• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
Document
Auteur
Nom complet
Leandro Arab Marcomini
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 2018
Directeur
Jury
Cunha, André Luiz Barbosa Nunes da (Président)
Cunto, Flávio José Craveiro
Gonzaga, Adilson
Titre en portugais
Identificação automática do comportamento do tráfego a partir de imagens de vídeo
Mots-clés en portugais
Modelagem de background
MOG2
OpenCV
Rastreamento de features
Remoção de background
Segmentação de veículos
Resumé en portugais
Este trabalho tem por objetivo propor um sistema computacional automático capaz de identificar, a partir de imagens de vídeos, o comportamento do tráfego veicular rodoviário. Todos os códigos gerados foram escritos em Python, com o uso da biblioteca OpenCV. O primeiro passo do sistema proposto foi remover o background do frame do vídeo. Para isso, foram testados três métodos disponíveis no OpenCV, com métricas baseadas em uma Matriz de Contingência. O MOG2 foi escolhido como melhor método, processando 64 FPS, com mais de 95% de taxa de exatidão. O segundo passo do sistema envolveu detectar, rastrear e agrupar features dos veículos em movimento. Para isso, foi usado o algoritmo de Shi-Tomasi, junto com funções de fluxo ótico para o rastreamento. No agrupamento, usou-se a distância entre os pixels e as velocidades relativas de cada feature. No passo final, foram extraídos tanto as informações microscópicas quanto as informações macroscópicas em arquivos de relatório. Os arquivos têm padrões definidos, salvos em CSV. Também foi gerado, em tempo de execução, um diagrama espaço-tempo. Desse diagrama, é possível extrair informações importantes para as operações de sistemas de transportes. A contagem e a velocidade dos veículos foram usadas para validar as informações extraídas, comparadas a métodos tradicionais de coletas. Na contagem, o erro médio em todos os vídeos foi de 12,8%. Na velocidade, o erro ficou em torno de 9,9%.
Titre en anglais
Automatic identification of traffic behavior using video images
Mots-clés en anglais
Background modeling
Background subtraction
Feature tracking
MOG2
OpenCV
Vehicle segmentation
Resumé en anglais
The objective of this research is to propose an automatic computational system capable to identify, based on video images, traffic behavior on highways. All written code was made using Python, with the OpenCV library. The first step of the proposed system is to subtract the background from the frame. We tested three different background subtraction methods, using a contingency table to extract performance metrics. We decided that MOG2 was the best method for this research, processing frames at 64 FPS and scoring more than 95% on accuracy rate. The second step of the system was to detect, track and group all moving vehicle features. We used Shi-Tomasi detection method with optical flow to track features. We grouped features with a mixture of distance between pixels and relative velocity. For the last step, the algorithm exported microscopic and macroscopic information on CSV files. The system also produced a space-time diagram at runtime, in which it was possible to extract important information to transportation system operators. To validate the information extracted, we compared vehicle counting and velocities with traditional extraction methods. The algorithm had a mean error rate of 12.8% on counting vehicles, while achieving 9.9% error rate in velocity.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2018-10-11
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2018. Tous droits réservés.