.30 Sim3 Sim7 Sim11 Sim15 Sim19 Sim23 

24.45 Sim4 Sim8 Sim12 Sim16 Sim20 Sim24 

 

A two-dimensional square domain of 16×16 cm was considered under periodic boundaries 

in all directions. A numerical mesh of 128×128 grids was applied resulting a grid size of 1.25×1.25 

mm (grid sizes between 1 and 2 mm do provide grid size reasonably independent filtered results 

Agrawal et al. 2001). 

 

 

 

 

 

 

 



58 

2.7 Filtering Procedure 

 

The simulations give rise to fields of dependent variables over the grid mesh, and a filtering 

procedure with a filter size of 2cm (16 cells) on both directions is carried out providing for filtered 

data. A unique filter size is considered which is compatible with cell sizes in large-scale 

simulations. 

Figure 5 shows an instantaneous snapshot of the particle volume fraction field in one of the 

performed simulations. As can be seen filtering over different regions at any given time are not 

equivalent as different regions will possibly hold different averaged solid volume fractions. Thus, 

one cannot simply lump the results obtained over all the regions; instead, the results must be 

grouped into bins based on suitable markers, and statistical averages must be performed within 

each bin to extract useful information. 

At first, following literature (Milioli et al. 2013), a two-marker filtering was considered, 

with the filtered solid volume fraction and the filtered slip velocity taken as 1st and 2nd marker, 

respectively. In this case, the filtered values are grouped in a double entry table, where the entries 

are the first and second markers. Thus, the obtained averages of all the filtered values are stored as 

functions of those two parameters. 

   

Figure 5 – Snapshot of the particle volume fraction field. 

 

Source: Elaborated by the author 
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Figure 6 – Three-markers binning procedure (for particular filter size, s and Re Reg g susp
) 

 

Source: Elaborated by the author 

 

In order to improve the accuracy of the filtered results, so as to allow for a better assessment 

of frictional effects a 3rd marker was introduced. The filtered kinetic energy of the velocity 

fluctuations of the solid phase (ks) was chosen as the additional marker owing to its relevance in 

gas-solid fluidized flows (Schneiderbauer 2017). ks is defined as: 

 ,

, ,

1 1
v v

2 2

s ij

s s i s i
s s

tr
k



 


               (2.66) 

Where: 

s s s
  v v v               (2.67) 

In this work, binning is performed for the filtered solid volume fraction as a 1st marker, and 

filtered kinetic energy of solid velocity fluctuations as a 2nd marker, for narrow ranges of filtered 

slip velocity as a 3rd marker. Figure 6 illustrates this three-marker binning procedure.  

The storage of filtered data is done over 64×80 bins, meaning 64 gaps of filtered solid 

volume fraction and 80 gaps of filtered kinetic energy of the solid (this binning resolution was 

found adequate based on previous works (Sarkar et al. 2016)). In summary, one must consider a 

suitable number of snapshots of the flow field in the statistical steady state regime (See section 

3.1.1), so that good averaging statistics are collected. Then a window (filter) is defined over the 

domain comprising a number of numerical cells. Averaging over this region provides averaged or 

filtered data. The window is made to move in space all over the domain and in time through the 
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various snapshots, and the collected averaged data are classified by ranges of suitable markers and 

stored in bins. 
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3 RESULTS AND DISCUSSION 
 

Ultimately, the goals of this research are summarized in two cases as: 

Case 1: 3rd marker analysis: Analyses are provided for relevant filtered parameters (H, 

Pfil,s , 𝜇fil,s, Peff,s , 𝜇res,s), for 〈ϕs〉 = 0.35, 0.45, 0.50 and gas Reynolds number ratios 

〈Reg〉 〈Reg〉susp⁄ = 1.00, 8.15, 16.30, 24.45. Results are shown for the filtered parameters as a 

function of inside filtered parameters (ϕ̅s, Ṽslip, ks) and the macro-scale parameters of (〈ϕs〉 and 

〈Reg〉 〈Reg〉susp⁄ ) that were imposed.  

Case 2: Interparticle friction analysis: Analyses are carried out similar to those of case 

1, but including interparticle friction. In this case results for 𝐶f = 0.3 are compared against those 

of case 1 for 𝐶f = 0. 

 

3.1 Case 1: 3rd marker analysis 

 

Among the various filtered parameters of interest, the current analysis concentrates on the 

drag coefficient correction H (Equation 2.56), the solid residual pressure and viscosity Pres,s and 

μres,s (Equation 2.62 and Equation 2.63) and the solid filtered pressure and viscosity Pfil,s and μfil,s 

(Equation 2.60 and Equation 2.61). Before addressing those results, the statistical steady state 

regime and the flow topology are briefly described. 

 

3.1.1 Statistical steady state regime 

 

All the results presented in this work were obtained under statistical steady state conditions. 

Rigorously this condition is reached when all the statistical moments of all flow variables start to 

oscillate in time around well-defined averages. In gas-solid fluidized flows, however, statistical 

steady state is usually assumed when the mean value of the relevant variables reach their well-

defined averages. Figure 7 illustrates this situation for the domain average gas velocity from one 

of the performed simulations. Departing from an initial condition (zero), the domain average gas 

velocity evolves through the numerical iterations (and in time) over a transient stage, until the 

statistical steady state regime is reached. 
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Figure 7 – Time evolution of the domain average axial gas velocity in the simulation for s  0.35 and 

Re Reg g susp
 1 

 

Source: Elaborated by the author 

 

3.1.2 Flow Topology  

 

Figure 8 shows how the flow topology is affected by 〈Reg〉 and 〈ϕs〉. The figure shows 

snapshots of the flow for 〈ϕs〉 = 0.35, 0.45 and 0.50 (columns), and gas Reynolds number ratios 

〈Reg〉 〈Reg〉susp =⁄  1.00, 8.15, 16.30 and 24.45 (rows), at statistical steady state conditions. The 

results are for the cases without enforced Interparticle friction coefficient, Cf = 0. As seen, the two 

macro-scale parameters considerably affect the flow topology. By increasing the domain average 

solid volume fraction 〈ϕs〉 from 0.35 to 0.50 the solid structures become denser and heavier. On 

the other hand, while increasing the gas Reynolds number ratios 〈Reg〉 〈Reg〉susp⁄  from 1.00 up to 

24.45, the solid becomes more uniformly distributed throughout the domain and the flow tends to 

be more homogeneous. 

 



63 

Figure 8 – Plots of solid volume fraction in the domain inside the statistical steady state regime, for 

simulations with dense domain average solid fractions s  0.35, 0.45 and 0.50 (columns), and gas 

Reynolds number ratios Re Reg g susp
 1, 8.15, 16.30 and 24.45 (rows), and Cf = 0. (blue and red related 

to solid and gas phase, respectively). 

 

                                       〈ϕs〉 = 0.35               〈ϕs〉 = 0.45                〈ϕs〉 = 0.50 

           

〈Reg〉 〈Reg〉susp = 1.00⁄  

           

〈Reg〉 〈Reg〉susp = 8.15⁄  

           

〈Reg〉 〈Reg〉susp = 16.30⁄  

           

〈Reg〉 〈Reg〉susp = 24.45⁄  

 

Source: Elaborated by the author 
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3.1.3 Drag Coefficient Correction 

 

The drag coefficient correction H is a correction applied over the filtered Wen and Yu’s 

drag coefficient, which stands for homogeneous flows. H closing to zero means a topology closing 

towards homogeneity. Otherwise, as a flow becomes more and more heterogeneous the effective 

drag progressively decreases and H grows higher. 

Figure 9 shows H as a function of the filtered solid volume fraction ϕ̅s for the domain average 

solid volume fraction 〈ϕs〉 = 0.35, 0.45 and 0.50, for gas Reynolds number ratios 

〈Reg〉 〈Reg〉susp⁄ = 1.00 and 8.15. The results stand for different dimensionless filtered axial slip 

velocities ṽslip,y vt⁄ , for the dimensionless filter size ∆f (vt
2 g⁄ ) =⁄  4.112, and for various 

dimensionless filtered kinetic energy of the solid velocity fluctuations ks vt
2⁄ . In the Appendix A 

results are also presented for 〈Reg〉 〈Reg〉susp⁄ = 16.30 and 24.45. 

Figure 9 shows that H changes significantly with the variations of ϕ̅s, 𝑘𝑠 v𝑡
2⁄  and ṽslip,y vt⁄ . 

As clearly seen, the higher the filtered solid volume fraction and the higher the filtered slip velocity, 

the higher H becomes for all 〈ϕs〉 and 〈Reg〉 〈Reg〉susp⁄ . This implies that higher filtered solid 

volume fractions and higher filtered slip velocities are related to growing non-homogeneities on 

the flow. It is also that, for a particular ṽslip,y vt⁄  , H decreases as 𝑘𝑠 v𝑡
2⁄  grows higher, showing 

that the flow become more homogeneous as the solid velocity fluctuations (that define Ks) grow 

higher. This pattern is clear for 〈ϕs〉 = 0.35 and 0.45, for both the values of 〈Reg〉 〈Reg〉susp⁄  

(Figures 9a, b, c, d). For 〈ϕs〉 = 0.50 Ks loses relevance as a marker (Figures 9e, f). Additionally, 

a systematic correlation is observed of H to all the three markers with the profiles coming closer 

as the filtered solid volume fraction grows higher. The results of H for higher 〈Reg〉 〈Reg〉susp⁄  

(16.30 and 24.45) in Appendix A are similar to those in Figure 9, except that the loosing relevance 

of Ks as a marker is anticipated to 〈ϕs〉 =0.45.     
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Figure 9 – Drag Coefficient Correction, H, as a function of the filtered solid volume fraction s for the domain average 

solid volume fractions s  0.35, 0.45 and 0.50 and for gas Reynolds number ratios Re Reg g susp
 1 and 8.15. 

The results stand for different dimensionless filtered axial slip velocities v vslip t (black and red), for the 

dimensionless filter size  2vtf g  4.112, and for various dimensionless filtered kinetic energy of the solid velocity 

fluctuations
2k vs t (with different thickness). All graphs for Cf = 0. 

 

 

(a) 

 

(b) 
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(e) 

 

 

(f) 

 

Source: Elaborated by the author 
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3.1.4 Filtered pressure and dynamic viscosity of the solid phase 

 

Figures 10 and 11 show the variation of the dimensionless filtered solid pressure Pfil,s and 

dynamic viscosity μfil,s , respectively, for the same conditions as in figure 9. In the Appendix A 

results are also presented for 〈Reg〉 〈Reg〉susp⁄ = 16.30 and 24.45. 

As seen, there are significant effects of the filtered solid volume fraction, filtered slip 

velocity and filtered kinetic energy of the solid velocity fluctuations over both the filtered parameters. 

The response of Pfil,s and μfil,s to 〈Reg〉 ultimately comes from the correlation of those parameters 

to the filtered granular temperature. At the micro-scale, the solid pressure and viscosity derived 

from the kinetic theory of granular flows are both strong functions of the granular temperature 

(Equations 2.14, 2.23 and 2.25). At the meso-scale, as a consequence, the counterpart filtered 

parameters also become strong functions of the filtered granular temperature. The observed 

decreasing of Pfil,s and μfil,s as 〈Reg〉 grows higher is, indeed, a consequence of the filtered granular 

temperature growing lower (not shown), owing to the more homogeneous conditions provided by 

the higher domain average gas Reynolds numbers (as seen in Figure 8). Under more homogeneous 

conditions all field fluctuations become smaller, including those of solid velocity fluctuations that 

define the granular temperature (not shown). As increase of 〈ϕs〉 has the same effect of an increase 

of 〈Reg〉, which is due to lower granular temperatures caused by lower solid velocity fluctuations, 

meaning more homogeneous flow conditions (as seen in Figure 8). This result is not clearly seen 

in Figures 10 and 11 because for the different 〈ϕs〉 different values of ṽslip,y vt⁄   were selected for 

conditions of higher occurrence in the flow field. 

All the graphs in Figure 10 and 11 also show that, for particular values of ṽslip,y vt⁄  , both 

Pfil,s and μfil,s increases as 𝑘𝑠 v𝑡
2⁄  grows higher. Higher 𝑘𝑠 v𝑡

2⁄  result from higher solid velocity 

fluctuations (that define ks), which also mean higher granular temperature, and therefore higher 

Pfil,s and μfil,s . The results of Pfil,s and μfil,s for higher 〈Reg〉 〈Reg〉susp⁄  (16.30 and 24.45) presented 

in Appendix A are similar to those in Figures 10 and 11. 
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Figure 10 – Dimensionless filtered solid pressure,  2
,fil s s tP v , as a function of the filtered solid volume fraction s

for the domain average solid volume fractions s  0.35, 0.45 and 0.50 and for gas Reynolds number ratios

Re Reg g susp
 1 and 8.15. The results stand for different dimensionless filtered axial slip velocities v vslip t

(black and blue), for the dimensionless filter size  2vtf g  4.112, and for various dimensionless filtered kinetic 

energy of the solid velocity fluctuations
2k vs t (with different thickness). All graphs for Cf = 0. 
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(f) 

 

Source: Elaborated by the author 
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Figure 11 – Dimensionless filtered solid dynamic viscosities  3
,fil s s tv g  , as a function of the filtered solid volume 

fraction s for the domain average solid volume fractions s  0.35, 0.45 and 0.50 and for gas Reynolds number ratios

Re Reg g susp
 1 and 8.15. The results stand for different dimensionless filtered axial slip velocities v vslip t

(black and blue), for the dimensionless filter size  2vtf g  4.112, and for various dimensionless filtered kinetic 

energy of the solid velocity fluctuations
2k vs t (with different thickness). All graphs for Cf = 0. 
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Source: Elaborated by the author 
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3.1.5 Residual pressure and dynamic viscosity of the solid phase 

 

Figures 12 and 13 show the variation of the dimensionless residual solid pressure Pres,s and 

dynamic viscosity μres,s , respectively, for the same conditions as in Figures 9, 10 and 11. In 

Appendix A results are also presented for 〈Reg〉 〈Reg〉susp⁄ = 16.30 and 24.45. 

As seen, there are significant effects of the filtered solid volume fraction and filtered kinetic 

energy of the solid velocity fluctuations over both the residual parameters. Otherwise, the filtered slip 

velocity has no effect over both the residual parameters. Regarding, Pres,s , it is clear that this 

parameter is only a function of ϕ̅s and Ks, as seen by combining Equation 2.62 with Equation 2.66, 

which gives: 

,

2

3
res s s s sP k                 (3.1) 

This linear correlation of Pres,s to both ϕ̅s and Ks is clearly seen in Figure 12, except at 

lower ϕ̅s (here the simplifications leading to Equation 2.66, namely disregarding Leonard and cross 

like stresses and accounting only for Reynolds like stresses, seem to fail). The insensitivity of μres,s 

to ṽslip,y vt⁄  is not so explicit. It is clear that the ratio between the magnitude of the shear part of 

the residual stresses and the magnitude of the filtered shear deformation rate (see equation 2.63) is 

not sensitive to ṽslip,y vt⁄  , meaning that both the parameters are equally affected by ṽslip,y vt⁄  .   

All the previous observations on the behavior of Pfil,s and μfil,s, ultimately related to the 

response of those parameters to the solid phase velocity fluctuations, also stand for Pres,s and μres,s.   

The lower solid velocity fluctuations that prevail at higher domain average gas Reynolds numbers 

and higher solid volume fractions, which give rise to lower filtered granular temperatures, also 

cause lower residual stresses in the solid phase and, therefore, lower residual pressure and dynamic 

viscosity of this phase. This behavior is clear for all 〈ϕs〉 (0.35, 0.45 and 0.50), leading to increased 

Pres,s and μres,s as 𝑘𝑠 v𝑡
2⁄  grows higher owing to higher solid velocity fluctuations, for both 

〈Reg〉 〈Reg〉susp⁄ = 1.00 and 8.15. The results for 〈Reg〉 〈Reg〉susp⁄ = 16.30 and 24.45, which are 

shown in Appendix A, are quite similar to those for 〈Reg〉 〈Reg〉susp⁄ = 1 and 8.15 reported in 

Figures 12 and 13.     
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Figure 12 – Dimensionless residual solid pressure,  2
,res s s tP v , as a function of the filtered solid volume fraction s

for the domain average solid volume fractions s  0.35, 0.45 and 0.50 and for gas Reynolds number ratios

Re Reg g susp
 1 and 8.15. The results stand for different dimensionless filtered axial slip velocities v vslip t

(smaller: black and bigger: red), for the dimensionless filter size  2vtf g  4.112, and for various dimensionless 

filtered kinetic energy of the solid velocity fluctuations
2k vs t (with different thickness). All graphs for Cf = 0. 
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Source: Elaborated by the author 
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Figure 13 – Dimensionless residual solid dynamic viscosities,  3
,res s s tv g  , as a function of the filtered solid volume 

fraction s for the domain average solid volume fractions s  0.35, 0.45 and 0.50 and for gas Reynolds number ratios

Re Reg g susp
 1 and 8.15. The results stand for different dimensionless filtered axial slip velocities v vslip t

(smaller: black and bigger: red), for the dimensionless filter size  2vtf g  4.112, and for various dimensionless 

filtered kinetic energy of the solid velocity fluctuations
2k vs t (with different thickness). All graphs for Cf = 0. 
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Source: Elaborated by the author 
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3.2 Case 2: interparticle friction analysis 

 

In this section same results without friction (𝐶f = 0) of section 3.1 are presented, but now 

in comparison to results under the same conditions, except for the inclusion of interparticle friction 

(𝐶f = 0.3). Figure 14 shows results of the drag coefficient correction, H. Figures 15 and 16 show 

results of the dimensionless filtered solid pressure Pfil,s (ρsvt
2)⁄  and dimensionless filtered solid 

dynamic viscosities μfil,s (ρsvt
3 g⁄ )⁄  . Figures 17 and 18 show results of the dimensionless residual 

solid pressure Pres,s (ρsvt
2)⁄  and dimensionless residual solid dynamic viscosities μres,s (ρsvt

3 g⁄ )⁄ . 

The graphs in the figures show the variation of the concerning parameters with the filtered solid 

volume fraction, and the filtered kinetic energy of the solid velocity fluctuations, for particular 

values of filtered slip velocity, and for conditions with and without interparticle fraction. 

All the results stand for gas Reynolds number ratios 〈Reg〉 〈Reg〉susp⁄ = 1.00 and 8.15 and 

domain average solid volume fractions 〈ϕs〉 = 0.35, 0.45 and 0.50. Further results are also 

presented for higher gas Reynolds number ratios, 〈Reg〉 〈Reg〉susp⁄ = 16.30 and 24.45, in Appendix 

B. 

As seen in Figures 14 to 18, the inclusion of interparticle friction had no effect over the 

concerning filtered and residual parameters under the various conditions that were applied. An 

exception was observed under the higher 〈ϕs〉 = 0.50 for Pfil,s , μfil,s and μres,s . For those case the 

inclusion of friction caused μres,s to increase and Pfil,s and μfil,s to decrease, but only slightly for all 

of them. The current results indicate that interparticle friction has no effect over the meso-scale 

hydrodynamics of dense gas-solid fluidized flows. The results for higher domain average gas 

Reynolds numbers presented in Appendix B show the same behavior, except that the smaller 

variations of Pfil,s , μfil,s and μres,s were anticipated to 〈ϕs〉 = 0.45. Despite the current results, 

interparticle friction needs further research. 

For instance, it is just possible that the filtered solid volume fraction, the filtered slip 

velocity and the filtered kinetic energy of the solid velocity fluctuations are either unsuitable or 

insufficient as markers, as they may be hiding hydrodynamic effects dissipated by the statistical 

averaging procedures that were performed in the current binning process. This is a matter for 

further verification. 
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Figure 14 – Drag Coefficient Correction, H, as a function of the filtered solid volume fraction s for the domain 

average solid volume fractions s  0.35, 0.45 and 0.50 and for gas Reynolds number ratios Re Reg g susp
 1 and 

8.15. The results stand for particular dimensionless filtered axial slip velocities v vslip t , the dimensionless filter size

 2vtf g  4.112, and for two different interparticle friction coefficient, Cf = 0 (full lines) and Cf = 0.3 (dash lines). 
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Source: Elaborated by the author 
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Figure 15 – Dimensionless filtered solid pressure,  2
,fil s s tP v , as a function of the filtered solid volume fraction s

for the domain average solid volume fractions s  0.35, 0.45 and 0.50 and for gas Reynolds number ratios

Re Reg g susp
 1 and 8.15. The results stand for particular dimensionless filtered axial slip velocities v vslip t , 

the dimensionless filter size  2vtf g  4.112, and for two different interparticle friction coefficient, Cf = 0 (full lines) 

and Cf = 0.3 (dash lines). 
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Source: Elaborated by the author 
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Figure 16 – Dimensionless filtered solid dynamic viscosities,  3
,fil s s tv g  , as a function of the filtered solid volume 

fraction s for the domain average solid volume fractions s  0.35, 0.45 and 0.50 and for gas Reynolds number ratios

Re Reg g susp
 1 and 8.15. The results stand for particular dimensionless filtered axial slip velocities v vslip t , 

the dimensionless filter size  2vtf g  4.112, and for two different interparticle friction coefficient, Cf = 0 (full lines) 

and Cf = 0.3 (dash lines). 

 

 

(a) 

 

(b) 



90 

 

 

(c) 

 

 

(d) 

 

 



91 

 

 

(e) 

 

 

(f) 

 

Source: Elaborated by the author 
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Figure 17 – Dimensionless residual solid pressure,  2
,res s s tP v , as a function of the filtered solid volume fraction s

for the domain average solid volume fractions s  0.35, 0.45 and 0.50 and for gas Reynolds number ratios

Re Reg g susp
 1 and 8.15. The results stand for particular dimensionless filtered axial slip velocities v vslip t , 

the dimensionless filter size  2vtf g  4.112, and for two different interparticle friction coefficients, Cf = 0 and 0.3. 
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Source: Elaborated by the author 



95 

Figure 18 – Dimensionless residual solid dynamic viscosities,  3

,res s s tv g  , as a function of the filtered solid 

volume fraction s for the domain average solid volume fractions s  0.35, 0.45 and 0.50 and for gas Reynolds 

number ratios Re Reg g susp
 1 and 8.15. The results stand for particular dimensionless filtered axial slip velocities

v vslip t , the dimensionless filter size  2vtf g  4.112, and for two different interparticle friction coefficient,           

Cf = 0 (full lines) and Cf = 0.3 (dash lines). 
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Source: Elaborated by the author 
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4 CONCLUSION 
 

The current work was intended as a contribution for the improvement of sub-grid closure 

models for Large Scale Simulations (LSS) of gas-solid fluidized flows. Sub-grid filtered data were 

derived by filtering over results of highly resolved simulations under microscopic two-fluid 

modeling. Filtered parameters, like drag coefficient correction, residual and filtered solid pressure 

and viscosity were derived as a function of filtered solid volume fraction, filtered slip velocity and 

filtered kinetic energy of the solid velocity fluctuations. 

In the simulations different macro-scale conditions were enforced by imposing various 

domain average solid volume fractions and gas Reynolds numbers, covering high density topology 

from suspensions up to pneumatic transport. 

The conventional kinetic theory of granular flows (KTGF) was applied providing closures 

for solid phase stresses in the microscopic two-fluid formulation, accounting for kinetic-collisional 

effects only. A modified version of KTGF was also applied including interparticle frictional effects, 

which was advanced by Berzi and Vescovi (2015) following a previous approach developed by 

Chialvo and Sundaresan (2013). All the current simulations were performed with the open source 

code MFIX, which was modified to include frictional effects on its microscopic two-fluid model. 

The frictional implementation was tested by simulating a bin discharge problem described by 

Schneiderbauer et al. (2012). The modification of the MFIX code to add interparticle friction was 

performed by Milioli (2016), who also carried out the referred bin discharge simulation test. In this 

work such test was repeated confirming the results reported by Milioli (2016). 

All the simulations were implemented in 2D periodic domains, for a single particle size and 

Froude and number, and for a unique friction coefficient following experimental data of 

Schneiderbauer et al. (2012). Highly Resolved Simulation (HRS) results were collected for a time 

interval of 32s inside the statistical steady-state regime, which was found enough to provide 

suitable statistics. Filtered results were derived and analysed for a unique filter size under a three 

marker binning procedure, where the filtered solid volume fraction was taken as the first marker, 

the filtered slip velocity as the second marker, and the filtered kinetic energy of the solid velocity 

fluctuations as the third marker. For the macro-scale variables taken into account, i.e. the domain 

average solid volume fraction and the domain average gas Reynolds number ratio, three values of 

the former (0.35, 0.45, 0.50) and four of the latter (1, 8.15, 16.30, 24.45) were considered. 
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Gray-scale plots of solid volume fraction in the domain showed that denser and havier solid 

structures are formed for higher domain average solid fractions, while the flow field became more 

homogeneous at higher domain average gas Reynolds numbers. Filtered results were derived for 

two different situations: 

The first aiming to evaluate the impact of the macro-scale flow conditions as a 3rd marker 

is accounted for; the second aiming to evaluate the impact of including interparticle friction effects. 

Regarding the analysis on the macro-scale effects, higher 〈𝜙𝑠〉 and higher 〈𝑅𝑒𝑔〉 caused higher flow 

homogeneity, which led to: i) lower drag coefficient corrections, which are indeed a measure of 

the departure from homogeneity; ii) lower filtered and residual pressures and viscosities of the solid 

phase, owing to the lower solid velocity fluctuations that prevail at more homogeneous conditions. 

Regarding the 3rd marker analysis, results showed that the drag coefficient correction, the filtered 

and residual pressure and viscosity of the solid phase were all significantly affected by the filtered 

kinetic energy of the solid velocity fluctuations. This showed that the two-marker approach 

available in literature, considering the filtered solid volume fraction and filtered slip velocity as 

marker, is insufficient to correlate filtered parameters. While the current three-marker approach is, 

for sure, relatively more accurate, it does not prove to be enough, nor that the current markers are 

the more relevant to account for. Further investigations on those issues are required. 

For any particular 〈𝜙𝑠〉, 〈𝑅𝑒𝑔〉, ṽ𝑠𝑙𝑖𝑝 and 𝜙̅𝑠, a growing ks cause: i) lower H; ii) higher 𝑃fil,s 

, 𝜇fil,s , 𝑃res,s and 𝜇res,s. The first effect means more homogeneity at higher Ks; the second effect 

is due to the higher solid velocity fluctuations of higher ks. It was also observed that Ks looses 

relevant as a marker for H at higher 〈𝜙𝑠〉, an effect that was anticipated for higher 〈𝑅𝑒𝑔〉. 

Regarding the analysis of interparticle friction effects, the results showed no significant 

impact of its inclusion for all the macro-scale conditions that were practiced. In fact, very slight 

impact were observed on filtered and residual pressure and viscosities of the solid phase at higher 

〈𝜙𝑠〉 an effect that was anticipated for higher 〈𝑅𝑒𝑔〉 .  

There was an expectation that frictional effects could affect cluster mechanisms through 

altering the pattern of the particles contact, leading to changes in meso-scale filtered parameters. 

That expectation did not prevail, at least at the light of the current simulations. Of course, the 

accuracy of the method of investigation must be considered as a possible cause for mispredictions, 

for instance regarding the markers that were assumed in the analyses of the filtered parameters. In 

the present studies, filtered data were classified by narrow ranges of filtered solid volume fraction, 
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filtered slip velocity and filtered kinetic energy of the solid velocity fluctuations, which were 

assumed as suitable independent variables relevant to the meso-scale flow filtered parameters 

(named markers). It is just possible that those markers are either unsuitable or insufficient, as they 

may be hiding hydrodynamic effects dissipated by the statistical averaging procedures that are 

performed in the current binning process. 

Regarding future research in sub-grid correlation for gas-solid fluidized flows under 

microscopic two-fluid modeling, there are two major aspects to be considered: i. the first concerns 

the accuracy of the microscopic two-fluid modeling itself; ii. the second concerns the accurate 

correlation of sub-grid filtered parameters. 

Regarding the first aspect, some possible issues to be addressed may be: 

 

 In two-fluid modeling both gas and solid phases are assumed as Newtonian fluids. Regarding 

the gas phase this is a trivial straightforward assumption. Otherwise, there is no guarantee that 

the Newtonian rheology equally holds for the solid phase. This is an open matter waiting for 

further research. 

 The Wen and Yu (1966) drag model is widely applied as closure for drag in microscopic two-

fluid modeling. This model, however, are better suited to homogeneous conditions, and does 

not quite apply to the heterogeneous micro-scale of the gas-solid fluidized flows. New more 

realistic micro-scale models are needed for drag which can be derived, for instance, by applying 

discrete element methods 

 Besides drag and friction, other interphase interactive effects such as cohesive electrostatic and 

moisture may also become relevant in gas-solid fluidization. Such effects may be issues for 

future analyses.    

 In microscopic two-fluid modeling, closures for solid phases are usually derived from the 

kinetic theory of granular flows, which still requires validation. This is a big challenge to be 

tackled. 

 In highly resolved simulations gas turbulence is filtered, so that any effects it may have over 

solid phase coherent structures are lost. Some initial studies have been developed on the effects 

of gas sub-grid turbulence over the meso-scale hydrodynamics of gas-solid fluidized flows, as 

well as on the effects of the solid phase over the turbulence of the gas (i.e. gas turbulence 
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modulation by the solid phase), which are described in Mouallem (2018). Those are only initial 

studies that require further extension. 

Regarding the second aspect, some possible issues to be addressed may be: 

 

 The question of the markers taken as independent variables for the correlation of filtered 

parameters must be rigorously addressed. An in-depth analysis is missing in literature regarding 

the suitability and sufficiency of the markers that are usually considered. 

 A variety of macro-scale conditions alongside with ranges of Froude numbers must be 

accounted for. This would be crucial regarding hydrodynamic scaling, an issue that remains as 

a big challenge in gas-solid fluidization. The establishment of physically meaningful 

hydrodynamic scales would be essential for future accurate correlation efforts.  

 Literature presents highly resolved simulations of gas-solid fluidized flows mostly for 

monodisperse particulates (unique size and density). However, real gas-solid fluidized flows 

present wide granulometry and even density distributions. Therefore, polidisperse analyses are 

needed to enhance correlation accuracy. 

 Gas-solid fluidized flows are 3D in nature. Therefore, having in view correlation accuracy, any 

attempt for advancing new sub-grid models, in the current line of research, should be based on 

3D simulations. 
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Appendix A – Case 1: Third marker analysis – results for high Reynolds number ratios 
 

Figure 19 shows results of the drag coefficient correction, H. Figures 20 and 21 show results 

of the dimensionless filtered solid pressure, Pfil,s (ρsvt
2)⁄ , and dimensionless filtered solid dynamic 

viscosity, μfil,s (ρsvt
3 g⁄ )⁄ . Figures 22 and 23 show results of the dimensionless residual solid 

pressure, Pres,s (ρsvt
2)⁄ , and dimensionless residual solid dynamic viscosity, μres,s (ρsvt

3 g⁄ )⁄ . 

The results stand for gas Reynolds number ratios 〈Reg〉 〈Reg〉susp⁄ = 16.30 and 24.45, 

domain average solid volume fractions 〈ϕs〉 = 0.35, 0.45 and 0.50 and dimensionless filter size of 

4.112. Each graph shows the variation of the concerning parameter with the solid volume fraction 

and the filtered kinetic energy of the solid velocity fluctuations, for particular values of filtered slip 

velocity. 
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Figure 19 – Drag Coefficient Correction, H, as a function of the filtered solid volume fraction s for the domain 

average solid volume fractions s  0.35, 0.45 and 0.50 and for gas Reynolds number ratios Re Reg g susp
 16.30 

and 24.45. The results stand for different dimensionless filtered axial slip velocities v vslip t (black and red), the 

dimensionless filter size  2vtf g  4.112, and for various dimensionless filtered kinetic energy of the solid velocity 

fluctuations
2k vs t (with different thickness). All graphs for Cf = 0. 

 

 

(a) 

 

(b) 



109 

 

 

(c) 

 

 

(d) 

 

 



110 

 

 

(e) 

 

 

(f) 

 

Source: Elaborated by the author 
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Figure 20 – Dimensionless filtered solid dynamic viscosities  2
,fil s s tP v , as a function of the filtered solid volume 

fraction s for the domain average solid volume fractions s  0.35, 0.45 and 0.50 and for gas Reynolds number ratios

Re Reg g susp
 16.30 and 24.45. The results stand for different dimensionless filtered axial slip velocities

v vslip t (black and blue), the dimensionless filter size  2vtf g  4.112, and for various dimensionless filtered 

kinetic energy of the solid velocity fluctuations
2k vs t (with different thickness). All graphs for Cf = 0. 
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Source: Elaborated by the author 
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Figure 21 – Dimensionless filtered solid dynamic viscosities  3
,fil s s tv g  , as a function of the filtered solid volume 

fraction s for the domain average solid volume fractions s  0.35, 0.45 and 0.50 and for gas Reynolds number ratios

Re Reg g susp
 16.30 and 24.45. The results stand for different dimensionless filtered axial slip velocities

v vslip t (black and blue), the dimensionless filter size  2vtf g  4.112, and for various dimensionless filtered 

kinetic energy of the solid velocity fluctuations
2k vs t (with different thickness). All graphs for Cf = 0. 
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Source: Elaborated by the author 
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Figure 22 – Dimensionless residual solid pressure,  2
,res s s tP v , as a function of the filtered solid volume fraction s

for the domain average solid volume fractions s  0.35, 0.45 and 0.50 and for gas Reynolds number ratios

Re Reg g susp
 16.30 and 24.45. The results stand for different dimensionless filtered axial slip velocities

v vslip t (smaller: black and bigger: red), for the dimensionless filter size  2vtf g  4.112, and for various 

dimensionless filtered kinetic energy of the solid velocity fluctuations
2k vs t (with different thickness). All graphs for 

Cf = 0. 
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Source: Elaborated by the author  
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Figure 23 – Dimensionless residual solid dynamic viscosities,  3
,res s s tv g  , as a function of the filtered solid volume 

fraction s for the domain average solid volume fractions s  0.35, 0.45 and 0.50 and for gas Reynolds number ratios

Re Reg g susp
 16.30 and 24.45. The results stand for different dimensionless filtered axial slip velocities

v vslip t (smaller: black and bigger: red), for the dimensionless filter size  2vtf g  4.112, and various 

dimensionless filtered kinetic energy of the solid velocity fluctuations
2k vs t (with different thickness). All graphs for 

Cf = 0. 
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Source: Elaborated by the author 
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Appendix B – Case 2: Interparticle friction analysis – results for high Reynolds number 

ratios 
 

Figure 24 shows results of the drag coefficient correction, H. Figures 25 and 26 show results 

of the dimensionless filtered solid pressure, Pfil,s (ρsvt
2)⁄ , and dimensionless filtered solid dynamic 

viscosity, μfil,s (ρsvt
3 g⁄ )⁄ . Figures 27 and 28 show results of the dimensionless residual solid 

pressure, Pres,s (ρsvt
2)⁄ , and dimensionless residual solid dynamic viscosity, μres,s (ρsvt

3 g⁄ )⁄ . 

The results stand for gas Reynolds number ratios 〈Reg〉 〈Reg〉susp⁄ = 16.30 and 24.45, 

domain average solid volume fraction 〈ϕs〉 = 0.35, 0.45 and 0.50, interparticle friction coefficients, 

Cf = 0 and 0.3. Each graph shows the variation of the concerning parameter with the solid volume 

fraction and the filtered kinetic energy of the solid velocity fluctuations, for particular values of 

filtered slip velocity. 
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Figure 24 – Drag Coefficient Correction, H, as a function of the filtered solid volume fraction s for the domain 

average solid volume fractions s  0.35, 0.45 and 0.50 and for gas Reynolds number ratios Re Reg g susp
 16.30 

and 24.45. The results stand for particular dimensionless filtered axial slip velocities v vslip t , for the dimensionless 

filter size  2vtf g  4.112, and two different interparticle friction coefficient, Cf = 0 (full lines) and Cf = 0.3 (dash 

lines). 
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Source: Elaborated by the author 
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Figure 25 – Dimensionless filtered solid pressure,  2
,fil s s tP v , as a function of the filtered solid volume fraction s

for the domain average solid volume fractions s  0.35, 0.45 and 0.50 and for gas Reynolds number ratios

Re Reg g susp
 16.30 and 24.45. The results stand for particular dimensionless filtered axial slip velocities

v vslip t , for the dimensionless filter size  2vtf g  4.112, and two different interparticle friction coefficient, Cf = 

0 (full lines) and Cf = 0.3 (dash lines). 
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Source: Elaborated by the author 
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Figure 26 - Dimensionless filtered solid dynamic viscosities,  3
,fil s s tv g  , as a function of the filtered solid volume 

fraction s for the domain average solid volume fractions s  0.35, 0.45 and 0.50 and for gas Reynolds number ratios

Re Reg g susp
 16.30 and 24.45. The results stand for particular dimensionless filtered axial slip velocities

v vslip t , for the dimensionless filter size  2vtf g  4.112, and two different interparticle friction coefficient,          

Cf = 0 (full lines) and Cf = 0.3 (dash lines). 
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Source: Elaborated by the author 
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Figure 27 – Dimensionless residual solid pressure,  2
,res s s tP v , as a function of the filtered solid volume fraction s

for the domain average solid volume fractions s  0.35, 0.45 and 0.50 and for gas Reynolds number ratios

Re Reg g susp
 16.30 and 24.45. The results stand for particular dimensionless filtered axial slip velocities

v vslip t , for the dimensionless filter size  2vtf g  4.112, and two different interparticle friction coefficients,        

Cf = 0 and 0.3. 
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Source: Elaborated by the author 
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Figure 28 – Dimensionless residual solid dynamic viscosities,  3

,res s s tv g  , as a function of the filtered solid 

volume fraction s for the domain average solid volume fractions s  0.35, 0.45 and 0.50 and for gas Reynolds 

number ratios Re Reg g susp
 16.30 and 24.45. The results stand for particular dimensionless filtered axial slip 

velocities v vslip t , for the dimensionless filter size  2vtf g  4.112, and two different interparticle friction 

coefficient, Cf = 0 (full lines) and Cf = 0.3 (dash lines). 
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