UNIVERSIDADE DE SÃO PAULO

ESCOLA DE ENGENHARIA DE SÃO CARLOS

PROGRAMA DE PÓS GRADUAÇÃO EM ENGENHARIA HIDRÁULICA E SANEAMENTO

RAFAEL KATSUNORI INOUE

INFLUÊNCIA DA CARGA ORGÂNICA E DO TEMPO DE ENCHIMENTO NA

PRODUÇÃO DE BIOHIDROGÊNIO EM ANSBBR COM AGITAÇÃO

TRATANDO ÁGUA RESIDUÁRIA SINTÉTICA

VERSÃO CORRIGIDA

SÃO CARLOS, SP

2013

RAFAEL KATSUNORI INOUE

Influência da Carga Orgânica e do Tempo de Enchimento na

PRODUÇÃO DE BIOHIDROGÊNIO EM ANSBBR COM AGITAÇÃO

TRATANDO ÁGUA RESIDUÁRIA SINTÉTICA

Dissertação apresentada à Escola de Engenharia de São Carlos, da Universidade de São Paulo, como parte dos requisítos para obtenção do título de Mestre em Ciências, Programa de Engenharia Hidráulica e Saneamento.

Orientador: Prof. Dr. José Alberto Domingues Rodrigues

VERSÃO CORRIGIDA

SÃO CARLOS, SP

2013

AUTORIZO A REPRODUÇÃO TOTAL OU PARCIAL DESTE TRABALHO, POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Inoue, Rafael Katsunori I581 Influência da carga orgânica e do tempo de enchimento na produção de biohidrogênio em AnSBBR com agitação tratando água residuária sintética / Rafael Katsunori Inoue; orientador José Alberto Domingues Rodrigues. São Carlos, 2013.

> Dissertação (Mestrado) - Programa de Pós-Graduação e Área de Concentração em Hidráulica e Saneamento --Escola de Engenharía de São Carlos da Universidade de São Paulo, 2013.

 AnSBBR. 2. Biohidrogênio. 3. Carga orgânica volumétrica aplicada. 4. Tempo de enchimento. 5. Tempo de ciclo. 6. Concentração afluente. I. Título.

FOLHA DE JULGAMENTO

Candidato: Engenheiro RAFAEL KATSUNORI INOUE.

Título da dissertação: "Influência da carga orgânica e do tempo de enchimento na produção de biohidrogênio em AnSBBR com agitação tratando água residuária sintética".

Data da defesa: 28/03/2013

Comissão Julgadora:

Resultado:

Prof. Dr. José Alberto Domingues Rodrigues - (Orientador) (Escola de Engenharia de Mauá)

Prof. Associado Marcelo Zaiat (Escola de Engenharia de São Carlos/EESC)

Aprovado Aprob la

Chrww/dA

Prof^a. Associada Simone Damasceno Gomes (Universidade Estadual do Oeste do Paraná)

Coordenador do Programa de Pós-Graduação em Engenharia Hidráulica e Saneamento: Prof. Titular Edson Cezar Wendland

Presidente da Comissão de Pós-Graduação: Prof. Titular Denis Vinicius Coury

DEDICATÓRIA

Aos meus pais, Toshikatu e Elena. Aos meus irmãos, Ricardo e Daniel À minha avó, Marli Ao meu avô, Antônio (i*n memorian*)

AGRADECIMENTOS

Em primeiro lugar, à toda minha família e a minha namorada Erika, por todo o carinho, apoio incondicional e confiança que permitiram mais essa conquista.

Ao Prof. Dr. José Alberto Domingues Rodrigues, pela orientação, e além disso pela grande amizade. Sempre muito próximo ao trabalho, dedicado a ensinar e disposto a ajudar em tudo que fosse preciso.

À Prof.^a Dra. Suzana Maria Ratusznei, pela orientação, amizade. Sempre disposta ajudar e a fazer boas ações.

Ao Prof. Dr Marcelo Zaiat pelas sugestões no trabalho e pela ajuda durante a primeira etapa do mestrado na cidade de São Carlos.

Ao Daniel, companheiro durante a rotina das análises, parceiro durante os treinos de judô. Um grande amigo, aprendi muito nesse tempo que convivi com ele.

À Carol pelo apoio nas análises microbiológicas.

A todo o pessoal do SHS, Antônio, Jaque, Davi, Pri, Naty, Rafaela, Rodrigo, Nayara, Fernando, Matheus, e muitos outros, pela amizade durante minha etapa em São Carlos.

A todo o pessoal do Laboratório de Engenharia Bioquímica: Danilo, Mehdi, Daniel, Renato, Lucas, Thiago e Willian. Pela amizade e por deixarem a convivência no laboratório mais divertida.

À CAPES pela bolsa de estudos concedida.

À FAPESP, pela bolsa de mestrado concedida (processo nº 2011/13750-2) e pelo auxílio financeiro no Projeto Temático "Produção de Bioenergia no Tratamento de Águas Residuárias e Adequação Ambiental dos Efluentes e Resíduos Gerados" (processo nº 09/15.984-0).

Ao Departamento de Hidráulica e Saneamento da Escola de Engenharia de São Carlos da Universidade de São Paulo e a Escola de Engenharia Mauá do Instituto Mauá de Tecnologia que disponibilizaram o espaço e o apoio necessário à realização deste projeto. A todos aqueles que, de alguma maneira, contribuíram para realização deste trabalho, minha sincera gratidão.

RESUMO

INOUE, R.K. Influência da carga orgânica e do tempo de enchimento na produção de biohidrogênio em AnSBBR com agitação tratando água residuária sintética. Dissertação (Mestrado) – Escola de Engenharia de São Carlos – Departamento de Hidráulica e Saneamento, Universidade de São Paulo, 2013.

Este estudo investigou a aplicação de um reator anaeróbio operado em bateladas sequenciais com biomassa imobilizada (AnSBBR) com agitação na produção de biohidrogênio tratando água residuária sintética a base de sacarose, sendo o desempenho do biorreator avaliado de acordo com a influência conjunta do tempo de alimentação, do tempo de ciclo, da concentração afluente e da carga orgânica volumétrica aplicada (COVAs). O biorreator, com capacidade útil de 5,6 L, foi dividido em 3 partes: volume de meio tratado por ciclo de 1,5 L, volume residual de meio de 2,0 L e volume de suporte inerte com biomassa de 2,1 L. Foram aplicadas 6 condições experimentais de COVAs de 9,0 a 27,0 gDQO.L⁻¹.d⁻¹, combinado diferentes concentrações afluentes (3500 e 5400 mgDQO.L⁻¹), tempos de ciclo (4, 3 e 2h), sendo tempo de enchimento do reator (t_c) correspondente a 50% ao tempo de ciclo. Os resultados mostraram que o aumento COVAs contribuiu para a queda no consumo de sacarose de 99% para 86% e para o aumento do rendimento molar por carga removida (RMCR_{C.n}) de 1,02 molH₂.molSAC⁻¹ na COVA_S de 9,0 gDQO.L⁻¹.d⁻¹ até atingir o valor máximo de 1,48 molH₂.molSAC⁻¹ na COVA_S de 18,0 gDQO.L⁻¹.d⁻¹ com queda a partir desse ponto. O aumento da COVAs resultou no aumento da produtividade molar volumétrica (PrM) de 24,5 para 81,2 molH₂.m⁻³.d⁻¹. A maior produtividade molar específica (PrME) obtida foi de 8,71 molH₂.kgSVT⁻¹.d⁻¹ para a COVA_S de 18,0 gDQO.L⁻¹.d⁻¹. A diminuição do tempo de ciclo resultou na diminuição do consumo de sacarose e no aumento da PrM. Foi verificado também que a diminuição do t_C de 4h para 3h contribuiu para o aumento da PrME. O aumento da concentração afluente resultou na diminuição do consumo de sacarose apenas na faixa de 2h, no aumento do RMCR_{C,n} e da PrM em todas as faixas de t_C, e no aumento da PrME nas faixas de 4h e 3h. A estratégia de alimentação mostrou ser um parâmetro operacional de grande importância, sendo o aumento do tempo de enchimento responsável pelo aumento do consumo de sacarose, da PrM, da PrME e do RMCR_{C,n} para todas as COAV_S investigadas. Em todas as condições, houve o predomínio do ácido acético seguido pelo etanol, ácido butírico e propiônico.

Palavras-chave: AnSBBR; biohidrogênio; carga orgânica volumétrica aplicada; tempo de enchimento; tempo de ciclo; concentração afluente

ABSTRACT

INOUE, R.K. Influence of organic loading rate and fill time on biohydrogen production in an AnSBBR with agitation treating synthetic wastewater. Dissertation (Master degree) – School of Engineering of São Carlos – Department of Hydraulics and Sanitation, University of São Paulo, 2013.

This study investigated the feasibility of an anaerobic sequencing batch biofilm reactor (AnSBBR) with agitation on biohydrogen production treating synthetic wastewater from sucrose, the performance of the bioreactor was evaluated according the combined influence of fill time, cycle period, influent concentration and applied organic loading rate (COAV_s). The bioreactor, with working volume of 5,6L, was divided in 3 parts: 1,5L of fed volume per cycle, 2,0L of residual medium and 2,1L of inert support and biomass. The reactor was operated under six operating conditions with different COAVs ranging from 9,0 to 27,0 gCOD.L⁻¹.d⁻¹, obtained by the combination of different influent concentrations (3500 e 5400 mgCOD.L⁻¹), cycle periods (4, 3 e 2h) and fill time corresponding to 50% of cycle period. The results showed that increasing COAVs resulted in lesser sucrose removal from 99% to 86% and improved yield per removed loading rate (RMCR_{Cn}) of 1,02 molH₂.molSUC⁻¹ in COAV₅ of 9,0 gCOD.L⁻¹.d⁻¹ to maximum value of 1,48 molH₂.molSUC⁻¹ in COAV₅ of 18,0 gCOD.L⁻¹.d⁻¹ decreasing after that. Increasing COAV₅ improved molar productivity (PrM) from 24,5 to 81,2 molH₂.m⁻³.d⁻¹. The higher specific molar productivity (PrME) obtained was 8,71 molH₂.kgTVS⁻¹.d⁻¹ in COAV_S of 18,0 gCOD.L⁻¹.d⁻¹. Decreasing cycle period resulted in less sucrose consumption and increased PrM. It was observed that decreasing cycle period of 4h to 3h improved PrME. Increasing influent concentration resulted in less sucrose degradation only on range of 2h, in an increase of RMCR_{C,n} and in an increase of PrM in all ranges of t_C and increased PrME on ranges of 4h and 3h. In all operational conditions, the main intermediate metabolic was acetic acid followed by ethanol, butyric and propionic acids. The feeding strategy had a great effective on hydrogen production, longer fill times resulted in better sucrose removal, PrM, PrME and RMCR_{C.n} for all COAV_S investigated.

Keywords: AnSBBR; biohydrogen; applied organic loading rate; fill time, cycle period; influent concentration

LISTA DE FIGURAS

Figura 3.1 - Representação de algumas rotas metabólicas e subprodutos na produção de
biohidrogênio a partir de glicose43
Figura 3.2 - Indicadores utilizados na literatura na produção de biohidrogênio
Figura 4.1 - Esquema do reator anaeróbio com agitação operado em bateladas sequenciais contendo
biomassa imobilizada60
Figura 4.2 - Fotografia do aparato experimental61
Figura 4.3 - Fotografia dos grânulos do material suporte com (esquerda) e sem (direita) biomassa62
Figura 4.4 – Procedimento utilizado para análise dos parâmetros operacionais estudados
Figura 5.1 - Concentração de matéria orgânica (DQO): \Box – afluente não filtrada; Δ - efluente não
filtrada; o – efluente filtrada (Condição Preliminar)
Figura 5.2 - Eficiência de remoção de matéria orgânica (DQO): ◊ – não filtrada; ♦ - filtrada
(Condição Preliminar)
Figura 5.3 - Concentração de carboidrato: \Box – afluente não filtrada; Δ - efluente não filtrada; \circ –
efluente filtrada (Condição Preliminar)
Figura 5.4 - Eficiência de remoção de carboidrato:
Preliminar)
Figura 5.5 - Valores de pH: ◊ –afluente; ♦ - efluente (Condição Preliminar)
Figura 5.6 - Concentração de alcalinidade total: ◊ –afluente; ♦ - efluente (Condição Preliminar)85
Figura 5.7 - Concentração de AVT: ◊ – afluente; ♦ - efluente (Condição Preliminar)
Figura 5.8 - Volume de biogás produzido por ciclo (Condição Preliminar)
Figura 5.9 - Concentração de matéria orgânica (DQO): \Box – afluente não filtrada; Δ - efluente não
filtrada; o – efluente filtrada (Condição I)
Figura 5.10 - Eficiência de remoção de matéria orgânica (DQO): ◊ – não filtrada; ♦ - filtrada
(Condição I)

Figura 5.11 - Concentração de carboidrato: \Box – afluente não filtrada; Δ - efluente não filtrada; \circ –
efluente filtrada (Condição I)
Figura 5.12 - Eficiência de remoção de carboidrato: ♦ – não filtrada; ◊- filtrada (Condição I)89
Figura 5.13 - Valores de pH: ◊ –afluente; ♦ - efluente (Condição I)
Figura 5.14 - Alcalinidade total: ◊ –afluente; ♦ - efluente (Condição I)90
Figura 5.15 - Concentração de AVT: ◊ –afluente; ♦ - efluente (Condição I)91
Figura 5.16 - Concentração dos compostos intermediários durante o monitoramento: – ácido
acético; Δ - etanol; \circ – ácido butírico; \blacksquare – ácido isobutírico; \blacktriangle – ácido capróico; \bullet – ácido valérico;
-x- ácido propiônico; - -butanol; — ácido isovalérico (Condição I)91
Figura 5.17 - Volume de biogás produzido por ciclo (Condição I)
Figura 5.18 - Concentrações dos componentes do biogás no final do ciclo: $\Box - CO_2$; $\Delta - H_2$; $\circ - CH_4$
(Condição I)93
Figura 5.19 - Concentração e eficiência de degradação de matéria orgânica: ◊ - perfil 1, ♦ - perfil 2,
— média dos dois perfis e x eficiência (Condição I)94
Figura 5.20 - Concentração e eficiência de degradação de carboidrato: ◊ - perfil 1, ♦ - perfil 2, —
média dos dois perfis e x eficiência (Condição I)94
Figura 5.21 - Valores de pH: ◊ – do perfil 1, ♦ - do perfil 2 e — média dos dois perfis (Condição I)
Figura 5.22 - Alcalinidade total: ◊ - do perfil 1, ♦ - do perfil 2 e - média dos dois perfis (Condição
I)
Figura 5.23 - Concentração de AVT: ◊ – do perfil 1, ♦ - do perfil 2 e — média dos dois perfis
(Condição I)96
Figura 5.24 - Concentração dos compostos intermediários ao longo do ciclo: \Box – ácido acético; Δ -
etanol; ○ – ácido butírico; ■ – ácido isobutírico; ▲ – ácido capróico; ● – ácido valérico; -x-ácido
propiônico; - -butanol; — ácido isovalérico (Condição I)96
Figura 5.25 - Produção volumétrica média acumulada do biogás durante o ciclo (Condição I)97

Figura 5.26 - Concentração dos compostos do biogás durante o ciclo: $\blacksquare - CO_2$; $\Delta - H_2$; $\bullet - CH_4$
(Condição I)97
Figura 5.27 - Volumes acumulados médios produzidos ao longo do ciclo: $\blacksquare - CO_2$; $\triangle - H_2$; $\bullet - CH_4$
(Condição I)
Figura 5.28 - Concentração de matéria orgânica (DQO): \Box – afluente não filtrada; Δ - efluente não
filtrada; o – efluente filtrada (Condição II)
Figura 5.29 - Eficiência de remoção de matéria orgânica (DQO): ◊ – não filtrada; ♦ - filtrada
(Condição II)100
Figura 5.30 - Concentração de carboidrato: \Box – afluente não filtrada; Δ - efluente não filtrada; \circ –
efluente filtrada (Condição II)101
Figura 5.31 - Eficiência de remoção de carboidrato: ♦ – não filtrada; ◊- filtrada (Condição II)101
Figura 5.32 – Valores de pH: ◊ –afluente; ♦ - efluente (Condição II)
Figura 5.33 - Alcalinidade total: ◊ –afluente; ♦ - efluente (Condição II)
Figura 5.34 - Concentração de AVT: ◊ –afluente; ♦ - efluente (Condição II)103
Figura 5.35 - Concentração dos compostos intermediários durante o monitoramento: – ácido
acético; Δ - etanol; \circ – ácido butírico; \blacksquare – ácido isobutírico; \blacktriangle – ácido capróico; \bullet – ácido valérico;
-x- ácido propiônico; - -butanol; — ácido isovalérico (Condição II)103
Figura 5.36 - Volume de biogás produzido por ciclo (Condição II)104
Figura 5.37 - Concentrações dos componentes do biogás no final do ciclo: $\Box - CO_2$; $\Delta - H_2$; $\circ - CH_4$
(Condição II)
Figura 5.38 - Concentração e eficiência de degradação de matéria orgânica: ◊ - perfil 1, ♦ - perfil 2,
— média dos dois perfis e x eficiência (Condição II)106
Figura 5.39 - Concentração e eficiência de degradação de carboidrato: ◊ - perfil 1, ♦ - perfil 2, —
média dos dois perfis e x eficiência (Condição II)106
Figura 5.40 - Valores de pH: ◊ – do perfil 1, ♦ - do perfil 2 e — média dos dois perfis (Condição II)

Figura 5.41 - Alcalinidade total: ◊ - do perfil 1, ♦ - do perfil 2 e - média dos dois perfis (Condição
II)
Figura 5.42 - Concentração de AVT: ◊ – do perfil 1, ♦ - do perfil 2 e — média dos dois perfis
(Condição II)
Figura 5.43 - Concentração dos compostos intermediários ao longo do ciclo: \Box – ácido acético; Δ -
etanol; ○ – ácido butírico; ■ – ácido isobutírico; ▲ – ácido capróico; ● – ácido valérico; -x-ácido
propiônico; - -butanol; — ácido isovalérico (Condição II)108
Figura 5.44 - Produção volumétrica média acumulada do biogás durante o ciclo (Condição II)109
Figura 5.45 - Concentração dos compostos do biogás durante o ciclo: $\blacksquare - CO_2$; $\Delta - H_2$; $\bullet - CH_4$
(Condição II)109
Figura 5.46 - Volumes acumulados médios produzidos ao longo do ciclo: $\blacksquare - CO_2$; $\triangle - H_2$; $\bullet - CH_4$
(Condição II)110
Figura 5.47 - Concentração de matéria orgânica (DQO): \Box – afluente não filtrada; Δ - efluente não
filtrada; o – efluente filtrada (Condição III)112
Figura 5.48 - Eficiência de remoção de matéria orgânica (DQO): ◊ – não filtrada; ♦ - filtrada
(Condição III)112
Figura 5.49 - Concentração de carboidrato: \Box – afluente não filtrada; Δ - efluente não filtrada; \circ –
efluente filtrada (Condição III)
Figura 5.50 - Eficiência de remoção de carboidrato: ♦ – não filtrada; ◊- filtrada (Condição III)113
Figura 5.51 - Valores de pH: ◊ –afluente; ♦ - efluente (Condição III)
Figura 5.52 - Alcalinidade total: ◊ –afluente; ♦ - efluente (Condição III)114
Figura 5.53 - Concentração de AVT: ◊ –afluente; ♦ - efluente (Condição III)115
Figura 5.54 - Concentração dos compostos intermediários durante o monitoramento: D – ácido
acético; Δ - etanol; \circ – ácido butírico; \blacksquare – ácido isobutírico; \blacktriangle – ácido capróico; \bullet – ácido valérico;
-x- ácido propiônico; - -butanol; — ácido isovalérico (Condição III)115
Figura 5.55 - Volume de biogás produzido por ciclo (Condição III)116

Figura 5.56 - Concentrações dos componentes do biogás no final do ciclo: $\Box - CO_2$; $\Delta - H_2$; $\circ - CH_4$
(Condição III)117
Figura 5.57 - Concentração e eficiência de degradação de matéria orgânica: ◊ - perfil 1, ♦ - perfil 2,
— média dos dois perfis e x eficiência (Condição III)117
Figura 5.58 - Concentração e eficiência de degradação de carboidrato: ◊ - perfil 1, ♦ - perfil 2, —
média dos dois perfis e x eficiência (Condição III)118
Figura 5.59 - Valores de pH: ◊ – do perfil 1, ♦ - do perfil 2 e — média dos dois perfis (Condição
III)
Figura 5.60 - Alcalinidade total: ◊ - do perfil 1, ♦ - do perfil 2 e - média dos dois perfis (Condição
III)
Figura 5.61 - Concentração de AVT: ◊ – do perfil 1, ♦ - do perfil 2 e — média dos dois perfis
(Condição III)119
Figura 5.62 - Concentração dos compostos intermediários ao longo do ciclo: \Box – ácido acético; Δ -
etanol; ○ – ácido butírico; ■ – ácido isobutírico; ▲ – ácido capróico; ● – ácido valérico; -x-ácido
propiônico; - -butanol; — ácido isovalérico (Condição III)120
Figura 5.63 - Produção volumétrica média acumulada do biogás durante o ciclo (Condição III). 120
Figura 5.64 - Concentração dos compostos do biogás durante o ciclo: $\blacksquare - CO_2$; $\Delta - H_2$; $\bullet - CH_4$
(Condição III)121
Figura 5.65 - Volumes acumulados médios produzidos ao longo do ciclo: $\blacksquare - CO_2$; $\Delta - H_2$; $\bullet - CH_4$
(Condição III)122
Figura 5.66 - Concentração de matéria orgânica (DQO): \Box – afluente não filtrada; Δ - efluente não
filtrada; o – efluente filtrada (Condição IV)124
Figura 5.67 - Eficiência de remoção de matéria orgânica (DQO): ◊ – não filtrada; ♦ - filtrada
(Condição IV)
Figura 5.68 - Concentração de carboidrato: \Box – afluente não filtrada; Δ - efluente não filtrada; \circ –
efluente filtrada (Condição IV)125

Figura 5.69 - Eficiência de remoção de carboidrato: ♦ – não filtrada; ◊- filtrada (Condição IV) 125
Figura 5.70 – Valores de pH: ◊ –afluente; ♦ - efluente (Condição IV)
Figura 5.71 - Alcalinidade total: ◊ –afluente; ♦ - efluente (Condição IV)126
Figura 5.72 - Concentração de AVT: ◊ –afluente; ♦ - efluente (Condição IV)
Figura 5.73 - Concentração dos compostos intermediários durante o monitoramento: \Box – ácido
acético; Δ - etanol; \circ - ácido butírico; \blacksquare - ácido isobutírico; \blacktriangle - ácido capróico; \bullet - ácido valérico;
-x- ácido propiônico; - -butanol; — ácido isovalérico (Condição IV)
Figura 5.74 - Volume de biogás produzido por ciclo (Condição IV)
Figura 5.75 - Concentrações dos componentes do biogás no final do ciclo: $\Box - CO_2$; $\Delta - H_2$; $\circ - CH_4$
(Condição IV)
Figura 5.76 - Concentração e eficiência de degradação de matéria orgânica: ◊ - perfil 1, ♦ - perfil 2,
— média dos dois perfis e x eficiência (Condição IV)130
Figura 5.77 - Concentração e eficiência de degradação de carboidrato: ◊ - perfil 1, ♦ - perfil 2, —
média dos dois perfis e x eficiência (Condição IV)130
Figura 5.78 - Valores de pH: ◊ – do perfil 1, ♦ - do perfil 2 e — média dos dois perfis (Condição
IV)131
Figura 5.79 - Alcalinidade total: ◊ - do perfil 1, ♦ - do perfil 2 e - média dos dois perfis (Condição
IV)131
Figura 5.80 - Concentração de AVT: ◊ – do perfil 1, ♦ - do perfil 2 e — média dos dois perfis
(Condição IV)132
Figura 5.81 - Concentração dos compostos intermediários ao longo do ciclo: \Box – ácido acético; Δ -
etanol; ○ – ácido butírico; ■ – ácido isobutírico; ▲ – ácido capróico; ● – ácido valérico; -x-ácido
propiônico; - -butanol; — ácido isovalérico (Condição IV)132
Figura 5.82 - Produção volumétrica média acumulada do biogás durante o ciclo (Condição IV).133
Figura 5.83 - Concentração dos compostos do biogás durante o ciclo: $\blacksquare - CO_2$; $\Delta - H_2$; $\bullet - CH_4$
(Condição IV)

Figura 5.84 - Volumes acumulados médios produzidos ao longo do ciclo: $\blacksquare - CO_2$; $\triangle - H_2$; $\bullet - CH_4$
(Condição IV)134
Figura 5.85 - Concentração de matéria orgânica (DQO): \Box – afluente não filtrada; Δ - efluente não
filtrada; o – efluente filtrada (Condição V)
Figura 5.86 - Eficiência de remoção de matéria orgânica (DQO): ◊ – não filtrada; ♦ - filtrada
(Condição V)136
Figura 5.87 - Concentração de carboidrato: \Box – afluente não filtrada; Δ - efluente não filtrada; \circ –
efluente filtrada (Condição V)
Figura 5.88 - Eficiência de remoção de carboidrato: ♦ – não filtrada; ◊- filtrada (Condição V)137
Figura 5.89 - Valores de pH: ◊ –afluente; ♦ - efluente (Condição V)
Figura 5.90 - Alcalinidade total: ◊ –afluente; ♦ - efluente (Condição V)
Figura 5.91 - Concentração de AVT: ◊ –afluente; ♦ - efluente (Condição V)
Figura 5.92 - Concentração dos compostos intermediários durante o monitoramento: – ácido
acético; Δ - etanol; \circ – ácido butírico; \blacksquare – ácido isobutírico; \blacktriangle – ácido capróico; \bullet – ácido valérico;
-x- ácido propiônico; - -butanol; — ácido isovalérico (Condição V)
Figura 5.93 - Volume de biogás produzido por ciclo (Condição V)
Figura 5.94 - Concentrações dos componentes do biogás no final do ciclo: $\Box - CO_2$; $\Delta - H_2$; $\circ - CH_4$
(Condição V)141
Figura 5.95 - Concentração e eficiência de degradação de matéria orgânica: ◊ - perfil 1, ♦ - perfil 2,
— média dos dois perfis e x eficiência (Condição V)142
Figura 5.96 - Concentração e eficiência de degradação de carboidrato: ◊ - perfil 1, ♦ - perfil 2, —
média dos dois perfis e x eficiência (Condição V)142
Figura 5.97 - Valores de pH: ◊ – do perfil 1, ♦ - do perfil 2 e — média dos dois perfis (Condição V)
Figura 5.98 - Alcalinidade total: ◊ - do perfil 1, ♦ - do perfil 2 e - média dos dois perfis (Condição
V)143

Figura 5.99 - Concentração de AVT: ◊ – do perfil 1, ♦ - do perfil 2 e — média dos dois perfis
(Condição V)144
Figura 5.100 - Concentração dos compostos intermediários ao longo do ciclo: \Box – ácido acético; Δ
 etanol; ○ – ácido butírico; ■ – ácido isobutírico; ▲ – ácido capróico; ● – ácido valérico; -x-ácido
propiônico; - -butanol; — ácido isovalérico (Condição V)144
Figura 5.101 - Produção volumétrica média acumulada do biogás durante o ciclo (Condição V) 145
Figura 5.102 - Concentração dos compostos do biogás durante o ciclo: $\blacksquare - CO_2$; $\triangle - H_2$; $\bullet - CH_4$
(Condição V)145
Figura 5.103 - Volumes acumulados médios produzidos ao longo do ciclo: $\blacksquare - CO_2$; $\triangle - H_2$; $\bullet -$
CH ₄ (Condição V)146
Figura 5.104 - Concentração de matéria orgânica (DQO): \Box – afluente não filtrada; Δ - efluente não
filtrada; o – efluente filtrada (Condição VI)148
Figura 5.105 - Eficiência de remoção de matéria orgânica (DQO): ◊ – não filtrada; ♦ - filtrada
(Condição VI)148
Figura 5.106 - Concentração de carboidrato: \Box – afluente não filtrada; Δ - efluente não filtrada; \circ –
efluente filtrada (Condição VI)149
Figura 5.107 - Eficiência de remoção de carboidrato: ♦ – não filtrada; ◊- filtrada (Condição VI) 149
Figura 5.108 - Valores de pH: ◊ –afluente; ♦ - efluente (Condição VI)
Figura 5.109 - Alcalinidade total: ◊ –afluente; ♦ - efluente (Condição VI)150
Figura 5.110 - Concentração de AVT: ◊ –afluente; ♦ - efluente (Condição VI)
Figura 5.111 - Concentração dos compostos intermediários durante o monitoramento: 🗆 – ácido
acético; Δ - etanol; \circ – ácido butírico; \blacksquare – ácido isobutírico; \blacktriangle – ácido capróico; \bullet – ácido valérico;
-x- ácido propiônico; - -butanol; — ácido isovalérico (Condição VI)
Figura 5.112 - Volume de biogás produzido por ciclo (Condição VI)152
Figura 5.113 - Concentrações dos componentes do biogás no final do ciclo: $\Box - CO_2$; $\Delta - H_2$; $\circ -$

Figura 5.114 - Concentração e eficiência de degradação de matéria orgânica: ◊ - perfil 1, ♦ - perfil
2, — média dos dois perfis e x eficiência (Condição VI)153
Figura 5.115 - Concentração e eficiência de degradação de carboidrato: ◊ - perfil 1, ♦ - perfil 2, —
média dos dois perfis e x eficiência (Condição VI)154
Figura 5.116 - Valores de pH: ◊ – do perfil 1, ♦ - do perfil 2 e — média dos dois perfis (Condição
VI)
Figura 5.117 - Alcalinidade total: ◊ - do perfil 1, ♦ - do perfil 2 e - média dos dois perfis (Condição
VI)
Figura 5.118 - Concentração de AVT: ◊ – do perfil 1, ♦ - do perfil 2 e — média dos dois perfis
(Condição VI)
Figura 5.119 - Concentração dos compostos intermediários ao longo do ciclo: \Box – ácido acético; Δ
 etanol; ○ – ácido butírico; ■ – ácido isobutírico; ▲ – ácido capróico; ● – ácido valérico; -x-ácido
propiônico; - -butanol; — ácido isovalérico (Condição VI)156
Figura 5.120 - Produção volumétrica média acumulada do biogás durante o ciclo (Condição VI)156
Figura 5.121 - Concentração dos compostos do biogás durante o ciclo: $\blacksquare - CO_2$; $\Delta - H_2$; $\bullet - CH_4$
(Condição VI)157
Figura 5.122 - Volumes acumulados médios produzidos ao longo do ciclo: $\blacksquare - CO_2$; $\Delta - H_2$; $\bullet - CO_2$
CH ₄ (Condição VI)157
Figura 5.123 – Vazão do biogás em todas as condições
Figura 5.124 - Vazão molar dos componentes do biogás em todas as condições
Figura 5.125 - Eficiência de remoção de matéria orgânica (DQO): ● – não filtrada; ○ - filtrada
(Todas as condições)161
Figura 5.126 - Eficiência de remoção de carboidrato: ● – não filtrada; ○- filtrada (Todas as
condições)165
Figura 5.127 - Médias dos principais compostos intermediários do metabolismo em El Manssouri
(2012) (esquerda) e no presente trabalho (direita) para todas as condições

Figura 5.128 - Perfis de matéria orgânica (DQO) em todas as condições em El Manssouri
(esquerda) e presente trabalho (direira)
Figura 5.129 (a) - Perfis de carboidratos (em base mássica) durante todas as condições em El
Manssouri (esquerda) e presente trabalho (direira)174
Figura 5.129 (b) - Perfis de carboidratos (em base molar) durante todas as condições em El
Manssouri (esquerda) e presente trabalho (direira)174 <u>5</u>
Figura 5.130 - Perfis de AVT em todas as condições em El Manssouri (esquerda) e presente
trabalho (direira)
Figura 5.131 – Perfis de HAc e HBut em todas as condições em El Manssouri (esquerda) e presente
trabalho (direira)
Figura 5.132 – Perfis de EtOH e HPr em todas as condições em El Manssouri (esquerda) e
presente trabalho (direira)
Figura 5.133 (a)- Perfis de biogás em todas as condições em El Manssouri (esquerda) e presente
trabalho (direira)
Figura 5.133 (b)- Perfis de biogás em todas as condições em El Manssouri (esquerda) e presente
trabalho (direira)180
Figura 5.134 - Velocidades de consumo de carboidratos (▲) e de formação de hidrogênio (○) em
função da concentração de carboidratos para todas as condições em El Manssouri (esquerda) e
presente trabalho (direita)
Figura 5.135 – Exames microbiológicos realizados na biomassa do reator: (a) Condição I, (b)
Condição II e (c) Condição VI

LISTA DE TABELAS

Tabela 3.1 - Avaliações da produção de biohidrogênio em função da carga orgânica
Tabela 4.1 - Características do material suporte inerte 62
Tabela 4.2 - Composição da água residuária sintética a ser utilizada nos ensaios63
Tabela 4.3 - Frequência do monitoramento
Tabela 4.4 - Resumo das condições experimentais estudadas
Tabela 5.1 - Valores médios dos parâmetros monitorados na condição preliminar (3500 mgDQO.L ⁻
$^{1} - t_{C} 4h$)
Tabela 5.2 - Valores médios dos parâmetros monitorados na Condição I (3500 mgDQO.L ⁻¹ – t_C 4h)
Tabela 5.3 - Concentração e distribuição dos compostos intermediários (Condição I)92
Tabela 5.4 - Valores médios da produção, fração molar e os volumes individuais da mistura do
biogás (Condição I)98
Tabela 5.5 - Valores médios dos parâmetros monitorados na Condição II (3500 mgDQO.L ⁻¹ – t_C
3h)
Tabela 5.6 - Concentração e distribuição dos compostos intermediários (Condição II)104
Tabela 5.7 - Valores médios da produção, fração molar e os volumes individuais da mistura do
biogás (Condição II)109
Tabela 5.8 - Valores médios dos parâmetros monitorados na Condição III (5250 mgDQO.L ⁻¹ – t_C
4h)
Tabela 5.9 - Concentração e distribuição dos compostos intermediários (Condição III)116
Tabela 5.10 - Valores médios da produção, fração molar e os volumes individuais da mistura do
biogás (Condição III)
Tabela 5.11 - Valores médios dos parâmetros monitorados na Condição IV (5250 mgDQO.L ⁻¹ – t_C
3h)

Tabela 5.12 - Concentração e distribuição dos compostos intermediários (Condição IV)128
Tabela 5.13 - Valores médios da produção, fração molar e os volumes individuais da mistura do
biogás (Condição IV)133
Tabela 5.14 - Valores médios dos parâmetros monitorados na condição V (3500 mgDQO.L ⁻¹ – t_C
2h)
Tabela 5.15 - Concentração e distribuição dos compostos intermediários (Condição V)140
Tabela 5.16 - Valores médios da produção, fração molar e os volumes individuais da mistura do
biogás (Condição V)145
Tabela 5.17 - Valores médios dos parâmetros monitorados na Condição VI (5250 mgDQO.L ⁻¹ – t_C
2h)
Tabela 5.18 - Concentração e distribuição dos compostos intermediários (Condição VI)152
Tabela 5.19 - Valores médios da produção, fração molar e os volumes individuais da mistura do
biogás (Condição VI)157
Tabela 5.20 - Distribuição dos componentes do biogás em todas as condições
Tabela 5.21 - Equações bioquímicas e equivalente-grama dos compostos em DQO162
Tabela 5.22 - Balanço de massa na saída do reator164
Tabela 5.23 - Rendimentos na produção de biohidrogênio em todas as condições experimentais 167
Tabela 5.24 - Produtividades em todas as condições experimentais 170
Tabela 5.25 - Quantidade de biomassa no interior do reator (M _{SVT}) 171

LISTA DE ABREVIATURAS E SIGLAS

Abreviatura/Símbolo	Denominação
AM	Agitação Mecânica
AnSBBR	Reator Anaeróbio Operado em Batelada Sequencial com Biomassa
	Imobilizada em Suporte Inerte
	(Anaerobic Sequencing Batch Biofilm Reactor)
ASBR	Reator Anaeróbio Operado em Batelada Sequencial
	(Anaerobic Sequencing Batch Reactor)
CNTP	Condições Normais de Temperatura e Pressão (0°C e 1atm)
DQO	Demanda Química de Oxigênio (matéria orgânica DQO)
EEM	Escola de Engenharia Mauá
EESC	Escola de Engenharia de São Carlos
IMT	Instituto Mauá de Tecnologia
PEBD	Polietileno de baixa densidade
RFL	Recirculação da Fase Líquida
SAC	Sacarose (matéria orgânica carboidratos)
USP	Universidade de São Paulo

LISTA DE SÍMBOLOS

Símbolo	Denominação	Unidade	
AP	Alcalinidade parcial	$(mgCaCO_3.L^{-1})$	
AI	Alcalinidade intermediária	$(mgCaCO_3.L^{-1})$	
AT	Alcalinidade total	$(mgCaCO_3.L^{-1})$	
AB	Alcalinidade a bicarbonato	$(mgCaCO_3.L^{-1})$	
AVT	Ácidos voláteis totais	(mgHAc.L ⁻¹)	
ST	Sólidos totais	$(mgST.L^{-1})$	
SVT	Sólidos voláteis totais	$(mgSVT.L^{-1})$	
SST	Sólidos suspensos totais	$(mgSST.L^{-1})$	
SSV	Sólidos suspensos voláteis	$(mgSSV.L^{-1})$	
pН	Potencial hidrogeniônico	(u)	
Acetona	Concentração de acetona	$(mg.L^{-1})$	
MetOH	Concentração de metanol	$(mg.L^{-1})$	
EtOH	Concentração de etanol	$(mg.L^{-1})$	
ButOH	Concentração de n-butanol	$(mg.L^{-1})$	
HAc	Concentração de ácido acético	$(mg.L^{-1})$	
HPr	Concentração de ácido propiônico	$(mg.L^{-1})$	
HIsoBut	Concentração de ácido iso-butírico	$(mg.L^{-1})$	
HBut	Concentração de ácido butírico	$(mg.L^{-1})$	
HIsoVal	Concentração de ácido iso-valérico	$(mg.L^{-1})$	
HVal	Concentração de ácido valérico	$(mg.L^{-1})$	
НСа	Concentração de ácido capróico	$(mg.L^{-1})$	
VCIDA	Volume acumulado de biogás obtido em determinado ponto do período	(mI)	
• GI-BA	em batelada alimentada	(IIIL)	
V_{M-i}	Volume obtido pelo medidor de biogás	(mL)	
$\mathbf{N}_{\mathbf{i}}$	Número do ponto do perfil do biogás		
$N_{t\text{-}BA}$	Número total de pontos do perfil durante a batelada alimentada		
	Volume acumulado de biogás obtido em determinado ponto do		
V _{Gi-B}	período em batelada	(mL)	
$V_{\rm N}$	Volume de biogás nas CNTP	(mL-CNTP)	
V_i	Volume de biogás a ser convertido	(mL)	
Pa	Pressão do ar no local da medição	(mbar)	
$P_{\rm V}$	Pressão parcial de vapor d´água	(mbar)	

PL	Pressão da coluna líquida acima da câmara de medição	(mbar)
$\mathbf{P}_{\mathbf{N}}$	Pressão normal (1013,25 mbar)	(mbar)
T_{N}	Temperatura normal (273,15 K)	(K)
Ta	Temperatura no local da medição	(K)
$M_{T\text{-}SI\text{+}B}$	Massa de suporte inerte e biomassa do reator	(g)
$M_{A\text{-}SI\text{+}B}$	Massa da amostra de suporte inerte e biomassa do reator	(g)
M_{A-ST}	Massa de sólidos totais (ST) da amostra de biomassa	(g)
$M_{A\text{-}SVT}$	Massa de sólidos voláteis totais (SVT) da amostra de biomassa	(g)
M_{SVT}	Massa de sólidos voláteis totais (SVT) no interior do reator	(g)
C_X	Massa de sólidos voláteis totais (SVT) por volume de meio líquido	$(g.L^{-1})$
C_{X}	Massa de sólidos voláteis totais (SVT) por massa de material suporte	$(g.g^{-1})$
$V_{\rm A}$	Volume de água residuária alimentado por ciclo	(L)
V _R	Volume de meio líquido total no reator	(L)
V _{Res}	Volume de meio líquido residual no reator após a etapa de descarga	(L)
V_u	Volume útil do reator	(L)
F _{AFL}	Vazão de alimentação do período em batelada alimentada	$(L.h^{-1})$
t _i	Tempo de alimentação percorrido (período em batelada alimentada)	(h)
t _{BA}	Tempo de batelada alimentada	(h)
Ν	Número de ciclos por dia	(ciclos.d ⁻¹)
C_{SAFL}	Concentração de matéria orgânica não filtrada no afluente na forma de DQO	(mgDQO.L ⁻¹)
C_{CAFL}	Concentração de matéria orgânica não filtrada no afluente na forma de carboidratos	(mgSAC.L ⁻¹)
C_{S0}	Concentração de matéria orgânica filtrada no tempo inicial do ciclo na forma de DQO (perfis)	(mgDQO.L ⁻¹)
C _{C0}	Concentração de matéria orgânica filtrada no tempo inicial do ciclo na forma de carboidratos (perfis)	(mgSAC.L ⁻¹)
C _{ST}	Concentração de matéria orgânica não filtrada na forma de DQO	(mgDQO.L ⁻¹)
\mathbf{C}_{SF}	Concentração de matéria orgânica filtrada na forma de DQO	(mgDQO.L ⁻¹)
C _{CT}	Concentração de matéria orgânica não filtrada na forma de carboidratos	$(mgSAC.L^{-1})$
C_{CF}	Concentração de matéria orgânica filtrada na forma de carboidratos	$(mgSAC.L^{-1})$
ε _{st}	Eficiência de remoção de matéria orgânica não filtrada na forma de DQO	(%)
$\epsilon_{ m SF}$	Eficiência de remoção de matéria orgânica filtrada na forma de DQO	(%)

	Eficiência de remoção de matéria orgânica não filtrada na forma de	(0/)	
ε _{CT}	carboidratos	(%)	
	Eficiência de remoção de matéria orgânica filtrada na forma de	(0/)	
$\epsilon_{\rm CF}$	carboidratos	(%)	
	Eficiência de remoção de matéria orgânica filtrada na forma de DQO	(0/)	
ε _s	ao longo do ciclo (perfis)	(%)	
	Eficiência de remoção de matéria orgânica filtrada na forma de		
ε _C	carboidratos ao longo do ciclo (perfis)	(%)	
COLLA	Carga orgânica volumétrica aplicada em termos de matéria orgânica na		
COVA _S	forma de DQO	(gDQO.L ⁻ .d ⁻)	
COM	Carga orgânica volumétrica aplicada em termos de matéria orgânica na		
COVA _C	forma de carboidratos	(gSAC. L .d)	
COEA	Carga orgânica específica aplicada em termos de matéria orgânica na	$(aDOO a CUT^{-1} 4^{-1})$	
COEA _S	forma de DQO	(gDQO.gSVI.d)	
COEA	Carga orgânica específica aplicada em termos de matéria orgânica na	$(\alpha S \wedge C \alpha S V T^{-1} d^{-1})$	
COEA _C	forma de carboidratos	(gSAC.gSVI.u)	
COVP	Carga orgânica volumétrica removida em termos de matéria orgânica	$(aDOO I^{-1} d^{-1})$	
COVIS	na forma de DQO	(gDQO.La)	
COVD	Carga orgânica volumétrica removida em termos de matéria orgânica	$(\mathbf{qSAC} \mathbf{I}^{-1} \mathbf{d}^{-1})$	
COVIC	na forma de carboidratos	(gSAC. Lu.)	
COFR	Carga orgânica específica removida em termos de matéria orgânica na	$(\mathbf{g}\mathbf{D}\mathbf{O}\mathbf{O} \mathbf{g}\mathbf{S}\mathbf{V}\mathbf{T}^{-1} \mathbf{d}^{-1})$	
COLKS	forma de DQO		
COFR	Carga orgânica específica removida em termos de matéria orgânica na	$(\sigma S \Delta C \sigma S V T^{-1} d^{-1})$	
COLIC	forma de carboidratos	(gome.govi .u)	
n _{H2}	Vazão molar de hidrogênio diária	$(molH_2.d^{-1})$	
PrM	Produtividade molar de hidrogênio volumétrica	$(molH_2.m^{-3}.d^{-1})$	
PrME	Produtividade molar de hidrogênio específica	$(molH_2.kgSVT^{-1}.d^{-1})$	
RMCA	Rendimento entre hidrogênio (molar) produzido e matéria orgânica	$(molH, kgDOO^{-1})$	
KWICA _{S,m}	(massa) aplicada na forma de DQO	(mon12.kgDQO)	
RMC A ~	Rendimento entre hidrogênio (molar) produzido e matéria orgânica	$(molH, kgSAC^{-1})$	
KIVICA _{C,m}	(massa) aplicada na forma de carboidratos	(mon12.kg5AC)	
RMCA _{C,n}	Rendimento entre hidrogênio (molar) produzido e matéria orgânica	$(molH_{a} molSAC^{-1})$	
	(molar) aplicada na forma de carboidratos	(1101112.1110107.10.)	
RMCR _{S,m}	Rendimento entre hidrogênio (molar) produzido e matéria orgânica	$(molH_{2} k \sigma DOO^{-1})$	
	(massa) removida na forma de DQO		

RMCR _{C,m}	Rendimento entre hidrogênio (molar) produzido e matéria orgânica	(molH ₂ .kgSAC ^{-1.})	
	(massa) removida na forma de carboidratos		
RMCR _{C,n}	Rendimento entre hidrogênio (molar) produzido e matéria orgânica	(m + 1) $(m + 1)$ $(n + 1)$	
	(molar) removida na forma de carboidratos	$(\text{III0IH}_2.\text{III0ISAC})$	
C	Concentração de um componente do biogás (H2, CH4 ou CO2) da	$(mm \circ 1 I^{-1})$	
C_{G}	amostra retirada do "head-space" do reator	(mmol.L)	
V_{G}	Volume na CNTP de biogás total produzido por ciclo	(mL-CNTP.ciclo ⁻¹)	
V_{H2}	Volume na CNTP de hidrogênio produzido por ciclo	(mL-CNTP.ciclo ⁻¹)	
N _{CF}	Concentração molar de sacarose	(mmolSAC.L ⁻¹)	
N	Vazão molar de cada componente do biogás (H2, CH4 ou CO2)	(
ING	produzido durante o ciclo	(mmoi)	
-			

SUMÁRIO

LIS	STA I	DE FIG	URAS	XIII
LIS	STA I	DE TAI	BELAS	XXIII
LIS	STA I	DE ABI	REVIATURAS E SIGLAS	XXV
LIS	STA I	DE SÍM	IBOLOS	XXVI
1	INT	RODU	ÇÃO	35
2	OB	JETIV()	
3	REV	VISÃO	BIBLIOGRÁFICA	
	3.1	Reator	Anaeróbio Operado em Bateladas Sequenciais	
	3.2	Produ	ção biológica de hidrogênio	40
		3.2.1	Influência da temperatura	43
		3.2.2	Influência da alcalinidade e do pH	45
		3.2.3	Influência do inóculo	46
		3.2.4	Influência do tempo de ciclo	47
		3.2.5	Influência da carga orgânica volumétrica aplicada	48
		3.2.6	Influência do tempo de enchimento	55
	3.3	Consid	derações Finais	57
4	MA	TERIA	IS E MÉTODOS	59
	4.1	AnSB	BR com agitação mecânica	59
	4.2	Inócul	o e imobilização da biomassa anaeróbia	62
	4.3	Água	residuária	63
	4.4	Anális	es físico-químicas e exames microbiológicos	64
	4.5	Procee	limento experimental da operação do reator	69
	4.6	Funda	mentos teóricos	70
	4.7	Condi	ções experimentais estudadas	76

5	RE	SULTA	DOS E DISCUSSÃO81
	5.1	Condi	ção experimental preliminar (3500 mgDQO.L ⁻¹ – t_C 4h)81
		5.1.1	Monitoramento81
	5.2	Condi	ção experimental I (3500 mgDQO.L ⁻¹ – t _C 4h)87
		5.2.1	Monitoramento
		5.2.2	Perfis ao longo do ciclo93
	5.3	Condi	ção experimental II (3500 mgDQO.L ⁻¹ – t_C 3h)
		5.3.1	Monitoramento
		5.3.2	Perfis ao longo do ciclo105
	5.4	Condi	ção experimental III (5250 mgDQO.L ⁻¹ – t_C 4h)111
		5.4.1	Monitoramento111
		5.4.2	Perfis ao longo do ciclo117
	5.5	Condi	ção experimental IV (5250 mgDQO.L ⁻¹ – t_C 3h)
		5.5.1	Monitoramento
		5.5.2	Perfis ao longo do ciclo129
	5.6	Condi	ção experimental V (3500 mgDQO.L ⁻¹ – $t_C 2h$)
		5.6.1	Monitoramento
		5.6.2	Perfis ao longo do ciclo141
	5.7	Condi	ção experimental VI (5250 mgDQO.L ⁻¹ – $t_{\rm C}$ 2h)
		5.7.1	Monitoramento147
		5.7.2	Perfis ao longo do ciclo153
	5.8	Anális	se comparativa das condições experimentais estudadas158
		5.8.1	Estabilidade na produção de biohidrogênio158
		5.8.2	Conversão do substrato
		5.8.3	Rendimento na produção de biohidrogênio166
		5.8.4	Produtividade

	5.8.5	Comportamento ao longo do ciclo
	5.8.6	Exames Microbiológicos186
6	CONCLUS	5ÕES
7	REFERÊN	CIAS BIBLIOGRÁFICAS189
ANEXOS		
1 INTRODUÇÃO

Os efluentes domésticos e industriais, ao longo de muitos anos, têm sido tratados como um grande problema para a sociedade, uma vez que sua indevida disposição final pode resultar em sérios danos ambientais e seu tratamento está associado a um custo a ser desembolsado pelas companhias de saneamento e pelas indústrias. Porém, uma nova visão tem se destacado em relação a esse problema, onde os efluentes não são tratados como rejeitos do processo. Isso porque muitas águas residuárias possuem em sua composição uma grande quantidade de nutrientes e/ou energia (na forma de matéria orgânica) passíveis de serem recuperados e reaproveitados. Essa recuperação de energia pode ser realizada através da digestão anaeróbia da matéria orgânica obtendo-se gás metano como fonte de energia. Entretanto, pesquisadores têm demonstrado ser possível à geração de hidrogênio e metano ao invés de produzir apenas o metano utilizando processos fermentativos (Wu *et al.*, 2003; Alzate-Gaviria *et al.*, 2007; Leite *et al.*, 2008).

O hidrogênio possui grande capacidade de armazenamento de energia por unidade de massa (142 KJ/g), além de ser uma fonte de energia extremamente limpa e que não contribui para o aumento dos gases do efeito estufa, já que o produto final de sua combustão é apenas água. (Das e Veziroglu, 2008). O problema encontra-se nas técnicas convencionalmente empregadas em sua produção, sendo realizada utilizando combustíveis fósseis como matéria-prima, através de processos termoquímicos, tais como reforma de hidrocarbonetos, gaseificação de carvão e oxidação parcial de hidrocarbonetos pesados (Show *et al.*, 2011). Ao contrário das formas de obtenção de hidrogênio citadas anteriormente, os processos biológicos podem ser operados a condições de temperatura e pressão normalmente encontradas no meio ambiente, o que demanda pouca energia para o processo. Além disso, pode-se utilizar águas residuárias como matéria prima, trazendo dois benefícios em conjunto, o tratamento parcial de efluentes e a produção de combustível na forma de biohidrogênio (Wang e Wan, 2009).

A literatura apresenta uma série de trabalhos relacionados à produção de biohidrogênio por processos fermentativos, porém muitos são realizados em pequenos frascos e operados em batelada única. Esses estudos são frequentemente utilizados para testes de novos processos, sendo muito difícil a utilização dos mesmos em escala maior. Por esse motivo, é importante também que esses processos sejam investigados utilizando reatores operados de modo contínuo ou batelada sequencial, nos quais o tratamento de águas residuárias e produção de biogás podem ser realizados de maneira estável e em maior escala. Os reatores anaeróbios em bateladas sequenciais têm sido utilizados para a produção de hidrogênio, utilizando diferentes tipos de substratos, diferentes cargas orgânicas volumétricas aplicadas, com biomassa auto-imobilizada ou imobilizada em suporte inerte e diferentes formas de mistura. Porém outras variáveis do processo, como o tempo de enchimento, precisam ser exploradas e melhor compreendidas no intuito de se obter conhecimento sobre a viabilidade biotecnológica desse sistema.

Neste contexto, a Escola de Engenharia de São Carlos da Universidade de São Paulo (EESC/USP) e a Escola de Engenharia Mauá do Instituto Mauá de Tecnologia (EEM/IMT), vem trabalhando em conjunto no desenvolvimento do reator anaeróbio operado em batelada sequencial e biomassa imobilizada - AnSBBR (*Anaerobic Sequencing Batch Biofilm Reactor*) visando à adequação ambiental de águas residuárias e à produção de bioenergia (hidrogênio e/ou metano) através de seu tratamento, buscando a otimização dos reatores na elaboração de novas propostas de configurações.

Dentro desta linha de pesquisa, a proposta do presente trabalho foi avaliar a aplicação do AnSBBR com agitação mecânica na produção de biohidrogênio a partir de água residuária sintética a base de sacarose, verificando a estabilidade das variáveis operacionais em função da estratégia de operação que avalia a influência conjunta do tempo de alimentação, do tempo de ciclo, da concentração afluente e da carga orgânica, fornecendo conhecimento que contribua para o entendimento do processo e que sirva como ferramenta de auxílio em uma possível aplicação futura em escala plena.

2 OBJETIVO

Esse trabalho teve como objetivo principal avaliar a influência do tempo de enchimento no reator anaeróbio operado em bateladas sequenciais e biomassa imobilizada (AnSBBR) com agitação mecânica n a produção de biohidrogênio pelo tratamento de efluente sintético a base de sacarose, verificando a estabilidade das variáveis operacionais monitoradas no intuito de se obter conhecimento sobre a viabilidade biotecnológica desse sistema.

3 REVISÃO BIBLIOGRÁFICA

3.1 Reator Anaeróbio Operado em Bateladas Sequenciais

Inicialmente desenvolvido por um grupo de pesquisadores da Iowa State University, os reatores anaeróbios operados em bateladas sequenciais – ASBR (*Anaerobic Sequencing Batch Reactor*) possuem características que garantem algumas vantagens em relação a outros processos de digestão anaeróbia, como a maior retenção de biomassa no interior do reator, quando comparado a reatores contínuos, mesmo a baixas relações alimento/microrganismo - F/M ("*food / microrganism*"), resultando em efluentes com menor concentração de sólidos suspensos e maior controle da qualidade do efluente, já que o tempo do ciclo pode ser controlado até que a eficiência desejada seja atingida (Sung e Dague, 1995; Zaiat *et al.*,2001).

Os reatores anaeróbios operados em bateladas sequenciais funcionam em 4 etapas: (i) alimentação, que pode ser realizada em um curto período de tempo antes da agitação no interior do reator (batelada) e/ou por períodos mais longos juntamente com a agitação no interior do reator (batelada alimentada); (ii) reação, em que os constituintes da água residuária são transformados pelos microrganismos; (iii) sedimentação, necessária quando a biomassa se encontrar na forma auto-imobilizada (ASBR), pois quando a biomassa se encontra na forma imobilizada em suporte inerte (AnSBBR) esta etapa não é necessária; e (iv) descarga, com retirada do líquido tratado e clarificado (Dague *et al.*, 1992; Fernandes *et al.*, 1993; Zaiat *et al.*, 2001).

Estudos sobre a influência de variáveis de processo na eficiência e estabilidade do reator quando aplicado ao tratamento de diferentes efluentes têm sido encontrados em literatura, como os relacionados: (i) ao tipo de mistura, a qual poderá ser implementada por recirculação da fase líquida (Bezerra *et al.*, 2009) ou por agitação mecânica (Rodrigues *et al.*, 2003a e 2004; Michelan *et al.*, 2009); (ii) ao tempo de enchimento ou estratégia de alimentação (Borges *et al.*, 2004; Albanez *et al.*, 2009); e (iii) a carga orgânica (Oliveira *et al.*, 2009; Novaes *et al.*, 2010). Esses reatores têm sido utilizados para diferentes finalidades, tais como, na remoção de matéria orgânica (Rodrigues *et al.*, 2003b; Bezerra *et al.*, 2009; Novaes *et al.*, 2010), remoção de compostos nitrogenados (Albanez *et al.*, 2009), remoção de compostos sulfurosos (Mockaitis *et al.*, 2010), e mais recentemente, na produção de biohidrogênio aliado ao tratamento de águas residuárias (El Manssouri, 2012; Santos, 2012).

3.2 Produção biológica de hidrogênio

A produção biológica de hidrogênio pode ser realizada de duas formas: por processos fotossintéticos, pela da biofotólise da água por cianobactérias e algas verdes ou pela fotodecomposição de matéria orgânica por bactérias fotossintéticas; e por processos fermentativos, pela degradação de compostos orgânicos em condições anaeróbias (Das e Veziroglu, 2001).

Os processos fermentativos, quanto comparados aos fotossintéticos, são mais viáveis, possuem adequadas velocidades de crescimento de microrganismos para a manutenção do sistema, possuem alta velocidade de produção de hidrogênio sem depender da disponibilidade de energia solar e, além disso, podem utilizar a matéria orgânica presente em águas residuárias como matéria prima (Das e Veziroglu, 2001; Wang e Wan, 2008).

Diferentes águas residuárias têm sido utilizadas como substrato para a produção de biohidrogênio, nas quais a fonte de matéria orgânica carbonácea é baseada em glicose, sacarose, amido de trigo, amido de mandioca, fração orgânica de resíduos sólidos, efluente de indústria de refrigerantes, efluente de reatores biológicos, óleos vegetais e resíduos da produção de biodiesel. O objetivo comum desses estudos é a avaliação da produtividade de hidrogênio, do rendimento entre hidrogênio produzido e substrato utilizado, e da estabilidade operacional (Amorim *et al.*, 2009; Alzate *et al.*, 2007; Jeong *et al.*, 2007; Sreethawong *et al.*, 2010; Argun *et al.*, 2008; Lin e Lay, 2004a-b, 2005; Peixoto, 2008; O-Thong *et al.*, 2008; Oztekin *et al.*, 2008; Sabourin-Provost *et al.*,

2009; Ito *et al.*, 2005; Nishio e Nakashimada, 2007; Yang *et al.*, 2008). Além disso, são investigadas a melhoria da composição das águas residuárias em termos do equilíbrio de nutrientes no intuito de possibilitar acréscimo de produtividade de hidrogênio e, assim, otimizar a aplicação desses diversos efluentes (Lin e Lay, 2005; Argun *et al.*, 2008; Peixoto, 2008; Turcot *et al.*, 2008; Rojas, 2010).

A digestão anaeróbia é um processo complexo, realizado por um conjunto de microrganismos, no qual cada grupo de microrganismos possui uma função específica e uns dependem dos outros. O processo pode ser dividido e classificado em: hidrólise de polímeros orgânicos complexos a monômeros; acidogênese, que é a conversão de monômeros a hidrogênio, bicarbonato, ácido acético, ácido propiônico, ácido butírico e outros; acetogênese, que é a oxidação de produtos orgânicos reduzidos a hidrogênio, bicarbonato e ácido acético; metanogênese, que é a etapa responsável pelo consumo de hidrogênio, dióxido de carbono e ácido acético para a formação do gás metano (Mosey, 1983; Foresti, 1999).

Ao longo de todo o processo, uma série de metabólitos intermediários são produzidos e logo em seguida consumidos na conversão da matéria orgânica em biogás, sendo um destes, o hidrogênio. Portanto, para que a produção de hidrogênio se torne possível, o processo precisa ser interrompido após a etapa acetogênica.

Segundo Tanisho (2001) e Lee *et al.* (2011) o hidrogênio molecular pode ser formado através de duas rotas, pela via de decomposição do ácido fórmico (Equação 3.1) ou pela reoxidação da nicotinamida adenina dinucleotídeo (NADH para NAD⁺) (Equações 3.3 e 3.4).

$$HCOOH \to H_2 + CO_2 \tag{3.1}$$

Esta via é intimamente relacionada com a fermentação via acetato, já que o piruvato é transformado em acetato e ácido fórmico (Equação 3.2).

$$CH_3COCOOH + H_2O \rightarrow CH_3COOH + HCOOH$$
 (3.2)

Piruvato	Ácido	Ácido
	Acético	Fórmico

No segundo caso o hidrogênio é formado pela reoxidação do NADH, que segundo Tanisho, (2001), ocorre nas fermentações da via acetona-butanol e na via butirato.

$$NADH + H^{+} + 2 Fd^{2+} \rightarrow 2H^{+} + NAD^{+} + 2Fd^{+}$$
 (3.3)

$$2Fd^+2H^+ \xrightarrow{Hidrogenase} 2Fd^{2+} + H_2 \tag{3.4}$$

A concentração de hidrogênio obtida pelo processo depende diretamente da via metabólica seguida pelas bactérias fermentativas (Equações 3.5 e 3.6) (Das e Veziroglu, 2008; Lee *et al.*, 2011).

$$C_6H_{12}O_6 + 2H_2O \rightarrow 2CH_3COOH + 2CO_2 + 4H_2$$
 (3.5)

Glicose Ácido Acético

$$C_6H_{12}O_6 + 2H_2O \rightarrow CH_3CH_2CH_2COOH + 2CO_2 + 2H_2$$
(3.6)
Glicose Ácido Butírico

O ideal seria que o processo seguisse sempre a via do acetato garantindo a produção máxima do processo. Porém isso não é possível, devido ao equilíbrio nas concentrações de NADH e NAD⁺ que precisa ser mantido no sistema. Um mol de acetato é gerado pelo consumo de dois mols de NAD⁺. Um mol de butirato não consome e nem gera NAD⁺. Um mol de etanol ou um mol de propionato formam dois mols de NAD⁺ (Figura 3.1) (Ren *et al.*, 2006).

Figura 3.1 - Representação de algumas rotas metabólicas e subprodutos na produção de biohidrogênio a partir de glicose
Fonte: (Ren *et al.*, 2006).

Para que o equilíbrio dinâmico na oxidação e redução de NAD⁺/NADH seja mantido, o NADH deve ser consumido, gerando propionato, lactato, etanol, butanol, e consequentemente diminuindo o rendimento na produção do H₂ (Lee *et al.*, 2011; Ren *et al.*, 2006).

Portanto, na busca de melhor produtividade e rendimento desses reatores, as condições operacionais são modificadas, buscando o favorecimento das bactérias produtoras, sobre as bactérias consumidoras de hidrogênio, sendo que estas serão descritas nos tópicos a seguir.

3.2.1 Influência da temperatura

Por se tratar de um processo biológico, a temperatura é um dos fatores de grande importância na produção de hidrogênio, esta exerce influência na velocidade do metabolismo das bactérias e na solubilidade dos gases produzidos no processo. Diferentes faixas de temperaturas têm sido testadas na busca de temperaturas ideais para a produção de biohidrogênio.

Mu *et al.* (2006) realizaram um trabalho utilizando lodo anaeróbio e esgoto sintético á base de glicose em batelada única, verificando a variação na produtividade do hidrogênio quando o reator fosse submetido a diferentes temperaturas, a variação foi feita na faixa mesofílica para as temperaturas de 33 a 41°C, o rendimento na produção de hidrogênio aumentou gradativamente de 0,97 a 1,67 $mol_{H2}.mol_{glicose}^{-1}$. Porém o autor verificou que o crescimento da biomassa também é influenciado pela temperatura o que acarretou na queda da produtividade específica após os 39°C.

O estudo de Wang e Wan (2008) foi realizado em frascos de vidro em batelada única, na faixa de 20 a 55°C de temperatura com esgoto sintético a base de glicose como afluente. O estudo mostrou que o aumento de temperatura exerceu influência sobre a da degradação do substrato e sobre a produtividade de hidrogênio, sendo que ambas aumentaram de 20 aos 40°C, porém a partir deste ponto diminuíram consideravelmente. A máxima eficiência na degradação do substrato foi de 98% e o maior rendimento na produção de hidrogênio obtido foi de 275,1 mL_{H2}.g_{glicose}⁻¹ ambos a 40°C.

Mu *et al.* (2006) e Wang e Wan (2008) demonstraram que aumento de temperatura contribuiu para um maior rendimento na produção de hidrogênio, sendo que em aproximadamente 39°C o rendimento dos reatores começa a diminuir. Porém, como citado anteriormente, a possibilidade da produção do hidrogênio a temperaturas ambientes é uma das vantagens a serem exploradas, dessa maneira muitos trabalhos são realizados na faixa mesofílica, por volta de 30 e 35°C.

3.2.2 Influência da alcalinidade e do pH

Assim como a temperatura, o pH tem grande importância no controle de processos biológicos e , assim como, na produção de biohidrogênio por processos fermentativos. Durante o processo, uma grande quantidade de metabólitos intermediários é produzida, incluindo ácidos orgânicos como acido acético, acido butírico, acido propiônico, e outros, capazes de alterar o pH do meio, que podem criar um ambiente agressivo às bactérias (Kargi e Pamukoglu, 2009; Sreethawong *et al.*, 2010). Em reatores tipicamente metanogênicos, esse controle do pH é realizado tanto pela alcalinidade do sistema quanto pelas arquéias metanogênicas que consomem o acido acético produzido (Foresti, 1999). Em reatores acidogênicos destinados à produção de H₂ as arquéias metanogênicas não estão presentes, assim a alcalinidade torna-se um parâmetro extremamente importante, já que é a grande responsável pela permanência do pH na faixa ótima de trabalho.

A faixa ótima de pH deve ser mantida já que este possui a capacidade de influenciar diretamente nas atividades da hidrogenase e nas rotas metabólicas (Jung *et al.*, 2011). Além disso o ajuste do pH serve como um instrumento no controle da população microbiana, isso porque as arquéias metanogênicas possuem pH ótimo entre 6,0 e 7,5, enquanto as bactérias acidogênicas trabalham bem em pH abaixo de 6,0 (Venkata Mohan *et al.*, 2007).

Ferchichi *et al.* (2005) avaliaram a produção de hidrogênio em frascos de 200 mL de volume útil em batelada única utilizando soro de queijo, variando o pH inicial na faixa entre 5 e 10. Essa variação influenciou na produtividade e no rendimento de hidrogênio, sendo que em pHs mais baixos foram encontrados melhores resultados, ou seja, o maior rendimento e vazão de H₂ foram de 7,89 mmol_{H2}.g_{lactose}⁻¹ e 28,3 mL.h⁻¹ ambos para pH 6.

Chen *et al.* (2009) realizaram um estudo sobre a influência do pH do meio do reator em um ASBR com TDH de 16h e concentração de 25 gDQO.L⁻¹ utilizando sacarose como fonte de carbono. O pH foi mantido através de um controlador de pH "*on line*", sendo o estudo realizado na faixa de 4,9 a 6,7. O melhor rendimento foi de 2,53 mol_{H2}.mol_{sacarose(consumida)}⁻¹ em pH 4,9. Porém em

pH 4,9 foi obtida a menor remoção de carboidratos, em média de 56%, sendo que nas demais condições essa remoção foi próxima a 100%. Foi verificado também que a mudança de pH influenciou a rota metabólica das bactérias, já que a via do butirato prevaleceu para valores de pH maiores que 5,5 e a fermentação pela via do acetato prevaleceu em pH 4,9.

3.2.3 Influência do inóculo

Como dito anteriormente, as bactérias produtoras de hidrogênio estão presentes em reatores anaeróbios, portanto a partida dos reatores produtores de hidrogênio pode ser dada através de inóculo proveniente desses reatores. Em alguns casos, esse lodo (inóculo) passa por um pré-tratamento antes que seja inoculado, visando à remoção das arquéias metanogênicas desse meio. Esse pré-tratamento pode ser realizado por um choque de temperatura, choque ácido, choque alcalino, choque por aeração, ou pela combinação destes (Ren *et al.*, 2008). Essa seleção realizada pelo pré-tratamento ocorre devido à capacidade das bactérias produtoras de hidrogênio ser capaz sobreviver a ambientes extremos (Kawagoshi *et al.* 2005).

Ren *et al.*, (2008) verificaram a influência dos métodos de pré-tratamento por choque de temperatura, ácido, alcalino e por repedidas aerações em lodo anaeróbio utilizando frascos erlenmyers em batelada única com glicose como substrato. Foi verificado que, com exceção do método de pré-tratamento alcalino, foi possível suprimir a metanogênese, sendo o maior rendimento alcançado de 1,96 mol_{H2}.mol_{glicose}⁻¹ pelo método de pré-tratamento por repetidas aerações.

Entretanto, Kawagoshi *et al.* (2005) compararam o rendimento em frascos de 100 mL em batelada única fornecendo glicose como substrato e utilizando inóculo de reator anaeróbio sem prétratamento, com pré-tratamento pelo abaixamento do pH e com pré-tratamento pelo choque de temperatura, e verificaram que o último obteve rendimento de 1,4 mol_{H2}.mol_{glicose}⁻¹, o maior encontrado nos experimentos. O autor também verificou que através do inóculo proveniente de reator anaeróbio sem pré-tratamento foi obtido um rendimento muito próximo ao anterior, com rendimento de aproximadamente de 1,37 $mol_{H2}.mol_{glicose}^{-1}$. Estudos nesse sentido se tornam interessantes tendo em vista as futuras aplicações de reatores produtores de hidrogênio, isso porque o tratamento de inóculo em grande escala pode se uma medida inviável.

3.2.4 Influência do tempo de ciclo

O tempo de ciclo em reatores em bateladas sequenciais ou o tempo de detenção hidráulica em reatores contínuos também exerce influência sobre a produção de hidrogênio, já que a velocidade de crescimento específica das arquéias metanogênicas (tempo mínimo de duplicação por volta de 2 a 3 dias) é menor do que das acidogênicas (tempo mínimo de duplicação por volta de 30 minutos) (Mosey, 1983). Dessa maneira, em baixos tempos de ciclo, as arquéias metanogênicas seriam lavadas do interior do reator (Show *et al.*, 2011).

Peixoto (2008) estudou essa influência em reatores contínuos utilizando um reator de leito fixo tratando água residuária semi-sintética baseado nas características do efluente de uma indústria de refrigerantes, sendo verificado que o aumento do tempo de detenção hidráulica de 0,5 h para 1,0 h resultou na queda na produção média de hidrogênio de 17,5 ml.min⁻¹ para 7,3 ml.min⁻¹.

Chen *et al.* (2009) verificaram a influência do tempo de ciclo em um ASBR tratando efluente sintético a base de sacarose. Os tempos de ciclo de 4, 6 e 8 horas foram investigados, sendo que o aumento desse parâmetro resultou na queda na produção de H₂ e no aumento de sólidos suspensos voláteis no interior do reator durante o ciclo (*Mixed Liquor Volatile Suspended Solids* -MLVSS). O ciclo de 4h, o menor tempo de ciclo do estudo, apresentou o melhor rendimento, 1,81 $mol_{H2}.mol_{sacarose(adicionada)}^{-1}$.

3.2.5 Influência da carga orgânica volumétrica aplicada

A carga orgânica volumétrica aplicada (COVA) é um parâmetro que possui grande influência sobre o rendimento nos reatores acidogênicos. Em processos fermentativos o substrato é utilizado como fonte de energia e convertido em ácidos orgânicos, álcoois e hidrogênio, dependendo da via metabólica utilizada pelos microrganismos. A energia livre de Gibbs dessas reações fermentativas são todas positivas, indicando que não são reações espontâneas. Portanto, o acúmulo dessas substâncias pode inibir o processo (Ren *et al.*, 2006; Kargi e Pamukoglu, 2009; Sreethawong *et al.*, 2010). Esse efeito inibitório foi verificado no estudo feito por Wang *et al.* (2008), no qual a influência de diferentes concentrações de etanol, ácido acético, ácido butírico e ácido propiônico adicionadas junto ao substrato (glicose) utilizando fracos em batelada única, mostraram que o aumento da concentração inicial de cada um resultou na diminuição do consumo de substrato, na produção e rendimento do biohidrogênio.

Na procura de faixas ótimas de COVA nos reatores acidogênicos, é interessante que sejam feitas comparações entre os diferentes tipos e formas de operação desses reatores. O problema é que esse desempenho pode ser avaliado de várias maneiras, e parece não existir um consenso sobre quais seriam os melhores indicadores a serem utilizados. A Figura 3.2 organiza os diferentes indicadores encontrados na literatura. Basicamente podemos dividir em três grupos: produtividade, rendimento por carga aplicada e rendimento por carga removida.

A produtividade relaciona a quantidade de hidrogênio (em mol ou volume de H₂ nas CNTP) produzida por unidade de tempo com o volume do reator ou com a quantidade de microrganismos no interior do reator (em SVT ou SSV). Os rendimentos relacionam a quantidade de hidrogênio produzida (em mol ou volume de H₂ nas CNTP) com a quantidade de matéria orgânica aplicada ou removida (na forma de DQO ou Carboidrato). Dessa maneira, o desempenho dos reatores pode ser avaliado tanto pela sua capacidade de produção quanto pelo seu aproveitamento de substrato.

Dentre os indicadores listados na Figura 3.2 foram selecionados a PrM, a PrME, o $RMCA_{S,m}$, o $RMCA_{C,n}$ para que fosse feita uma comparação entre o desempenho dos reatores descritos em literatura (Tabela 3.1).

Figura 3.2 - Indicadores utilizados na literatura na produção de biohidrogênio

Nomenclatura:

PrV: Produtividade volumétrica de hidrogênio
PrM: Produtividade molar de hidrogênio
PrVE: Produtividade volumétrica específica de hidrogênio
PrME: Produtividade molar específica de hidrogênio

 $RVCA_{s,m}$: Rendimento volumétrico de hidrogênio por carga aplicada em função da DQO em massa $RMCA_{s,m}$: Rendimento molar de hidrogênio por carga aplicada em função da DQO em massa

RVCA_{C,n}: Rendimento volumétrico de hidrogênio por carga aplicada em função do carboidrato em mol **RVCA**_{C,n}: Rendimento volumétrico de hidrogênio por carga aplicada em função do carboidrato em massa **RMCA**_{C,n}: Rendimento molar de hidrogênio por carga aplicada em função do carboidrato em mol **RMCA**_{C,m}: Rendimento molar de hidrogênio por carga em função do carboidrato em massa

RVCR_{S,m}: Rendimento volumétrico de hidrogênio por carga removida em função da DQO em massa **RMCR**_{S,m}: Rendimento molar de hidrogênio por carga removida em função da DQO em massa

RVCR_{C,n}: Rendimento volumétrico de hidrogênio por carga removida em função do carboidrato em mol **RVCR**_{C,m}: Rendimento volumétrico de hidrogênio por carga removida em função do carboidrato em massa **RMCR**_{C,n}: Rendimento molar de hidrogênio por carga removida em função do carboidrato em mol **RMCR**_{C,m}: Rendimento molar de hidrogênio por carga removida em função do carboidrato em massa

Configuração /	t _C	Ν	V _R	VA	COVAs	COVA _C	PrM	0	PrME	RMCA _{S,m}	RMCA _{C,n}	Referências		
Substrato	(h)		(L)	(L)	$(gDQO.L^{-1}.d^{-1})$	$(g.L^{-1}.d^{-1})$	$(mol_{H2.}m^{-3}.d^{-1})$			(mol _{H2} .kgDQO ⁻¹)				
AnSBBR AM /	4,0	6,0	3,6	1,5	9,0	8,0	10,0	2,7		1,95	0,79	El Manssouri (2012)		
	3,0	8,0	3,6	1,5	12,0	10,7	15,6	4,1		2,30	0,93			
	4,0	6,0	3,6	1,5	13,5	12,1	18,7	5,1		2,51	1,04			
a base de sacarose	3,0	8,0	3,6	1,5	18,0	16,1	18,6	5,0	$mol_{H2}.kg_{SVT}^{-1}.d^{-1}$	2,00	mol _{H2} .mol _{sacarose} ⁻¹ 0,85			
	2,0	12,0	3,6	1,5	18,0	16,1	21,4	5,5		2,13	0,87			
	2,0	12,0	3,6	1,5	27,0	24,1	17,0	4,4		1,17	0,49			
AnSBBR RFL / Efluente sintético a base de sacarose	4,0	6,0	4,5	1,9	9,1	8,1	21,0	6,9	mol _{H2} .kg _{SVT} ⁻¹ .d ⁻¹		3,66	3,66	1,42	
	3,0	8,0	4,5	1,9	12,2	10,9	16,9	5,5		2,21	0,87	Santos (2012)		
	2,0	12,0	4,5	1,9	18,2	16,3	24,7	8,2		2,90	1,07			
	4,0	6,0	4,5	1,9	13,5	12,2	25,7	8,5		2,43	0,99			
	3,0	8,0	4,5	1,9	18,2	16,3	18,2	5,7		1,55	0,55			
	2,0	12,0	4,5	1,9	27,4	24,4	27,9	8,8		1,58	0,59			
ASBR REL /	24,0	1,0	3,0	0,8	5,0	1,4	33,4			6,68		Badiei <i>et al.</i> (2011)		
Efluente de	24,0	1,0	3,0	1,0	6,6	1,8	100,0			15,15				
moinho de óleo	24,0	1,0	3,0	1,5	10,0	2,7	49,0			4,90				
de palma	24,0	1,0	3,0	2,0	13,3	3,6	11,9			0,89				
	48,0	0,5	1,3	0,7	4,4	6,3	22,0			5,02				
ASBR AM / Xarope de sorgo doce	24,0	1,0	1,3	0,7	8,8	12,5	45,0			5,13		Saraphirom e Reungsang (2011)		
	12,0	2,0	1,3	0,7	17,5	25,0	147,5			8,41				
	6,0	4,0	1,3	0,7	35,1	50,0	375,0			10,70		()		

Tabela 3.1 - Avaliações da produção de biohidrogênio em função da carga orgânica

continua

Configuração /	t _C	Ν	V _R	$\mathbf{V}_{\mathbf{A}}$	COVAs	COVA _C	PrM	PrME	RMCA _{S,m}	RMCA _{C,n}	Referências		
Substrato	(h)		(L)	(L)	$(gDQO.L^{-1}.d^{-1})$	$(\mathbf{g}.\mathbf{L}^{\cdot 1}.\mathbf{d}^{\cdot 1})$	$(mol_{H2}.m^{-3}.d^{-1})$		(mol _{H2} .kgDQO ⁻¹)				
	4,0	6,0	4,0	0,5	15,0		0,0		0,00				
	4,0	6,0	4,0	0,8	22,5		6,4		0,29				
	4,0	6,0	4,0	1,0	30,0		38,5		1,28				
	4,0	6,0	4,0	1,3	37,5		85,7		2,28				
ASBR AM /	4,0	6,0	4,0	0,5	30,0		5,4		0,18				
Vinhaça da	4,0	6,0	4,0	0,8	45,0		60,0		1,33		Searmsirimongkol		
produção de	4,0	6,0	4,0	1,0	60,0		145,6		2,43		<i>et al.</i> (2011)		
álcool	4,0	6,0	4,0	1,3	75,0		100,6		1,34				
	4,0	6,0	4,0	0,5	45,0		48,2		1,07				
	4,0	6,0	4,0	0,8	67,5		46,0		0,68				
	4,0	6,0	4,0	1,0	90,0		55,7		0,62				
	4,0	6,0	4,0	1,3	112,5		134,9		1,20				
	6,0	4,0	4,0	0,5	10,0		0,0		0,00				
	6,0	4,0	4,0	0,8	15,0		24,2		1,61				
ASBR AM /	6,0	4,0	4,0	1,0	20,0		37,3		1,86				
Efluente de	6,0	4,0	4,0	1,3	25,0		22,9		0,91		Sreethawong et al.		
produção de amido de	4,0	6,0	4,0	0,5	15,0		5,6		0,38		(2010)		
mandioca	4,0	6,0	4,0	0,8	22,5		51,1		2,27				
	4,0	6,0	4,0	1,0	30,0		84,7		2,82				
	4,0	6,0	4,0	1,3	37,5		65,9		1,76				
ASBR AM /	4,0	6,0	3,0	0,8	22,5	20,1	106,2	17,2	4,70	1 81			
Efluente sintético a base de sacarose	6,0	4,0	3,0	1,1	22,5	20,1	85,7	$9,6 \mod_{H2}.kg_{SSV}^{-1}.d^{-1}$	3,80	1,47 $mol_{H2}.mol_{sacarose}^{-1}$	Chen et al. (2009)		
	8,0	3,0	3,0	1,5	22,5	20,1	62,8	7,4	2,80	1,06			

Tabela 3.1 - Avaliações da produção de biohidrogênio em função da carga orgânica

continua

Configuração /	t _C	Ν	V _R	V _A	COVAs	COVA _C	PrM		PrME	RMCA _{S,m}]	RMCA _{C,n}	Referências	
Substrato	(h)		(L)	(L)	$(gDQO.L^{-1}.d^{-1})$	$(g.L^{-1}.d^{-1})$	$(mol_{H2}.m^{‐3}.d^{‐1})$			(mol _{H2} .kgDQO ⁻¹)				
ASBR RFL / Estrume líquido de suíno suplementado com glicose	4,0	6,0	4,0	0,7	13,9	10,1	72,5			5,20	1,29			
	4,0	6,0	4,0	0,8	16,7	12,1	108,5			6,49	1,61			
	4,0	6,0	4,0	1,0	20,9	15,2	137,4			6,57	1,63	mol _{H2} .mol _{glicose} ⁻¹	Wu <i>et al</i> . (2009)	
	4,0	6,0	4,0	1,3	27,9	20,2	176,4			6,33	1,57			
	4,0	6,0	4,0	2,0	41,8	30,3	202,3			4,84	1,20			
ASBR AM / Efluente sintético a base de amido milho	9,0	2,7	3,0	1,5	26,7	22,5	39,0	10,7		1,46	0,28			
	7,5	3,2	3,0	1,5	32,0	27,0	80,0	10,7	2,50 mol _{H2.kgssv⁻¹.d⁻¹} 2,66 1,83 2,29	2,50	0,48	18		
	6,0	4,0	3,0	1,5	40,0	33,8	106,3	12,9		2,66	2,66	0,51	- 1 mal -1	Arooj et al.
	4,5	5,3	3,0	1,5	53,3	45,0	97,3	11,6		1,83	0,35	mo1 _{H2} .mo1 _{hexose}	(2008)	
	3,0	8,0	3,0	1,5	80,0	67,5	183,3	21,4		0,44				
	2,0	12,0	3,0	1,5	120,0	101,3	37,7	2,2		0,31	0,06			
	4,0	6,0	1,8	0,6	40,0	35,7	70,0	10,0		1,75	0,60			
ASBR AM / Efluente sintético a base de sacarose	4,0	6,0	1,8	0,7	48,0	42,9	63,0	11,0		1,31	0,70			
	4,0	6,0	1,8	0,9	60,0	53,6	450,0	69,0	$mol_{H2}.kg_{SSV}^{-1}.d^{-1}$	7,50	2,60) mol _{H2} .mol _{sacarose} ⁻¹	Lin e Jo (2003)	
	4,0	6,0	1,8	1,2	80,0	71,4	460,0	72,0		5,75	2,00			
	4,0	6,0	1,8	1,8	120,0	107,2	470,0	82,0		3,92	1,40			

Tabela 3.1 - Avaliações da produção de biohidrogênio em função da carga orgânica

3.2.6 Influência do tempo de enchimento

A estratégia de alimentação é um parâmetro de projeto que exerce influência no desempenho e estabilidade do reator em batelada sequencial. A forma de alimentação pode ser realizada basicamente através de três formas: (i) em batelada, na qual a alimentação é realizada em períodos extremamente curtos (cerca de alguns minutos) e antes da agitação do meio, mantendo separadamente as etapas de alimentação e reação do sistema; (ii) em batelada alimentada, na qual a alimentação é realizada em períodos de tempo longos e juntamente com a agitação do meio; e (iii) em sistemas mistos, nos quais o reator funciona em uma parte do ciclo em batelada alimentada e outra em batelada. O tempo de enchimento é um parâmetro interessante devido a sua capacidade de modificar a relação F/M (*"food/microrganism"*) (Zaiat *et al.*, 2001).

O conhecimento sobre a influência desse parâmetro em ASBR ou em AnSBBR destinados à produção de biohidrogênio ainda é muito escasso. Entretanto a estratégia de alimentação foi verificada por Kargi e Pamukoglu (2009), que realizaram seu estudo em frascos em batelada alimentada única utilizando amido de trigo como fonte de matéria orgânica, com volume inicial de 500 mL, vazão de alimentação constante de 200 mL.d⁻¹ e concentrações de 10, 20 e 30 g.L⁻¹ de amido. A melhor condição encontrada pelos autores foi a da concentração de 20 g.L⁻¹, em que foi obtida uma produção de 864 mL_{H2}.d⁻¹ e um rendimento de 3.1 mol_{H2}.mol_{glicose}⁻¹ após quatro dias de operação que é próximo ao rendimento máximo teórico pelo via do ácido acético, entretanto foi verificado que a partir deste ponto o rendimento começou a diminuir até parar no sexto dia, o que provavelmente ocorreu devido à inibição do processo devido ao acúmulo de ácidos orgânicos no reator.

Em reatores metanogênicos, essa variável tem sido utilizada com bom desempenho. Cheong e Hansen (2008) realizaram estudo em ASBR aplicado ao tratamento de água residuária sintética à base de glicose e produção de metano, na verificação da influência do tempo de enchimento (t_F) em relação ao tempo de ciclo (t_C), para COVAs de 1,5, 3 e 6 gDQO.L⁻¹.d⁻¹ em batelada típica e em batelada alimentada (com relação t_F/t_C igual a 0,21) e para as cargas 3, 6 e 12 gDQO.L⁻¹.d⁻¹ em batelada típica e em batelada alimentada (com relações t_F/t_C iguais a 0,42; 0,79 e 0,83). Foi verificado que o aumento da carga para os reatores em batelada resultou na queda da remoção de DQO, o que não aconteceu para os reatores em batelada alimentada. Os reatores com relação t_F/t_C maior ou igual a 0,42 apresentaram rendimentos entre 86 e 95%. Consequentemente, o mesmo comportamento foi observado pela produção volumétrica de metano, em que os reatores em batelada alimentada com t_F/t_C maior ou igual a 0,42 apresentaram melhor desempenho, com o aumento da produção de metano quando submetido ao aumento da COVA . Dessa maneira, longos tempos de enchimento conferiram ao sistema uma maior estabilidade mesmo após o aumento das COVA, já que os picos de ácidos orgânicos voláteis foram menores que os picos dos reatores em tempos de enchimento mais curtos.

3.3 Considerações Finais

Os reatores em anaeróbios operados em bateladas sequenciais têm apresentado boa estabilidade na produção de biohidrogênio, inclusive através da aplicação de algumas águas residuárias reais. Porém é necessário que os rendimentos nesses reatores sejam otimizados, o maior rendimento molar por carga aplicada (RMCA_{C,n}) encontrado utilizando sacarose como substrato foi de 2,6 mol_{H2}.mol_{SAC}⁻¹.d⁻¹, que é baixo quando comparado aos máximos teóricos de 8 mol_{H2}.mol_{SAC}⁻¹.d⁻¹ pela via do ácido acético ou de 4 mol_{H2}.mol_{SAC}⁻¹.d⁻¹ pela via do ácido butírico. É claro que esses máximos teóricos dificilmente serão alcançados devido à complexidade do metabolismo bacteriano promovido por culturas mistas no tratamento de águas residuárias, porém eles servem de indicativos de que o processo ainda pode ser otimizado. Assim, de forma a garantir maior estabilidade e desempenho do processo, devem ser realizadas modificações na configuração e nas formas de operação desses reatores.

A Escola de Engenharia de São Carlos da Universidade de São Paulo (EESC/USP) e a Escola de Engenharia Mauá do Instituto Mauá de Tecnologia (EEM/IMT) iniciaram a investigação da produção de hidrogênio nesses reatores recentemente, através dos trabalhos de El Manssouri (2012) em um AnSBBR com agitação mecânica e Santos (2012) em um AnSBBR com recirculação da fase líquida. Portanto, tendo em vista dar continuidade aos projetos citados anteriormente, o presente trabalho buscou verificar a influência do tempo de enchimento em um AnSBBR com agitação mecânica na produção de biohidrogênio, para que melhores configurações e formas de operação sejam encontradas, visando à otimização do processo.

4 MATERIAIS E MÉTODOS

4.1 AnSBBR com agitação mecânica

As Figuras 4.1 e 4.2 apresentam o esquema do biorreator com agitação mecânica (modelo Bioflo $110^{\text{®}}$, fabricado pela New Brunswick Scientific Co.), constituído por um frasco de vidro de 20 cm de diâmetro e 30 cm de altura, com capacidade total de 7,5 L e capacidade útil de 5,60 L. O material suporte foi confinado em um cesto de aço Inox-316 perfurado de 18 cm de altura, 7 cm e 17,5 cm de diâmetros interno e externo, respectivamente.

A agitação fixa de 300 rpm foi implementada por motor acoplado aos impelidores tipo turbina de 6 cm de diâmetro constituído por seis lâminas planas (padrão Rushton) e instalados a 8 e 16 cm do fundo do tanque (Michelan *et al.*, 2009).

A alimentação e descarga foram realizadas por bombas tipo diafragma marca Prominent modelos β e Concept, respectivamente. Um sistema de automação composto por temporizadores foi responsável pelo acionamento/parada das bombas e do agitador, de modo a implementar as etapas da operação em batelada sequencial: alimentação, reação e descarga. A temperatura de 30±1°C foi controlada pela circulação de água na dupla parede externa (camisa) do reator, cuja temperatura foi regulada por um banho ultratermostatizado (marca Marconi modelo MA-184).

Figura 4.1 - Esquema do reator anaeróbio com agitação operado em bateladas sequenciais contendo biomassa imobilizada

[(a) Reator 1 – Bioreator BIOFLO 110 (New Brunswick Scientific Co.) com capacidade de 7,5 L (a = 29,5 cm; b = 18 cm; c = 18 cm); 2 – Cesto de retenção e material suporte da biomassa (b = 18 cm ; d = 7 cm); 3 – Afluente; 4 – Bomba de alimentação; 5 –Bomba de descarga; 6 – Efluente; 7 – Saída de biogás; 8 – Sistema de agitação; 9 – Sistema de controle de temperatura (banho termostático); 10 – Sistema de automação;

(b) Detalhes dos impelidores tipo turbina com seis pás planas (e = 2 cm; f = 1,5 cm; g = 6 cm)]

Figura 4.2 - Fotografia do aparato experimental

4.2 Inóculo e imobilização da biomassa anaeróbia

Para a imobilização da biomassa foram utilizados grânulos de polietileno de baixa densidade (PEBD) (Figura 4.3) como suporte inerte com as características descritas na Tabela 4.1, cuja empresa doadora está localizada em São Carlos-SP. Este material é um produto intermediário do processo de reciclagem de plásticos. Cabe destacar o baixo custo, a disponibilidade e a adequação ambiental de tal material.

Tabela 4.1 - Características do material suporte inerte						
Propriedades	Valor / Descrição					
Composição	Polietileno de baixa densidade					
Diâmetro de um grânulo	3 mm					
Comprimento de um grânulo	6 mm					
Massa utilizada	1,1 Kg					
Comportomente	Flutuante					
Comportamento	Auto compactante					

Figura 4.3 - Fotografia dos grânulos do material suporte com (esquerda) e sem (direita) biomassa

O inóculo utilizado nos experimentos foi proveniente dos estudos realizados anteriormente por El Manssouri (2012) e Santos (2012), ambos os reatores acidogênicos destinados à produção de biohidrogênio.

4.3 Água residuária

A água residuária utilizada foi formulada a base de sacarose como fonte de carbono e energia, fixando-se a razão entre a fonte de carbono e a fonte de nitrogênio-uréia (C/N) em aproximadamente 140, razão DQO/P menor que 500 (1000:2). A Tabela 4.2 descreve a composição da água residuária para uma concentração em termos de DQO igual a 1000 mg.L⁻¹ (Del Nery, 1987).

Tabela 4.2 - Composição da água residuária sintética a ser utilizada nos ensaios						
Composto	Concentração (mg.L ⁻¹)					
Sacarose	893					
(relação teórica: 1000 mg-DQO = 893 mg-sacarose)	(1000 mgDQO.L ⁻¹)					
Uréia (CH ₄ N ₂ O)	5,8					
Sulfato de níquel (NiSO ₄ .6H ₂ 0)	0,50					
Sulfato ferroso (FeSO ₄ .7H ₂ O)	2,50					
Cloreto férrico (FeCl ₃ .6H ₂ 0)	0,25					
Cloreto de cálcio (CaCl ₂ .2H ₂ O)	2,06					
Cloreto de cobalto (CoCl ₂ .6H ₂ O)	0,04					
Dióxido de selênio (SeO ₂)	0,04					
Fosfato de potássio monobásico (KH ₂ PO ₄)	5,36					
Fosfato de potássio dibásico (K ₂ HPO ₄)	1,30					
Fosfato de sódio dibásico (Na ₂ HPO ₄)	2,7					
Bicarbonato de sódio (NaHCO ₃)	500					
*C : ~ D 1 1000 DO						

*Composição com Base de 1000 mgDQO.L

O pH da saída do reator foi controlado ao valor próximo de 5,0, o ajuste desse parâmetro foi feito através de modificações no afluente, tanto na concentração de bicarbonato quanto na adição de uma solução de NaOH (2 N).

4.4 Análises físico-químicas e exames microbiológicos

O monitoramento do reator foi efetuado medindo-se, em amostras do afluente e do efluente, as concentrações de matéria orgânica nas formas não filtrada (C_{ST} e C_{CT}) e filtrada (C_{SF} e C_{CF}) (como demanda química de oxigênio – método de DQO e carboidratos – método de Dubois, respectivamente), alcalinidade parcial (AP), alcalinidade intermediária (AI), alcalinidade total (AT), alcalinidade a bicarbonato (AB), ácidos voláteis totais (AVT), sólidos totais (ST), sólidos totais voláteis (SVT), sólidos suspensos totais (SST) e sólidos suspensos voláteis (SSV), além da medida do pH e do volume de meio alimentado/descarregado por ciclo (V_A). Tais análises foram realizadas de acordo com o *Standard Methods for the Examination of Water and Wastewater (1995*), considerando também o método proposto por Dilallo e Albertson (1961), o qual foi modificado por Ripley *et al.* (1986) na determinação da alcalinidade.

Os compostos intermediários do metabolismo anaeróbio (solventes: acetona, metanol, etanol, n-butanol; ácidos voláteis: ácidos acético, propiônico, butírico, iso-butírico, valérico, iso-valérico e capróico) foram analisados por cromatografia em fase gasosa com padrão externo (iso-butanol para os solventes e ácido crotônico para os ácidos voláteis) utilizando-se um cromatógrafo Hewlett Packard[®] modelo 7890 equipado com detector de ionização de chama e coluna HP-Innowax com 30 m × 0,25 mm × 0,25 µm de espessura do filme. O gás de arraste utilizado foi o hidrogênio com vazão de 1,56 mL.min⁻¹ (velocidade linear constante de 41,8 cm.s⁻¹), a temperatura do injetor foi de 250°C, a razão de "*split*" de 10 ("*head-space*") e o volume de injeção de 400 µL, utilizando-se injetor automático. A temperatura do forno foi programada da seguinte forma: de 35°C à 38°C em 2°C.min⁻¹, de 38°C à 75°C em 10°C.min⁻¹, de 75°C à 120°C em 35°C.min⁻¹, em 120°C por 1 min, de 120°C à 170°C em 10°C.min⁻¹ e ma 170°C por 2 min ("*head-space*"). A temperatura do detector foi de 280°C ("*head-space*") com fluxo de hidrogênio (combustível) de 30 mL.min⁻¹. Foi utilizado nessa análise o método por "*head-space*". A composição do biogás formado pelo metabolismo anaeróbio (hidrogênio, metano e dióxido de carbono) foi analisada por cromatografia em fase gasosa utilizando-se um cromatógrafo Agilent[®] modelo 7890 equipado com detector de condutividade térmica e coluna GS-Carbonplot com 30 m × 0,53 mm × 3,0 µm de espessura do filme. O gás de arraste utilizado foi o argônio com vazão de 3,67 mL.min⁻¹, a temperatura do injetor foi de 185°C, a razão de "*split*" de 10 e o volume de injeção de 200 µL. A temperatura do forno foi programada em 40°C isotérmico em 5 min. A temperatura do detector foi de 150°C, com vazão de "*make up*" de argônio de 8,33 mL.min⁻¹.

A produção total do biogás durante o ciclo (V_G) foi analisada por medidor de gás Ritter modelo MilligasCounter, sendo que tais medições foram realizadas na forma de perfis ao longo do ciclo em medida acumulada de volume. Para os ciclos de 4 e 3 horas essa medição foi feita a cada 30 min e para os ciclos de 2 horas foi feita a cada 20 min. Antes que fosse realizada a medição do biogás, era feita uma limpeza do "*headspace*" do reator (local onde o biogás se acumula antes de ser liberado) com nitrogênio, no intuído de eliminar todo o hidrogênio e dióxido de carbono do ciclo anterior.

Os ensaios realizados continham dois períodos distintos em termos de modo de operação: batelada alimentada e batelada. No período em que o sistema foi operado em batelada, o volume de biogás produzido foi quantificado diretamente pelo medidor de gás Ritter, já que durante a quantificação do biogás não ocorre à entrada de afluente e saída de efluente. Entretanto, tal procedimento não pôde ser realizado da mesma maneira para o período em que o sistema foi operado em batelada alimentada, já que nesse período a produção de biogás ocorria concomitantemente com a alimentação de afluente ao reator. Desta forma, o medidor de gás quantificava tanto o volume referente à produção do biogás quanto o volume de afluente alimentado ao reator durante o ciclo. Para que fosse obtido apenas o volume da produção do biogás, após o termino do ciclo, foi feita medição do volume alimentado durante o mesmo ciclo para que esta medida pudesse ser subtraída do valor obtido pelo medidor de gás. Como a vazão de alimentação era constante e ocorreu durante o início até a metade do período do ciclo, os volumes acumulados em cada ponto puderam ser obtidos pela Equação (4.1) para o período em batelada alimentada e pela Equação (4.2) para o período em batelada, sendo V_{Gi-BA} o volume acumulado de biogás obtido em determinado ponto do período em batelada alimentada, V_{M-i} o volume obtido pelo medidor de biogás, N_i o número do ponto do perfil do biogás, N_{t-BA} o número total de pontos do perfil durante a batelada alimentada, V_A o volume de afluente alimentado durante o ciclo, e V_{Gi-B} o volume acumulado de biogás obtido em determinado ponto do período em batelada.

$$V_{Gi-BA} = V_{M-i} - \frac{N_i}{N_{t-BA}} V_A$$
 (4.1)

$$V_{Gi-B} = V_{M-i} - V_A \tag{4.2}$$

Após a correção do volume obtido pelo medidor de biogás em relação ao volume alimentado, foi necessária a conversão desse volume para as CNTP, uma vez que o volume depende das condições de operação existentes no momento em que é realizada a medição. A conversão foi feita de acordo com a lei geral dos gases através da Equação (4.3), que se encontra no manual do equipamento, sendo V_N o volume nas CNTP, V_i o volume de biogás a ser convertido (ou seja V_{Gi-BA} ou V_{Gi-B}), P_a a pressão do ar no local da medição, P_V a pressão parcial de vapor d'água, P_L a pressão da coluna líquida acima da câmara de medição (2 mbar), P_N a pressão normal (1013,25 mbar), T_N a temperatura normal (273,15 K) e T_a a temperatura no local da medição.

$$V_N = V_i \ \frac{(P_a - P_V + P_L)}{P_N} \ \frac{T_N}{T_a}$$
(4.3)

A frequência das análises está descrita na Tabela 4.3.

Tabela 4.3 - Frequência do monitoramento									
Amostra	Frequência	Método							
Afluente e Efluente	Diariamente	Standard Methods (1995)							
Afluente e Efluente	Diariamente	Dubois <i>et al.</i> (1956)							
Afluente e Efluente	Diariamente	Ripley <i>et al.</i> (1986)							
	2								
Afluente e Efluente	2 vezes por semana	Standard Methods (1995)							
	1	Commenter and finance and							
Efluente	1 vez por semana	Cromatografia gasosa							
Saída da gás	2 vozas por somana	Modidor do gás Dittor							
Salua de gas	2 vezes por semana	Mediuor de gas Ritter							
Saída de gás	1 vez nor semana	Cromatografia gasosa							
Salda de gas	i vez por semana	Cromatograna gasosa							
	Tabela 4.3 -AmostraAfluente e EfluenteAfluente e EfluenteAfluente e EfluenteAfluente e EfluenteEfluenteSaída de gásSaída de gás	Tabela 4.3 - Frequência do monitoranAmostraFrequênciaAfluente e EfluenteDiariamenteAfluente e EfluenteDiariamenteAfluente e EfluenteDiariamenteAfluente e EfluenteDiariamenteAfluente e Efluente1 vez por semanaSaída de gás2 vezes por semanaSaída de gás1 vez por semana							

Ao final de cada condição experimental foi realizada a quantificação da biomassa no interior do reator. Primeiramente foi feita a drenagem do sistema, sendo verificado o volume de meio líquido do reator (V_R). Em seguida, todo o suporte inerte junto com a biomassa foi retirado do cesto de aço inox e quantificados (M_{T-SI+B}), esse material foi homogeneizado para que fosse coletada uma amostra de suporte inerte com biomassa e quantificada (M_{A-SI+B}). A partir dessa amostra foi realizada uma "lavagem" com água destilada do suporte inerte, dividindo essa amostra em duas partes, uma fase sólida apenas com os grânulos de PEBD e uma fase líquida contendo a biomassa do reator. Na fase sólida foi realizada a análise de ST e na fase líquida as análises de ST e SVT. A partir da quantidade de ST dos grânulos de PEBD (M_{A-ST}) e a quantidade de SVT da amostra (M_{A-SVT}), foi possível estimar a quantidade de biomassa do reator, sendo tal informação apresentada por três diferentes formas:

(i) Na quantidade total de biomassa do reator (M_{SVT}), calculada pela Equação (4.4)

$$M_{SVT} = \frac{M_{A-SVT} \cdot M_{T-SI+B}}{M_{A-SI+B}}$$
(4.4)

Pela quantidade total de biomassa do reator (M_{SVT}) mede-se a capacidade do reator na retenção da biomassa, sendo essa variável importante também devido à sua utilização em outros indicadores utilizados na análise do reator, como a carga orgânica específica aplicada (COEA), a carga orgânica específica removida (COER) e a produtividade molar específica (PrME);

(ii) Na relação entre a quantidade de biomassa e o volume de meio líquido do reator
 (C_x), calculada pela Equação (4.5)

$$C_X = \frac{M_{SVT}}{V_R} \tag{4.5}$$

Pela concentração de biomassa no reator por volume de meio líquido tratado por ciclo (C_X) mede-se a relação entre a quantidade de meio líquido disponível ao tratamento e a biomassa envolvida nas biotransformações inerentes ao processo biológico em estudo;

(iii) Na relação entre a quantidade de biomassa e a quantidade de suporte inerte presente no reator (C_X), calculada pela Equação (4.6)

$$C_X' = \frac{M_{A-SVT}}{M_{A-SI}} \tag{4.6}$$

Pela concentração de biomassa no reator por massa de suporte inerte presente no reator (C_X') mede-se a relação entre a quantidade de suporte inerte disponível para a imobilização/retenção da biomassa e a biomassa envolvida nas biotransformações inerentes ao processo biológico em estudo.

Foram retiradas também do reator amostras de biomassa para exame microbiológico. As amostras foram examinadas em lâminas de vidro, por microscopia óptica comum e de contraste de fase por fluorescência, utilizando microscópio Olympus® modelo BX41, com sistema de câmera digital Optronics e aquisição de imagens feita pelo software Image Pro-Plus® versão 4.5.0.

4.5 Procedimento experimental da operação do reator

O volume útil do reator (5,6 L) foi dividido em 3 partes: volume de meio tratado por ciclo de 1,5 L, volume residual de meio de 2,0 L e volume de suporte inerte com biomassa de 2,1 L (material suporte inerte e cesto). A operação do reator foi realizada da seguinte maneira: no primeiro ciclo foram alimentados 3,5 L em 20 min de meio ao reator, sendo que o reator foi previamente preparado pela colocação de 1,1 kg de suporte inerte (PEBD) contendo inóculo, com massa de sólidos voláteis totais por massa de material suporte (C_X) de 0,02 g.g⁻¹ (El Manssouri, 2012).

Após o término da alimentação foi implementada uma agitação de 300 rpm. No final do ciclo, cuja duração foi em função da condição experimental em estudo, a agitação era desligada e eram descarregados 1,5 L de meio em 10 min, sendo que 2,0 L de volume residual ficavam mantidos no reator (além dos 2,1 L de suporte inerte e inóculo).

Logo após essa descarga, um novo ciclo tinha início, no qual, simultaneamente, havia a agitação do meio (300 rpm) e alimentação com vazão constante mas em tempos de enchimento diferentes em função da condição experimental. Ao término do ciclo, a agitação era interrompida e, em seguida, começava a descarga em 10 min e, assim, o ciclo era repetido, caracterizando as bateladas sequenciais com tempo de enchimento de 50% do tempo total do ciclo. Dessa forma, em 50% do tempo total de ciclo o sistema funcionou em batelada alimentada (reação e alimentação) e nos 50% restantes em batelada (reação sem alimentação).

Uma vez atingida à estabilidade nas condições experimentais monitoradas no efluente descarregado nos finais dos ciclos, foram obtidos perfis ao longo do ciclo de operação de algumas das variáveis monitoradas. Nestes perfis foram retiradas amostras ao longo do tempo de operação de um ciclo. As variáveis de interesse foram: concentrações de matéria orgânica na forma filtrada (de carboidratos e de DQO), de alcalinidade a bicarbonato (AB), de ácidos voláteis totais (AVT), de

metabólitos intermediários (solventes e ácidos voláteis), de biogás (composição e produção), além do pH.

Desta forma, foi possível obter uma melhor compreensão das rotas metabólicas ao longo de um ciclo. As amostras retiradas para obtenção do perfil anteriormente citado foram colhidas em intervalos de tempo ao longo do ciclo de 15 a 60 min. O volume total retirado nas amostragens foi de no máximo 300 mL, ou seja, 10% do volume de meio reacional do sistema.

Após cada operação, amostras do lodo foram retiradas do reator para análise microbiológica. Dessa forma, uma nova condição experimental foi implementada alterando-se a concentração afluente ou o tempo de ciclo do reator.

4.6 Fundamentos teóricos

As eficiências de remoção de matéria orgânica nas formas de DQO e de carboidratos em amostras não filtradas ($\varepsilon_{ST} \in \varepsilon_{CT}$) no sistema foram calculadas pelas Equações (4.7) e (4.8), nas quais C_{SAFL} e C_{CAFL} são as concentrações de matéria orgânica nas formas de DQO e de carboidratos em amostras não filtradas do afluente; e C_{ST} e C_{CT} são as concentrações de matéria orgânica nas formas de DQO e de carboidratos em amostras não filtradas do efluente.

$$\varepsilon_{\rm ST}(\%) = \frac{C_{\rm SAFL} - C_{\rm ST}}{C_{\rm SAFL}} .100 \tag{4.7}$$

$$\varepsilon_{\rm CT}(\%) = \frac{C_{\rm CAFL} - C_{\rm CT}}{C_{\rm CAFL}} .100$$
(4.8)

As eficiências de remoção de matéria orgânica nas formas de DQO e de carboidratos em amostras filtradas (ε_{SF} e ε_{CF}) no sistema foram calculadas pelas Equações (4.9) e (4.10), nas quais
C_{SF} e C_{CF} são as concentrações de matéria orgânica nas formas de DQO e de carboidratos em amostras filtradas do efluente.

$$\varepsilon_{\rm SF}(\%) = \frac{C_{\rm SAFL} - C_{\rm SF}}{C_{\rm SAFL}} .100 \tag{4.9}$$

$$\varepsilon_{\rm CF}(\%) = \frac{C_{\rm CAFL} - C_{\rm CF}}{C_{\rm CAFL}} .100 \tag{4.10}$$

A eficiência de remoção de matéria orgânica na forma de DQO em amostras filtradas do meio líquido contido no reator (ε_S) para os perfis ao longo do ciclo foram calculadas pelas Equações (4.11) e (4.12), sendo a primeira equação utilizada para o período em batelada alimentada e a segunda para o período em batelada, nas quais C_{S0} é a concentração de matéria orgânica na forma de DQO em amostras filtradas do meio líquido contido no reator no tempo zero, V_{Res} é o volume do meio líquido contido no reator no tempo zero ou volume residual, F_{AFL} é a vazão de alimentação de afluente no período em batelada alimentada, t_i é o tempo de alimentação percorrido (período em batelada alimentada), C_{SF} é a concentração de matéria orgânica na forma de DQO em amostras filtradas do meio no reator no tempo ti, e t_{BA} é o tempo de batelada alimentada na condição experimental.

$$\varepsilon_{S} (\%) = \frac{(C_{S0}. V_{Res} + C_{SAFL}. F_{AFL}. t_{i}) - (C_{SF}. (V_{Res} + F_{AFL}. t_{i}))}{(C_{S0}. V_{Res} + C_{SAFL}. F_{AFL}. t_{i})} .100$$
(4.11)
$$\varepsilon_{S} (\%) = \frac{(C_{S0}. V_{Res} + C_{SAFL}. F_{AFL}. t_{BA}) - (C_{SF}. (V_{Res} + F_{AFL}. t_{BA}))}{(C_{S0}. V_{Res} + C_{SAFL}. F_{AFL}. t_{BA})} .100$$
(4.12)

A eficiência de remoção de matéria orgânica na forma de carboidratos em amostras filtradas do meio líquido contido no reator (ε_s) para os perfis ao longo do ciclo foram calculadas pelas Equações (4.13) e (4.14), sendo a primeira equação utilizada para o período em batelada alimentada

e a segunda para o período em batelada, nas quais C_{C0} é a concentração de matéria orgânica na forma de carboidratos em amostras filtradas do meio líquido contido no reator no tempo zero e C_{CF} é a concentração de matéria orgânica na forma de carboidratos em amostras filtradas do meio líquido contido no reator no tempo ti.

$$\varepsilon_{C} (\%) = \frac{(C_{C0}.V_{Res} + C_{CAFL}.F_{AFL}.t_{i}) - (C_{CF}.(V_{Res} + F_{AFL}.t_{i}))}{(C_{C0}.V_{Res} + C_{CAFL}.F_{AFL}.t_{i})} .100$$
(4.13)
$$\varepsilon_{C} (\%) = \frac{(C_{C0}.V_{Res} + C_{CAFL}.F_{AFL}.t_{BA}) - (C_{CF}.(V_{Res} + F_{AFL}.t_{BA}))}{(C_{C0}.V_{Res} + C_{CAFL}.F_{AFL}.t_{BA})} .100$$
(4.14)

As cargas orgânicas volumétricas aplicadas (COVA_S e COVA_C) são definidas como a quantidade de matéria orgânica na forma de DQO ou carboidratos aplicadas ao reator por unidade de tempo e por volume de meio do reator (em gDQO.L⁻¹.d⁻¹ ou gSAC.L⁻¹.d⁻¹). Para reatores operados em batelada foram calculadas pelas Equações (4.15) e (4.16), nas quais V_A é o volume de água residuária alimentada ao reator por ciclo, N é o número de ciclos por dia e V_R é o volume de total de água residuária contida no reator por ciclo.

$$COVA_{S} = \frac{(V_{A}.N).C_{SAFL}}{V_{R}}$$

$$COVA_{C} = \frac{(V_{A}.N).C_{CAFL}}{V_{R}}$$

$$(4.15)$$

$$(4.16)$$

As cargas orgânicas específicas aplicadas (COEA_S e COEA_C) são definidas como a quantidade de matéria orgânica na forma de DQO ou carboidratos aplicada ao reator por unidade de tempo e por massa de sólidos totais voláteis no reator (gDQO.gSVT⁻¹.d⁻¹ ou gSAC.gSVT⁻¹.d⁻¹). Para reatores operados em batelada são calculadas pelas Equações (4.17) e (4.18).

$$COEA_S = \frac{(V_A.N).C_{SAFL}}{M_{SVT}}$$
(4.17)

$$COEA_C = \frac{(V_A.N).C_{CAFL}}{M_{SVT}}$$
(4.18)

As cargas orgânicas volumétricas removidas (COVR_S e COVR_C), para amostras filtradas, são definidas como a quantidade de matéria orgânica na forma de DQO ou carboidratos removida pelo reator por unidade de tempo e por volume de meio do reator (gDQO.L⁻¹.d⁻¹ ou gSAC.L⁻¹.d⁻¹). Para reatores operados em batelada são calculadas pelas Equações (4.19) e (4.20).

$$COVR_{S} = \frac{(V_{A}.N).(C_{SAFL} - C_{SF})}{V_{R}}$$
 (4.19)

$$COVR_{C} = \frac{(V_{A}.N).(C_{CAFL} - C_{CF})}{V_{R}}$$
 (4.20)

As cargas orgânicas específicas removidas (COER_S e COER_C), para amostras filtradas, são definidas como a quantidade de matéria orgânica na forma de DQO ou carboidratos removida pelo reator por unidade de tempo e por massa de sólidos totais voláteis no reator (gDQO.gSVT⁻¹.d⁻¹ ou gSAC.gSVT⁻¹.d⁻¹). Para reatores operados em batelada são calculadas pelas Equações (4.21) e (4.22).

$$COER_S = \frac{(V_A.N).(C_{SAFL} - C_{SF})}{M_{SVT}}$$
(4.21)

$$COER_{C} = \frac{(V_{A}.N).(C_{CAFL} - C_{CF})}{M_{SVT}}$$

$$(4.22)$$

A produtividade molar volumétrica (PrM) é definida pela quantidade de hidrogênio (H₂) produzida por unidade de tempo e por volume útil do reator (molH₂.m⁻³.d⁻¹), calculada pela

Equação (4.23), na qual n_{H2} é a quantidade molar de hidrogênio produzido por dia e V_R é o volume de total de água residuária contida no reator por ciclo.

$$PrM = \frac{n_{H2}}{V_R} \tag{4.23}$$

A produtividade molar específica (PrME) é definida pela quantidade de hidrogênio (H₂) produzida por unidade de tempo e por massa de sólidos voláteis totais no interior do reator $(molH_2.kgSVT^{-1}.d^{-1})$, calculada pela Equação (4.24).

$$PrME = \frac{n_{H2}}{M_{SVT}} \tag{4.24}$$

O rendimento entre hidrogênio (molar) produzido e matéria orgânica (massa) aplicada na forma de DQO (RMCA_{S,m}) é definido pela quantidade de hidrogênio (H₂) produzida (em mol) pela quantidade de matéria orgânica aplicada (em massa) na forma de DQO (molH₂.kgDQO⁻¹), calculado pela Equação (4.25).

$$RMCA_{S,m} = \frac{n_{H2}}{N.V_A.C_{SAFL}}$$
(4.25)

O rendimento entre hidrogênio (molar) produzido e matéria orgânica (molar ou massa) aplicada na forma de carboidratos (RMCA) é definido pela quantidade de hidrogênio (H₂) produzida (em mol) pela quantidade de matéria orgânica aplicada na forma de carboidratos (em mol ou kg de sacarose), ou seja, RMCA_{C,m} em molH₂.kgSAC⁻¹ e RMCA_{C,n} em molH₂.molSAC⁻¹, calculado pela Equação (4.26).

$$RMCA = \frac{n_{H2}}{N.V_A.C_{CAFL}}$$
(4.26)

O rendimento entre hidrogênio (molar) produzido e matéria orgânica (massa) removida na forma de DQO (RMCR_{S,m}) é definido pela quantidade de hidrogênio (H₂) produzida pela quantidade de matéria orgânica removida na forma de DQO (molH₂.kgDQO⁻¹), calculada pela Equação (4.27).

$$RMCR_{S,m} = \frac{n_{H2}}{N. V_{A}. (C_{SAFL} - C_{SF})}$$
(4.27)

O rendimento entre hidrogênio (molar) produzido e matéria orgânica (molar ou massa) removida na forma de carboidratos (RMCR) é definido pela quantidade de hidrogênio (H₂) produzida (em mol) pela quantidade de matéria orgânica removida na forma de carboidratos (em mol ou kg de sacarose), ou seja, RMCR_{C,m} em molH₂.kgSAC⁻¹ e RMCR_{C,n} em molH₂.molSAC⁻¹, calculado pela Equação (4.28).

$$RMCR = \frac{n_{H2}}{N.V_{A}.(C_{CAFL} - C_{CF})}$$
(4.28)

O cálculo das velocidades das reações foi efetuado através de dois procedimentos, sendo o primeiro correspondente à etapa em batelada e o segundo à etapa em batelada alimentada. Para a etapa em batelada, a velocidade de consumo de carboidrato (v_{CF}) e a velocidade de formação de hidrogênio (v_{H2}) foram calculadas pelas Equações (4.29) e (4.30), respectivamente. Sendo que $\frac{dC_{CF}}{dt}$ e $\frac{dC_{H2}}{dt}$ foram calculados pelo método "*spline*" utilizando o *software "Microcal Origin*"

$$\frac{dC_{CF}}{dt} = -(v_{CF}) \tag{4.29}$$

$$\frac{dC_{H2}}{dt} = (v_{H2}) \tag{4.30}$$

Para a etapa em batelada alimentada, a velocidade de consumo de carboidrato (v_{CF}) e a velocidade de formação de hidrogênio (v_{H2}) foram calculadas pelas Equações (4.31) e (4.32), respectivamente. Sendo que $\frac{dC_{CF}}{dt}$ e $\frac{dC_{H2}}{dt}$ foram calculados pelo método "*spline*" utilizando o *software "Microcal Origin"*. As variáveis de vazão de alimentação (F_{AFL}), volume do reator (V) e concentração afluente (C_{AFL}), obtidas através dos dados de monitoramento.

$$\frac{dC_{CF}}{dt} = \frac{F_{AFL}}{V} (C_{AFL} - C_{CF}) - (v_{CF})$$
(4.31)

$$\frac{dC_{H2}}{dt} = \frac{F_{AFL}}{V} (0 - C_{H2}) + v_{H2})$$
(4.32)

4.7 Condições experimentais estudadas

Os ensaios foram realizados utilizando-se diferentes cargas orgânicas volumétricas modificadas em função da concentração afluente, de $3500 \text{ e} 5250 \text{ mgDQO.L}^{-1}$, e do tempo de ciclo, de 4, 3 e 2 h, ou seja, 6, 8 e 12 ciclos diários, começando com a menor carga e modificando-a em ordem crescente. Além disso, utilizou-se de tempos de enchimento na razão de 50% ao tempo de ciclo, conforme a Tabela 4.4.

Condição	Concentração afluente	Tempo de ciclo	Número de ciclos	Tempo de enchimento	COVA
2	(mg.L ⁻¹)	(h)	(Ciclos.d ⁻¹)	(h)	$(gDQO.L^{-1}.d^{-1})$
Ι	3500	4	6	2,0	9,0
II	3500	3	8	1,5	12,0
III	5250	4	6	2,0	13,5
IV	5250	3	8	1,5	18,0
V	3500	2	12	1,0	18,0
VI	5250	2	12	1,0	27,0
		Obs.: V _A	$= 1.5 \text{ L}; \text{ V}_{\text{R}} = 3.5 \text{ L}$		

Tabela 4.4 - Resumo das condições experimentais estudadas

O procedimento experimental foi conduzido dessa maneira para que não fosse feita apenas uma análise sobre o efeito da carga orgânica volumétrica aplicada, mas também na verificação da influência da concentração afluente e do tempo de ciclo, que são variáveis intrínsecas a carga orgânica volumétrica aplicada.

A Figura 4.4 organiza a maneira com que as condições experimentais estudadas foram utilizadas na verificação da influência da carga orgânica volumétrica aplicada, do tempo de ciclo, da concentração afluente e da estratégia de enchimento. Essas influências sobre o reator foram avaliadas quanto à estabilidade, ao fator de conversão (consumo de matéria orgânica nas formas de DQO e de carboidratos), ao rendimento entre hidrogênio produzido e substrato (na forma de carboidratos) consumido (RMCR_{C,n} em molH₂.molSAC⁻¹), e à produtividade do reator (PrME em molH₂.kgSVT⁻¹.d⁻¹ e PrM em molH₂.m⁻³.d⁻¹).

A influência da carga orgânica volumétrica aplicada foi verificada pela análise das 6 condições experimentais estudadas, na mesma ordem apresentada na Tabela 4.4.

A influência do tempo de ciclo foi realizada pela análise dos ensaios com tempos de ciclo de 4, 3 e 2 horas, sendo que a modificação foi realizada para uma concentração de 3500 mgDQO.L⁻¹ (condições I, II e V) e para uma concentração de 5250 mgDQO.L⁻¹ (condições III, IV e VI).

A influência da concentração afluente foi realizada pela análise dos ensaios realizados com concentrações de 3500 e 5250 mgDQO.L⁻¹, sendo que a modificação foi realizada para um tempo de ciclo de 4 h (condições I e III), para um tempo de ciclo de 3 h (condições II e IV) e para um tempo de ciclo de 2 h (condições V e VI).

Foi feita uma análise sobre os ensaios com mesma carga orgânica volumétrica aplicada de $18,0 \text{ gDQO.L}^{-1}\text{d}^{-1}$, porém combinando tempos de ciclos e concentrações diferentes, ou seja, um ensaio com tempo de ciclo de 3 h e concentração de 5250 mgDQO.L⁻¹ (condição IV) e outro ensaio com tempo de ciclo de 2 h e concentração de 3500 mgDQO.L⁻¹ (condição V).

A influência do tempo de enchimento foi realizado pela análise comparativa entre dois projetos de mestrado. Essa comparação foi feita entre o trabalho intitulado "Influência da Carga Orgânica na Produção de Biohidrogênio em ASBBR com Agitação Tratando Água Residuária Sintética" (El Manssouri, 2012) com o presente trabalho. Esta comparação pôde ser realizada já que foram realizados com as mesmas cargas orgânicas volumétricas aplicadas ambos $(9,0;12,0;13,5;18,0;27,0 \text{ gDOO.L}^{-1}\text{d}^{-1})$, substrato (sacarose) e configuração de reator (AnSBBR com agitação), modificando-se apenas a variável tempo de enchimento. No primeiro estudo (El Manssouri, 2012), o tempo de enchimento foi realizado em um curto período no início do ciclo (10 min) caracterizando um sistema em batelada, e o segundo estudo (presente trabalho), o tempo de enchimento implementado correspondeu a 50% do tempo total de ciclo, caracterizando um sistema em 50% do tempo total de ciclo em batelada alimentada e 50% do tempo total de ciclo em batelada.

Figura 4.4 – Procedimento utilizado para análise dos parâmetros operacionais estudados

5 RESULTADOS E DISCUSSÃO

5.1 Condição experimental preliminar (3500 mgDQO.L⁻¹ – t_C 4h)

5.1.1 Monitoramento

A montagem do reator, a partida e todo o período correspondente entre a partida e estabilidade do sistema foram considerados como dados preliminares. Esse período foi utilizado também para a preparação das curvas de calibração, ajuste dos métodos e procedimentos experimentais.

Essa etapa foi operada com as mesmas características da primeira condição experimental, com os valores nominais de COVA_s e COVA_C de 9,0 gDQO.L⁻¹.d⁻¹ e 8,0 gSAC.L⁻¹.d⁻¹, respectivamente. Após 17 dias da partida do sistema, os parâmetros operacionais estabilizaram, dessa maneira pôde-se dar início à primeira condição experimental. Nesta etapa não foram realizadas a quantificação de biomassa, as análises por cromatografia do efluente e do biogás. A Tabela 5.1 apresenta os valores médios dos parâmetros experimentais monitorados.

	Parâmetro	· · · · · ·	Aflue	nte			Eflue	ente	
C _{ST}	$(mgDQO.L^{-1})$	3762	±	199	(5)	2917	<u>+</u>	235	(5)
C _{SF}	$(mgDQO.L^{-1})$	3663	±	85	(5)	2787	±	211	(5)
ε _{st}	(%)					22	\pm	6	(5)
٤ _{SF}	(%)					26	\pm	6	(5)
C _{CT}	$(mgSAC.L^{-1})$	3205	\pm	140	(5)	307	\pm	550	(5)
C _{CF}	$(mgSAC.L^{-1})$	3294	\pm	241	(5)	298	\pm	568	(5)
ε _{CT}	(%)					90	±	17	(5)
ε _{CF}	(%)					91	±	18	(5)
pH	(u)	7,73	±	0,10	(5)	4,36	±	0,07	(5)
ÂVT	$(mgHAc.L^{-1})$	18	±	11	(5)	738	±	178	(5)
AT	$(mgCaCO_3.L^{-1})$	245	±	25	(5)	24	±	37	(5)
AP	$(mgCaCO_3.L^{-1})$	195	±	25	(5)	0	±	0	(5)
AI	$(mgCaCO_3.L^{-1})$	51	±	13	(5)	24	±	37	(5)
AB	$(mgCaCO_3.L^{-1})$	233	±	26	(5)	0	±	0	(5)
ST	$(mg.L^{-1})$	3840	±	74	(2)	2088	±	1075	(2)
SVT	$(mg.L^{-1})$	3566	±	51	(2)	1863	±	1014	(2)
SST	$(mg.L^{-1})$	39	±	55	(2)	96	±	45	(2)
SSV	$(mg.L^{-1})$	61	±	4	(2)	110	±	127	(2)
M _{SVT}	(g)								
C_X	$(g.L^{-1})$								
C_X'	(g.gsuporte ⁻¹)								
V_{G}	(mL)					1354	\pm	178	(4)
V_{H2}	(mL)								
COVA _{ST}	$(gDQO.L^{-1}.d^{-1})$	9,67							
COVR _{SF}	$(gDQO.L^{-1}.d^{-1})$					2,51			
COVA _{CT}	$(gSAC.L^{-1}.d^{-1})$	8,24							
COVR _{CF}	$(gSAC.L^{-1}.d^{-1})$					7,48			
COEA _{ST}	$(gDQO.gSVT^{-1}.d^{-1})$								
COER _{SF}	(gDQO.gSVT ⁻¹ .d ⁻¹)								
COEA _{CT}	$(gSAC.gSVT^{-1}.d^{-1})$								
COER _{CF}	$(gSAC.gSVT^{-1}.d^{-1})$								
n _{H2}	$(\text{molH}_2.\text{d}^{-1})$								
PrM	$(molH_2.m^{-3}.d^{-1})$								
PrME	$(molH_2.kgSVT^{-1}.d^{-1})$								
RMCA _{S,m}	$(molH_2.kgDQO^{-1})$								
RMCA _{C,m}	$(molH_2.kgSAC^{-1})$								
RMCA _{C,n}	$(molH_2.molSAC^{-1})$								
RMCR _{S,m}	$(molH_2. kgDQO^{-1})$								
RMCR _{C,m}	$(molH_2.kgSAC^{-1})$								
RMCR _{C,n}	$(molH_2.molSAC^{-1})$				(1)				
V_{A}	(L)	1,4	±	0,1	(4)				
V _R	(L)	2	±	0,0	(2)				

Tabela 5.1 - Valores médios dos parâmetros monitorados na condição
preliminar (3500 mgDQO.L $^{-1}$ – t_C 4h)

(*) Entre parêntese o número de amostras considerado no cálculo da média

A Figura 5.1 apresenta os valores das concentrações de DQO afluente (não filtrada) e efluente (não filtrada e filtrada), e na Figura 5.2 as eficiências na remoção de DQO durante o monitoramento diário. A concentração média afluente real aplicada ao reator foi de 3762 mgDQO.L⁻¹, a concentração média obtida para o efluente não filtrado de 2917 mgDQO.L⁻¹ e para o efluente filtrado de 2787 mgDQO.L⁻¹. Portanto foram obtidas eficiências de remoção de

DQO de 22,5% para amostras não filtradas e 25,9% para amostras filtradas, sendo que a estabilização desse parâmetro ocorreu a partir do 10º dia.

Figura 5.1 - Concentração de matéria orgânica (DQO): \Box – afluente não filtrada; Δ - efluente não filtrada; \circ – efluente filtrada (Condição Preliminar)

Figura 5.2 - Eficiência de remoção de matéria orgânica (DQO): ◊ – não filtrada; ♦ - filtrada (Condição Preliminar)

Quanto ao consumo de sacarose, o reator apresentou bom desempenho e rápida estabilização, que ocorreu a partir do 7ºdia. As concentrações médias de sacarose no afluente não filtrada e efluente filtrada foram de 3205 mgSAC.L⁻¹, 307 mgSAC.L⁻¹ e

298 mgSAC.L⁻¹, respectivamente (Figura 5.3). A Figura 5.4 apresenta as remoções de sacarose nesta condição, com médias de 90,4% para amostras não filtradas e 90,7% para amostras filtradas.

Figura 5.3 - Concentração de carboidrato: \Box – afluente não filtrada; Δ - efluente não filtrada; \circ – efluente filtrada (Condição Preliminar)

Figura 5.4 - Eficiência de remoção de carboidrato: ♦ – não filtrada; ◊- filtrada (Condição Preliminar)

As Figuras 5.5, 5.6 e 5.7 apresentam os dados obtidos de pH, alcalinidade total e ácidos voláteis totais, respectivamente. A média do pH afluente foi de 7,73 e do efluente de 4,36. A alcalinidade total afluente teve média de 245 mgCaCO₃.L⁻¹ sendo consumida durante o ciclo, obtendo-se no efluente uma média de 24 mgCaCO₃.L⁻¹. A queda do pH e da AT foram

consequência do acúmulo de ácidos no sistema, sendo que a média de AVT do afluente foi de 18 mgHAc.L^{-1} e aumentando para uma média de AVT do efluente de 738 mgHAc.L⁻¹.

Figura 5.5 - Valores de pH: ◊ –afluente; ♦ - efluente (Condição Preliminar)

Figura 5.6 - Concentração de alcalinidade total: ◊ –afluente; ♦ - efluente (Condição Preliminar)

Figura 5.7 - Concentração de AVT: ◊ – afluente; ♦ - efluente (Condição Preliminar)

A produção de biogás por ciclo, em aspecto quantitativo, pode ser observado pela Figura 5.8, com média de 1354 mL de biogás.

Figura 5.8 - Volume de biogás produzido por ciclo (Condição Preliminar)

5.2 Condição experimental I (3500 mgDQO.L⁻¹ – t_C 4h)

5.2.1 Monitoramento

Essa etapa foi operada por 35 dias, com os valores nominais de $COVA_s$ e $COVA_c$ de 9,0 gDQO.L⁻¹.d⁻¹ e 8,0 gSAC.L⁻¹.d⁻¹, respectivamente. A Tabela 5.2 apresenta a média dos parâmetros monitorados.

	Parâmetro	/1 (5500 H	Aflu	ente	ι(iii)]	Efluer	nte	
Сст	$(mgDOO L^{-1})$	3559	+	961	(14)	2948	+	800	(14)
	$(mgDOOL^{-1})$	3620	+	1542	(3)	2882	+	112	(16)
Est	(%)		-			16	+	6	(14)
Ear	(%)					19	+	3	(16)
Cor	$(mgSAC L^{-1})$	3212	+	133	(13)	71	+	12	(13)
CCE	$(mgSACL^{-1})$	3343	+	95	(2)	28	+	11	(15)
Ecr	(%)		_			97.8	+	04	(13)
SCI ECE	(%)					99.1	+	0.4	(15)
nH	(11)	8.07	+	0.03	(16)	4.67	+	0.06	(18)
AVT	$(mgHAc L^{-1})$	20	+	7	(16)	1057	+	127	(18)
AT	$(mgCaCO_2 L^{-1})$	411	+	37	(16)	169	+	61	(18)
AP	$(mgCaCO_2,L^{-1})$	324	+	35	(16)	0	+	0	(18)
AI	$(mgCaCO_2,L^{-1})$	87	+	16	(16)	169	+	61	(18)
AB	$(mgCaCO_2,L^{-1})$	397	+	35	(16)	0	+	0	(18)
ST	$(mg.L^{-1})$	3890	+	204	(8)	1743	+	298	(8)
SVT	$(mg.L^{-1})$	3490	+	138	(8)	1365	+	256	(8)
SST	$(mg.L^{-1})$	40	+	30	(8)	129	+	53	(8)
SSV	$(mg.L^{-1})$	39	±	26	(8)	125	±	44	(8)
MSVT	(<u>8</u>) (g)					18.53			
Cx	$(g.L^{-1})$					5.29			
C _x '	$(g.gsuporte^{-1})$					0.0172			
VG	(mL)					1699	\pm	304	(7)
V_{H2}	(mL)					320	\pm	29	(3)
COVA _{ST}	$(gDQO.L^{-1}.d^{-1})$	9,15							
COVR _{SF}	$(gDQO.L^{-1}.d^{-1})$					1,74			
COVA _{CT}	$(gSAC.L^{-1}.d^{-1})$	8,26							
COVR _{CF}	$(gSAC.L^{-1}.d^{-1})$					8,19			
COEA _{ST}	$(gDQO.gSVT^{-1}.d^{-1})$	1,73							
COER _{SF}	$(gDQO.gSVT^{-1}.d^{-1})$					0,33			
COEA _{CT}	$(gSAC.gSVT^{-1}.d^{-1})$	1,56							
COER _{CF}	(gSAC.gSVT ⁻¹ .d ⁻¹)					1,55			
n _{H2}	$(\text{molH}_2.\text{d}^{-1})$					0,0857			
PrM	$(molH_2.m^{-3}.d^{-1})$					24,5			
PrME	$(molH_2.kgSVT^{-1}.d^{-1})$					4,62			
RMCA _{S,m}	$(molH_2.kgDQO^{-1})$	2,67							
RMCA _{C,m}	$(molH_2.kgSAC^{-1})$	2,96							
RMCA _{C,n}	$(molH_2.molSAC^{-1})$	1,01							
RMCR _{S,m}	$(molH_2. kgDQO^{-1})$					14,1			
RMCR _{C,m}	$(molH_2.kgSAC^{-1})$					2,99			
RMCR _{C,n}	$(molH_2.molSAC^{-1})$					1,02			
V _A	(L)	1,5	±	0,1	(7)				
V _R	(L)	3,5							

Tabela 5.2 - Valores médios dos parâmetros monitorados na Condição I (3500 mgDQO.L⁻¹ – t_C 4h)

(*) Entre parêntese o número de amostras considerado no cálculo da média

O monitoramento diário apresentou baixo consumo de matéria orgânica na forma de DQO, com média de concentração afluente não filtrada de 3559 mgDQO.L⁻¹, efluente não filtrada 2948 mgDQO.L⁻¹ de efluente filtrada de 2882 mgDQO.L⁻¹ (Figura 5.9), que representa um baixo rendimento esperado em relação a esse parâmetro, com remoção média para amostras não filtradas de 16,4 % e para amostras filtradas de 19,0 % (Figura 5.10).

Figura 5.9 - Concentração de matéria orgânica (DQO): □ – afluente não filtrada; △ - efluente não filtrada; ○ – efluente filtrada (Condição I)

Figura 5.10 - Eficiência de remoção de matéria orgânica (DQO): ◊ – não filtrada; ♦ - filtrada (Condição I)

Por outro lado, o reator apresentou ótimo desempenho na remoção do carboidrato, com concentrações médias de sacarose no afluente não filtrada, efluente não filtrada e efluente filtrada foram de 3212 mgSAC.L⁻¹, 71 mgSAC.L⁻¹ e 28 mgSAC.L⁻¹, respectivamente (Figura 5.11). As remoções médias de sacarose nesta condição, foram de 97,8% para amostras não filtradas e 99,1% para amostras filtradas (Figura 5.12).

Figura 5.11 - Concentração de carboidrato: \Box – afluente não filtrada; Δ - efluente não filtrada; \circ – efluente filtrada (Condição I)

Figura 5.12 - Eficiência de remoção de carboidrato: ♦ – não filtrada; ◊- filtrada (Condição I)

As Figuras 5.13, 5.14 e 5.15 apresentam os dados obtidos de pH, alcalinidade total e ácidos voláteis totais, respectivamente. A média do pH afluente foi de 8,07 e do efluente de 4,67. A alcalinidade total afluente teve média de 411 mgCaCO₃.L⁻¹ sendo reduzida no efluente para uma média de 169 mgCaCO₃.L⁻¹. A média de AVT do afluente foi de 20 mgHAc.L⁻¹ e a média de AVT do efluente de 1057 mgHAc.L⁻¹.

Figura 5.13 - Valores de pH: ◊ –afluente; ♦ - efluente (Condição I)

Figura 5.14 - Alcalinidade total: ◊ -afluente; ♦ - efluente (Condição I)

Figura 5.15 - Concentração de AVT: ◊ -afluente; ♦ - efluente (Condição I)

As análises dos compostos intermediários do metabolismo, realizados por cromatografia de fase gasosa, são indicados na Figura 5.16 e Tabela 5.3, mostrando o predomínio de ácido acético, butírico e etanol, representando uma distribuição molar de 39,6%, 12,8% e 24,3%, respectivamente.

Figura 5.16 - Concentração dos compostos intermediários durante o monitoramento: □ – ácido acético; Δ - etanol; ○ – ácido butírico; ■ – ácido isobutírico; ▲ – ácido capróico; ● – ácido valérico; -x- ácido propiônico; -|-butanol; — ácido isovalérico (Condição I)

	Concentra	Distribuição	
	$(mg.L^{-1})$	$(mmol.L^{-1})$	(%)
Acetona	-	-	-
Metanol	-	-	-
Etanol	$281~\pm~15$	$6,1 \pm 0,3$	24,3
N-Butanol	16 ± 2	$0,2\pm0,0$	0,9
Acético	594 ± 26	9,9 \pm 0,4	39,6
Propiônico	78 ± 15	$1,1 \pm 0,2$	4,2
Isobutírico	182 ± 12	$2,1 \pm 0,1$	8,2
Butírico	$282~\pm~14$	$3,2 \pm 0,2$	12,8
Isovalérico	12 ± 2	$0,1\pm0,0$	0,5
Valérico	89 ± 9	$0,9\pm0,1$	3,5
Capróico	175 ± 8	$1,5 \pm 0,1$	6,0

 Tabela 5.3 - Concentração e distribuição dos compostos intermediários (Condição I)

A produção de biogás por ciclo, em aspecto quantitativo, pode ser observado pela Figura 5.17, com média de 1699 mL de biogás. A Figura 5.18 apresenta a distribuição dos gases que compõem o biogás no final do ciclo.

Figura 5.17 - Volume de biogás produzido por ciclo (Condição I)

Figura 5.18 - Concentrações dos componentes do biogás no final do ciclo: $\Box - CO_2$; $\Delta - H_2$; $\circ - CH_4$ (Condição I)

5.2.2 Perfis ao longo do ciclo

Após a estabilização dos parâmetros monitorados, foram realizados perfis ao longo do ciclo para que fosse feita uma análise do comportamento durante o consumo do substrato. A Figura 5.19 apresenta a evolução da degradação de matéria orgânica, o consumo ocorre durante as 2 primeiras horas com uma média próxima a 10 %, mantendo-se até o final do ciclo. A Figura 5.20 apresenta o consumo de carboidrato durante o ciclo, essa remoção ocorre de maneira gradual durante o período que o reator é alimentado, após a metade do ciclo a alimentação é interrompida e o restante de sacarose é consumida, atingindo 98,3 % de remoção.

Figura 5.19 - Concentração e eficiência de degradação de matéria orgânica: ◊ - perfil 1, ♦ - perfil 2, — média dos dois perfis e x eficiência (Condição I)

Figura 5.20 - Concentração e eficiência de degradação de carboidrato: ◊ - perfil 1, ♦ - perfil 2, — média dos dois perfis e x eficiência (Condição I)

As Figuras 5.21 e 5.22 apresentam os perfis de pH e alcalinidade total ao longo do ciclo. O pH permanece constante ao longo do ciclo por volta de 4,8, devido à presença da alcalinidade que é fornecida gradualmente através do afluente.

Figura 5.21 - Valores de pH: ◊ – do perfil 1, ♦ - do perfil 2 e — média dos dois perfis (Condição I)

Figura 5.22 - Alcalinidade total: ◊ - do perfil 1, ♦ - do perfil 2 e - média dos dois perfis (Condição I)

Os perfis de ácidos voláteis totais por titulação e dos compostos intermediários do metabolismo são apresentados nas Figuras 5.23 e 5.24. É possível verificar uma queda na concentração inicial de ácidos e solventes no sistema devido à diluição do afluente no meio reacional, e à medida que o substrato é consumido estes retornam as concentrações iniciais.

Figura 5.23 - Concentração de AVT: ◊ - do perfil 1, ♦ - do perfil 2 e — média dos dois perfis (Condição I)

Figura 5.24 - Concentração dos compostos intermediários ao longo do ciclo: □ – ácido acético; Δ - etanol; ○ – ácido butírico; ■ – ácido isobutírico; ▲ – ácido capróico; ● – ácido valérico; -x-ácido propiônico; -|butanol; — ácido isovalérico (Condição I)

A produção volumétrica acumulada de biogás e os desvios padrões de cada um dos pontos pode ser observado na Figura 5.25 e a média das concentrações de cada um dos gases pode ser observada na Figura 5.26. A partir das informações desses dois perfis foi feita a quantificação da produção de cada gás como pode ser observado pela Tabela 5.4 e Figura 5.27. Não foi detectado a presença de metano nessa condição.

Figura 5.25 - Produção volumétrica média acumulada do biogás durante o ciclo (Condição I)

Figura 5.26 - Concentração dos compostos do biogás durante o ciclo: ■ - CO₂; Δ - H₂; ● - CH₄ (Condição I)

Tempo	V _G	C	G (mmol.L	(0011 (⁻¹)	Fr	ação Mola	r (%)	Volu	me (mL -	CNTP)
(h)	(mL - CNTP)	\mathbf{H}_2	CH ₄	CO ₂	\mathbf{H}_2	CH ₄	CO_2	H_2	CH ₄	CO ₂
0,0	0	0,00	0	0,00	0	0	0	0	0	0
0,5	508	0,31	0	3,91	7	0	93	37	0	471
1,0	864	0,87	0	5,38	14	0	86	86	0	778
1,5	1225	1,65	0	6,71	20	0	80	158	0	1067
2,0	1545	2,53	0	7,96	24	0	76	235	0	1310
2,5	1739	3,27	0	8,87	27	0	73	287	0	1451
3,0	1825	3,86	0	9,55	29	0	71	312	0	1513
3,8	1850	4,60	0	9,69	32	0	68	320	0	1530

 Tabela 5.4 - Valores médios da produção, fração molar e os volumes individuais da mistura do biogás (Condição I)

Figura 5.27 - Volumes acumulados médios produzidos ao longo do ciclo: $\blacksquare-CO_2;$ Δ - $H_2;$ $\bullet-CH_4$ (Condição I)

5.3 Condição experimental II (3500 mgDQO.L⁻¹ – t_C 3h)

5.3.1 Monitoramento

Essa etapa foi operada por 28 dias, com os valores nominais de $COVA_s$ e $COVA_c$ de 12,0 gDQO.L⁻¹.d⁻¹ e 10,7 gSAC.L⁻¹.d⁻¹, respectivamente. A Tabela 5.5 apresenta a média dos parâmetros monitorados.

Parâmetro		```	Afluente			Efluente			
C _{ST}	(mgDQO.L ⁻¹)	3571	±	131	(10)	2956	±	112	(10)
C_{SF}	$(mgDQO.L^{-1})$					2864	±	131	(12)
E _{ST}	(%)					17	±	3	(10)
€ _{SF}	(%)					20	\pm	4	(12)
C _{CT}	$(mgSAC.L^{-1})$	3242	±	294	(10)	39	\pm	5	(10)
C _{CF}	$(mgSAC.L^{-1})$					21	±	1	(12)
ε _{CT}	(%)					98,8	±	0,2	(10)
8 _{CF}	(%)					99,4	±	0,0	(12)
pH	(u)	8,08	\pm	0,05	(10)	4,57	±	0,13	(12)
ÂVT	$(mgHAc.L^{-1})$	20	\pm	4	(10)	1120	±	57	(12)
AT	$(mgCaCO_3.L^{-1})$	459	±	11	(10)	137	±	43	(12)
AP	$(mgCaCO_3.L^{-1})$	359	\pm	18	(10)	0	±	0	(12)
AI	$(mgCaCO_3.L^{-1})$	100	\pm	12	(10)	137	±	43	(12)
AB	$(mgCaCO_3.L^{-1})$	445	\pm	11	(10)	0	±	0	(12)
ST	$(mg.L^{-1})$	4098	\pm	97	(4)	2050	±	89	(4)
SVT	$(mg.L^{-1})$	3579	\pm	83	(4)	1620	±	111	(4)
SST	$(mg.L^{-1})$	54,5	\pm	23	(4)	124	±	8	(4)
SSV	$(mg.L^{-1})$	28,5	\pm	15	(4)	105	±	7	(4)
M _{SVT}	(g)					22,17			
C_X	$(g.L^{-1})$					6,39			
C_X'	(g.gsuporte ⁻¹)					0,0229			
V_{G}	(mL)					1829	±	67	(5)
V_{H2}	(mL)					464	\pm	19	(3)
COVA _{ST}	$(gDQO.L^{-1}.d^{-1})$	12,2							
COVR _{SF}	$(gDQO.L^{-1}.d^{-1})$					2,42			
COVA _{CT}	$(gSAC.L^{-1}.d^{-1})$	11,1							
COVR _{CF}	$(gSAC.L^{-1}.d^{-1})$					11,0			
COEA _{ST}	$(gDQO.gSVT^{-1}.d^{-1})$	1,93							
COER _{SF}	(gDQO.gSVT ⁻¹ .d ⁻¹)					0,38			
COEA _{CT}	$(gSAC.gSVT^{-1}.d^{-1})$	1,75							
COER _{CF}	$(gSAC.gSVT^{-1}.d^{-1})$					1,74			
n _{H2}	$(\text{molH}_2.\text{d}^{-1})$					0,166			
PrM	$(molH_2.m^{-3}.d^{-1})$					47,3			
PrME	$(molH_2.kgSVT^{-1}.d^{-1})$					7,47			
RMCA _{S,m}	$(molH_2.kgDQO^{-1})$	3,87							
RMCA _{C,m}	$(molH_2.kgSAC^{-1})$	4,26							
RMCA _{C,n}	$(molH_2.molSAC^{-1})$	1,46							
RMCR _{S,m}	$(molH_2. kgDQO^{-1})$					19,5			
RMCR _{C,m}	$(molH_2.kgSAC^{-1})$					4,29			
RMCR _{C,n}	$(molH_2.molSAC^{-1})$				<i>.</i> .	1,47			
V _A	(L)	1,6	\pm	0,2	(5)				
Vp	(L)	35							

Tabela 5.5 - Valores médios dos parâmetros monitorados na Condição II (3500 mgDQO.L⁻¹ – t_C 3h)

(*) Entre parêntese o número de amostras considerado no cálculo da média

A Figura 5.28 apresenta os valores das concentrações de DQO afluente (não filtrada) e efluente (não filtrada e filtrada), e na Figura 5.29 as eficiências na remoção de DQO durante o monitoramento diário. A concentração média afluente real aplicada ao reator foi de 3571 mgDQO.L⁻¹, a concentração média obtida para o efluente não filtrado de 2956 mgDQO.L⁻¹e para o efluente filtrado de 2864 mgDQO.L⁻¹. Portanto foram obtidas eficiências de remoção de DQO de 17,2 % para amostras não filtradas e 19,8 % para amostras filtradas.

Figura 5.28 - Concentração de matéria orgânica (DQO): \Box – afluente não filtrada; Δ - efluente não filtrada; \circ – efluente filtrada (Condição II)

Figura 5.29 - Eficiência de remoção de matéria orgânica (DQO): ◊ - não filtrada; ♦ - filtrada (Condição II)

Quanto ao consumo de sacarose, o reator apresentou bom desempenho e rápida estabilização. As concentrações médias de sacarose no afluente não filtrada, efluente não filtrada e efluente filtrada foram de 3242 mgSAC.L⁻¹, 39 mgSAC.L⁻¹ e 21 mgSAC.L⁻¹, respectivamente (Figura 5.30). A Figura 5.31 apresenta as remoções de sacarose nesta condição, com médias de 98,8% para amostras não filtradas e 99,4% para amostras filtradas.

Figura 5.30 - Concentração de carboidrato: \Box – afluente não filtrada; Δ - efluente não filtrada; \circ – efluente filtrada (Condição II)

Figura 5.31 - Eficiência de remoção de carboidrato: ♦ – não filtrada; ◊- filtrada (Condição II)

As Figuras 5.32, 5.33 e 5.34 apresentam os dados obtidos de pH, alcalinidade total e ácidos voláteis totais, respectivamente. A média do pH afluente foi de 8,08 e do efluente de 4,57. A alcalinidade total afluente teve média de 459 mgCaCO₃.L⁻¹ e no efluente uma média de 137 mgCaCO₃.L⁻¹. A média de AVT do afluente foi de 20 mgHAc.L⁻¹ e aumentando para uma média de AVT do efluente de 1120 mgHAc.L⁻¹.

Figura 5.32 – Valores de pH: ◊ –afluente; ♦ - efluente (Condição II)

Figura 5.33 - Alcalinidade total: ◊ –afluente; ♦ - efluente (Condição II)

Figura 5.34 - Concentração de AVT: ◊ -afluente; ♦ - efluente (Condição II)

As análises dos compostos intermediários do metabolismo realizados por cromatografia da fase gasosa, indicados na Figura5.35 e Tabela5.6, indicaram o predomínio de ácido acético, butírico e etanol, representando uma distribuição molar de 47,7%, 14,2% e 18,4%, respectivamente.

Figura 5.35 - Concentração dos compostos intermediários durante o monitoramento: □ – ácido acético; Δ - etanol; ○ – ácido butírico; ■ – ácido isobutírico; ▲ – ácido capróico; ● – ácido valérico; -x- ácido propiônico; -|-butanol; — ácido isovalérico (Condição II)

	Concentra	Distribuição	
	$(mg.L^{-1})$	$(mmol.L^{-1})$	(%)
Acetona	-	-	-
Metanol	-	-	-
Etanol	$229~\pm~11$	$5,0 \pm 0,2$	18,4
n-Butanol	12 ± 2	$0,2\pm0,0$	0,6
Acético	$774~\pm~20$	$12,9~\pm~0,3$	47,7
Propiônico	145 ± 7	$2,0 \pm 0,1$	7,2
Isobutírico	$84~\pm~8$	$1,0\pm0,1$	3,5
Butírico	$338~\pm~34$	$3,8\pm0,4$	14,2
Isovalérico	10 ± 3	$0,1\pm0,0$	0,4
Valérico	89 ± 7	$0,9\pm0,1$	3,2
Capróico	$150~\pm~16$	$1,3 \pm 0,1$	4,8

Tabela 5.6 - Concentração e distribuição dos compostos intermediários (Condição II)

A produção de biogás por ciclo, em aspecto quantitativo, pode ser observada pela Figura 5.36, com média de 1829 mL de biogás. A Figura 5.37 apresenta a distribuição dos gases que compõem o biogás no final do ciclo.

Figura 5.36 - Volume de biogás produzido por ciclo (Condição II)

Figura 5.37 - Concentrações dos componentes do biogás no final do ciclo: $\Box - CO_2$; $\Delta - H_2$; $\circ - CH_4$ (Condição II)

5.3.2 Perfis ao longo do ciclo

Após a estabilização dos parâmetros monitorados foram realizados perfis ao longo do ciclo para que fosse feita uma análise do comportamento durante o consumo do substrato. A Figura 5.38 apresenta a evolução da degradação de matéria orgânica, o consumo. A Figura 5.39 apresenta a maneira como ocorre o consumo de carboidrato durante o ciclo, até alcançar 98% de remoção de sacarose.

Figura 5.38 - Concentração e eficiência de degradação de matéria orgânica: ◊ - perfil 1, ♦ - perfil 2, — média dos dois perfis e x eficiência (Condição II)

Figura 5.39 - Concentração e eficiência de degradação de carboidrato: ◊ - perfil 1, ♦ - perfil 2, — média dos dois perfis e x eficiência (Condição II)

As Figuras 5.40 e 5.41 apresentam os perfis de pH e alcalinidade total ao longo do ciclo. O pH sofre uma pequena variação inicial, e se estabiliza por volta de 4,5.

Figura 5.40 - Valores de pH: ◊ – do perfil 1, ♦ - do perfil 2 e — média dos dois perfis (Condição II)

Figura 5.41 - Alcalinidade total: ◊ - do perfil 1, ♦ - do perfil 2 e - média dos dois perfis (Condição II)

Os perfis de ácidos voláteis totais por titulação e dos compostos intermediários do metabolismo são apresentados nas Figuras 5.42 e 5.43. É possível verificar uma queda na concentração inicial de ácidos e solventes no sistema devido à diluição do afluente no meio reacional, e à medida que o substrato é consumido estes retornam as concentrações iniciais.

Figura 5.42 - Concentração de AVT: ◊ - do perfil 1, ♦ - do perfil 2 e — média dos dois perfis (Condição II)

Figura 5.43 - Concentração dos compostos intermediários ao longo do ciclo: □ – ácido acético; Δ - etanol; ○ – ácido butírico; ■ – ácido isobutírico; ▲ – ácido capróico; ● – ácido valérico; -x-ácido propiônico; -|butanol; — ácido isovalérico (Condição II)

A produção volumétrica acumulada de biogás e os desvios padrões de cada um dos pontos podem ser observados na Figura 5.44 e a média das concentrações de cada um dos gases pode ser observada na Figura 5.45. A partir das informações desses dois perfis foi feita a quantificação da produção de cada gás como pode ser observado pela Tabela 5.7 e Figura 5.46.

Figura 5.44 - Produção volumétrica média acumulada do biogás durante o ciclo (Condição II)

Figura 5.45 - Concentração dos compostos do biogás durante o ciclo: $\blacksquare - CO_2$; $\triangle - H_2$; $\bullet - CH_4$ (Condição II)

 Tabela 5.7 - Valores médios da produção, fração molar e os volumes individuais da mistura do biogás (Condição II)

				(0000	<i>iiguo</i> 11	,				
Tempo	$\mathbf{V}_{\mathbf{G}}$	C	_G (mmol	.L ⁻¹)	Fra	ção Mola	ar (%)	Volu	me (mL -	CNTP)
(h)	(mL - CNTP)	\mathbf{H}_2	CH ₄	CO ₂	H_2	CH ₄	CO ₂	\mathbf{H}_2	CH_4	CO ₂
0,0	0	0,00	0,00	0,00	0	0	0	0	0	0
0,5	344	2,46	0,36	8,14	22	3	74	77	11	256
1,0	777	2,99	0,44	9,25	24	3	73	179	26	572
1,5	1188	4,04	0,53	10,65	27	3	70	288	40	859
2,0	1514	4,96	0,61	11,76	29	4	68	381	52	1081
2,8	1793	5,51	0,67	12,49	30	4	67	464	62	1267

Figura 5.46 - Volumes acumulados médios produzidos ao longo do ciclo: $\blacksquare - CO_2$; $\Delta - H_2$; $\bullet - CH_4$ (Condição II)

5.4 Condição experimental III (5250 mgDQO.L⁻¹ – t_C 4h)

5.4.1 Monitoramento

Essa etapa foi operada por 28 dias, com os valores nominais de $COVA_s$ e $COVA_c$ de 13,5 gDQO.L⁻¹.d⁻¹ e 12,1 gSAC.L⁻¹.d⁻¹, respectivamente. A Tabela 5.8 apresenta a média dos parâmetros monitorados.

	Darâmatra	a0 III (<i>323</i>	A flu	onto	$-t_{\rm C} + 11$		Ffluo	nto	
C	$(maDOO I^{-1})$	5204	Anu	120	(11)	1176	Linue	206	(11)
C_{ST}	$(\operatorname{IIIgDQO.L})$	5294	- <u>-</u>	120	(6)	4420	± .	102	(13)
C_{SF}	$(\operatorname{IngDQO.L})$	5291	Ť	127		4529	±	102	(11)
EST	(%)					10	- -	4	(13)
ESF C	(%) (mas AC I ⁻¹)	4054		268	(11)	10	- -	2 11	(11)
C_{CT}	(IIIgSAC.L)	4954	⊥ ⊥	200 530	(6)	45	⊥ ⊥	11	(13)
C_{CF}	$(\operatorname{IIIgSAC.L})$	4919	Ξ	559		00.1	±	4	(11)
ECT	(%)					99,1	± .	0,2	(13)
ECF	(%)	7.08		0.14	(11)	99,4 4 4 2	±	0,1	(13)
рп	(\mathbf{u})	7,98	±	0,14	(11)	4,42	±	126	(13)
	(mgHAC.L)	20	±	4	(11)	1405	±	120	(13)
AI	$(mgCaCO_3.L)$	636	±	122	(11)	123	±	98	(13)
AP	$(mgCaCO_3.L)$	4//	±	99	(11)	102	±	0	(13)
AI	$(mgCaCO_3.L)$	158	±	27	(11)	123	±	98	(13)
AB	$(mgCaCO_3.L^{-1})$	61/	±	121	(5)	0	±	0	(5)
51	(mg.L)	5806	±	210	(5)	3683	±	2608	(5)
SV1	(mg.L)	5093	±	122	(5)	3066	±	2655	(5)
551	(mg.L^{-})	94	±	31	(5)	120	±	28	(5)
SSV	(mg.L ⁻)	52	±	19	(-)	93	±	16	(-)
M _{SVT}	(g)					25,81			
C_X	$(g.L^{-1})$					7,40			
C_X'	(g.gsuporte ⁻)					0,0253		110	(6)
VG	(mL)					2479	±	112	(3)
V _{H2}	(mL)	12.6				/18	±	32	(5)
COVA _{ST}	$(gDQO.L^{-1}.d^{-1})$	13,6				2.49			
COVR _{SF}	(gDQO.L ⁻ .d ⁻)	10.7				2,48			
COVA _{CT}	$(gSAC.L^{-}.d^{-})$	12,7				10.7			
COVR _{CF}	$(gSAC.L^{-}.d^{-})$	1.05				12,7			
COEA _{ST}	$(gDQU.gSV1^{-1}.d^{-1})$	1,85							
COER _{SF}	(gDQO.gSV1 ⁻ .d ⁻)					0,336			
COEA _{CT}	$(gSAC.gSV1^{-1}.d^{-1})$	1,73				1.70			
COER _{CF}	$(gSAC.gSV1^{-1}.d^{-1})$					1,72			
n _{H2}	$(\text{molH}_2.\text{d}^3)$					0,192			
PrM	$(\text{molH}_2.\text{m}^3.\text{d}^3)$					54,9			
PrME	$(\text{molH}_2.\text{kgSVT}^{-1}.\text{d}^{-1})$					7,45			
RMCA _{S,m}	$(molH_2.kgDQO^{-1})$	4,03							
RMCA _{C,m}	$(molH_2.kgSAC^{-1})$	4,31							
RMCA _{C,n}	$(\text{molH}_2,\text{molSAC}^{-1})$	1,48							
RMCR _{S,m}	$(molH_2. kgDQO^{-1})$					22,1			
RMCR _{C,m}	$(molH_2.kgSAC^{-1})$					4,34			
RMCR _{C,n}	$(molH_2.molSAC^{-1})$				(ϵ)	1,48			
V_{A}	(L)	1,4	±	0,1	(0)	—			
V _R	(L)	3,5							

Tabela 5.8 - Valores médios dos parâmetros monitorados na Condição III (5250 mgDQO.L⁻¹ – t_C 4h)

(*) Entre parêntese o número de amostras considerado no cálculo da média

A Figura 5.47 apresenta os valores das concentrações de DQO afluente (não filtrada) e efluente (não filtrada e filtrada), e na Figura 5.48 as eficiências na remoção de DQO durante o monitoramento diário. A concentração média afluente real aplicada ao reator foi de 5294 mgDQO.L⁻¹, a concentração média obtida para o efluente não filtrado de 4426 mgDQO.L⁻¹e para o efluente filtrado de 4329 mgDQO.L⁻¹. Portanto, foram obtidas eficiências de remoção de DQO de 16,4 % para amostras não filtradas e 18,2 % para amostras filtradas.

Figura 5.47 - Concentração de matéria orgânica (DQO): \Box – afluente não filtrada; Δ - efluente não filtrada; \circ – efluente filtrada (Condição III)

Figura 5.48 - Eficiência de remoção de matéria orgânica (DQO): ◊ – não filtrada; ♦ - filtrada (Condição III)

Quanto ao consumo de sacarose, o reator apresentou bom desempenho e rápida estabilização. As concentrações médias de sacarose no afluente não filtrada, efluente não filtrada e efluente filtrada foram de 4954 mgSAC.L⁻¹, 45 mgSAC.L⁻¹ e 31 mgSAC.L⁻¹, respectivamente (Figura 5.49). A Figura 5.50 apresenta as remoções de sacarose nesta condição, com médias de 99,1 % para amostras não filtradas e 99,4 % para amostras filtradas.

Figura 5.49 - Concentração de carboidrato: \Box – afluente não filtrada; Δ - efluente não filtrada; \circ – efluente filtrada (Condição III)

Figura 5.50 - Eficiência de remoção de carboidrato: ♦ – não filtrada; ◊- filtrada (Condição III)

As Figuras 5.51, 5.51 e 5.53 apresentam os dados obtidos de pH, alcalinidade total e ácidos voláteis totais, respectivamente. A média do pH afluente foi de 7,98 e do efluente de 4,42. A alcalinidade total afluente teve média de 636 mgCaCO₃.L⁻¹ sendo consumida durante o ciclo, obtendo-se no efluente uma média de 123 mgCaCO₃.L⁻¹. A queda do pH e da AT foram consequência do acúmulo de ácidos no sistema, sendo que a média de AVT do afluente foi de 26 mgHAc.L⁻¹ e aumentando para uma média de AVT do efluente de 1465 mgHAc.L⁻¹.

Figura 5.51 - Valores de pH: ◊ –afluente; ♦ - efluente (Condição III)

Figura 5.52 - Alcalinidade total: ◊ -afluente; ♦ - efluente (Condição III)

Figura 5.53 - Concentração de AVT: ◊ -afluente; ♦ - efluente (Condição III)

As análises dos compostos intermediários do metabolismo realizados por cromatografia da fase gasosa, indicados na Figura5.54 e Tabela5.9, indicaram o predomínio de ácido acético, butírico e etanol, representando uma distribuição molar de 43,4%, 11,7% e 28,4%, respectivamente.

Figura 5.54 - Concentração dos compostos intermediários durante o monitoramento: □ – ácido acético; Δ - etanol; ○ – ácido butírico; ■ – ácido isobutírico; ▲ – ácido capróico; ● – ácido valérico; -x- ácido propiônico; -|-butanol; — ácido isovalérico (Condição III)

	Concentra	ıção média	Distribuição
_	(mg.L ⁻¹)	(mmol.L ⁻¹)	(%)
Acetona	-	-	-
Metanol	-	-	-
Etanol	$492~\pm~15$	$10,7 \pm 0,3$	28,4
n-Butanol	14 ± 3	$0,2\pm0,0$	0,5
Acético	980 ± 34	$16,3 \pm 0,6$	43,4
Propiônico	88 ± 9	$1,2 \pm 0,1$	3,2
Isobutírico	156 ± 20	$1,8 \pm 0,2$	4,7
Butírico	387 ± 31	$4,4 \pm 0,3$	11,7
Isovalérico	11 ± 2	$0,1 \pm 0,0$	0,3
Valérico	60 ± 13	$0,6 \pm 0,1$	1,6
Capróico	$274~\pm~69$	$2,4 \pm 0,6$	6,3

 Tabela 5.9 - Concentração e distribuição dos compostos intermediários (Condição III)

A produção de biogás por ciclo, em aspecto quantitativo, pode ser observada pela Figura 5.55, com média de 2479 mL de biogás. A Figura 5.56 apresenta a distribuição dos gases que compõem o biogás no final do ciclo.

Figura 5.55 - Volume de biogás produzido por ciclo (Condição III)

Figura 5.56 - Concentrações dos componentes do biogás no final do ciclo: $\Box - CO_2$; $\Delta - H_2$; $\circ - CH_4$ (Condição III)

5.4.2 Perfis ao longo do ciclo

Após a estabilização dos parâmetros monitorados foram realizados perfis ao longo do ciclo para que fosse feita uma análise do comportamento das variáveis estudadas. A Figura 5.57 apresenta a evolução da degradação de matéria orgânica.

Figura 5.57 - Concentração e eficiência de degradação de matéria orgânica: ◊ - perfil 1, ♦ - perfil 2, — média dos dois perfis e x eficiência (Condição III)

A Figura 5.58 apresenta o consumo de carboidrato durante o ciclo, essa remoção ocorre de maneira gradual durante o período que o reator é alimentado, após a metade do ciclo a alimentação é interrompida e o restante de sacarose é consumida, atingindo 98,5 % de remoção.

Figura 5.58 - Concentração e eficiência de degradação de carboidrato: ◊ - perfil 1, ♦ - perfil 2, — média dos dois perfis e x eficiência (Condição III)

As Figuras 5.59 e 5.60 apresentam os perfis de pH e alcalinidade total ao longo do ciclo. O pH permanece constante ao longo do ciclo por volta de 4,6, devido à presença da alcalinidade que é fornecida gradualmente através do afluente.

Figura 5.59 - Valores de pH: ◊ – do perfil 1, ♦ - do perfil 2 e — média dos dois perfis (Condição III)

Figura 5.60 - Alcalinidade total: ◊ - do perfil 1, ♦ - do perfil 2 e - média dos dois perfis (Condição III)

Os perfis de ácidos voláteis totais por titulação e dos compostos intermediários do metabolismo são apresentados nas Figuras 5.61 e 5.62. É possível verificar uma queda gradual na concentração de ácidos e solventes no sistema devido à diluição do afluente no meio reacional, e à medida que o substrato é consumido estes retornam as concentrações iniciais.

Figura 5.61 - Concentração de AVT: ◊ - do perfil 1, ♦ - do perfil 2 e — média dos dois perfis (Condição III)

Figura 5.62 - Concentração dos compostos intermediários ao longo do ciclo: □ – ácido acético; Δ - etanol; ○ – ácido butírico; ■ – ácido isobutírico; ▲ – ácido capróico; ● – ácido valérico; -x-ácido propiônico; -|butanol; — ácido isovalérico (Condição III)

A produção volumétrica acumulada de biogás e os desvios padrões de cada um dos pontos podem ser observados na Figura 5.63 e a média das concentrações de cada um dos gases pode ser observada na Figura 5.64. A partir das informações desses dois perfis foi feita a quantificação da produção de cada gás como pode ser observado pela Tabela 5.10 e Figura 5.65.

Figura 5.63 - Produção volumétrica média acumulada do biogás durante o ciclo (Condição III)

Figura 5.64 - Concentração dos compostos do biogás durante o ciclo: $\blacksquare - CO_2$; $\triangle - H_2$; $\bullet - CH_4$ (Condição III)

 Tabela 5.10 - Valores médios da produção, fração molar e os volumes individuais da mistura do biogás (Condição III)

Tempo	V _G	C	C _G (mmol.	L ⁻¹)	Fra	ação Mola	ır (%)	Volu	me (mL -	CNTP)
(h)	(mL - CNTP)	\mathbf{H}_2	CH_4	CO ₂	\mathbf{H}_2	CH ₄	CO_2	\mathbf{H}_2	CH ₄	CO ₂
0,0	0	0,00	0,00	0,00	0	0	0	0	0	0
0,5	350	2,62	0,29	5,70	30	3	66	107	12	231
1,0	683	4,01	0,33	12,14	24	2	74	188	19	476
1,5	1108	4,81	0,38	13,42	26	2	72	298	27	782
2,0	1549	5,86	0,45	14,60	28	2	70	422	37	1091
2,5	1947	7,04	0,51	15,68	30	2	68	542	46	1359
3,0	2258	7,77	0,55	16,39	31	2	66	640	53	1565
3,8	2501	8,53	0,60	17,44	32	2	66	718	58	1725

Figura 5.65 - Volumes acumulados médios produzidos ao longo do ciclo: $\blacksquare - CO_2$; $\Delta - H_2$; $\bullet - CH_4$ (Condição III)

5.5 Condição experimental IV (5250 mgDQO.L⁻¹ – t_C 3h)

5.5.1 Monitoramento

Essa etapa foi operada por 35 dias, com os valores nominais de $COVA_s$ e $COVA_c$ de 18,0 gDQO.L⁻¹.d⁻¹ e 16,1 gSAC.L⁻¹.d⁻¹, respectivamente. A Tabela 5.11 apresenta a média dos parâmetros monitorados.

		a0 1 V (32.	A fly	DQU.L	$-\iota_{\rm C}$ 311)		Ffluon	to	
C		5077	Allu		(17)	4540	Enuen	190	(17)
C_{ST}	(mgDQO.L)	5211	±	90	(17)	4549	± .	180	(17)
C_{SF}	(mgDQO.L)		±			440/	± .	1/3	(17)
$\epsilon_{\rm ST}$	(%)					14	± .	3	(17)
ε _{sf}	(%)	1(12			(17)	15	± .	3	(17)
C_{CT}	(mgSAC.L)	4043	±	270	(17)	84 51	± .	33 24	(17)
C_{CF}	(IIIgSAC.L)		Ť			08.2	±	24	(17)
ε _{CT}	(%)					98,2	± .	0,7	(17)
E _{CF}	(%)	0.70		0.00	(17)	98,9	± .	0,5	(17)
рн	(\mathbf{u})	9,70	±	0,09	(17)	4,54	± .	0,44	(17)
AVI	(mgHAc.L)	31	±	14	(17)	1500	±	137	(17)
AI	$(mgCaCO_3.L^{-1})$	/90	±	18/	(17)	218	±	222	(17)
AP	$(mgCaCO_3.L^{-1})$	64/	±	16/	(17)	0	±	0	(17)
AI	$(mgCaCO_3.L^{-1})$	144	±	51	(17)	218	±	222	(17)
AB	$(mgCaCO_3.L^{-1})$	769	±	184	(6)	0	±	0	(6)
ST	(mg.L^{-1})	4800	±	1954	(6)	2941	±	236	(6)
SVT	(mg.L ⁻¹)	4154	±	1610	(6)	2158	±	168	(6)
SST	(mg.L^{1})	77	±	1	(6)	177	±	57	(6)
SSV	(mg.L ⁻)	30	±	10	(0)	137	±	49	(
M _{SVT}	(g)					27,94			
C _X	(g.L ⁻¹)					7,98			
C_{X}	(g.gsuporte ⁻)					0,0257			(7)
V _G	(mL)					1996	±	135	(7)
V _{H2}	(mL)					666	±	8	(3)
COVA _{ST}	$(gDQO.L^{-1}.d^{-1})$	18,1							
COVR _{SF}	$(gDQO.L^{-1}.d^{-1})$					2,78			
COVA _{CT}	$(gSAC.L^{-1}.d^{-1})$	15,9							
COVR _{CF}	$(gSAC.L^{-1}.d^{-1})$					15,7			
COEA _{ST}	$(gDQO.gSVT^{-1}.d^{-1})$	2,27							
COER _{SF}	$(gDQO.gSVT^{-1}.d^{-1})$					0,348			
COEA _{CT}	$(gSAC.gSVT^{-1}.d^{-1})$	1,99							
COER _{CF}	$(gSAC.gSVT^{-1}.d^{-1})$					1,97			
n _{H2}	$(\text{molH}_2.d^{-1})$					0,238			
PrM	$(molH_2.m^{-3}.d^{-1})$					42,47			
PrME	$(molH_2.kgSVT^{-1}.d^{-1})$					8,51			
RMCA _{S,m}	$(molH_2.kgDQO^{-1})$	3,76							
RMCA _{C,m}	$(molH_2.kgSAC^{-1})$	4,27							
RMCA _{C,n}	$(molH_2.molSAC^{-1})$	1,46							
RMCR _{S,m}	$(molH_2. kgDQO^{-1})$					24,5			
RMCR _{C,m}	$(molH_2.kgSAC^{-1})$					4,32			
RMCR _{C,n}	$(molH_2.molSAC^{-1})$					1,48			
V_{A}	(L)	1,5	±	0,2	(11)				
V _R	(L)	3,5							

Tabela 5.11 - Valores médios dos parâmetros monitorados na Condição IV (5250 mgDQO.L⁻¹ – t_C 3h)

(*) Entre parêntese o número de amostras considerado no cálculo da média

A Figura 5.66 apresenta os valores das concentrações de DQO afluente (não filtrada) e efluente (não filtrada e filtrada), e na Figura 5.67 as eficiências na remoção de DQO durante o monitoramento diário. A concentração média afluente real aplicada ao reator foi de 5277 mgDQO.L⁻¹, a concentração média obtida para o efluente não filtrado de 4549 mgDQO.L⁻¹e para o efluente filtrado de 4467 mgDQO.L⁻¹. Portanto foram obtidas eficiências de remoção de DQO de 13,8 % para amostras não filtradas e 15,3 % para amostras filtradas.

Figura 5.66 - Concentração de matéria orgânica (DQO): \Box – afluente não filtrada; Δ - efluente não filtrada; \circ – efluente filtrada (Condição IV)

Figura 5.67 - Eficiência de remoção de matéria orgânica (DQO): ◊ – não filtrada; ♦ - filtrada (Condição IV)

Quanto ao consumo de sacarose, o reator apresentou bom desempenho e estabilidade. As concentrações médias de sacarose no afluente não filtrada, efluente não filtrada e efluente filtrada foram de 4643 mgSAC.L⁻¹, 84 mgSAC.L⁻¹ e 51 mgSAC.L⁻¹, respectivamente (Figura 5.68). A Figura 5.69 apresenta as remoções de sacarose nesta condição, com médias de 98,2 % para amostras não filtradas e 98,9 % para amostras filtradas.

Figura 5.68 - Concentração de carboidrato: \Box – afluente não filtrada; Δ - efluente não filtrada; \circ – efluente filtrada (Condição IV)

Figura 5.69 - Eficiência de remoção de carboidrato: ♦ – não filtrada; ◊- filtrada (Condição IV)

As Figuras 5.70, 5.71 e 5.72 apresentam os dados obtidos de pH, alcalinidade total e ácidos voláteis totais, respectivamente. A média do pH afluente foi de 9,70 e do efluente de 4,54. A alcalinidade total afluente teve média de 790 mgCaCO₃.L⁻¹ sendo consumida durante o ciclo, obtendo-se no efluente uma média de 218 mgCaCO₃.L⁻¹. A grande variação encontrada para a alcalinidade total foi devido à procura da melhor quantidade de bicarbonato e NaOH a ser adicionada ao afluente, para que fosse evitada a queda acentuada do pH no efluente. A média de AVT do afluente foi de 31 mgHAc.L⁻¹ e a média de AVT do efluente de 1566 mgHAc.L⁻¹.

Figura 5.70 – Valores de pH: ◊ –afluente; ♦ - efluente (Condição IV)

Figura 5.71 - Alcalinidade total: ◊ –afluente; ♦ - efluente (Condição IV)

Figura 5.72 - Concentração de AVT: ◊ –afluente; ♦ - efluente (Condição IV)

As análises dos compostos intermediários do metabolismo realizados por cromatografia da fase gasosa, indicados na Figura5.73 e Tabela5.12, indicaram o predomínio de ácido acético, butírico e etanol, representando uma distribuição molar de 47,1 %, 7,0 % e 33,4 %, respectivamente.

Figura 5.73 - Concentração dos compostos intermediários durante o monitoramento: □ – ácido acético; Δ - etanol; ○ – ácido butírico; ■ – ácido isobutírico; ▲ – ácido capróico; ● – ácido valérico; -x- ácido propiônico; -|-butanol; — ácido isovalérico (Condição IV)

	Concentraç	ão média	Distribuição
	(mg.L-1)	(mmol.L-1)	(%)
Acetona	-	-	-
Metanol	-	-	-
Etanol	561 ± 32	$12,2 \pm 0,7$	33,4
n-Butanol	13 ± 3	$0,2\pm0,0$	0,5
Acético	$1031~\pm~55$	$17,2 \pm 0,9$	47,1
Propiônico	109 ± 11	$1,5 \pm 0,2$	4,1
Isobutírico	$140~\pm~27$	$1,6 \pm 0,3$	4,4
Butírico	$223~\pm~6$	$2,5 \pm 0,1$	7,0
Isovalérico	9 ± 1	$0,1 \pm 0,0$	0,2
Valérico	42 ± 5	0,4 ± 0,0	1,1
Capróico	92 ± 9	$0,8 \pm 0,1$	2,2

 Tabela 5.12 - Concentração e distribuição dos compostos intermediários (Condição IV)

A produção de biogás por ciclo, em aspecto quantitativo, pode ser observada pela Figura 5.74, com média de 1996 mL de biogás. A Figura 5.75 apresenta a distribuição dos gases que compõem o biogás no final do ciclo.

Figura 5.74 - Volume de biogás produzido por ciclo (Condição IV)

Figura 5.75 - Concentrações dos componentes do biogás no final do ciclo: $\Box - CO_2; \Delta - H_2; \circ - CH_4$ (Condição IV)

5.5.2 Perfis ao longo do ciclo

Após a estabilização dos parâmetros monitorados foram realizados perfis ao longo do ciclo para que fosse feita uma análise do comportamento dos parâmetros monitorados. A Figura 5.76 apresenta a evolução da degradação de matéria orgânica. A Figura 5.77 apresenta o consumo de carboidrato durante o ciclo, essa remoção ocorre de maneira gradual durante o período que o reator é alimentado, após a metade do ciclo a alimentação é interrompida e o restante de sacarose é consumida, atingindo 95,5% de remoção.

Figura 5.76 - Concentração e eficiência de degradação de matéria orgânica: ◊ - perfil 1, ♦ - perfil 2, — média dos dois perfis e x eficiência (Condição IV)

Figura 5.77 - Concentração e eficiência de degradação de carboidrato: ◊ - perfil 1, ♦ - perfil 2, — média dos dois perfis e x eficiência (Condição IV)

As Figuras 5.78 e 5.79 apresentam os perfis de pH e alcalinidade total ao longo do ciclo. O pH permanece constante ao longo do ciclo por volta de 4,8, devido à presença da alcalinidade que é fornecida gradualmente através do afluente.

Figura 5.78 - Valores de pH: ◊ – do perfil 1, ♦ - do perfil 2 e — média dos dois perfis (Condição IV)

Figura 5.79 - Alcalinidade total: ◊ - do perfil 1, ♦ - do perfil 2 e - média dos dois perfis (Condição IV)

Os perfis de ácidos voláteis totais por titulação e dos compostos intermediários do metabolismo são apresentados nas Figuras 5.80 e 5.81. É possível verificar uma queda gradual na concentração de ácidos e solventes no sistema devido à diluição do afluente no meio reacional, e à medida que o substrato é consumido estes retornam as concentrações iniciais.

Figura 5.80 - Concentração de AVT: ◊ - do perfil 1, ♦ - do perfil 2 e — média dos dois perfis (Condição IV)

Figura 5.81 - Concentração dos compostos intermediários ao longo do ciclo: □ – ácido acético; Δ - etanol; ○ – ácido butírico; ■ – ácido isobutírico; ▲ – ácido capróico; ● – ácido valérico; -x-ácido propiônico; -|butanol; — ácido isovalérico (Condição IV)

A produção volumétrica acumulada de biogás e os desvios padrões de cada um dos pontos podem ser observados na Figura 5.82 e a média das concentrações de cada um dos gases pode ser observada na Figura 5.83. A partir das informações desses dois perfis foi feita a quantificação da produção de cada gás como pode ser observado pela Tabela 5.13 e Figura 5.84. Não foi detectado a presença de metano nessa condição.

Figura 5.82 - Produção volumétrica média acumulada do biogás durante o ciclo (Condição IV)

Figura 5.83 - Concentração dos compostos do biogás durante o ciclo: $\blacksquare - CO_2$; $\triangle - H_2$; $\bullet - CH_4$ (Condição IV)

 Tabela 5.13 - Valores médios da produção, fração molar e os volumes individuais da mistura do biogás (Condição IV)

Tempo	V _G	C	C _G (mmol.	L ⁻¹)	Fra	ação Mola	ır (%)	Volu	ne (mL -	CNTP)
(h)	(mL - CNTP)	\mathbf{H}_2	CH ₄	CO ₂	H_2	CH ₄	CO ₂	\mathbf{H}_2	CH ₄	CO ₂
0,0	0	0,00	0	0,00	0	0	0	0	0	0
0,5	396	2,52	0	4,60	35	0	65	140	0	256
1,0	833	4,17	0	11,63	26	0	74	256	0	577
1,5	1245	5,14	0	12,88	29	0	71	373	0	872
2,0	1628	6,38	0	14,07	31	0	69	493	0	1136
2,8	2137	8,03	0	15,52	34	0	66	666	0	1471

Figura 5.84 - Volumes acumulados médios produzidos ao longo do ciclo: $\blacksquare - CO_2$; $\Delta - H_2$; $\bullet - CH_4$ (Condição IV)

5.6 Condição experimental V (3500 mgDQO.L⁻¹ – $t_C 2h$)

5.6.1 Monitoramento

Essa etapa foi operada por 31 dias, com os valores nominais de $COVA_s$ e $COVA_c$ de 18,0 gDQO.L⁻¹.d⁻¹ e 16,1 gSAC.L⁻¹.d⁻¹, respectivamente. A Tabela 5.14 apresenta a média dos parâmetros monitorados.

	Parâmetro	V (5500 III)	Aflue	nte	(211)		Efluen	te	
Cst	$(mgDOO.L^{-1})$	3537	+	116	(13)	3051	+	122	(14)
CSE	$(mgDOO.L^{-1})$		_			2940	+	89	(14)
Est	(%)					14	_ ±	3	(14)
ESE	(%)					17	+	3	(14)
C _{CT}	$(mgSAC.L^{-1})$	3076	+	213	(13)	71	+	54	(14)
C _{CE}	$(mgSAC.L^{-1})$					49		55	(14)
ECT	(%)					97.7	±	1.8	(14)
ECF	(%)					98.4	±	1.8	(14)
pH	(u)	9,39	±	0,54	(13)	4,56	±	0.07	(14)
AVT	$(mgHAc.L^{-1})$	19	±	4	(13)	1054	±	97	(14)
AT	$(mgCaCO_3.L^{-1})$	512	±	78	(13)	132	±	89	(14)
AP	$(mgCaCO_3.L^{-1})$	420	±	74	(13)	0	±	0	(14)
AI	$(mgCaCO_3.L^{-1})$	92	±	8	(13)	132	±	89	(14)
AB	$(mgCaCO_3.L^{-1})$	498	±	77	(13)	0	±	0	(14)
ST	$(mg.L^{-1})$	3745	<u>±</u>	956	(7)	2237	±	679	(7)
SVT	$(mg.L^{-1})$	3226	<u>±</u>	805	(7)	1806	±	710	(7)
SST	$(mg.L^{-1})$	54	±	20	(7)	104	±	42	(7)
SSV	$(mg.L^{-1})$	34	<u>±</u>	13	(7)	97	±	43	(7)
M _{SVT}	(g)					23,48			
C _x	$(g.L^{-1})$					6,62			
C _x '	$(g.gsuporte^{-1})$					0,0226			
V _G	(mL)					1156	±	154	(11)
V_{H2}	(mL)					382	±	40	(3)
COVA _{ST}	$(gDQO.L^{-1}.d^{-1})$	18,2							
COVR _{SF}	$(gDQO.L^{-1}.d^{-1})$					3,07			
COVA _{CT}	$(gSAC.L^{-1}.d^{-1})$	15,8							
COVR _{CF}	$(gSAC.L^{-1}.d^{-1})$					15,6			
COEA _{ST}	$(gDQO.gSVT^{-1}.d^{-1})$	2,71							
COER _{SF}	$(gDQO.gSVT^{-1}.d^{-1})$					0,458			
COEA _{CT}	$(gSAC.gSVT^{-1}.d^{-1})$	2,36							
COER _{CF}	$(gSAC.gSVT^{-1}.d^{-1})$					2,32			
n _{H2}	$(\text{molH}_2.\text{d}^{-1})$					0,205			
PrM	$(molH_2.m^{-3}.d^{-1})$					58,5			
PrME	$(molH_2.kgSVT^{-1}.d^{-1})$					8,72			
RMCA _{S,m}	$(molH_2.kgDQO^{-1})$	3,21							
RMCA _{C,m}	$(molH_2.kgSAC^{-1})$	3,70							
RMCA _{C,n}	$(molH_2.molSAC^{-1})$	1,26							
RMCR _{S,m}	$(molH_2. kgDQO^{-1})$					19,0			
RMCR _{C,m}	$(molH_2.kgSAC^{-1})$					3,76			
RMCR _{C,n}	$(molH_2.molSAC^{-1})$					1,29			
V_A	(L)	1,5	±	0,2	(14)				
V _R	(L)	3,5							

Tabela 5.14 - Valores médios dos parâmetros monitorados na
condição V ($3500 \text{ mgDQO.L}^{-1} - t_C 2h$)

(*) Entre parêntese o número de amostras considerado no cálculo da média

O monitoramento diária apresentou baixo consumo esperado de matéria orgânica na forma de DQO, com média de concentração afluente não filtrada de 3537 mgDQO.L⁻¹, efluente não filtrada 3051 mgDQO.L⁻¹ de efluente filtrada de 2940 mgDQO.L⁻¹ (Figura 5.85), que representa um baixo rendimento em relação a esse parâmetro, com remoção média para amostras não filtradas de 13,7 % e para amostras filtradas de 16,9 % (Figura 5.10).

Figura 5.85 - Concentração de matéria orgânica (DQO): \Box – afluente não filtrada; Δ - efluente não filtrada; \circ – efluente filtrada (Condição V)

Figura 5.86 - Eficiência de remoção de matéria orgânica (DQO): ◊ – não filtrada; ♦ - filtrada (Condição V)

Por outro lado, o reator apresentou ótimo desempenho na remoção do carboidrato, com concentrações médias de sacarose no afluente não filtrada, efluente não filtrada e efluente filtrada foram de 3076 mgSAC.L⁻¹, 71 mgSAC.L⁻¹ e 49 mgSAC.L⁻¹, respectivamente (Figura 5.87). As remoções médias de sacarose nesta condição, foram de 97,7 % para amostras não filtradas e 98,4 % para amostras filtradas (Figura 5.88).

Figura 5.87 - Concentração de carboidrato: \Box – afluente não filtrada; Δ - efluente não filtrada; \circ – efluente filtrada (Condição V)

Figura 5.88 - Eficiência de remoção de carboidrato: ♦ – não filtrada; ◊- filtrada (Condição V)

As Figuras 5.89, 5.90 e 5.91 apresentam os dados obtidos de pH, alcalinidade total e ácidos voláteis totais, respectivamente. A média do pH afluente foi de 9,39 e do efluente de 4,56. A alcalinidade total afluente teve média de 512 mgCaCO₃.L⁻¹ sendo reduzida no efluente para uma média de 132 mgCaCO₃.L⁻¹. A média de AVT do afluente foi de 19 mgHAc.L⁻¹ e aumentando para uma média de AVT do efluente de 1054 mgHAc.L⁻¹.

Figura 5.89 - Valores de pH: ◊ –afluente; ♦ - efluente (Condição V)

Figura 5.90 - Alcalinidade total: ◊ –afluente; ♦ - efluente (Condição V)

Figura 5.91 - Concentração de AVT: ◊ –afluente; ♦ - efluente (Condição V)

As análises dos compostos intermediários do metabolismo realizados por cromatografia da fase gasosa, indicados na Figura 5.92 e Tabela 5.15, indicaram o predomínio de ácido acético, butírico e etanol, representando uma distribuição molar de 45,7%, 6,1% e 33,9%, respectivamente.

Figura 5.92 - Concentração dos compostos intermediários durante o monitoramento: □ – ácido acético; Δ - etanol; ○ – ácido butírico; ■ – ácido isobutírico; ▲ – ácido capróico; ● – ácido valérico; -x- ácido propiônico; -|-butanol; — ácido isovalérico (Condição V)

	Concentra	ıção média	Distribuição
	(mg.L ⁻¹)	(mmol.L ⁻¹)	(%)
Acetona	-	-	-
Metanol	-	-	-
Etanol	$383~\pm~17$	$8,3 \pm 0,4$	33,9
n-Butanol	4 ± 0	$0,1 \pm 0,0$	0,2
Acético	$673~\pm~26$	$11,2 \pm 0,4$	45,7
Propiônico	102 ± 4	$1,4 \pm 0,1$	5,6
Isobutírico	68 ± 7	$0,8\pm0,1$	3,2
Butírico	131 ± 24	$1,5 \pm 0,3$	6,1
Isovalérico	8 ± 1	$0,1 \pm 0,0$	0,3
Valérico	46 ± 6	$0,4 \pm 0,1$	1,8
Capróico	87 ± 10	$0,7\pm0,1$	3,1

 Tabela 5.15 - Concentração e distribuição dos compostos intermediários (Condição V)

A produção de biogás por ciclo, em aspecto quantitativo, pode ser observada pela Figura 5.93, com média de 1156 mL de biogás. A Figura 5.94 apresenta a distribuição dos gases que compõem o biogás no final do ciclo.

Figura 5.93 - Volume de biogás produzido por ciclo (Condição V)

Figura 5.94 - Concentrações dos componentes do biogás no final do ciclo: $\Box - CO_2; \Delta - H_2; \circ - CH_4$ (Condição V)

5.6.2 Perfis ao longo do ciclo

Após a estabilização dos parâmetros monitorados foram realizados perfis ao longo do ciclo para que fosse feita uma análise do comportamento dos parâmetros monitorados. A Figura 5.95 apresenta a evolução da degradação de matéria orgânica. A Figura 5.96 apresenta o consumo de carboidrato durante o ciclo, essa remoção ocorre de maneira gradual até atingir 94,6 % de remoção.

Figura 5.95 - Concentração e eficiência de degradação de matéria orgânica: ◊ - perfil 1, ♦ - perfil 2, — média dos dois perfis e x eficiência (Condição V)

Figura 5.96 - Concentração e eficiência de degradação de carboidrato: ◊ - perfil 1, ♦ - perfil 2, — média dos dois perfis e x eficiência (Condição V)

As Figuras 5.97 e 5.98 apresentam os perfis de pH e alcalinidade total ao longo do ciclo. O pH permanece constante ao longo do ciclo por volta de 4,8, devido à presença da alcalinidade que é fornecida gradualmente através do afluente.

Figura 5.97 - Valores de pH: ◊ – do perfil 1, ♦ - do perfil 2 e — média dos dois perfis (Condição V)

Figura 5.98 - Alcalinidade total: ◊ - do perfil 1, ♦ - do perfil 2 e - média dos dois perfis (Condição V)

Os perfis de ácidos voláteis totais por titulação e dos compostos intermediários do metabolismo são apresentados nas Figuras 5.99 e 5.100. É possível verificar uma queda gradual na concentração de ácidos e solventes no sistema devido à diluição do afluente no meio reacional, e à medida que o substrato é consumido estes retornam as concentrações iniciais.

Figura 5.99 - Concentração de AVT: ◊ - do perfil 1, ♦ - do perfil 2 e — média dos dois perfis (Condição V)

Figura 5.100 - Concentração dos compostos intermediários ao longo do ciclo: □ – ácido acético; Δ - etanol; ○ – ácido butírico; ■ – ácido isobutírico; ▲ – ácido capróico; ● – ácido valérico; -x-ácido propiônico; -|butanol; — ácido isovalérico (Condição V)

A produção volumétrica acumulada de biogás e os desvios padrões de cada um dos pontos podem ser observados na Figura 5.101 e a média das concentrações de cada um dos gases pode ser observada na Figura 5.102. A partir das informações desses dois perfis foi feita a quantificação da produção de cada gás como pode ser observado pela Tabela 5.16 e Figura 5.103. Não foi detectado a presença de metano nessa condição.

Figura 5.101 - Produção volumétrica média acumulada do biogás durante o ciclo (Condição V)

Figura 5.102 - Concentração dos compostos do biogás durante o ciclo: $\blacksquare - CO_2$; $\Delta - H_2$; $\bullet - CH_4$ (Condição V)

Tabela 5.16 - Valores médios da produção, fração molar e os volumes individuais da mistura do biogás (Condição V)

Tempo	V _G	С	C_{G} (mmol.L ⁻¹)			ição Mola	ar (%)	Volume (mL - CNTP)		
(h)	(mL - CNTP)	\mathbf{H}_{2}	CH ₄	CO ₂	\mathbf{H}_2	CH ₄	CO_2	\mathbf{H}_2	CH_4	CO ₂
0,0	0	0,00	0,00	0,00	0	0	0	0	0	0
0,3	200	2,04	0,00	3,84	34	0	66	68	0	132
0,7	472	3,13	0,00	6,51	32	0	68	156	0	316
1,0	723	4,60	0,00	8,40	35	0	65	245	0	478
1,3	907	5,39	0,00	10,40	34	0	66	308	0	599
1,8	1108	7,14	0,00	12,28	37	0	63	382	0	726

Figura 5.103 - Volumes acumulados médios produzidos ao longo do ciclo: $\blacksquare - CO_2$; $\Delta - H_2$; $\bullet - CH_4$ (Condição V)

5.7 Condição experimental VI (5250 mgDQO.L⁻¹ – $t_C 2h$)

5.7.1 Monitoramento

Essa etapa foi operada por 31 dias, com os valores nominais de $COVA_s$ e $COVA_c$ de 27,0 gDQO.L⁻¹.d⁻¹ e 24,1 gSAC.L⁻¹.d⁻¹, respectivamente. A Tabela 5.17 apresenta a média dos parâmetros monitorados.

	Parâmetro	Afl	uente	·c /	Efluente			
Cst	(mgDOO.L ⁻¹)	5077	± 318	(18)	4710	±	168	(17)
C_{SF}	$(mgDOO.L^{-1})$			(18)	4453	±	266	(17)
Est.	(%)				7	±	3	(17)
ESE	(%)				12	±	5	(17)
C _{CT}	$(mgSAC.L^{-1})$	4496	± 372	(18)	714	±	246	(17)
CCF	$(mgSAC.L^{-1})$				633	±	231	(17)
Ест	(%)				84,11	±	5,46	(17)
ECF	(%)				85,91	±	5,13	(17)
pH	(u)	8,10	± 0.09	(18)	4,52	±	0.01	(17)
ÂVT	$(mgHAc.L^{-1})$	37	± 11	(18)	1413	±	137	(17)
AT	$(mgCaCO_3.L^{-1})$	680	± 19	(18)	138	±	27	(17)
AP	$(mgCaCO_3.L^{-1})$	533	± 23	(18)	0	±	0	(17)
AI	$(mgCaCO_3.L^{-1})$	147	± 12	(18)	138	±	27	(17)
AB	$(mgCaCO_3.L^{-1})$	654	± 22	(18)	0	±	0	(17)
ST	$(mg.L^{-1})$	5853,429	± 75	(7)	2657	±	1127	(7)
SVT	$(mg.L^{-1})$	5041	\pm 88	(7)	2384	±	178	(7)
SST	$(mg.L^{-1})$	65	± 26	(7)	192	±	69	(7)
SSV	$(mg.L^{-1})$	35	± 15	(7)	177	±	71	(7)
M _{SVT}	(g)				35,01			
C _X	$(g.L^{-1})$				10,02			
C_X '	(g.gsuporte ⁻¹)				0,0345			
V _G	(mL)				1688	\pm	139	(16)
V _{H2}	(mL)				531	\pm	18	(3)
COVA _{ST}	$(gDQO.L^{-1}.d^{-1})$	26,1						
COVR _{SF}	$(gDQO.L^{-1}.d^{-1})$				3,21			
COVA _{CT}	$(gSAC.L^{-1}.d^{-1})$	23,1						
COVR _{CF}	$(gSAC.L^{-1}.d^{-1})$				19,9			
COEA _{ST}	(gDQO.gSVT ⁻¹ .d ⁻¹)	2,61						
COER _{SF}	$(gDQO.gSVT^{-1}.d^{-1})$				0,321			
COEA _{CT}	$(gSAC.gSVT^{-1}.d^{-1})$	2,31						
COER _{CF}	$(gSAC.gSVT^{-1}.d^{-1})$				1,99			
n _{H2}	$(\text{molH}_2.\text{d}^{-1})$				0,284			
PrM	$(molH_2.m^{-3}.d^{-1})$				81,2			
PrME	$(molH_2.kgSVT^{-1}.d^{-1})$				8,11			
RMCA _{S,m}	$(molH_2.kgDQO^{-1})$	3,11						
RMCA _{C,m}	$(molH_2.kgSAC^{-1})$	3,51						
RMCA _{C,n}	$(molH_2.molSAC^{-1})$	1,20						
RMCR _{S,m}	$(molH_2. kgDQO^{-1})$				25,3			
RMCR _{C,m}	$(molH_2.kgSAC^{-1})$				4,09			
RMCR _{C,n}	$(molH_2.molSAC^{-1})$			(16)	1,40			
V_A	(L)	1,42	$\pm 0,15$	(16)				
V_R	(L)	3.5						

Tabela 5.17 - Valores médios dos parâmetros monitorados na Condição VI (5250 mgDQO.L⁻¹ – t_C 2h)

(*) Entre parêntese o número de amostras considerado no cálculo da média

A Figura 5.104 apresenta os valores das concentrações de DQO afluente (não filtrada) e efluente (não filtrada e filtrada), e na Figura 5.105 as eficiências na remoção de DQO durante o monitoramento diário. A concentração média afluente real aplicada ao reator foi de 5077 mgDQO.L⁻¹, a concentração média obtida para o efluente não filtrado de 4710 mgDQO.L⁻¹e para o efluente filtrado de 4453 mgDQO.L⁻¹. Portanto foram obtidas eficiências de remoção de DQO de 7,2 % para amostras não filtradas e 12,3 % para amostras filtradas.

Figura 5.104 - Concentração de matéria orgânica (DQO): \Box – afluente não filtrada; Δ - efluente não filtrada; \circ – efluente filtrada (Condição VI)

Figura 5.105 - Eficiência de remoção de matéria orgânica (DQO): ◊ – não filtrada; ♦ - filtrada (Condição VI)

Quanto ao consumo de sacarose, o reator apresentou bom desempenho, sendo as concentrações médias de sacarose no afluente não filtrada, efluente não filtrada e efluente filtrada foram de 4496 mgSAC.L⁻¹, 714 mgSAC.L⁻¹ e 633 mgSAC.L⁻¹, respectivamente (Figura 5.3). A Figura 5.4 apresenta as remoções de sacarose nesta condição, com médias de 84,1 % para amostras não filtradas e 85,9 % para amostras filtradas.

Figura 5.106 - Concentração de carboidrato: \Box – afluente não filtrada; Δ - efluente não filtrada; \circ – efluente filtrada (Condição VI)

Figura 5.107 - Eficiência de remoção de carboidrato: ♦ – não filtrada; ◊- filtrada (Condição VI)

As Figuras 5.108, 5.109 e 5.110 apresentam os dados obtidos de pH, alcalinidade total e ácidos voláteis totais, respectivamente. A média do pH afluente foi de 8,1 e do efluente de 4,5. A alcalinidade total afluente teve média de 680 mgCaCO₃.L⁻¹ sendo consumida durante o ciclo, obtendo-se no efluente uma média de 138 mgCaCO₃.L⁻¹. A queda do pH e da AT foram consequência do acúmulo de ácidos no sistema, sendo que a média de AVT do afluente foi de 37 mgHAc.L⁻¹ e aumentando para uma média de AVT do efluente de 1413 mgHAc.L⁻¹.

Figura 5.108 - Valores de pH: ◊ –afluente; ♦ - efluente (Condição VI)

Figura 5.109 - Alcalinidade total: ◊ –afluente; ♦ - efluente (Condição VI)

Figura 5.110 - Concentração de AVT: ◊ -afluente; ♦ - efluente (Condição VI)

As análises dos compostos intermediários do metabolismo realizados por cromatografia da fase gasosa, indicados na Figura 5.111 e Tabela 5.18, indicaram o predomínio de ácido acético, butírico e etanol, representando uma distribuição molar de 45,3 %, 13,2 % e 29,7 %, respectivamente.

Figura 5.111 - Concentração dos compostos intermediários durante o monitoramento: □ – ácido acético; Δ - etanol; ○ – ácido butírico; ■ – ácido isobutírico; ▲ – ácido capróico; ● – ácido valérico; -x- ácido propiônico; -|-butanol; — ácido isovalérico (Condição VI)

	Concentra	ação média	Distribuição
	$(\mathbf{mg.L}^{-1})$	(mmol.L ⁻¹)	(%)
Acetona	-	-	-
Metanol	-	-	-
Etanol	$468~\pm~34$	$10,2 \pm 0,7$	29,7
n-Butanol	6 ± 0	$0,1 \pm 0,0$	0,2
Acético	$929~\pm~23$	$15,5 \pm 0,4$	45,3
Propiônico	83 ± 9	$1,1 \pm 0,1$	3,3
Isobutírico	36 ± 12	$0,4 \pm 0,1$	1,2
Butírico	$399~\pm~23$	$4,5 \pm 0,3$	13,2
Isovalérico	9 ± 1	$0,1 \pm 0,0$	0,3
Valérico	$44 ~\pm~ 14$	$0,4 \pm 0,1$	1,3
Capróico	$221~\pm~16$	$1,9 \pm 0,1$	5,6

Tabela 5.18 - Concentração e distribuição dos compostos intermediários (Condição VI)

A produção de biogás por ciclo, em aspecto quantitativo, pode ser observada pela Figura 5.112, com média de 1688 mL de biogás. A Figura 5.113 apresenta a distribuição dos gases que compõem o biogás no final do ciclo.

Figura 5.112 - Volume de biogás produzido por ciclo (Condição VI)

Figura 5.113 - Concentrações dos componentes do biogás no final do ciclo: $\Box - CO_2; \Delta - H_2; \circ - CH_4$ (Condição VI)

5.7.2 Perfis ao longo do ciclo

Após a estabilização dos parâmetros monitorados foram realizados perfis ao longo do ciclo para que fosse feita uma análise dos parâmetros monitorados. A Figura 5.114 apresenta a evolução da degradação de matéria orgânica e A Figura 5.115 apresenta o consumo de carboidrato durante o ciclo.

Figura 5.114 - Concentração e eficiência de degradação de matéria orgânica: ◊ - perfil 1, ♦ - perfil 2, — média dos dois perfis e x eficiência (Condição VI)

Figura 5.115 - Concentração e eficiência de degradação de carboidrato: ◊ - perfil 1, ♦ - perfil 2, — média dos dois perfis e x eficiência (Condição VI)

As Figuras 5.116 e 5.117 apresentam os perfis de pH e alcalinidade total ao longo do ciclo. O pH permanece constante ao longo do ciclo por volta de 4,6, devido à presença da alcalinidade que é fornecida gradualmente através do afluente.

Figura 5.116 - Valores de pH: ◊ – do perfil 1, ♦ - do perfil 2 e — média dos dois perfis (Condição VI)

Figura 5.117 - Alcalinidade total: ◊ - do perfil 1, ♦ - do perfil 2 e - média dos dois perfis (Condição VI)

Os perfis de ácidos voláteis totais por titulação e dos compostos intermediários do metabolismo são apresentados nas Figuras 5.118 e 5.119. É possível verificar uma queda gradual na concentração de ácidos e solventes no sistema devido à diluição com o afluente no meio reacional, e à medida que o substrato é consumido estes retornam as concentrações iniciais.

Figura 5.118 - Concentração de AVT: ◊ – do perfil 1, ♦ - do perfil 2 e — média dos dois perfis (Condição VI)

Figura 5.119 - Concentração dos compostos intermediários ao longo do ciclo: □ – ácido acético; Δ - etanol; ○ – ácido butírico; ■ – ácido isobutírico; ▲ – ácido capróico; ● – ácido valérico; -x-ácido propiônico; -|butanol; — ácido isovalérico (Condição VI)

A produção volumétrica acumulada de biogás e os desvios padrões de cada um dos pontos podem ser observados na Figura 5.120 e a média das concentrações de cada um dos gases pode ser observada na Figura 5.121. A partir das informações desses dois perfis foi feita a quantificação da produção de cada gás como pode ser observado pela Tabela 5.19 e Figura 5.122. Não foi detectado a presença de metano nessa condição.

Figura 5.120 - Produção volumétrica média acumulada do biogás durante o ciclo (Condição VI)

Figura 5.121 - Concentração dos compostos do biogás durante o ciclo: $\blacksquare - CO_2$; $\triangle - H_2$; $\bullet - CH_4$ (Condição VI)

 Tabela 5.19 - Valores médios da produção, fração molar e os volumes individuais da mistura do biogás (Condição VI)

Tempo	V _G	C_{G} (mmol.L ⁻¹)			Fr	ação Mola	nr (%)	Volume (mL - CNTP)			
(h)	(mL - CNTP)	\mathbf{H}_{2}	CH_4	CO ₂	\mathbf{H}_2	CH_4	CO ₂	\mathbf{H}_2	CH ₄	CO ₂	
0,0	0	0,00	0	0,00	0	0	0	0	0	0	
0,3	314	3,80	0	8,93	30	0	70	94	0	220	
0,7	674	4,28	0	10,96	28	0	72	195	0	479	
1,0	1016	5,10	0	12,48	29	0	71	294	0	722	
1,3	1345	5,94	0	13,40	31	0	69	395	0	950	
1,8	1754	7,10	0	14,37	33	0	67	531	0	1224	

Figura 5.122 - Volumes acumulados médios produzidos ao longo do ciclo: $\blacksquare - CO_2$; $\Delta - H_2$; $\bullet - CH_4$ (Condição VI)

5.8 Análise comparativa das condições experimentais estudadas

5.8.1 Estabilidade na produção de biohidrogênio

O reator foi operado por 205 dias tendo apresentado comportamento estável em todas as condições experimentais quanto à produção de biogás (Figura 5.123).

Figura 5.123 – Vazão do biogás em todas as condições

A Tabela 5.20 apresenta a distribuição dos componentes do biogás em cada condição, obtidos através dos perfis ao longo do ciclo. Considerando a produção do biogás e a distribuição dos seus componentes, foi obtida a vazão molar do componentes do biogás (Figura 5.124).

Tabela 5.20 - Distribuição dos componentes do biogás em todas as condições											
Proporção	Condição										
(%)	Ι	II	III	IV	V	VI					
H_2	17,3	25,9	28,7	31,2	34,5	30,2					
CO_2	82,7	70,7	69,0	68,8	65,5	69,8					
CH_4	0,0	3,5	2,3	0,0	0,0	0,0					

Figura 5.124 - Vazão molar dos componentes do biogás em todas as condições

A estabilidade do processo pode ser considerada uma característica importante nos reatores acidogênicos na produção de hidrogênio, isso porque muitos autores relatam que em alguns sistemas a produção de hidrogênio ocorre na fase transiente e tende a diminuir ou até mesmo cessar à medida que o processo se estabiliza, sendo que essa instabilidade pode ocorrer por diferentes razões.

Kim *et al* (2010) verificaram essa instabilidade em um AnSBR tratando resíduo doméstico de uma cafeteria. A produção de hidrogênio diminuiu com o aumento da relação C/N devido à mudança da via metabólica adotada pelos microrganismos. Foi verificado que à medida que a produção de hidrogênio diminuía, a produção de lactato e propionato aumentava. Segundo os autores após a queda foi possível aumentar a produção de hidrogênio através de um choque alcalino do reator.

Outro problema na estabilidade na produção de hidrogênio foi encontrado em Rojas (2010) e Lima (2011), que realizaram seus estudos em reatores de leito fixo tratando água residuária sintética a base de sacarose. Segundo os autores a produção do biogás ($H_2 e CO_2$) não pode ser estabilizada, e o grande problema foi que essa instabilidade não foi observada no meio líquido do reator, sem alteração no consumo de sacarose, no pH e na concentração dos compostos intermediários do metabolismo. A possível causa para esse consumo de biogás seria a atuação de bactérias hidrogênio oxidantes, sendo o hidrogênio o doador de elétrons, oxigênio como receptor de elétrons (presente no meio de alimentação através da microaeração promovida pelas mangueiras e ligações hidráulicas) e o CO₂ como fonte de carbono.

O AnSBBR parece não sofrer com problemas de estabilidade, como os descritos anteriormente, já que não houve indícios na redução de biogás durante as condições experimentais impostas durante o estudo, sendo essa estabilidade alcançada pelos trabalhos de Santos (2012) e El Manssouri (2012) que utilizaram sistemas similares.

Porém foi verificado, no presente trabalho e no sistema proposto por El Manssouri (2012), a dificuldade na eliminação total da metanogênese do processo. Como o metano foi encontrado em baixas concentrações em algumas condições, a estabilidade do processo não foi comprometida, mas tal característica pode ter influenciado, mesmo que em pequena proporção, no rendimento do hidrogênio produzido.

5.8.2 Conversão do substrato

Quanto à remoção de matéria orgânica na forma de DQO filtrada, o reator apresentou baixo rendimento em todas as condições, com remoções médias de 19%, 20%, 18%, 15%, 17% e 12% para as condições I, II, III, IV, V e VI, respectivamente (Figura 5.125).

Figura 5.125 - Eficiência de remoção de matéria orgânica (DQO): ● – não filtrada; ○ - filtrada (Todas as condições)

Apesar de pequena variação quanto a esse parâmetro, é possível observar que a COVA_S exerce influência sobre a DQO. Parece não existir uma tendência clara quanto à influência do aumento da COVA_S em relação à diminuição do tempo de ciclo. Porém, foi verificado que o aumento da concentração afluente acarretou em uma pequena queda de desempenho nas três faixas verificadas, na faixa de 4h (I e III) com remoções de 19% para 18%, na faixa de 3h (II e IV) com remoções de 20% para 15% e na faixa de 2h (V e VI) com remoções de 17% para 12%. A influência dos parâmetros intrínsecos à COVA_S pode ser verificada pelas condições IV (concentração de 5250 mgDQO.L⁻¹ e t_C de 3h) e V (concentração de 3500 mgDQO.L⁻¹ e t_C de 2h), que possuem a mesma COVA_S, sendo que a condição IV obteve remoção de 15% e a condição V de 17%.

El Manssouri (2012) obteve remoções de DQO de 20%, 17%, 18%, 21%, 17% e 14% para as condições I, II, III, IV, V e VI, respectivamente. Portanto o tempo de enchimento não exerceu grande influência, já que ambos os reatores apresentaram baixo rendimento quanto a esse parâmetro.

Essa baixa remoção era esperada, já que a remoção de matéria orgânica na forma de DQO corresponde apenas a uma parcela de dióxido de carbono do biogás e a absorção da biomassa para a formação de novas células, sendo a maior parte convertida para ácidos orgânicos e solventes.

A conversão do substrato em, principalmente, ácidos orgânicos e solventes pôde ser verificada por um balanço de massa nas amostras do efluente do reator, em que foram comparados o valor de DQO no efluente com a soma dos valores de DQO da sacarose, dos ácidos, dos solventes e da biomassa, calculados pelo equivalente-grama de cada um dos compostos (Tabela 5.21).

_

Tabela 5.21 - Equações bioquímicas e equivalente-grama dos compostos em DQO										
Common and a		Equivalente-								
Componente	Equação bioquímica	grama (gO ₂ /g)								
Sacarose	$C_{12}H_{22}O_{11} + 12O_2 \rightarrow 12CO_2 + 11H_2O$	1,123								
Etanol	$C_2H_6O + 2O_2 \rightarrow 2CO_2 + 3H_2O$	1,391								
n-Butanol	$C_4 H_{10} O + 6O_2 \rightarrow 4CO_2 + 5H_2 O$	2,590								
Ácido acético	$CH_3COOH + 2O_2 \rightarrow 2CO_2 + 2H_2O$	1,006								
Ácido propiônico	$CH_3CH_2COOH + \frac{7}{2}O_2 \rightarrow 3CO_2 + 3H_2O$	1,514								
Ácido isobutírico	$CH_3CH_2CH_2COOH + 5O_2 \rightarrow 4CO_2 + 4H_2O$	1,818								
Ácido butírico	$CH_3CH_2CH_2COOH + 5O_2 \rightarrow 4CO_2 + 4H_2O$	1,818								
Ácido valérico	$CH_3CH_2CH_2CH_2COOH + \frac{13}{2}O_2 \rightarrow 5CO_2 + 5H_2O$	2,036								
Ácido iso-valérico	$CH_3CH_2CH_2CH_2COOH + \frac{13}{2}O_2 \rightarrow 5CO_2 + 5H_2O$	2,036								
Ácido capróico	$CH_3CH_2CH_2CH_2CH_2COOH + 8O_2 \rightarrow 6CO_2 + 6H_2O$	2,196								
Biomassa	$C_5 H_9 O_3 N + \frac{11}{2} O_2 \rightarrow 5 C O_2 + \frac{9}{2} H_2 O_3$	1,343								

O cálculo do balanço e a concordância obtida entre os valores em todas as condições encontram-se na Tabela 5.22, sendo que foram obtidos bons valores de concordância em todas as condições operacionais.

	DOO Efluente													
			DQU Efluente					Croma	itografia + r	esidual				
	FO	Componente		SAC	EtOH	ButOH	HAc	HPr	HIsoBut	HBut	HIsoVal	HVa	НСа	SSV
	EQ	gDQO.g ⁻¹		1,123	1,391	2,590	1,006	1,514	1,818	1,818	2,036	2,036	2,196	1,343
	С	$mg.L^{-1}$		70,6	280,5	16,2	594,4	78,0	181,5	281,7	12,1	89,3	175,3	124,7
Ι	DQO	mgDQO.L ⁻¹	2973,8	79,3	390,2	42,1	597,9	118,1	330,0	512,1	24,7	181,7	385,0	167,5
	Concordância	95%	2973,8						2828,6					
	С	$mg.L^{-1}$		38,8	228,6	12,1	774,0	144,7	84,1	337,6	10,3	89,2	150,5	105,0
II	DQO	mgDQO.L ⁻¹	2955,9	43,6	318,0	31,4	778,7	219,1	152,9	613,8	20,9	181,6	330,5	141,0
	Concordância	96%	2955,9						2831,5					
	С	$mg.L^{-1}$		45,0	492,2	13,8	980,0	88,4	155,8	386,8	10,7	60,2	274,0	92,8
III	DQO	mgDQO.L ⁻¹	4426,0	50,5	684,7	35,7	985,9	133,8	283,3	703,2	21,8	122,5	601,7	124,6
_	Concordância	85%	4426,0						3747,8					
	С	$mg.L^{-1}$		45,0	560,6	13,3	1030,6	109,4	140,1	223,3	8,7	41,7	92,3	137,0
IV	DQO	mgDQO.L ⁻¹	4549,1	50,5	779,7	34,5	1036,8	165,6	254,7	405,9	17,8	85,0	202,6	184,0
	Concordância	71%	4549,1						3217,1					
	С	$mg.L^{-1}$		71,1	382,9	4,4	672,7	101,9	68,5	131,5	8,2	45,9	87,0	97,4
V	DQO	mgDQO.L ⁻¹	3051,2	79,9	532,6	11,5	676,7	154,3	124,5	239,0	16,7	93,4	191,1	130,8
	Concordância	74%	3051,2						2250,4					
	С	$mg.L^{-1}$		714,5	467,6	5,6	928,7	83,4	36,3	398,6	9,3	44,1	220,6	176,8
VI	DQO	mgDQO.L ⁻¹	4709,6	802,4	650,5	14,6	934,3	126,3	65,9	724,7	18,9	89,8	484,5	237,5
_	Concordância	88%	4709,6						4149,3					

Tabela 5.22 - Balanço de massa na saída do reator

Em relação à remoção de matéria orgânica na forma de sacarose (Figura 5.126), o reator apresentou elevada remoção com exceção da condição VI, com remoções de 99%, 99%, 99%, 98% e 86% para as condições I, II, III, IV, V e VI, respectivamente.

Figura 5.126 - Eficiência de remoção de carboidrato: • – não filtrada; o- filtrada (Todas as condições)

O aumento da COVA_s resultou na diminuição do consumo de sacarose. De maneira geral o reator apresentou bom desempenho no consumo de sacarose, a pior remoção obtida foi na condição VI, em que o ciclo de 2h não foi suficiente para que o substrato fosse consumido da mesma maneira que nas demais condições.

A diminuição do $t_{\rm C}$ (4h, 3h e 2h) reduziu o desempenho do reator para as faixa de concentração de 3500 mgDQO.L⁻¹ (I, II e V) com desempenhos de 99%, 99% e 98% e para a faixa de concentração de 5250 mgDQO.L⁻¹ (III, IV e VI) com desempenhos de 99%, 99% e 86%.

O aumento da concentração afluente reduziu o desempenho do reator apenas para a faixa de 2h (V e VI) com remoções de 98% para 86%, já que nas demais condições o substrato foi praticamente todo consumido.

As condições IV (concentração de 5250 mgDQO.L⁻¹ e t_C de 3h) e V (concentração de 3500 mgDQO.L⁻¹ e t_C de 2h), com mesma COVA_S, apresentaram pequena variação na remoção de sacarose de 99% para 98%.

El Manssouri (2012) obteve remoções de 97%, 97%, 93%, 88%, 89% e 83% para as condições I, II, III, IV, V e VI, respectivamente. Indicando que o aumento do tempo de enchimento contribuiu para o melhor aproveitamento de sacarose durante o processo em todas as condições experimentais estudadas em mesmas COVA_s.

5.8.3 Rendimento na produção de biohidrogênio

A Tabela 5.21 apresenta os rendimentos obtidos em todas as condições experimentais, sendo tais valores obtidos das médias de DQO e sacarose aplicados ao reator com os valores de hidrogênio produzidos durante os perfis de biogás. Os dados foram disponibilizados de diferentes maneiras a fim de facilitar a comparação do desempenho desses reatores com dados obtidos em literatura. Rendimentos calculados em função da massa (em kgSAC ou kgDQO) são frequentemente utilizados, pois oferecem maior praticidade na aplicação de um processo produtivo. Porém na produção de biohidrogênio o rendimento depende da quantidade de carboidrato consumido e das vias metabólicas adotadas pelos microrganismos na conversão desse substrato, sendo que diferentes vias metabólicas possuem diferentes relações estequiométricas entre hidrogênio produzido e substrato consumido, dessa maneira optou-se pela análise do RMCR_{C,n} (em molH₂.molSAC⁻¹) na análise dos dados obtidos pelo presente trabalho.

O aumento da $COVA_S$ resultou no aumento do rendimento molar por carga removida $(RMCR_{C, n})$ até a condição III e IV, decrescendo a partir desses pontos. (Tabela 5.23).

Fonto	Indiador	Unidadaa	Condição								
Fonte	Indicadoi	Unidades	Ι	II	III	IV	V	VI			
	$RMCA_{C,m}$	$(molH_2.kgSAC^{-1}.d^{-1})$	2,23	2,63	2,83	2,19	2,25	1,19			
	$RMCA_{S,m}$	$(molH_2.kgDQO^{-1}.d^{-1})$	1,95	2,30	2,51	2,00	2,13	1,17			
El	RMCR _{C,m}	$(molH_2.kgSAC^{-1}.d^{-1})$	2,30	2,72	3,04	2,47	2,53	1,43			
Manssouri, 2012	RMCR _{S,m}	$(molH_2.kgDQO^{-1}.d^{-1})$	9,54	13,3	14,1	9,68	12,4	8,61			
2012	RMCA _{C,n}	(molH ₂ .molSAC ⁻¹)	0,76	0,90	0,97	0,75	0,77	0,41			
	RMCR _{C,n}	$(molH_2.molSAC^{-1})$	0,79	0,93	1,04	0,85	0,87	0,49			
	RMCA _{C,m}	$(molH_2.kgSAC^{-1}.d^{-1})$	2,96	4,26	4,31	4,27	3,70	3,51			
	RMCA _{S,m}	$(molH_2.kgDQO^{-1}.d^{-1})$	2,67	3,87	4,03	3,76	3,21	3,11			
Presente	RMCR _{C,m}	$(molH_2.kgSAC^{-1}.d^{-1})$	2,99	4,29	4,34	4,32	3,76	4,09			
trabalho	RMCR _{S,m}	$(molH_2.kgDQO^{-1}.d^{-1})$	14,1	19,5	22,1	24,5	19,0	25,3			
	RMCA _{C,n}	(molH ₂ .molSAC ⁻¹)	1,01	1,46	1,48	1,46	1,26	1,20			
	RMCR _{C,n}	$(molH_2.molSAC^{-1})$	1,02	1,47	1,48	1,48	1,29	1,40			

Tabela 5.23 - Rendimentos na produção de biohidrogênio em todas as condições experimentais

A diminuição do t_C (4h, 3h e 2h) não apresentou tendência clara sobre o RMCR_{C,n}. A literatura sugere que tempos de ciclos (em reatores em bateladas sequencias) ou tempos de detenção hidráulica (em reatores contínuos) menores devem ser utilizados visando lavar as arquéias metanogênicas dos reatores, que seria um dos motivos da diminuição dos rendimentos na produção de hidrogênio. Foi verificado que o tempo de ciclo não é o único parâmetro a ser considerado visando à otimização do reator, já que foram encontrados vestígios de metano apenas nas condições II e III (ciclos de 3h e 4h) e mesmo assim essas condições por El Manssouri (2012) no qual as condições II e III apresentaram rendimentos maiores que os dos ciclos de 2h (condições V e VI).

Tempos de ciclo menores melhoraram o RMCA_{c,n} para o estudo de Chen *et al* (2009), em um ASBR tratando efluente sintético a base de sacarose em que o ciclo de 8h (COVA_S de 22,5 gDQO.L⁻¹.d⁻¹) teve RMCA_{c,n} de 1,06 molH₂.molSAC⁻¹ e em ciclo de 4h (com mesma COVA_S e menor volume alimentado) o reator teve RMCA_{c,n} de 1,81 molH₂.molSAC⁻¹. Porém tempos de ciclo muito curtos, como por exemplo 2h, parecem não contribuir com o aumento do rendimento desses reatores, assim como verificado por Arooj *et al* (2008), em um ASBR com agitação tratando efluente sintético a base de amido de milho realizando o estudo para concentração de 20000 mgDQO.L⁻¹ e diferentes tempos de ciclo, sendo o maior $RMCA_{c,n}$ de 0,51 molH₂.molhexose⁻¹ para um ciclo de 6h e o menor $RMCA_{c,n}$ foi de 0,06 molH₂.molhexose⁻¹ para um ciclo 2h.

Por outro lado, o aumento da concentração afluente elevou o $RMCR_{C,n}$ do reator em todas as faixas de t_C, na faixa de 4h (I e III) de 1,02 para 1,48 molH₂.molSAC⁻¹, na faixa de 3h (II e IV) de 1,47 para 1,48 molH₂.molSAC⁻¹ e na faixa de 2h (V e VI) de 1,29 para 1,40 molH₂.molSAC⁻¹.

Apesar de El Manssouri (2012) não ter encontrado esse efeito da concentração no seu estudo, alguns trabalhos mostram que tempos de ciclo maiores aliados a concentrações afluentes maiores têm apresentado bons resultados na produção de hidrogênio. Chen *et al* (2009), em um ASBR tratando efluente sintético a base de sacarose com COVA_S de 22,5 gDQO.L⁻¹.d⁻¹ para concentração afluente de 20000 mgDQO.L⁻¹ e ciclo de 4h, obtiveram RMCA_{c,n} de 1,81 molH₂.molSAC⁻¹. Lin e Jo (2003) também obtiveram bons rendimentos com valor de 2,60 molH₂.molSAC⁻¹ para a melhor condição em um ASBR com agitação tratando sacarose para um ciclo de 4h e concentração de 20000 mgDQO.L⁻¹ (COVA_S de 60,0 gDQO.L⁻¹.d⁻¹).

A influência dos parâmetros intrínsecos a COVA_S pôde ser verificada através das condições IV (concentração de 5250 mgDQO.L⁻¹ e t_C de 3h) e V (concentração de 3500 mgDQO.L⁻¹ e t_C de 2h), em que ambos possuem mesma COVA_S, sendo que a condição IV obteve RMCR_{C,n} de 1,48 molH₂.molSAC⁻¹ e a condição V de 1,29 molH₂.molSAC⁻¹, indicando que o maior tempo de ciclo e maior concentração teve melhor desempenho que menor tempo de ciclo e concentração.

Foi verificado também que o tempo de enchimento exerceu influência sobre o RMCR_{C,n}, através da comparação entre os dois trabalhos (Tabela 5.21), em que os rendimentos maiores foram obtidos para tempos de enchimento maiores, ou seja, a forma de disponibilização do substrato pode ter modificado a via metabólica dos microrganismos para uma maior produção de hidrogênio. De forma a verificar a mudança da via metabólica dos microrganismos foi feita a análise da distribuição molar dos principais compostos intermediários do metabolismo encontrados em todas as condições experimentais (Figura 5.127).

Figura 5.127 - Médias dos principais compostos intermediários do metabolismo em El Manssouri (2012) (esquerda) e no presente trabalho (direita) para todas as condições

É possível observar que no presente estudo (direita) houve o predomínio da via do ácido acético seguido pelo etanol, ácidos butírico e propiônico em todas as condições experimentais estudadas com de ácido acético praticamente constante por volta de 45%. Foi verificado que de maneira geral as maiores COVA_S apresentaram maior distribuição molar de etanol que menores COVA_S, porém não foi observado uma tendência clara quanto à distribuição molar desses compostos em relação ao t_c ou na concentração afluente.

A comparação da distribuição molar dos compostos intermediários entre os dois trabalhos nos mostra que o tempo de enchimento influenciou a via metabólica dos microrganismos, sendo que a principal diferença foi que em maiores tempos de enchimento foram obtidas menores quantidades de etanol, o que pode explicar a diferença entre RMCR_{C, n} obtidos entre dois sistemas.

5.8.4 Produtividade

A Tabela 5.24 apresenta os valores de produtividade molar volumétrica (PrM) e produtividade molar específica (PrME) em todas as condições experimentais.

Tabela 5.24 - Produtividades em todas as condições experimentais												
Fonte	Indiandan	Unidadaa	Condição									
	marcador	Unidades	Ι	II	III	IV	V	VI				
El Manssouri, 2012	PrM	$(molH_2.m^{-3}.d^{-1})$	19,4	27,8	33,3	33,2	38,9	30,6				
	PrME	$(molH_2.kgSVT^{-1}.d^{-1})$	2,66	4,13	5,07	5,04	5,50	4,38				
Presente trabalho	PrM	$(molH_2.m^{-3}.d^{-1})$	24,5	47,3	54,9	67,9	58,5	81,2				
	PrME	$(molH_2.kgSVT^{-1}.d^{-1})$	4,62	7,47	7,45	8,51	8,72	8,11				

O aumento da COVA_S resultou no aumento da PrM da primeira até a ultima condição experimental. A diminuição do t_C (4h, 3h e 2h) elevou a PrM para a faixa de concentração de 3500 mgDQO.L⁻¹ (I, II e V) com valores de 24,5, 47,3 e 58,5 molH₂.m⁻³.d⁻¹e para a faixa de concentração de 5250 mgDQO.L⁻¹ (III, IV e VI) com valores de 54,9, 67,9 e 81,2 molH₂.m⁻³.d⁻¹. O aumento da concentração afluente elevou a PrM nas três faixas de t_C, na faixa de 4h (I e III) de 24,5 para 54,9 molH₂.m⁻³.d⁻¹, na faixa de 3h (II e IV) de 47,3 para 67,9 molH₂.m⁻³.d⁻¹ e na faixa de 2h (V e VI) de 58,5 para 81,2 molH₂.m⁻³.d⁻¹.

A influência dos parâmetros intrínsecos a COVA_S pôde ser verificada através das condições IV (concentração de 5250 mgDQO.L⁻¹ e t_c de 3h) e V (concentração de 3500 mgDQO.L⁻¹ e t_c de 2h), em que ambos possuem mesma COVA_S, sendo que a condição IV obteve PrM de 67,9 molH₂.m⁻³.d⁻¹ e a condição V de 58,5 molH₂.m⁻³.d⁻¹, mostrando que o aumento da concentração teve maior influência sobre a PrM do que a diminuição do tempo de ciclo.

Foi verificado também que o tempo de enchimento exerceu influência sobre a PrM, como verificado pela comparação entre os dois trabalhos da tabela, em que as maiores PrM foram obtidas para tempos de enchimento maiores. Além disso no estudo realizado por El Manssouri (2012), o

aumento da COVA_S contribui para o aumento da PrM até a condição V com queda na condição VI. Entretanto, no presente estudo essa queda não foi observada, sendo a maior PrM obtida na condição VI.

Embora a COVA_S tenha influenciado na produtividade em função do volume de reator (PrM), não foi verificado a mesma influência na produtividade molar específica (PrME), devido à diferença no acúmulo de biomassa no interior do reator nas diferentes condições experimentais (Tabela 5.25).

Tabela 5.25 - Quantidade de biomassa no interior do reator (M _{SVT})											
Eanta				Condição							
ronte	$t_{\rm F}$	Parâmetro	Unidades	Ι	Π	III	IV	V	VI		
El Manssouri (2012) *	10 min	M_{SVT}	(g)	24,51	24,51	23,96	23,96	25,27	25,27		
Presente trabalho	$50\%.t_{C}$	M_{SVT}	(g)	18,53	22,17	25,81	27,94	23,48	35,01		
	* Λ	nálico rooli	rada ananaa	nocon	liañas II	IV o VI					

* Análise realizada apenas nas condições II, IV e VI

A diminuição do t_C (4h, 3h e 2h) elevou a PrME para a faixa de concentração de $3500 \text{ mgDQO.L}^{-1}$ (I, II e V) com valores de 4,62, 7,47 e 8,72 molH₂.gSVT⁻¹.d⁻¹, porém não teve o mesmo efeito para a faixa de concentração de 5250 mgDQO.L⁻¹ (III, IV e VI), aumentando da condição III para IV e diminuindo da IV para a VI, com valores de 7,45, 8,51 e 8,11 molH₂.gSVT⁻¹.d⁻¹. O aumento da concentração afluente elevou a PrME nas faixas de t_C de 4h (I e III) de 4,62 para 7,45 molH₂.gSVT⁻¹.d⁻¹ e de 3h (II e IV) de 7,47 para 8,51 molH₂.gSVT⁻¹.d⁻¹ e diminuiu na faixa de 2h (V e VI) de 8,72 para 8,11 molH₂.gSVT⁻¹.d⁻¹. Podemos observar que a queda da PrME ocorreu na condição IV, tanto na diminuição do tempo de ciclo quanto no aumento da concentração afluente.

Foram obtidas PrME similares nas condições IV (concentração de 5250 mgDQO.L⁻¹ e t_C de 3h) e V (concentração de 3500 mgDQO.L⁻¹ e t_C de 2h), em que ambos possuem mesma COVA_S,

sendo que a condição IV obteve PrME de $8,51 \text{ molH}_2.\text{gSVT}^{-1}.\text{d}^{-1}$ e a condição V de $8,72 \text{ molH}_2.\text{gSVT}^{-1}.\text{d}^{-1}$.

Deve-se destacar, a influência da estratégia de alimentação na PrME, sendo que o aumento do tempo de enchimento contribuiu para o melhores PrME em mesmas COVA_S para todas as condições experimentais, ou seja, o fornecimento do substrato de maneira gradual foi capaz de alterar a capacidade dos microrganismos (em massa de SVT) na produção de H₂, sendo que o aumento na PrME foi de 74%, 81%, 47%, 69%, 58% e 85% para as condições experimentais I, II, III, IV, V e VI, respectivamente.

5.8.5 Comportamento ao longo do ciclo

Após a estabilização das variáveis monitoradas na condição de final de ciclo, foram realizados perfis das principais variáveis ao longo do ciclo para que fosse feita uma análise do comportamento do sistema em relação à estratégia de alimentação. Os perfis de matéria orgânica na forma de DQO são mostrados na Figura 5.128, os de carboidratos na Figura 5.129 (a) e (b), os de ácidos voláteis totais (AVT) na Figura 5.130, os de ácidos acético e butírico/iso-butírico (HAc e HBut) na Figura (5.131), os de ácido propiônico e etanol (HPr e EtOH) na Figura 5.132, e os de biogás (hidrogênio, dióxido de carbono e metano) nas Figura 5.133 (a) e (b). Cabe ressaltar que os valores de HBut nestes perfis são referentes à soma dos valores dos ácidos butírico e iso-butírico.

Para padronizar a comparação entre os perfis de carboidratos, HAc, HBut, HPr, EtOH e biogás, foi feita a conversão de todos esses parâmetros para a base molar. Dessa maneira, os perfis de concentração de sacarose na Figura 5.129 (a), apresentados em C_{CF} (mgSAC.L⁻¹), foram transformados para concentração molar de sacarose em N_{CF} (mmolSAC.L⁻¹) na Figura 5.129 (b). Pelo mesmo motivo, foi feita a relação entre a quantidade molar de biogás produzido em um ciclo na Figura 5.133 (a) com o volume de meio líquido do reator na Figura 5.133 (b).

Figura 5.128 - Perfis de matéria orgânica (DQO) em todas as condições em El Manssouri (esquerda) e presente trabalho (direira).

Figura 5.129 (a) - Perfis de carboidratos (em base mássica) durante todas as condições em El Manssouri (esquerda) e presente trabalho (direira)

Figura 5.129 (b)- Perfis de carboidratos (em base molar) durante todas as condições em El Manssouri (esquerda) e presente trabalho (direira)

Figura 5.130 – Perfis de AVT em todas as condições em El Manssouri (esquerda) e presente trabalho (direira).

Figura 5.131 – Perfis de HAc e HBut em todas as condições em El Manssouri (esquerda) e presente trabalho (direira).

Figura 5.132 – Perfis de EtOH e HPr em todas as condições em El Manssouri (esquerda) e presente trabalho (direira).

Figura 5.133 (a)- Perfis de biogás em todas as condições em El Manssouri (esquerda) e presente trabalho (direira).

Figura 5.133 (b) – Perfis de biogás em relação ao volume de meio líquido do reator para todas as condições em El Manssouri (esquerda) e presente trabalho (direira).

Figura 5.134 - Velocidades de consumo de carboidratos (▲) e de formação de hidrogênio (○) em função da concentração de carboidratos para todas as condições em El Manssouri (esquerda) e presente trabalho (direita)

Em relação à remoção de matéria orgânica (DQO), pode-se observar pela Figura 5.128 que não houve diferença significativa entre as duas estratégias de alimentação, indicando que a alimentação gradual não exerceu influência pelo motivo desta variável medir tanto a matéria orgânica não convertida (sacarose) quanto à matéria orgânica convertida (principalmente ácidos voláteis e etanol). Entretanto, em relação à remoção de carboidrato (sacarose), pode-se observar pela Figura 5.129 (a) que houve uma diferença significativa entre as duas estratégias de alimentação. Na estratégia em batelada ocorreu uma diminuição da concentração de carboidrato ao longo de todo o ciclo devido ao consumo deste substrato. Na estratégia em batelada alimentada ocorreu um aumento gradual desta concentração no período de alimentação devido ao acúmulo de carboidrato ser maior que o consumo e uma posterior diminuição no período sem alimentação no qual existiu apenas o consumo, sendo a conversão atingida no final de ciclo superior em relação à estratégia em batelada (condição I - de 0,641 para 0,070 mmol.L⁻¹, condição II - de 0,731 para $0,065 \text{ mmol.L}^{-1}$, condição III - de 2,49 para 0,089 mmol.L $^{-1}$, condição IV - de 1,53 para 0,265 $mmol.L^{-1}$, condição V - de 2,59 para 0,213 $mmol.L^{-1}$ e condição VI - de 5,72 para 2,64 $mmol.L^{-1}$). Tal comportamento indica que a alimentação gradual (estratégia em batelada alimentada) favoreceu o consumo do substrato ao longo de todo o ciclo devido provavelmente a uma melhor relação F/M ("food/microrganism").

Em relação à formação de ácidos voláteis totais (AVT), pode-se observar pela Figura 5.130 uma diferença entre as duas estratégias de alimentação. Na estratégia em batelada houve um aumento gradual na concentração deste ácidos ao longo de todo o ciclo devido à formação decorrente do metabolismo fermentativo dos microrganismos anaeróbios presentes no reator. Na estratégia em batelada alimentada houve uma diminuição na concentração destes ácidos durante o período de alimentação devido à diluição causada pela alimentação de afluente neste período ser maior que a formação seguido de um aumento desta concentração devido à formação, pois sem a alimentação de afluente a diluição não mais ocorreu. Tal comportamento ocasionou uma maior concentração média destes ácidos ao longo do ciclo para a estratégia em batelada alimentada em relação à estratégia em batelada, indicando que a alimentação gradual favoreceu a formação de ácidos voláteis totais, devido ao maior consumo de carboidrato citado anteriormente.

A partir da análise da formação dos ácidos voláteis totais é interessante analisar o comportamento do sistema em relação à formação dos ácidos voláteis medidos de forma separada (acético, propiônico e butírio/iso-butírico), como também outro importante metabólito que é o etanol. Pela observação das Figuras 5.131 e 5.132 é possível verificar que as duas estratégias de alimentação resultaram em diferentes comportamentos. Na estratégia em batelada a concentração destes metabólitos ocorreu de modo crescente ao longo do ciclo devido à formação e consequente acúmulo decorrente do metabolismo microbiano. Na estratégia em batelada alimentada pode-se verificar novamente uma diminuição na concentração destes compostos no período de alimentação do afluente, devido a menor formação biológica em relação à diluição causada pela adição de meio líquido, seguido pelo contínuo aumento decorrente da formação sem a ocorrência da diluição, no período sem alimentação.

Neste ponto vale destacar dois comportamentos distintos entre um grupo formado pelos compostos ácido acético e ácido butírico/iso-butírico em relação ao grupo formado pelos compostos ácido propiônico e etanol. A divisão destes dois grupos se justifica pelo fato de que os compostos incluídos no primeiro grupo possuem a formação associada com a formação do hidrogênio, enquanto que os compostos incluídos no segundo grupo indicam uma diluição no rendimento e eficiência do processo. Neste cenário é possível verificar (Figuras 5.131 e 5.132) que a alimentação gradual (estratégica em batelada alimentada) propiciou, em relação à estratégia em batelada, maiores níveis de concentração ao longo do ciclo para os compostos do primeiro grupo e manteve os níveis de concentração para os compostos do segundo grupo. Tal comportamento associado ao maior consumo de carboidrato citado anteriormente, indica que a estratégia em batelada alimentada favorece a eficiência e também o rendimento do processo, pois além de propiciar uma maior assimilação biológica de substrato também direciona este consumo para as melhores rotas

metabólitas. A justificativa deste comportamento deve estar ligada à melhor relação F/M ("food/microrganism").

A melhor eficiência citada anteriormente pode ser ratificada pela análise do comportamento do sistema em relação à formação de biogás, especificamente em relação à formação de hidrogênio e a não formação (ou formação mínima) de metano, cujos perfis estão na Figura 5.133 (a). As duas estratégias de alimentação resultaram em quantidades crescentes de hidrogênio ao longo de todo o ciclo e quantidades desprezíveis de metano. Entretanto, a formação de hidrogênio foi maior para a estratégia em batelada alimentada em relação à estratégia em batelada, podendo-se quantificar os seguintes percentuais: condição I - 31%, condição II - 64%, condição III - 58%, condição IV - 140%, condição V - 47% e condição VI - 149%. É importante mencionar que a variação do volume do biogás pela alimentação de meio líquido ao reator durante a estratégia em batelada alimentada (e que não ocorreu na estratégia em batelada) foi considerada no cálculo do volume de biogás produzido ao longo do ciclo, no intuito de não interferir no resultado final.

O comportamento das duas estratégias de alimentação também foi analisado pelas velocidades de reação biológica ao longo do ciclo referente ao consumo de carboidrato e à formação de hidrogênio. Para o cálculo destas velocidades utilizou-se os perfis mostrados nas Figuras 5.129 (b) e 5.133 (b). Tais figuras estão em base molar no intuito de facilitar a interpretação dos valores calculados. Neste ponto, vale destacar que a velocidade de formação de hidrogênio foi calculada em relação à quantidade molar de hidrogênio produzido em relação ao volume de meio líquido contido no reator (V_R) como mostrado na Figura 5.133 (b). Tal procedimento foi realizado como forma de tornar o valor da velocidade de formação de hidrogênio "intensivo" em relação ao volume que foi constante na estratégia em batelada, mas não constante na estratégia em batelada alimentada. Tais velocidades de reação, mostradas na Figura 5.134, foram calculadas com o auxílio do "Software Microcal Origin" que utiliza o método numérico de "Spline".

Analisando-se a Figura 5.134, que mostra os perfis das velocidades de consumo de carboidrato e de formação de hidrogênio em função da concentração de carboidrato, pode-se avaliar

o motivo pelo qual a alimentação gradual melhorou a eficiência e o rendimento do processo, favorecendo as rotas dos ácidos acético e butírico/iso-butírico em detrimento às rotas do ácido propiônico e do etanol, citadas anteriormente. Na estratégia em batelada observa-se que a provável cinética de consumo de carboidrato seja de 1ª ordem, devido à relação aproximadamente linear entre a velocidade de reação e a concentração de carboidrato. Para a cinética de formação de hidrogênio verificam-se dois intervalos distintos: um intervalo "inferior" de concentração de carboidrato no qual a cinética parece ser de 1ª ordem, devido à relação aproximadamente linear entre a velocidade de reação e a concentração de carboidrato; e um intervalo "superior" de concentração de carboidrato no qual ocorre uma relação aproximadamente inversa entre a velocidade de reação e a concentração de carboidrato, indicando que velocidade global da produção de hidrogênio diminuiu nesse intervalo. Tendo como possíveis causas para essa diminuição da velocidade como um aumento do consumo de hidrogênio, por bactérias homoacetogênicas, em relação a sua produção dentro do processo ou por algum tipo de inibição. Na estratégia em batelada alimentada observa-se que ambas as velocidades de reação (consumo de carboidrato e formação de hidrogênio) indicam uma provável cinética de primeira ordem, devido à relação aproximadamente linear entre estas velocidades de reação e a concentração de substrato. Além disso, duas características destacam a diferença entre as estratégias de alimentação: os valores de velocidade de formação de hidrogênio são superiores para a estratégia em batelada alimentada; e não ocorre a relação inversa entre a velocidade de formação de hidrogênio e a concentração de carboidrato, para valores superiores desta concentração, indicando o favorecimento às rotas metabólicas de formação em detrimento das rotas metabólicas de consumo do hidrogênio. Tal comportamento esclarece o modo pelo qual a alimentação gradual melhora a eficiência e o rendimento do processo.

5.8.6 Exames Microbiológicos

Os exames microbiológicos foram realizados utilizando a biomassa retirada do interior do reator no final das condições experimentais. A Figura 5.134 apresenta as análises de microscopia da biomassa do reator, sendo (a) correspondente à condição I, (b) a condição II e (c) a condição VI.

Figura 5.135 – Exames microbiológicos realizados na biomassa do reator: (a) Condição I, (b) Condição II e (c) Condição VI.

As análises dos exames microbiológicos não indicaram diferenças morfológicas entre as condições experimentais estudadas, sendo que foi observado o predomínio de bacilos e filamentos com a presença de endósporos.

6 CONCLUSÕES

Os resultados obtidos e a discussão apresentada, sobre o desempenho do AnSBBR com agitação mecânica submetido a diferentes cargas orgânicas volumétrica aplicadas e tempos de enchimento tratando água residuária sintética à base de sacarose visando à produção de biohidrogênio, permitem concluir que:

- A estratégia de alimentação exerceu influência sobre o AnSBBR, sendo que o fornecimento gradual de substrato, através de tempos de enchimento mais longos, resultaram em melhores remoções de sacarose, RMCR_{C,n}, PrM e PrME em todas as COVA_S investigadas.
- A carga orgânica volumétrica aplicada, obtida pela combinação de diferentes tempos de ciclo e concentrações afluente, exerceu influência sobre a produção de biohidrogênio, sendo que o aumento da COVA_S contribuiu para o aumento da PrM e para a diminuição do consumo de sacarose. O RMCR_{C,n} e a PrME sofreram influência da COVA_S, mas não apresentaram tendência clara, indicando que a análise dos parâmetros intrínsecos a COVA_S devem ser considerados na aplicação desses reatores.
- A diminuição do tempo de ciclo resultou na diminuição do consumo de sacarose e no aumento da PrM. Foi verificado também que a diminuição do t_C de 4 para 3h contribuiu para o aumento da PrME, porém a diminuição do t_C de 3 para 2h teve efeito negativo na PrME na faixa de concentração de 5250 mgDQO.L⁻¹.
- O aumento da concentração afluente resultou na diminuição do consumo de sacarose apenas na faixa de 2h, no aumento do RMCR_{C,n} e da PrM em todas as faixas de t_C, e no aumento da PrME nas faixas de 4 e 3h e diminuição da PrME na faixa de 2h.
- O reator apresentou ótimo desempenho no consumo de carboidratos (sacarose), exceto na condição VI, na qual a remoção caiu para 86%. O melhor RMCR_{C,n} foi

obtido nas condições III e IV com valor de 1,48 molH₂.molSAC⁻¹. A maior PrM de $81,2 \text{ molH}_2.\text{m}^{-3}.\text{d}^{-1}$ para a condição VI e a maior PrME de $8,72 \text{ molH}_2.\text{kgSVT}^{-1}.\text{d}^{-1}$ para a condição V.

 Quanto aos metabólitos intermediários, houve o predomínio do ácido acético seguido pelo etanol, ácidos butírico e propiônico em todas as condições experimentais, sendo maiores tempos de enchimento resultaram em uma menor produção de etanol.

7 REFERÊNCIAS BIBLIOGRÁFICAS

- Albanez, R.; Canto, C.S.A.; Ratusznei, S.M.; Rodrigues, J.A.D.; Zaiat, M.; Foresti, E. Feasibility of a sequencing reactor operated in batch and fed-batch mode applied to nitrification and denitrification *Processes. Revista de Química Teórica Y Aplicada - Afinidad*, **66**, 44-55, 2009.
- Alzate-Gaviria, L.M.; Sebastian, P.J.; Pérez, A.; Eapen, D. Comparison of two anaerobic systems for hydrogen production from the organic fraction of municipal solid waste and synthetic wastewater. *International Journal of Hydrogen Energy*, **32**, 3141-3146, 2007.
- Amorim, E. L. C.; Barros, A. R.; Damianovic, M. H. R. Z.; Silva, E. L. Anaerobic fluidized bed reactor with expanded clay as support for hydrogen production through dark fermentation of glucose. *International Journal of Hydrogen Energy*, 34, 783-790, 2009.
- Argun, H.; Kargi, F.; Kapdan, I.; Oztekin, R. Biohydrogen production by dark fermentation of wheat powder solution: Effects of C/N an C/P ratio hydrogen yield and formation rate. *International Journal of Hydrogen Energy*, **33**, 1813-1819, 2008.
- Arooj, M. F.; Han, S.; Kim, S.; Kim, D.; Shin, H. Effect of HRT on ASBR converting starch into biological hydrogen. *International Journal of Hydrogen Energy*, 33, 6509–6514, 2008.
- Badiei, M.; Jahim, J. M.; Anuar, N.; Abdullah, S. R. S. Effect of hydraulic retention time on biohydrogen production from palm oil mill effluent in anaerobic sequencing batch reactor. *International Journal of Hydrogen Energy*, 36, 5912–5919, 2011.
- Bezerra, R.A.; Rodrigues, J.A.D.; Ratusznei, S.M.; Zaiat, M.; Foresti, E. Effects of feed time, organic loading and shock loads in the anaerobic whey treatment by an AnSBBR with circulation. *Applied Biochemistry and Biotechnology*, **157**, 140-158, 2009.
- Borges, A.C.; Siman, R.R.; Rodrigues, J.A.D.; Ratusznei, S.M.; Zaiat, M.; Foresti, E.; Borzani, W. Stirred anaerobic sequencing batch reactor containing immobilized biomass: a behavior study when submitted to different fill times. *Water Science and Technology*, **49**, 311-318, 2004.

- Chen, W.; Sung, G, S.; Chen, S. Biological hydrogen production in an anaerobic sequencing batch reactor: pH and cyclic duration effects. *International Journal of Hydrogen Energy*, **34**, 227-234, 2009.
- Cheong, D.-Y.; Hansen, C. L. Effect of feeding strategy on the stability of anaerobic sequencing batch reactor responses to organic loading conditions. *Bioresource technology*, **99**, 5058–68, 2008.
- Dague, R.R.; Habben, C.E.; Pidaparti, S.R. Initial studies on the anaerobic sequencing batch reactor. *Water Science and Technology*, **26**, 2429-2432, 1992.
- Das, D.; Veziroglu, T. N. Hydrogen production by biological processes : a survey of literature. *International Journal of Hydrogen Energy*, **26**, 13-28, 2001.
- Das, D.; Veziroglu, T. N. Advances in biological hydrogen production processes. *International Journal of Hydrogen Energy*, **33**, 6046-6057, 2008.
- Del Nery, V. Utilização de lodo anaeróbio imobilizado em gel no estudo de partida de reatores de fluxo ascendente com manta de lodo. Dissertação (Mestrado) Escola de Engenharia de São Carlos Departamento de Hidráulica e Saneamento, Universidade de São Paulo, 1987.
- Dilallo, R.; Albertson, O.E. Volatile acids by direct titration. *Journal of Water Pollution Control Federation*, **3**, 356-365, 1961.
- Dubois, S.M.; Gilles, K.A.; Hamilton, J.L.; Rebers, P.A.; Smith, F. Colorimetric Methods for determination of sugar and related substance. *Analytical Chemistry*, **228**, 13-21, 1956.
- El Manssouri, M. Influência da carga orgânica na produção de biohidrogênio em AnSBBR com agitação tratando água residuária sintética. Dissertação (Mestrado) – Escola de Engenharia de São Carlos – Departamento de Hidráulica e Saneamento, Universidade de São Paulo, 2012.
- Ferchichi, M.; Crabbe, E.; Gil, G. H.; Hintz, W.; Almadidy, A. Influence of initial pH on hydrogen production from cheese whey. *Journal of biotechnology*, **120**, 402-409, 2005.
- Fernandes, L.; Kennedy, K.J.; Ning, Z. Dynamic moleling of substrate degradation in sequencing batch anaerobic reactors (SBAR). *Water Research*, **27**, 1619-1628, 1993.

- Foresti, E. Fundamentos do tratamento anaeróbio. In: CAMPOS, J. R. Tratamento de Esgotos Sanitários por Processo Anaeróbio e Disposição Controlada no Solo. Projeto PROSAB. ed.1. Rio de Janeiro: ABES, 1999.
- Ito, T.; Nakashimada, Y.; Senba, K.; Matsui, T.; Nishio, N. Hydrogen and ethanol production from glycerol containing wastes discharges after biodiesel manufacturing process. *Journal of Bioscience and Bioengineering*, **100**, 260-265, 2005.
- Jeong, T.; Cha, G.; Yoo, I.; Kim, D. Hydrogen production from waste activated sludge by using separation membrane acid fermentation reactor and photosynthetic reactor. *International Journal of Hydrogen Energy*, **32**, 525-530, 2007.
- Jung, K.-W.; Kim, D.-H.; Kim, S.-H.; Shin, H.-S. Bioreactor design for continuous dark fermentative hydrogen production. *Bioresource technology*, **102**, 8612-20, 2011.
- Kawagoshi, Y.; Hino, N.; Fujimoto, A.; Nakao, M.; Fujita, Y.; Sugimura, S.;Furukawa, K. Effect of inoculum conditioning on hydrogen fermentation and pH effect on bacterial community relevant to hydrogen production. *Journal of Bioscience and Bioengineering*, **100**, 524-30, 2005.
- Kargi, F.; Pamukoglu, M. Y. Dark fermentation of ground wheat starch for bio-hydrogen production by fed-batch operation. *International Journal of Hydrogen Energy*, 34, 2940– 2946, 2009.
- Kim, D.-H., Kim, S.-H., Kim, K.-Y., & Shin, H.-S. (2010). Experience of a pilot-scale hydrogenproducing anaerobic sequencing batch reactor (ASBR) treating food waste. *International Journal of Hydrogen Energy*, 35, 1590–1594.
- Lee, D.-J.; Show, K.-Y.; Su, A. Dark fermentation on biohydrogen production: Pure culture. *Bioresource Technology*, **102**, 8393-402, 2011.
- Leite, J.A.C.; Fernandes, B.S.; Pozzi, E.; Barboza,M.; Zaiat, M. Application of an anaerobic packed-bed bioreactor for the production of hydrogen and organic acids. *International Journal of Hydrogen Energy*, 33, 579- 586, 2008.
- Lima, D. M. F. Influência da razão de recirculação na produção de hidrogênio em reator anaeróbio de leito fixo. Dissertação (Mestrado) – Escola de Engenharia de São Carlos – Departamento de Hidráulica e Saneamento, Universidade de São Paulo, (2011).

- Lin, C.-Y.; Jo, C.-H. Hydrogen production from sucrose using an anaerobic sequencing batch reactor process. *Journal of Chemical Technology & Biotechnology*, **78**, 678–684, 2003.
- Lin, C.; Lay, C. Carbon/nitrogen ratio effect on fermentative hydrogen production by mixed microflora. *International Journal of Hydrogen Energy*, **29**, 41-45, 2004a.
- Lin, C.; Lay, C. Effects of carbonate and phosphate concentrations on hydrogen production using anaerobic sewage sludge microflora. *International Journal of Hydrogen Energy*, 29, 275-281, 2004b.
- Lin, C.; Lay, C. A nutrient formulation for fermentative hydrogen production using anaerobic sewage sludge microflora. *International Journal of Hydrogen Energy*, **30**, 285-292, 2005.
- Michelan, R.; Zimmer, T. R.; Rodrigues, J. A. D.; Ratusznei, S. M.; Moraes, D.; Zaiat, M.; Foresti, E. Effect of impeller type and mechanical agitation on the mass transfer and power consumption aspects of ASBR operation treating synthetic wastewater. *Journal of environmental management*, **90**, 1357-64, 2009.
- Mockaitis, G.; Friedl, G. F.; Rodrigues, J. A. D.; Ratusznei, S. M.; Zaiat, M.; Foresti, E. Influence of feed time and sulfate load on the organic and sulfate removal in an ASBR. *Bioresource technology*, **101**, 6642–50, 2010.
- Mosey, F. E. Mathematical modelling of the anaerobic digestion process regulatory mechanisms for the formation of short-chain volatile acids from glucose. *Water Science and Technology*, 15, 209-232, 1983.
- Mu, Y.; Zheng, X.; Yu, H.; Zhu, R. Biological hydrogen production by anaerobic sludge at various temperatures. *International Journal of Hydrogen Energy*, **31**, 780-785, 2006.
- Nishio, N.; Nakashimada, Y. Recent development of digestion process for energy recovery from wastes. *Journal of Bioscience and Bioengineering*, **103**, 105-112, 2007.
- Novaes, L.F.; Borges, L.O.; Rodrigues, J.A.D.; Ratusznei, S.M.; Zaiat, M.; Foresti, E. Effect of fill time on the performance of pilot-scale ASBR and AnSBBR applied to sanitary wastewater treatment. *Applied Biochemistry and Biotechnology*, **162**, 885-899, 2010.
- Oliveira, D.S.; Prinholato, A.C.; Ratusznei, S.M.; Rodrigues, J.A.D.; Zaiat, M.; Foresti, E. AnSBBR applied to the treatment of wastewater from a personal care industry: effect of organic load and fill time. Journal of Environmental Management, **90**, 3070-3081, 2009.

- O-Thong, S.; Prasertsan, P.; Intrasungkha, N.; Dhamwichukorn, S.; Birkeland, N. Optimization of simultaneous thermophilic fermentative hydrogen production and COD reduction from palm oil mil effluent by Thermoanaerobaterium-rich sludge. *International Journal of Hydrogen Energy*, **33**, 1221-1231, 2008.
- Oztekin, R.; Kapdan, I.; Kargui, F.; Argun, H. Optimization of media composition for hydrogen gas production from hydrolyzed wheat starch by dark fermentation. *International Journal of Hydrogen Energy*, **33**, 4083-4090, 2008.
- Peixoto, G. Produção de hidrogênio em reator anaeróbio de leito fixo e fluxo ascendente a partir de água residuária de indústria de refrigerantes. Dissertação (Mestrado) - Escola de Engenharia de São Carlos – Departamento de Hidráulica e Saneamento, Universidade de São Paulo, 2008.
- Ren, N.; Guo, W.; Wang, X.; Xiang, W.; Liu, B.; Ding, J.; Chen, Z. Effects of different pretreatment methods on fermentation types and dominant bacteria for hydrogen production. *International Journal of Hydrogen Energy*, 33, 4318-4324, 2008.
- Ren, N.; Li, J.; Li, B.; Wang, Y.; Liu, S. Biohydrogen production from molasses by anaerobic fermentation with a pilot-scale bioreactor system. *International Journal of Hydrogen Energy*, **31**, 2147-2157, 2006.
- Ripley, L.E.; Boyle, W.C.; Converse, J.C. Improved Alkalimetric Monitoring for AnaerobicDigestor of High-Strength Wastes. *Journal of Water Pollution Control Federation*, 58, 406-411, 1986.
- Rodrigues, J.A.D.; Ratusznei, S.M.; Camargo, E.F.M.; Zaiat, M. Influence of agitation rate on the performance of an anaerobic sequencing batch reactor containing granulated biomass treating low-strength wastewater. *Advances in Environmental Research*, 7, 405-410, 2003a.
- Rodrigues, J. A. D.; Ratusznei, S. M.; Zaiat, M. Fed-batch and batch operating mode analysis of a stirred anaerobic sequencing reactor with self-immobilized biomass treating low-strength wastewater. *Journal of Environmental Management*, **69**, 193–200, 2003b.
- Rodrigues, J.A.D.; Pinto, A.G.; Ratusznei, S.M.; Zaiat, M.; Gedraite, R. Enhancement of the performance of an anaerobic sequencing batch reactor treating low strength wastewater through implementation of a variable stirring rate program. *Brazilian Journal of Chemical Engineering*, 21, 423-434, 2004.

- Rojas, M. D. P. A. Influência da relação C/N na produção de hidrogênio em reator anaeróbio de leito fixo. Dissertação (Mestrado) - Escola de Engenharia de São Carlos – Departamento de Hidráulica e Saneamento, Universidade de São Paulo, 2010.
- Sabourin-Provost, G.; Hallenbeck, P.C. High yield conversion of a crude glycerol fraction from biodiesel production to hydrogen by photofermentation. *Bioresource Technology*, **100**, 3513-3517, 2009.
- Saraphirom, P.; Reungsang, A. Biological hydrogen production from sweet sorghum syrup by mixed cultures using an anaerobic sequencing batch reactor (ASBR). *International Journal* of Hydrogen Energy, 36, 8765–8773, 2011.
- Santos, D.A. Estudo da produção de biohidrogênio em AnSBBR com recirculação da fase líquida tratando água residuária sintética Efeito da carga orgânica. Dissertação (Mestrado) Escola de Engenharia de São Carlos Departamento de Hidráulica e Saneamento, Universidade de São Paulo, 2012.
- Searmsirimongkol, P.; Rangsunvigit; P., Leethochawalit, M.; Chavadej, S. Hydrogen production from alcohol distillery wastewater containing high potassium and sulfate using an anaerobic sequencing batch reactor. *International Journal of Hydrogen Energy*, 36, 12810–12821, 2011.
- Show, K.-Y.; Lee; D.-J.; Chang, J.-S. Bioreactor and process design for biohydrogen production. *Bioresource technology*, **102**, 8524–33, 2011.
- Sreethawong, T.; Chatsiriwatana, S.; Rangsunvigit, P.; Chavadej, S. Hydrogen production from cassava wastewater using an anaerobic sequencing batch reactor: Effects of operational parameters, COD:N ratio, and organic acid composition. *International Journal of Hydrogen Energy*, 35, 4092–4102, 2010.
- Standard Methods for the Examination of Water and Wastewater. APHA, AWWA, WPCF. 19th edition, American Public Health Association, Washington, 1995.
- Sung, Shihwu; Dague, R. R. Laboratory studies on the anaerobic sequencing batch reactor. *Water Environment Research*, **67**, 294-301, 1995.
- Tanisho, S. A scheme for developing the yield of hydrogen by fermentation. *An Approach to Environmentally Acceptable Technology*, 131-140, 2001.

- Turcot, J.; Bisaillon, A.; Hallenbeck, P. Hydrogen production by continuous cultures of Escherichia coli under different nutrient regimes. *International Journal of Hydrogen Energy*, **33**, 1465-1470, 2008.
- Venkata Mohan, S.; Lalit Babu, V.; Sarma, P. Anaerobic biohydrogen production from dairy wastewater treatment in sequencing batch reactor (AnSBR): Effect of organic loading rate. *Enzyme and Microbial Technology*, **41**, 506-515, 2007.
- Wang, J.; Wan, W. Effect of temperature on fermentative hydrogen production by mixed cultures. *International Journal of Hydrogen Energy*, **33**, 5392-5397, 2008.
- Wang, B.; Wan, W.; Wang, J. Inhibitory effect of ethanol, acetic acid, propionic acid and butyric acid on fermentative hydrogen production. *International Journal of Hydrogen Energy*, 33, 7013–7019, 2008.
- Wang, J.; Wan, W. Factors influencing fermentative hydrogen production: A review. *International Journal of Hydrogen Energy*, 34, 799–811, 2009.
- Wu, S.Y; Lin, C.N.; Chang, J.S.; Lee, K.S.; Lin, P.J. Hydrogen production with immobilized sewage sludge in three-phase fluidized-bed bioreactor. *Biotechnology Progress*, 19, 828-832, 2003.
- Wu, X.; Zhu, J.; Dong; C., Miller, C.; Li, Y.; Wang, L.; Yao, W. Continuous biohydrogen production from liquid swine manure supplemented with glucose using an anaerobic sequencing batch reactor. *International Journal of Hydrogen Energy*, 34, 6636–6645, 2009.
- Yang, Y.; Tsukahara, K.; Sawayama, S. Biodegradation and methane production from glycerolcontaining synthetic wastes with fixed-bed bioreactor under mesophilic and thermophilic anaerobic conditions. *Process Biochemistry*, 43, 362-367, 2008.
- Zaiat, M.; Rodrigues, J.A.D.; Ratusznei, S.M.; Camargo, E.F.M.; Borzani, W. Anaerobic sequencing batch reactors for wastewater treatment: a developing technology. *Applied Microbiology and Biotechnology*, 55, 29-35, 2001.

ANEXO I

CO	Tempo	C _{SAFLT}	C _{SAFLF}	C _{ST}	C _{SF}	€ _{ST}	€ _{SF}
	(d)	$(mgDQO.L^{-1})$	(mgDQO.L ⁻¹)	(mgDQO.L ⁻¹)	(mgDQO.L ⁻¹)	(%)	(%)
Р	2	3762	3663	2798	2626	25,6	30,2
Р	7	3637	3518	2574	2538	31,6	32,5
Р	10	3625	3713	3080	2998	18,1	20,3
Р	16	3681	3696	2976	3000	20,9	20,3
Р	17	4106	3725	3159	2773	16.0	26,3
Ι	21	3591	3566	2771	2785	22,1	21,7
Ι	22	3862	3683	3029	3038	14,9	14,6
Ι	23	3532	3612	2675	2879	24.8	19.1
Ι	29	3321	-	2718	2564	23.6	28.0
I	30	3600	-	2824	2770	20.7	22.2
Ī	31	3653	-	3017	2892	15.2	18.7
Ī	35	3461	-	3060	2943	14.0	17.3
Ī	36	3619	-	3025	2936	15.0	17.5
Ī	37	3490	-	3000	2910	15.7	18.2
Ī	38	3341	_	3062	2921	14.0	17.9
Ī	42	3577	_	3035	2875	14.7	19.2
Ī	43	3662	_	3061	2927	14.0	17.8
Ī	49	3585	_	3039	2940	14.6	17.4
Ī	50	-	_	-	2837	-	20.3
Ī	51	_	_	_	2902	-	18 5
Ī	52	3531	_	3315	2989	68	16,0
Î	56	3918	_	2844	2773	20.4	22.3
II	57	3520	_	2793	2684	21.8	24.8
I	63	3561	-	2914	2906	18.4	18.6
I	64	3566	-	3106	2960	13.0	17.1
I	65	3564	-	3042	2968	14.8	16.9
II	66	3568	_	3103	3152	13.1	11.7
I	70	3593	-	3047	2882	14.7	19.3
I	71	3474	-	2860	2792	19.9	21.8
I	72	3495	-	2930	2896	17.9	18.9
I	73	3451	-	2921	2785	18.2	22.0
II	77	-	-	-	2745	-	23.1
II	80	-	-	-	2829	-	20.8
III	85	5299	-	4481	4468	15.3	15.6
III	86	5452	5409	4558	4396	13.9	17.0
III	87	5179	5152	4107	4158	22.4	21.5
III	91	5276	5184	4354	4351	17.8	17.8
III	92	5251	5378	4122	4136	22.1	21.9
III	93	5245	5193	4297	4275	18.8	19.3
III	94	5369	5429	4804	4428	9.3	16.4
III	98	5435	-	4574	4305	13.6	18.7
III	99	5375	-	4494	4290	15.1	19.0
III	100	5031	-	4358	4283	17.7	19.1
III	101	5322	-	4538	4373	14.3	17.4
III	105	-	-	-	4368	-	17.5
III	108	-	-	-	4448	-	16,0

Tabela AI – Concentração de matéria orgânica (DQO) afluente e efluente em todas as condições

СО	Tempo	C _{SAFLT}	C _{SAFLF}	C _{ST}	C _{SF}	€ _{ST}	€ _{SF}
	(d)	(mgDQO.L ⁻¹)	$(mgDQO.L^{-1})$	$(mgDQO.L^{-1})$	(mgDQO.L ⁻¹)	(%)	(%)
IV	112	5272	-	4318	4195	18,2	20,5
IV	113	5292	-	4337	4404	17,8	16,5
IV	114	5356	-	4398	4198	16,7	20,4
IV	119	5276	-	4615	4608	12,5	12,7
IV	120	5310	-	4342	4253	17,7	19,4
IV	122	5037	-	4257	4154	19.3	21,3
IV	126	5489	-	4741	4785	10.2	9.3
IV	127	5224	-	4513	4498	14.5	14,8
IV	128	5319	-	4624	4586	12,4	13,1
IV	129	5308	-	4467	4476	15.3	15.2
IV	133	5288	-	4463	4552	15.4	13.7
IV	136	5299	-	4682	4470	11.3	15.3
IV	139	5256	-	4685	4545	11.2	13.9
IV	140	5222	-	4685	4497	11.2	14.8
IV	141	5330	-	4909	4600	7.0	12.8
IV	142	5209	-	4608	4528	12.7	14.2
IV	143	5220	-	4693	4586	11.1	13.1
V	147	3505	-	3134	2874	11.4	18.7
v	148	3434	_	2880	2889	18.6	18.3
v	149	3610	_	3212	3058	92	13.6
v	150	3370	_	2889	2776	18.3	21.5
v	154	3477	_	2962	2903	16.3	17.9
v	155	3845	_	3208	3113	93	12.0
v	156	3478	_	2895	2910	18.2	17.8
v	157	3586	_	3133	3033	11.4	14.3
v	162	3480	_	3075	2974	13.1	15.9
v	163	3611	_	3209	2963	93	16.2
v	164	3520	_	3099	2952	12.4	16,2
v	168	3499	_	2983	2897	15 7	18.1
v	169	3571	_	3075	2845	13,7	19.6
v	174	5282	_	2965	2974	16.2	15.9
VI	175	5331	_	4627	4480	89	117
VI	176	5075	_	4687	4645	0,9 7 7	85
VI	177	5316	_	4448	4476	12.4	11.8
VI	178	5151	_	4589	4457	9.6	12.2
VI	182	5354	_	4862	4608	42	9.2
VI	183	5391	_	4789	4687	57	77
VI	184	5255	_	4794	4632	5,7	8.8
VI	185	5134	_	4964	3841	2,0	24.3
VI	189	5167	_	4692	4527	2,2	10.8
VI	100	5165	_	4072	4321	66	13,5
VI	101	51/15	-	4815	4465	5 2	12,5
VI	107	<u>J</u> <u></u> <u>J</u>	-	4773	4406	5,2 6.0	11 /
VI	196	5161	-	4676	4527	79	10.8
VI	107	/8/2	-	1838	4607	7,9 17	75
V I V/I	203	5276	-	4030	4097	+,/ 5 0	123
V I V/I	203	JZ70 A374	-	4700	3725	5,5 16 /	12,5 26 A
VI	204	-5/+ Δ5Δ7	_		4590	65	20, 4 9.6
VI VI VI	203 204 205	4374 4547	-	4243 4744	3735 4590	16,4 6,5	26,4 9,6

Tabela AI – Concentração de matéria orgânica (DQO) afluente e efluente em todas as condições

ANEXO II

CO	Tempo	CCAFLT	C _{CAFLF}	C _{CT}	C _{CF}	ε _{CT}	ε _{CF}
	(d)	(mgSAC.L ⁻¹)	(mgSAC.L ⁻¹)	(mgSAC.L ⁻¹)	(mgSAC.L ⁻¹)	(%)	(%)
Р	2	3069	3017	1291	1314	59,7	59,0
Р	7	3217	3272	49	38	98,5	98,8
Р	10	3091	3662	66	56	97,9	98,2
Р	16	3230	3167	43	33	98,7	99,0
Р	17	3419	3352	85	51	97,4	98,4
Ι	21	3196	3410	58	66	98,2	97,9
Ι	23	3179	3276	50	35	98,5	98,9
Ι	28	3175	-	87	27	97,3	99,2
Ι	29	3476	-	86	26	97,3	99,2
Ι	30	3171	-	82	26	97,5	99,2
Ι	31	3491	-	71	25	97,8	99,2
Ι	35	3204	-	64	28	98,0	99,1
Ι	36	3224	-	75	26	97,7	99,2
Ι	37	3185	-	70	24	97,8	99,2
Ι	38	3165	-	75	24	97,7	99,3
Ι	43	3026	-	77	24	97,6	99,2
Ι	49	3307	-	56	24	98,3	99,2
Ι	50	-	-	-	24	-	99,3
Ι	51	-	-	-	24	-	99,2
Ι	52	2960	-	68	23	97,9	99,3
II	56	3396	-	33	22	99,0	99,3
II	57	2848	-	39	21	98,8	99,4
II	63	3023	-	35	20	98,9	99,4
II	64	3435	-	33	18	99,0	99,4
II	65	3039	-	38	18	98,8	99,4
II	66	3544	-	38	20	98,8	99,4
II	70	3062	-	48	22	98,5	99,3
II	71	3237	-	37	21	98,9	99,4
II	72	3795	-	46	19	98,6	99,4
II	73	3036	-	43	22	98,7	99,3
II	77	-	-	-	25	-	99,2
II	80	-	-	-	23	-	99,3
III	85	4752	-	44	32	99,1	99,3
III	86	5112	4874	39	27	99,2	99,5
III	87	4917	4673	40	29	99,2	99,4
III	91	5564	5564	22	31	99,6	99,4
III	92	4911	4886	42	32	99,2	99,4
III	93	4891	4080	48	33	99,0	99,3
III	94	4927	5437	49	33	99,0	99,3
III	98	4641	-	58	41	98,8	99,2
III	99	5187	-	42	28	99,1	99,4
III	100	4610	-	47	25	99,1	99,5
III	101	4988	-	63	27	98,7	99,4
III	105	-	-	-	31	-	99,4
III	108	-	-	-	31	-	99,4

Tabela AII - Concentração de carboidratos (sacarose) afluente e efluente em todas as condições

СО	Tempo	CCAFLT	C _{CAFLF}	C _{CT}	C _{CF}	ε _{CT}	8 _{CF}
	(d)	(mgSAC.L ⁻¹)	(mgSAC.L ⁻¹)	(mgSAC.L ⁻¹)	(mgSAC.L ⁻¹)	(%)	(%)
IV	112	3993	-	61	50	98,7	98,9
IV	113	3980	-	95	86	98,0	98,2
IV	114	4616	-	55	42	98,8	99,1
IV	119	4524	-	54	38	98,8	99,2
IV	120	4794	-	62	42	98,7	99,1
IV	122	4794	-	66	38	98,6	99,2
IV	126	4942	-	54	38	98,8	99,2
IV	127	4498	-	52	35	98,9	99,3
IV	128	4840	-	52	31	98,9	99,3
IV	129	4784	-	61	37	98,7	99,2
IV	133	4733	-	109	43	97,6	99,1
IV	136	4748	-	126	39	97,3	99,2
IV	139	4595	-	159	128	96,6	97,2
IV	140	4677	-	132	54	97,2	98,8
IV	141	4906	-	99	47	97,9	99,0
IV	142	4830	-	91	48	98,0	99,0
IV	143	4672	-	108	75	97,7	98,4
V	147	3260	-	44	34	98,6	98,9
V	148	2917	-	156	148	94,9	95,2
V	149	2907	-	227	205	92,6	93,3
V	150	2858	-	54	38	98,2	98,8
V	154	3386	-	31	20	99,0	99,3
V	155	2934	-	44	24	98,6	99,2
V	156	2848	-	45	22	98,5	99,3
V	157	3119	-	46	23	98,5	99,3
V	162	3089	-	64	24	97,9	99,2
V	163	3247	-	77	25	97,5	99,2
V	164	3472	-	56	27	98,2	99,1
V	168	3102	-	53	37	98,3	98,8
V	169	2845	-	47	29	98,5	99,1
V	174	4227	-	50	33	98,4	98,9
VI	175	4607	-	349	322	92,2	92,8
VI	176	4501	-	378	350	91,6	92,2
VI	177	3904	-	397	359	91,2	92,0
VI	178	4627	-	513	453	88,6	89,9
VI	182	4937	-	540	448	88,0	90,0
VI	183	4346	-	550	462	87,8	89,7
VI	184	4389	-	518	424	88,5	90,6
VI	185	3999	-	850	608	81,1	86,5
VI	189	4488	-	828	926	81,6	79,4
VI	190	5165	-	1181	1087	73,7	75,8
VI	191	4818	-	776	714	82,7	84,1
VI	192	4148	-	836	748	81,4	83,4
VI	196	4755	-	762	704	83,0	84,3
VI	197	4792	-	755	680	83,2	84,9
VI	203	5023	-	955	749	78,8	83,3
VI	204	4151	-	1054	964	76,6	78,6
VI	205	4042	-	904	768	79,9	82,9

Tabela AII - Concentração de carboidratos (sacarose) afluente e efluente em todas as condições

ANEXO III

СО	Tempo	рН	AP	AI	AT	AB	AVT
	(d)	(u)	(mgCaCO ₃ .L ⁻¹)	(mgHAc.L ⁻¹)			
Р	2	7.6	167.6	42.3	209.9	196.6	18.8
Р	7	7.8	172.1	57.3	229.4	217.4	16.8
P	10	77	198.0	65.2	263.2	237.8	35.8
P	16	78	226.3	33.4	259,6	255.9	5.2
D	17	7,0 7 7	210.7	54.4	255,0	255,9	13.5
Г	17	/,/ 8.0	210,7	9 1 ,4	203,2	235,0	15,5
l	21	8,0	278,2	82,6	360,8	349,7	15,7
1	22	8,1	280,2	90,4	370,6	361,5	12,8
Ι	23	8,1	265,0	84,9	349,9	342,1	11,1
Ι	28	8,1	293,4	78,3	371,7	362,0	13,7
Ι	29	8,0	296,5	84,6	381,1	369,5	16,3
Ι	30	8,1	311,7	93,9	405,6	394,4	15,9
Ι	31	7,9	316,8	58,8	375,6	352,4	32,7
Ι	35	8,0	361,2	78,3	439,5	426,7	18,1
Ι	36	7,9	382,8	75,5	458,3	441,9	23,1
Ι	37	8,1	329,6	96,4	426,0	412,6	18,9
Ι	38	8,3	354,3	100,2	454,5	433,0	30,4
Ι	42	8,3	361,0	88,9	449,9	426,6	32,9
Ι	43	8,3	359,6	62,9	422,5	407,1	21,6
Ι	44	8,1	332,9	112,0	444,9	425,8	26,9
Ι	49	8,4	342,5	83,6	426,1	412,5	19,3
Ι	50	-	-	-	-	-	-
Ι	51	-	-	-	-	-	-
Ι	52	8,1	320,2	119,9	440,1	428,8	15,9
II	56	8,1	364,5	101,5	466,0	452,7	18,8
II	57	8,0	401,8	72,1	474,0	454,0	28,1
II	63	8,1	365,3	99,8	465,2	451,9	18,7
II	64	8,0	357,0	112,4	469,4	456,0	18,9
II	65	8,2	353,6	113,3	466,9	453,9	18,3
II	66	8,1	345,6	102,8	448,4	437,0	16,0
11	70	8,1	352,8	104,9	457,6	443,9	19,3
11	71	8,1	345,2	104,4	449,7	429,4	28,5
II T	72	8,1	361,6	89,8	451,3	440,0	16,0
II T	73	8,1	337,7	103,6	441,3	427,5	19,4
	77	-	-	-	-	-	-
	80	-	-	-	-	-	-
	85	7,8	343,4	117,2	460,5	441,4	26,9
	86	7,8	336,6	125,7	462,2	446,8	21,8
	8/	/,8	311,4	131,6	443,1	427,0	22,6
	91	8,1	491,6	149,1	640,7	620,0	29,3
	92	ð,U 0 1	491,0	144,0	033,0	020,0	21,1
	93	ð,1 0 2	525,2	100,2	089,5	008,5 7 4 2 7	29,4
	94	ð,2 0 1	381,9 561 7	1/2,1	/00,0 729.0	/43,/	23,0 24.2
111 111	70 00	0,1	542 0	103,2	724.0	/10,/	24,2 35 7
TII TII	77 100	8,0 8 0	575 7	202 7	724,0	710 /	55,7 24 7
	100	0,0	545,4	202,1	120,0	, 10,4	

Tabela AIII – Valores de pH, alcalinidade parcial, alcalinidade intermediária, alcalinidade total, alcalinidade a bicarbonato e ácidos voláteis totais no afluente em todas as condições

CO	Tempo	рН	AP				AVT
	(d)	(u)	$(mgCaCO_3.L^{-1})$	$(mgCaCO_3.L^{-1})$	$(mgCaCO_3.L^{-1})$	$(mgCaCO_3.L^{-1})$	(mgHAc.L ⁻)
III	101	7,9	534,0	187,8	721,8	701,0	29,3
III	105	-	-	-	-	-	-
III	108	-	-	-	-	-	-
IV	112	8,0	517,3	202,3	719,6	694,7	35,1
IV	113	8,1	529,2	226,4	755,6	740,2	21,7
IV	114	8,9	583,6	237,8	821,4	767,2	76,4
IV	119	9,9	978,5	136,9	1115,4	1096,4	26,8
IV	120	10,0	962,7	132,1	1094,8	1056,5	53,9
IV	122	9,8	424,7	71,5	496,3	480,4	22,3
IV	126	10,0	391,1	60,8	451,9	436,1	22,3
IV	127	10,3	482,7	72,7	555,4	540,1	21,6
IV	128	10,4	484,3	77,8	562,1	543,7	26,0
IV	129	9.8	675.9	159.0	834.9	811.1	33.6
IV	133	10.0	642.0	136.1	778.1	762.8	21.6
IV	136	10.0	710.9	146.2	857.1	835.4	30.5
IV	139	10,0	703 1	150.1	853.2	834.4	26.4
IV	140	99	700,1	150,1	871.0	850.7	28,1
IV	141	10.0	718.8	165.9	884 7	865.9	26,0 26.4
IV	141	9.0	720.4	165.5	885.9	867.8	20,4
IV	142	10.0	745.0	150.5	806.4	881.3	25,4
I V V	143	8.0	207.1	80.6	407.6	306.3	15.0
v V	147	0,0	327,1	80,0 06.1	407,0	390,3	13,5
V V	140	9,1	272.5	90,1	457,5	444,0	10,2
V	149	9,0	572,5	90,5	409,1	437,8	13,9
V	150	9,1	308,5	84,0	455,1	433,8	27,1
V	154	9,2	346,6	83,0	429,6	413,9	22,0
V	155	9,1	331,1	97,3	428,4	417,8	14,9
V	156	9,9	438,3	78,2	516,5	505,2	16,0
V	157	9,9	437,9	96,1	534,1	522,8	15,9
V	162	9,7	478,2	93,7	572,0	559,5	17,6
V	163	9,8	491,8	86,2	577,9	566,4	16,2
V	164	9,8	446,7	97,7	544,4	530,0	20,3
V	168	9,8	507,4	93,7	601,1	582,7	26,0
V	169	9,7	555,9	106,2	662,2	645,1	24,1
V	174	8,1	547,8	142,3	690,1	672,1	25,3
VI	175	8,0	542,4	158,0	700,4	677,8	31,9
VI	176	8,0	537,9	154,7	692,6	674,4	25,6
VI	177	8,0	534,6	158,4	693,0	667,8	35,5
VI	178	8,2	544,5	151,8	696,3	656,9	55,4
VI	182	8,0	502,1	159,9	662,1	644,4	24,9
VI	183	8,0	526,0	142,4	668,4	643,8	34,7
VI	184	8,0	508,1	169,1	677,2	656,0	29,8
VI	185	8,2	552,7	136,9	689,5	673,5	22,6
VI	189	8.2	568,6	125,4	694,0	674,8	26,9
VI	190	8.2	546,0	150,9	696,8	659.0	53.3
VI	191	8.2	576.4	122.5	698,9	662.6	51.1
VI	192	8.1	509.4	160.2	669.6	646.3	32.9
VI	196	8.0	490.1	142.4	632.5	605.6	37.9
VI	197	8.2	503.9	138.9	642.8	601.0	58.9
VI	203	8.2	537 2	137.8	675.1	645 3	41.9
VI	203 204	8.2	533 5	148 2	681 7	653.9	39.1
VI	205	8.2	538 5	146.1	684.6	661 5	32.5
• •		~,-	220,0	, .		~~~,~	~_,~

Tabela AIII – Valores de pH, alcalinidade parcial, alcalinidade intermediária, alcalinidade total, alcalinidade a bicarbonato e ácidos voláteis totais no afluente em todas as condições

ANEXO IV

СО	Tempo	рН	AP	AI	AT	AB	AVT
	(d)	- (u)	$(mgCaCO_3.L^{-1})$	$(mgCaCO_3.L^{-1})$	$(mgCaCO_3.L^{-1})$	$(mgCaCO_3.L^{-1})$	(mgHAc.L ⁻¹)
Р	2	4.3	0	0.0	0.0	0	639.3
P	- 7	4.2	0	0,0	0,0	0	764.0
D	, 10	,2 1 2	0	0,0	0,0	0	081.2
г Л	10	4,2	0	0,0	0,0	0	506.4
P	10	4,7	0	85,8	85,8	0	506,4
Р	17	4,4	0	32,4	32,4	0	797,5
Ι	21	4,5	0	83,4	83,4	0	862,6
Ι	22	4,6	0	138,3	138,3	0	907,2
Ι	23	4,6	0	125,9	125,9	0	833,0
Ι	28	4,6	0	122,4	122,4	0	957,0
Ι	29	4.6	0	114,2	114,2	0	918.3
T	30	45	0	107 9	107 9	0	995 7
I	31	4.8	0	208.1	208.1	0	1177.6
I	35	4,0 4.6	0	122.4	122.4	0	1263.8
Ī	36	5.0	0	327.5	327.5	0	1096.6
Ī	37	2,0 4.6	0	133.3	133.3	0	1069.1
Ī	38	47	0	184.9	184.9	0	1151.6
Ī	42	4.8	0	221.4	221.4	0	1133.8
Ī	43	4.6	0	130.0	130.0	0	1069 3
Ī	44	47	0	201.7	201.7	0	1138.3
Ī	49	47	Ő	179.2	179.2	0 0	1101.9
Ī	50	4.9	0 0	246.9	246.9	Ő	1016.2
Ī	51	4.7	0	188.2	188.2	0	1071.1
I	52	4.7	0	208.7	208.7	0	1271.1
Ī	56	4.5	0	124.2	124.2	0	1057.3
II	57	4.8	0	255,0	255,0	0	1176.0
II	63	4,6	0	146,0	146,0	0	1076,1
II	64	4.6	0	146.0	146.0	0	1135,7
II	65	4,6	0	122,1	122,1	0	1053,7
II	66	4,5	0	114,1	114,1	0	1136,8
II	70	4,6	0	125,4	125,4	0	1042,1
II	71	4,5	0	113,7	113,7	0	1165,4
II	72	4,5	0	116,2	116,2	0	1163,2
II	73	4,5	0	110,7	110,7	0	1189,8
II	77	4,5	0	131,1	131,1	0	1102,1
II	80	4,4	0	74,5	74,5	0	1161,6
III	85	4,3	0	0,0	0,0	0	1271,1
III	86	4,0	0	0,0	0,0	0	1334,4
III	87	3,9	0	0,0	0,0	0	1348,6
III	91	4,3	0	0,0	0,0	0	1473,4
III	92	4,4	0	58,8	58,8	0	1351,8
III	93	4,5	0	112,5	112,5	0	1546,4
III	94	4,5	0	165,7	165,7	0	1479,5
III	98	4,7	0	179,9	179,9	0	1424,4
III	99	4,6	0	240,9	240,9	0	1409,9
III	100	4,6	0	239,6	239,6	0	1478,2

Tabela AIV – Valores de pH, alcalinidade parcial, alcalinidade intermediária, alcalinidade total, alcalinidade a bicarbonato e ácidos voláteis totais no efluente em todas as condições

CO	Tompo	n U					AVT
υ		pn (m)	$A\mathbf{f}$	$(\mathbf{m}_{\mathbf{C}}\mathbf{C}\mathbf{C}\mathbf{O} \mathbf{I}^{-1})$	$(\mathbf{m}_{\mathbf{C}}\mathbf{C}\mathbf{C}\mathbf{O}\mathbf{I}^{-1})$	$(\mathbf{m} \mathbf{n} \mathbf{C} \mathbf{n} \mathbf{C} \mathbf{O} \mathbf{I}^{-1})$	$(\mathbf{m} \mathbf{a} \mathbf{I} \mathbf{A} \mathbf{a} \mathbf{I}^{-1})$
III	(u) 101	(u) 4.5	(IngCaCO ₃ .L)	$(\operatorname{IIIgCaCO_3.L})$	(IngCaCO ₃ .L)	(IngcaCO ₃ .L)	(IIIgHACL)
	101	4,5	0	185,2	185,2	0	1604,5
	105	4,6	0	222,7	222,7	0	1652,9
	108	4,5	0	195,3	195,3	0	1669,4
IV	112	4,2	0	0,0	0,0	0	1382,7
IV	113	4,1	0	0,0	0,0	0	1365,5
IV	114	4,2	0	0,0	0,0	0	1561,5
IV	119	5,1	0	560,3	560,3	0	1528,2
IV	120	5,1	0	613,0	613,0	0	1666,0
IV	122	5,1	0	610,4	610,4	0	1609,3
IV	126	4,2	0	0,0	0,0	0	1571,3
IV	127	4,1	0	0,0	0,0	0	1286,8
IV	128	4,3	0	0,0	0,0	0	1565,7
IV	129	4.3	0	0,0	0,0	0	1485,7
IV	133	4.7	0	302.5	302.5	0	1733.2
IV	136	4.7	0	320.8	320.8	0	1793.2
IV	139	4.7	0	254.7	254.7	0	1539.7
IV	140	4.6	Ő	255.1	255.1	Ő	1654 1
IV	140	4,6	0	255,1	255,1	0	1693 5
IV	141	4,0	0	200,4	200,4	0	1695,5
	142	4,7	0	270,8	270,8	0	1095,5
	145	4,0	0	247,4	247,4	0	1404,3
V	14/	4,4	0	47,3	47,3	0	981,0
V	148	4,3	0	10,4	10,4	0	1034,3
V	149	4,4	0	39,9	39,9	0	/63,9
V	150	4,5	0	87,4	87,4	0	1107,3
V	154	4,4	0	69,0	69,0	0	1138,7
V	155	4,3	0	22,7	22,7	0	1063,2
V	156	4,6	0	148,0	148,0	0	1126,8
V	157	4,6	0	128,8	128,8	0	1142,7
V	162	4,6	0	167,9	167,9	0	1042,2
V	163	4,7	0	181,9	181,9	0	1106,1
V	164	4,7	0	187,1	187,1	0	1070,4
V	168	4,7	0	221,0	221,0	0	1063,4
V	169	4,8	0	262,0	262,0	0	1109,1
V	174	4,8	0	280,5	280,5	0	1010,9
VI	175	4,5	0	155,5	155,5	0	1582,0
VI	176	4,5	0	151,4	151,4	0	1362,0
VI	177	4.5	0	143.1	143.1	0	1614.2
VI	178	4.5	0	165.0	165.0	0	1549.4
VI	182	45	0	158.4	158.4	0	1553 3
VI	183	4.6	Ő	179.0	179.0	0 0	1570.4
VI	184	4.6	0	167.1	167.1	0 0	1566.6
VI	185	4,0 4,5	0	1/13 2	1/13 2	0	1329.3
VI	180	4,5	0	145,2	145,2	0	1229,5
V I V/T	107	ч ,Ј Л Б	0	133,7	133,7 176 A	0	1160.0
	190	4,0	0	1/0,4	1/0,4	0	1204.2
	191	4,J 1 5	U	152,0	152,0	0	1074,0
	192	4,5	U	114,4	114,4	U	1254,4
	190	4,5	U	100,2	100,2	U	1334,3
VI	19/	4,5	0	105,8	105,8	U	1403,/
VI	203	4,5	0	101,0	101,0	0	13/9,1
VI	204	4,5	0	121,3	121,3	0	1266,0
VI	205	4,5	0	106,4	106,4	0	1411,9

Tabela AIV – Valores de pH, alcalinidade parcial, alcalinidade intermediária, alcalinidade total, alcalinidade a bicarbonato e ácidos voláteis totais no efluente em todas as condições

ANEXO V

СО	Tempo	EtOH	, ButOH	HAc	HPr	HIsoBut	HBut	HIsoVal	HVa	HCa
	(d)	(mg.L ⁻¹)	(mg.L ⁻¹)	(mg.L ⁻¹)	$(mg.L^{-1})$	(mg.L ⁻¹)				
Ι	28	258,7	14,3	632,5	86,9	177,3	268	12,6	98,8	180,9
Ι	35	274,0	15,8	581,3	79,7	167,4	286,6	10,4	76,6	162,4
Ι	43	299.3	19	595.3	52.5	201.6	298.1	13.8	95.5	182.9
T	50	286.1	14.8	601 3	83 7	179.8	290.1	10.5	87.5	171.1
T	50.2	284.5	17.3	561.5	87.1	181 5	265.7	13.3	87 9	179.2
п	57	207,5	07	705.2	1/1 7	77.0	205,7	70	07,5	125.6
11	57	255,6	9,7	765,5	141,/	77,0	525,5	7,0	97	155,0
II	63	243,5	13,1	776,8	144,4	88,8	326,4	7,7	86,4	141
II	71	228,0	14,8	741,5	144,2	81,3	358,4	11,4	85,1	141,9
II	77	217,7	10,8	771,7	156,7	94,8	383,9	13,6	95,7	160,6
II	77,2	218,1	12,2	794,9	136,7	78,6	294,1	10,9	81,7	173,3
III	88	493,7	15,4	961,5	93,1	162,7	361,7	8,7	57,9	254,6
III	93	510.7	10.1	950.2	87.7	141.1	391.4	7.7	48.8	247.2
III	100	499.0	11.9	1028.1	77.7	134.4	352.2	11.9	49.7	205.8
III	107	471.3	14.9	955.7	100.1	184.2	428.9	13.4	80.6	388.7
III	107.2	486.3	16.7	1004.5	83.4	156.8	399.7	11.8	63.9	273.7
IV	112	578.8	10,2	990,1	115,9	155,9	218,9	7.8	36,5	85,7
IV	120	548.7	11.1	976.5	124.8	131.7	234.2	10.6	49.5	89.1
IV	126	592,3	16,2	1066.5	107.8	178	223,6	8.7	39,3	96,4
IV	135	573.1	15,6	1108,1	100,6	123,8	218,8	8,5	43,9	105.6
IV	135,2	509,9	13,5	1011.7	97,7	111.2	220,8	8,1	39,5	84,5
V	154	381,8	4,9	683,1	108,4	71,5	112,7	8,8	45,1	90,9
V	157	391,6	4,5	663,8	98,5	72,5	156,9	8,5	50,5	91,1
V	160	400,1	4,4	687,2	102,8	75,5	114,9	8,3	42,1	88,1
V	161	385,5	4,3	697,6	97,7	65,5	114,2	7,2	38,3	70,2
V	161,2	355,3	4,1	631,6	102,2	57,3	158,7	8,1	53,4	94,7
VI	178	467,3	5,9	965,5	94,2	41,6	392,1	9,1	57,6	211,1
VI	185	485,5	5,5	909,9	90,1	42,6	381,2	9,3	51,9	227,6
VI	192	474,9	5,7	911,2	80,8	37,2	410,9	9,7	47,1	232,9
VI	199	499,4	5,9	922,5	81,5	44,7	431,9	10,9	43,6	235,1
VI	199,2	411,1	5,2	934,4	70,4	15,2	376,9	7,5	20,3	196,5

Tabela AV – Concentração dos compostos intermediários em todas as condições

ANEXO VI

			Aflu	ente		Efluente				
CO	Tempo	ST	SVT	SST	SSV	ST	SVT	SST	SSV	
	(d)	$(\mathbf{mg.L}^{-1})$	$(mg.L^{-1})$	$(mg.L^{-1})$	$(\mathbf{mg.L}^{-1})$	$(mg.L^{-1})$	$(\mathbf{mg.L}^{-1})$	$(\mathbf{mg.L}^{-1})$	$(\mathbf{mg.L}^{-1})$	
Р	2	3788	3530	78	64	2848	2580	128	200	
Р	7	3892	3602	70	58	1328	1146	64	20	
Ι	21	3770	3428	16	28	1452	1124	72	92	
Ι	23	3566	3276	0	28	1292	1000	30	46	
Ι	28	3822	3396	44	40	1668	1276	168	168	
Ι	30	3950	3476	20	20	1644	1306	116	110	
Ι	35	3774	3538	98	98	1788	1376	158	168	
Ι	37	4130	3642	52	52	1960	1514	184	156	
Ι	42	3910	3460	36	18	1906	1492	156	152	
Ι	49	4196	3708	58	26	2236	1830	146	106	
II	63	4056	3512	50	30	1926	1458	114	114	
II	65	4242	3698	62	48	2072	1662	126	98	
II	70	4030	3536	26	12	2066	1650	126	108	
II	73	4064	3570	80	24	2136	1710	132	100	
III	86	5642	5106	98	60	2574	2054	114	82	
III	91	5550	4894	48	30	8346	7812	88	86	
III	93	5816	5082	88	64	2410	1818	104	98	
III	98	6022	5188	100	34	2476	1752	132	80	
III	100	6000	5196	136	72	2610	1896	162	118	
IV	119	6220	5116	80	48	3130	2150	126	124	
IV	126	5870	5272	76	26	2886	2370	126	90	
IV	128	3638	3300	76	26	2492	1904	134	82	
IV	133	1306	1224	88	28	3096	2316	260	190	
IV	140	5786	4936	70	32	3042	2130	218	198	
IV	142	5980	5078	70	18	2998	2080	196	138	
V	147	1598	1414	28	24	3764	3396	74	76	
V	149	4122	3614	42	30	2120	1732	68	66	
V	155	4040	3564	72	28	2054	1632	112	92	
V	156	4086	3534	64	58	1934	1532	120	130	
V	162	4000	3374	52	34	1996	1478	116	116	
V	164	4372	3648	82	46	1882	1478	56	38	
V	168	4000	3436	38	20	1908	1392	180	164	
VI	179	5904	5116	43	19	2750	2050	100	76	
VI	184	5850	5120	52	40	2946	2284	160	158	
VI	186	5924	5100	44	28	3038	2554	178	164	
VI	191	5852	4992	86	18	3222	2378	310	310	
VI	193	5930	5100	112	54	3262	2488	244	202	
VI	198	5728	4924	46	34	3246	2382	148	148	
VI	205	5786	4932	72	54	138	2554	204	180	

Tabela AVI – Série de sólidos afluente e efluente em todas as condições

ANEXO VII

	Tempo		VA	Тя	Pv	Ра
Ensaio	(d)	(mL.ciclo ⁻¹)	(L)	(°C)	(mbar)	(mbar)
Р	2	1340	1.32	30	42.6	933.3
P	7	1256	1.38	33	50.4	933.3
P	10	1212	1.42	33	50.4	933.3
P	17	1609	1.48	28	37.8	933.3
Ι	29	2005	1,54	28	37.8	933,3
Ι	31	2017	1,56	28	37,8	933,3
Ι	36	1865	1,50	29	40,1	933,3
Ι	38	1959	1,78	27	35,7	933,3
Ι	42	1821	1,51	26	33,6	933,3
Ι	43	1766	1,49	27	35,7	933,3
Ι	52	1863	1,49	29	40,1	933,3
II	56	1936	1,24	26	33,6	933,3
II	57	1830	1,58	26	33,6	933,3
II	64	1815	1,70	27	35,7	933,3
II	70	1810	1,70	26	33,6	933,3
II	80	1753	1,60	26	33,6	933,3
III	86	2463	1,38	23	28,1	933,3
III	87	2597	1,38	24	29,9	933,3
III	91	2625	1,50	23	28,1	933,3
III	92	2444	1,38	24	29,9	933,3
III	94	2409	1,40	25	31,7	933,3
III	108	2335	1,38	26	33,6	933,3
IV	112	2159	1,68	27	35,7	933,3
IV	126	1789	1,74	22	26,4	933,3
IV	127	1969	1,44	22,5	26,4	933,3
IV	128	1866	1,43	24	29,9	933,3
IV	129	2169	1.42	25	31.7	933.3
IV	142	2084	1.68	25	31.7	933.3
IV	143	1937	1.32	24	29.9	933.3
V	147	1416	1,55	25	31.7	933 3
v	154	1017	1,00	20	24.9	933 3
v	155	1266	1.63	21	24.9	933.3
V	156	1337	1.57	21	24.9	933.3
v	157	1269	1.46	21	24.9	933.3
v	162	943	1.25	19	22.0	933.3
v	163	985	1,20	18	23.4	933.3
V	164	1060	1,20	18	23.4	933.3
V	168	1152	1.30	24	29.9	933.3
V	169	1265	1,64	24	29.9	933.3
V	174	1000	1.62	25	31.7	933.3

Tabela AVII – Volume de biogás produzido por ciclo em todas as condições e valores utilizados para a correção em relação ao volume alimentado e para as CNTP

	P		3			
Encoio	Tempo	$\mathbf{V}_{\mathbf{G}}$	VA	Та	Pv	Pa
Liisaiv	(d)	(mL.ciclo ⁻¹)	(L)	(°C)	(mbar)	(mbar)
VI	176	1931	1,60	26	33,6	933,3
VI	177	1941	1,62	26	33,6	933,3
VI	178	1704	1,58	27	35,7	933,3
VI	182	1561	1,20	27	35,7	933,3
VI	183	1557	1,20	26	33,6	933,3
VI	184	1810	1,40	26	33,6	933,3
VI	185	1608	1,42	25	31,7	933,3
VI	189	1537	1,32	26	33,6	933,3
VI	190	1790	1,62	24	29,9	933,3
VI	191	1760	1,49	22	26,5	933,3
VI	192	1677	1,54	22	26,5	933,3
VI	196	1800	1,68	27	35,7	933,3
VI	197	1576	1,53	26	33,6	933,3
VI	203	1663	1,65	27	35,7	933,3
VI	204	1602	1,56	26	33,6	933,3
VI	205	1485	1,40	24	29,9	933,3

Tabela AVII – Volume de biogás produzido por ciclo em todas as condições e valores utilizadospara a correção em relação ao volume alimentado e para as CNTP

ANEXO VIII

CO	Tempo	C _{H2}	C _{CH4}	C _{CO2}
CO	(d)	(mmol.L ⁻¹)	(mmol.L ⁻¹)	(mmol.L ⁻¹)
Ι	29	5,23	0,00	9,94
Ι	31	5,60	0,00	10,33
Ι	36	4,19	0,00	9,75
Ι	38	5.19	0.00	10.88
Ι	42	3,92	0.00	10,13
Ι	43	4,88	0,00	10,47
Ι	49	4,97	0,00	9,63
Ι	49,2	3,94	0,00	8,98
II	56	5,45	0,00	9,02
II	57	7,94	0,00	10,69
II	64	5,49	0,63	12,91
II	70	5,72	0,68	12,39
II	80	5,33	0,71	12,20
III	91	9,22	0,30	17,04
III	92	9,10	0,38	15,99
III	94	8,50	0,44	17,25
III	101	8,59	0,58	17,53
III	101,2	8,71	0,60	17,83
III	106	8,28	0,62	16,97
IV	127	8,24	0,00	15,26
IV	128	8,18	0,00	15,29
IV	129	8,05	0,00	15,53
IV	133	8,06	0,00	15,52
V	150	8,87	0,00	11,52
V	151	8,62	0,00	11,82
V	152	8,84	0,00	11,84
V	157	7,35	0,00	12,23
V	158	7,56	0,00	12,62
V	159	7,46	0,00	12,68
VI	176	8,73	0,00	15,62
VI	177	8,66	0,00	15,93
VI	178	8,71	0,00	15,66
VI	182	6,90	0,00	14,74
VI	183	6,67	0,00	13,98
VI	184	6,97	0,00	14,47
VI	189	7,48	0,00	14,86
VI	191	7,19	0,00	14,56
VI	199	7,22	0,00	14,67

 Tabela AVIII – Concentração do biogás no final do ciclo em todas as condições

ANEXO IX

Tempo	C _{SF} P1	C _{SF} P2	Média	8 _{SF}
(h)	(mgDQO.L ⁻¹)	(mgDQO.L ⁻¹)	(mgDQO.L ⁻¹)	(%)
0,0	2906	2914	2910	0
0,5	2886	2868	2877	4
1,0	2924	2861	2892	6
1,5	2927	2869	2898	8
2,0	2900	2836	2868	10
2,5	2838	2845	2841	11
3,0	2861	2894	2878	10
3,8	2837	2902	2869	10

Tabela IX.1 - Concentração de matéria orgânica (DQO) ao longo do ciclo na condição I

Tabela IX.2 – Concentração de carboidratos (sacarose) ao longo do ciclo na condição I

Tempo	C _{CF} P1	C _{CF} P2	Média	ε _{CF}
(h)	(mgSAC.L ⁻¹)	(mgSAC.L ⁻¹)	(mgSAC.L ⁻¹)	(%)
0,0	23	24	24	0
0,5	251	259	255	52
1,0	329	323	326	63
1,5	383	343	363	69
2,0	368	336	352	75
2,5	112	118	115	92
3,0	45	24	35	98
3,8	24	24	24	98

Tabela IX.3 – Valores de pH, alcalinidade parcial, alcalinidade intermediária, alcalinidade total, alcalinidade a bicarbonato e ácidos orgânicos voláteis totais ao longo do ciclo na condição I

	Tempo	pН	AP	AI	AT	AB	AVT
	(h)	(u)	(mgCaCO ₃ .L ⁻¹)	(mgHAc.L ⁻¹)			
	0,0	4,9	0,0	246,9	246,9	0,0	1016,2
	0,5	4,9	0,0	240,9	240,9	0,0	845,9
	1,0	5,0	0,0	243,9	243,9	0,0	947,5
D1	1,5	4,9	0,0	229,0	229,0	0,0	933,8
F I	2,0	4,9	0,0	219,0	219,0	0,0	1101,3
	2,5	4,9	0,0	214,1	214,1	0,0	988,7
	3,0	4,7	0,0	188,2	188,2	0,0	942,0
	3,8	4,8	0,0	220,0	220,0	0,0	1021,7
	0,0	4,6	0,0	175,2	175,2	0,0	1049,1
	0,5	4,8	0,0	186,2	186,2	0,0	958,5
	1,0	4,8	0,0	180,2	180,2	0,0	851,4
D2	1,5	4,8	0,0	195,1	195,1	0,0	947,5
ΓZ	2,0	4,8	0,0	192,2	192,2	0,0	955,8
	2,5	4,7	0,0	170,3	170,3	0,0	966,7
	3,0	4,7	0,0	168,3	168,3	0,0	961,3
	3,8	4,7	0,0	188,2	188,2	0,0	1071,1

								5	
Tempo	EtOH	ButOH	HAc	HPr	HIsoBut	HBut	HIsoVal	HVa	HCa
(h)	$(mg.L^{-1})$	$(\mathbf{mg.L}^{\cdot 1})$							
0,0	286,1	14,8	601,3	83,7	179,8	290,1	10,5	87,5	171,1
0,5	265,9	16,7	497,8	88,6	194,9	256,8	13,9	99,6	173,4
1,0	256,4	15,3	540,9	82,2	182	279,8	10,8	77,2	158,2
1,5	272,5	15,1	474,7	87,9	202,3	284,7	13,8	92,4	177,4
2,0	264,1	15,5	524,6	82,9	188,6	222,5	10,9	79,2	153,5
2,5	282,4	14,9	621,6	85	141,6	257,9	9,9	84,3	156,7
3,0	261,2	16,2	614,0	81,7	165,3	283,9	10,6	74,8	154,7
3,8	284,5	17,3	561,5	87,1	181,5	265,7	13,3	87,9	179,2

Tabela IX.4 – Concentração de compostos intermediários ao longo do ciclo na condição I

Tabela IX.5 – Produção volumétrica acumulada do biogás ao longo do ciclo na condição I

Tempo	(h)	0,0	0,5	1,0	1,5	2,0	2,5	3,0	3,8
P1	(mL - CNTP)	0	539	897	1261	1581	1771	1847	1865
P2	(mL - CNTP)	0	464	829	1192	1523	1714	1799	1821
P3	(mL - CNTP)	0	520	865	1220	1531	1730	1829	1863
М	(mL - CNTP)	0	508	864	1225	1545	1739	1825	1850

Tabela IX.6 – Concentração dos compostos do biogás ao longo do ciclo na condição I

	Tempo (h)	0,0	0,5	1,0	1,5	2,0	2,5	3,0	3,8
C_{H2}	P1	0,00	0,21	0,78	1,57	2,45	3,17	3,60	4,88
(mmol.L^{-1})	P2	0,00	0,34	0,89	1,69	2,68	3,50	4,07	4,97
	P3	0,00	0,37	0,95	1,69	2,47	3,13	3,90	3,94
	Μ	0,00	0,31	0,87	1,65	2,53	3,27	3,86	4,60
C_{CH4}	P1	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
(mmol.L^{-1})	P2	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	P3	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	М	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
C _{CO2}	P1	0,00	3,72	5,45	6,98	8,29	9,12	9,99	10,47
(mmol.L^{-1})	P2	0,00	4,24	5,52	6,81	8,01	9,16	10,01	9,63
	P3	0,00	3,77	5,19	6,34	7,58	8,32	8,66	8,98
	М	0,00	3,91	5,38	6,71	7,96	8,87	9,55	9,69

ANEXO X

Tempo	C _{SF} P1	C _{SF} P2	Média	€ _{SF}
(h)	(mgDQO.L ⁻¹)	(mgDQO.L ⁻¹)	(mgDQO.L ⁻¹)	(%)
0,0	2866	2839	2852	0
0,5	2957	3047	3002	0
1,0	2857	2875	2866	7
1,5	2916	3018	2967	6
2,0	2829	2828	2829	10
2,8	2745	2829	2787	12

Tabela X.1 – Concentração de matéria orgânica (DQO) ao longo do ciclo na condição II

Tabela X.2 – Concentração de carboidratos (sacarose) ao longo do ciclo na condição II

Tempo	C _{CF} P1	C _{CF} P2	Média	8 _{CF}
(h)	(mgSAC.L ⁻¹)	(mgSAC.L ⁻¹)	(mgSAC.L ⁻¹)	(%)
0,0	25	23	24	0
0,5	386	627	507	28
1,0	396	488	442	63
1,5	431	536	484	69
2,0	166	242	204	85
2,8	23	21	22	98

Tabela X.3 – Valores de pH, alcalinidade parcial, alcalinidade intermediária, alcalinidade total, alcalinidade a bicarbonato e ácidos orgânicos voláteis totais ao longo do ciclo na condição II

	Tempo	pН	AP	AI	AT	AB	AVT
	(h)	(u)	$(mgCaCO_3.L^{-1})$	$(mgCaCO_3.L^{-1})$	$(mgCaCO_3.L^{-1})$	(mgCaCO ₃ .L ⁻¹)	(mgHAc.L ⁻¹)
	0,0	4,5	0,0	131,1	131,1	0,0	1102,1
	0,5	4,9	0,0	261,1	261,1	0,0	878,3
D1	1,0	4,6	0,0	117,4	117,4	0,0	1093,6
11	1,5	4,6	0,0	130,0	130,0	0,0	1039,8
	2,0	4,5	0,0	90,2	90,2	0,0	1068,2
	2,8	4,5	0,0	88,1	88,1	0,0	1218,3
	0,0	4,4	0,0	74,5	74,5	0,0	1161,6
	0,5	5,0	0,0	215,0	215,0	0,0	612,0
P7	1,0	4,5	0,0	88,1	88,1	0,0	1082,3
12	1,5	4,5	0,0	87,0	87,0	0,0	991,7
	2,0	4,4	0,0	59,8	59,8	0,0	1090,8
	2,8	4,4	0,0	67,1	67,1	0,0	986,0

Tabela X.4 -	Concentração	de compostos	s intermediários	ao longo	do ciclo na	condição II

Tempo	EtOH	ButOH	HAc	HPr	HIsoBut	HBut	HIsoVal	HVa	HCa
(h)	$(\mathbf{mg.L}^{-1})$	$(\mathbf{mg} \cdot \mathbf{L}^{\cdot 1})$	$(\mathbf{mg.L}^{-1})$	$(\mathbf{mg.L}^{-1})$	$(mg.L^{-1})$	$(\mathbf{mg.L}^{-1})$	(mg.L ⁻¹)	$(\mathbf{mg} \cdot \mathbf{L}^{\cdot 1})$	$(\mathbf{mg} \cdot \mathbf{L}^{-1})$
0,0	217,7	10,8	771,7	156,7	94,8	383,9	13,6	95,7	160,6
0,5	195,8	12,3	603,6	138,8	106	351,6	12,8	104,2	220,9
1,0	190,4	11,1	595,1	132	107,5	352,2	12,9	103,3	233,7
1,5	195,7	10,9	665,8	98,5	57,4	226,3	9,5	74,6	123,3
2,0	201,6	12,0	733,3	105,5	60,8	240,5	9,7	84,9	131,9
2,8	218,1	12,2	794,9	136,7	78,6	294,1	10,9	81,7	173,3

Tabela X.5 – Produção volumétrica acumulada do biogás ao longo do ciclo na condição II

Tempo	(h)	0,0	0,5	1,0	1,5	2,0	2,8
P1	(mL-CNTP)	0	374	841	1255	1622	1815
P2	(mL-CNTP)	0	329	742	1138	1448	1810
P3	(mL-CNTP)	0	329	746	1171	1471	1753
М	(mL-CNTP)	0	344	777	1188	1514	1793

Tabela X.6 – Concentração dos compostos do biogás ao longo do ciclo na condição II

	Tempo (h)	0	0,50	1,00	1,50	2,00	2,80
C_{H2}	P1	0,00	2,43	2,99	3,99	4,99	5,49
(mmol.L^{-1})	P2	0,00	2,64	3,10	4,25	5,01	5,72
	P3	0,00	2,32	2,87	3,89	4,89	5,33
	Μ	0,00	2,46	2,99	4,04	4,96	5,51
C_{CH4}	P1	0,00	0,31	0,40	0,49	0,58	0,63
(mmol.L^{-1})	P2	0,00	0,36	0,43	0,55	0,61	0,68
	P3	0,00	0,40	0,49	0,55	0,64	0,71
	Μ	0,00	0,36	0,44	0,53	0,61	0,67
C _{CO2}	P1	0,00	8,53	9,54	10,94	12,14	12,91
(mmol.L^{-1})	P2	0,00	8,05	9,12	10,81	11,98	12,37
	P3	0,00	7,84	9,09	10,22	11,17	12,20
	М	0,00	8,14	9,25	10,65	11,76	12,49

ANEXO XI

Tempo	C _{SF} P1	C _{SF} P2	Média	8 SF
(h)	(mgDQO.L ⁻¹)	(mgDQO.L ⁻¹)	(mgDQO.L ⁻¹)	(%)
0,0	4355	4410	4382	0
0,5	4649	4748	4698	0
1,0	4519	4561	4540	3
1,5	4466	4451	4458	7
2,0	4327	4521	4424	7
2,5	4321	4401	4361	9
3,0	4365	4441	4403	8
3,8	4368	4448	4408	8

Tabela XI.1 – Concentração de matéria orgânica (DQO) ao longo do ciclo na condição III

Tabela XI.2 – Concentração de carboidratos (sacarose) ao longo do ciclo na condição III

Tempo	C _{CF} P1	C _{CF} P2	Média	E CF
(h)	(mgSAC.L ⁻¹)	(mgSAC.L ⁻¹)	(mgSAC.L ⁻¹)	(%)
0,0	34	32	33	0
0,5	446	422	434	57
1,0	619	559	589	64
1,5	726	645	685	67
2,0	752	688	720	66
2,5	432	386	409	81
3,0	191	217	204	90
3,8	31	31	31	99

Tabela XI.3 – Valores de pH, alcalinidade parcial, alcalinidade intermediária, alcalinidade total, alcalinidade a bicarbonato e ácidos orgânicos voláteis totais ao longo do ciclo na condição III

	Tempo	pН	AP	AI	AT	AB	AVT		
_	(h)	(u)	(mgCaCO ₃ .L ⁻¹)	$(mgCaCO_3.L^{-1})$	$(mgCaCO_3.L^{-1})$	$(mgCaCO_3.L^{-1})$	(mgHAc.L ⁻¹)		
P1	0,0	4,6	0,0	222,7	222,7	0,0	1652,9		
	0,5	4,7	0,0	246,8	246,8	0,0	1510,1		
	1,0	4,7	0,0	285,2	285,2	0,0	1433,2		
	1,5	4,8	0,0	286,3	286,3	0,0	1334,4		
	2,0	4,8	0,0	285,2	285,2	0,0	1290,5		
	2,5	4,7	0,0	238,0	238,0	0,0	1334,4		
	3,0	4,6	0,0	209,5	209,5	0,0	1433,2		
	3,8	4,5	0,0	159,1	159,1	0,0	1510,1		
	0,0	4,5	0,0	195,3	195,3	0,0	1669,4		
	0,5	4,7	0,0	244,6	244,6	0,0	1554,1		
	1,0	4,7	0,0	240,2	240,2	0,0	1438,7		
P2	1,5	4,7	0,0	257,8	257,8	0,0	1306,9		
	2,0	4,7	0,0	261,1	261,1	0,0	1268,5		
	2,5	4,6	0,0	230,4	230,4	0,0	1317,9		
	3,0	4,6	0,0	187,6	187,6	0,0	1433,2		
	3,8	4,5	0,0	144,8	144,8	0,0	1625,4		
Tempo	EtOH	ButOH	HAc	HPr	HIsoBut	HBut	HIsoVal	HVa	HCa
--------------	---------------	---------------	---------------	---------------	------------------------	---------------	------------------------	---------------	---------------
(h)	$(mg.L^{-1})$	$(mg.L^{-1})$	$(mg.L^{-1})$	$(mg.L^{-1})$	$(\mathbf{mg.L}^{-1})$	$(mg.L^{-1})$	$(\mathbf{mg.L}^{-1})$	$(mg.L^{-1})$	$(mg.L^{-1})$
0,0	471,3	14,9	955,7	100,1	184,2	428,9	13,4	80,6	388,7
0,5	389,4	15,4	1025,1	79,6	118,6	314	10,3	53,5	299,6
1,0	383,3	15,5	988,9	97,5	193,9	445,6	13,2	75,6	317,7
1,5	365,7	14,6	974,4	76,9	126,7	319,1	10,6	55,2	214,1
2,0	403,9	13,9	940,1	68,7	110,8	282,9	9,9	49,1	279,9
2,5	449,1	15,5	936,1	87,6	170,1	400,2	12,1	66,8	270,5
3,0	497,6	16,5	939,2	92,7	179,4	421,6	12,3	69,3	291,6
3,8	492,2	13,8	980,0	88,4	155,8	386,8	10,7	60,2	274,0

Tabela XI.4 – Concentração de compostos intermediários ao longo do ciclo na condição III

Tabela XI.5 – Produção volumétrica acumulada do biogás ao longo do ciclo na condição III

	(h)	0,0	0,5	1,0	1,5	2,0	2,5	3,0	3,8
P1	(mL-CNTP)	0	315	608	1006	1412	1804	2139	2463
P2	(mL-CNTP)	0	353	682	1105	1560	1971	2312	2597
P3	(mL-CNTP)	0	383	760	1213	1676	2065	2323	2444
М	(mL-CNTP)	0	350	683	1108	1549	1947	2258	2501

Tabela XI.6 – Concentração dos compostos do biogás ao longo do ciclo na condição III

	Tempo (h)	0	0,5	1	1,5	2	2,5	3	3,83
C_{H2}	P1	0,00	2,08	3,94	4,89	6,00	6,99	7,87	8,59
(mmol.L^{-1})	P2	0,00	2,78	4,24	5,04	6,16	7,32	8,08	8,71
	P3	0,00	3,00	3,85	4,49	5,42	6,80	7,35	8,28
	Μ	0,00	2,62	4,01	4,81	5,86	7,04	7,77	8,53
C_{CH4}	P1	0,00	0,25	0,32	0,38	0,44	0,51	0,54	0,58
(mmol.L^{-1})	P2	0,00	0,29	0,32	0,38	0,44	0,50	0,56	0,60
	P3	0,00	0,32	0,36	0,39	0,48	0,53	0,56	0,62
	Μ	0,00	0,29	0,33	0,38	0,45	0,51	0,55	0,60
C _{CO2}	P1	0,00	5,84	12,06	13,39	14,82	15,86	16,41	17,53
(mmol.L^{-1})	P2	0,00	6,02	12,63	13,86	15,00	16,05	16,75	17,83
	P3	0,00	5,24	11,72	13,00	13,98	15,14	16,00	16,97
	М	0,00	5,70	12,14	13,42	14,60	15,68	16,39	17,44

ANEXO XII

Tempo	C _{SF} P1	C _{SF} P2	Média	ε _{sf}
(h)	(mgDQO.L ⁻¹)	(mgDQO.L ⁻¹)	(mgDQO.L ⁻¹)	(%)
0,0	3926	4477	4201	0
0,5	4085	4491	4288	3
1,0	3984	4628	4306	6
1,5	4176	4510	4343	7
2,0	4068	4598	4333	7
2,8	4187	4418	4302	8

Tabela XII.1 - Concentração de matéria orgânica (DQO) ao longo do ciclo na condição IV

Tabela XII.2 - Concentração de carboidratos (sacarose) ao longo do ciclo na condição IV

Tempo	C _{CF} P1	C _{CF} P2	Média	8 _{CF}
(h)	(mgSAC.L ⁻¹)	(mgSAC.L ⁻¹)	(mgSAC.L ⁻¹)	(%)
0,0	38	56	47	0
0,5	526	493	509	47
1,0	713	634	673	57
1,5	917	777	847	58
2,0	617	463	540	73
2,8	80	101	91	96

Tabela XII.3 – Valores de pH, alcalinidade parcial, alcalinidade intermediária, alcalinidade total, alcalinidade a bicarbonato e ácidos orgânicos voláteis totais ao longo do ciclo na condição IV

	Tempo	pН	AP	AI	AT	AB	AVT
	(h)	(u)	(mgCaCO ₃ .L ⁻¹)	(mgHAc.L ⁻¹)			
	0,0	4,7	0,0	271,2	271,2	0,0	1449,3
D 1	0,5	4,9	0,0	331,5	331,5	0,0	1369,4
	1,0	4,9	0,0	360,7	360,7	0,0	1304,4
11	1,5	5,0	0,0	376,2	376,2	0,0	1229,4
	2,0	4,9	0,0	339,3	339,3	0,0	1304,4
	2,8	4,7	0,0	267,3	267,3	0,0	1439,3
	0,0	4,7	0,0	267,3	267,3	0,0	1439,3
	0,5	4,9	0,0	329,6	329,6	0,0	1319,4
P2	1,0	4,9	0,0	349,0	349,0	0,0	1294,4
Γ <i>Δ</i>	1,5	5,0	0,0	365,5	365,5	0,0	1199,4
	2,0	4,8	0,0	310,1	310,1	0,0	1309,4
	2,8	4,7	0,0	262,5	262,5	0,0	1419,3

Tabela XII.4 –	Concentração de com	postos intermediários ao	longo do ciclo na	condição IV
	`		()	2

Tempo	EtOH	ButOH	HAc	HPr	HIsoBut	HBut	HIsoVal	HVa	HCa
(h)	$(\mathbf{mg.L}^{\cdot 1})$	$(\mathbf{mg} \cdot \mathbf{L}^{\cdot 1})$	$(\mathbf{mg.L}^{\cdot 1})$	$(mg.L^{-1})$	$(\mathbf{mg.L}^{-1})$	$(\mathbf{mg.L}^{-1})$	$(\mathbf{mg.L}^{\cdot 1})$	$(\mathbf{mg.L}^{\cdot 1})$	$(\mathbf{mg.L}^{-1})$
0,0	573,1	15,6	1108,1	100,6	123,8	218,8	8,5	43,9	105,6
0,5	351,3	14,1	903,7	111,1	201,3	299,5	10,1	60,9	149,5
1,0	280,5	11,1	862,9	121,4	284	275,7	11,9	59,7	137,2
1,5	269,3	11,7	796,7	93,3	228,7	210,2	8,5	43,8	129,8
2,0	391,9	12,9	707,9	113,8	247,7	244,3	11,0	60,9	103,6
2,8	560,6	13,3	1030,6	109,4	140,1	223,3	8,7	41,7	92,3

Tabela XII.5 – Produção volumétrica acumulada do biogás ao longo do ciclo na condição IV

Tempo	(h)	0,0	0,5	1,0	1,5	2,0	2,8
P1	(mL-CNTP)	0	411	783	1205	1570	2159
P2	(mL-CNTP)	0	377	875	1343	1754	2169
P3	(mL-CNTP)	0	400	840	1187	1561	2084
Μ	(mL-CNTP)	0	396	833	1245	1628	2137

Tabela XII.6 – Concentração dos compostos do biogás ao longo do ciclo na condição IV

	Tempo (h)	0	0,50	1,00	1,50	2,00	2,80
C _{H2}	P1	0,00	2,39	3,99	5,02	6,19	8,00
(mmol.L^{-1})	P2	0,00	2,51	4,16	5,15	6,40	8,06
	P3	0,00	2,67	4,36	5,24	6,54	8,03
	Μ	0,00	2,52	4,17	5,14	6,38	8,03
C_{CH4}	P1	0,00	0,00	0,00	0,00	0,00	0,00
(mmol.L^{-1})	P2	0,00	0,00	0,00	0,00	0,00	0,00
	P3	0,00	0,00	0,00	0,00	0,00	0,00
	Μ	0,00	0,00	0,00	0,00	0,00	0,00
C _{CO2}	P1	0,00	4,89	11,71	12,88	13,90	15,57
(mmol.L^{-1})	P2	0,00	4,39	11,34	12,62	14,21	15,52
	P3	0,00	4,54	11,83	13,15	14,11	15,48
	Μ	0,00	4,60	11,63	12,88	14,07	15,52

ANEXO XIII

Tempo	C _{SF} P1	C _{SF} P2	Média	€ _{SF}
(h)	(mgDQO.L ⁻¹)	(mgDQO.L ⁻¹)	(mgDQO.L ⁻¹)	(%)
0,0	2947	2890	2918	0
0,3	3128	3097	3112	0
0,7	3062	3077	3070	2
1,0	2919	2963	2941	8
1,3	2980	2813	2896	9
1,8	2890	2846	2868	10

Tabela XIII.1 – Concentração de matéria orgânica (DQO) ao longo do ciclo na condição V

Tabela XIII.2 - Concentração de carboidratos (sacarose) ao longo do ciclo na condição V

Tempo	C _{CF} P1	C _{CF} P2	Média	E CF
(h)	(mgSAC.L ⁻¹)	(mgSAC.L ⁻¹)	(mgSAC.L ⁻¹)	(%)
0,0	25	75	50	0
0,3	398	474	436	33
0,7	592	567	579	45
1,0	645	679	662	51
1,3	397	361	379	72
1,8	75	71	73	95

Tabela XIII.3 – Valores de pH, alcalinidade parcial, alcalinidade intermediária, alcalinidade total, alcalinidade a bicarbonato e ácidos orgânicos voláteis totais ao longo do ciclo na condição V

	ulcullin	uuuu	u bleurbolluto e u				onaiçuo v
	Tempo	pН	AP	AI	AT	AB	AVT
	(h)	(u)	(mgCaCO ₃ .L ⁻¹)	(mgHAc.L ⁻¹)			
	0,0	4,7	0,0	217,4	217,4	0,0	995,3
	0,3	4,9	0,0	252,3	252,3	0,0	859,1
D 1	0,7	5,0	0,0	273,2	273,2	0,0	826,3
11	1,0	5,0	0,0	263,2	263,2	0,0	732,4
	1,3	4,8	0,0	249,3	249,3	0,0	830,9
	1,8	4,7	0,0	200,4	200,4	0,0	854,4
	0,0	4,7	0,0	200,4	200,4	0,0	854,4
	0,3	4,9	0,0	241,3	241,3	0,0	854,4
P2	0,7	5,0	0,0	255,3	255,3	0,0	798,1
1 4	1,0	5,0	0,0	256,3	256,3	0,0	704,2
	1,3	4,9	0,0	225,4	225,4	0,0	812,2
	1,8	4,6	0,0	163,5	163,5	0,0	873,2

Tabela XIII.4 – Co	ncentração de compos	tos intermediários ao	longo do ciclo na	condição V
				`

Tempo	EtOH	ButOH	HAc	HPr	HIsoBut	HBut	HIsoVal	HVa	HCa
(h)	$(\mathbf{mg.L}^{\cdot 1})$	$(mg.L^{-1})$	$(\mathbf{mg.L}^{-1})$	$(mg.L^{-1})$	$(\mathbf{mg.L}^{-1})$	$(mg.L^{-1})$	$(\mathbf{mg.L}^{\cdot 1})$	$(\mathbf{mg.L}^{\cdot 1})$	$(\mathbf{mg.L}^{-1})$
0,0	385,5	4,3	697,6	97,7	65,5	114,2	7,2	38,3	70,2
0,3	351,2	4,1	566,7	82,8	39,2	116,6	7,3	40,9	79,8
0,7	332,9	3,9	544,6	80,0	49,6	136,8	7,8	48,1	90,5
1,0	306,8	3,5	537,8	71,6	40,6	127,5	7,0	34,4	83,9
1,3	349,6	4,0	576,6	89,4	48,5	137,1	7,7	46,8	95,6
1,8	382,9	4,4	672,7	101,9	68,5	131,5	8,2	45,9	87,0

Tabela XIII.5 – Produção volumétrica acumulada do biogás ao longo do ciclo na condição V

Tempo	(h)	0,0	0,3	0,7	1,0	1,3	1,8
P1	(mL-CNTP)	0	186	462	720	905	1060
P2	(mL-CNTP)	0	227	524	784	1001	1265
P3	(mL-CNTP)	0	187	428	664	813	1000
М	(mL-CNTP)	0	200	472	723	907	1108

Tabela XIII.6 – Concentração dos compostos do biogás ao longo do ciclo na condição V

	Tempo (h)	0,0	0,3	0,7	1,0	1,3	1,8
C_{H2}	P1	0,00	1,79	3,00	4,73	5,33	7,09
(mmol.L^{-1})	P2	0,00	1,61	3,21	4,58	5,48	7,12
	P3	0,00	2,70	3,17	4,50	5,34	7,23
	Μ	0,00	2,04	3,13	4,60	5,39	7,14
C_{CH4}	P1	0,00	0,00	0,00	0,00	0,00	0,00
(mmol.L^{-1})	P2	0,00	0,00	0,00	0,00	0,00	0,00
	P3	0,00	0,00	0,00	0,00	0,00	0,00
	Μ	0,00	0,00	0,00	0,00	0,00	0,00
C _{CO2}	P1	0,00	3,93	6,92	8,58	10,37	12,50
$(mmol.L^{-1})$	P2	0,00	3,89	6,52	8,58	10,33	12,31
	P3	0,00	3,70	6,09	8,06	10,49	12,03
	М	0,00	3,84	6,51	8,40	10,40	12,28

ANEXO XIV

Tempo	C _{SF} P1	C _{SF} P2	Média	ε _{sf}
(h)	(mgDQO.L ⁻¹)	(mgDQO.L ⁻¹)	(mgDQO.L ⁻¹)	(%)
0,0	4579	4666	4623	0
0,3	4709	4681	4695	1
0,7	4608	4672	4640	3
1,0	4715	4553	4634	5
1,3	4649	4707	4678	4
1,8	4666	4597	4632	5

Tabela XIV.1 – Concentração de matéria orgânica (DQO) ao longo do ciclo na condição VI

Tabela XIV.2 - Concentração de carboidratos (sacarose) ao longo do ciclo na condição VI

Tempo	C _{CF} P1	C _{CF} P2	Média	E CF
(h)	(mgSAC.L ⁻¹)	(mgSAC.L ⁻¹)	(mgSAC.L ⁻¹)	(%)
0,0	584	868	726	0
0,3	1021	1172	1096	25
0,7	1297	1328	1312	33
1,0	1441	1360	1400	40
1,3	1252	1310	1281	45
1,8	868	936	902	61

Tabela XIV.3 – Valores de pH, alcalinidade parcial, alcalinidade intermediária, alcalinidade total, alcalinidade a bicarbonato e ácidos orgânicos voláteis totais ao longo do ciclo na condição VI

	Tempo	pН	AP	AI	AT	AB	AVT
	(h)	(u)	$(mgCaCO_3.L^{-1})$	$(mgCaCO_3.L^{-1})$	(mgCaCO ₃ .L ⁻¹)	$(mgCaCO_3.L^{-1})$	(mgHAc.L ⁻¹)
	0,0	4,4	0,0	86,3	86,3	0,0	1275,5
D1	0,3	4,6	0,0	162,4	162,4	0,0	1207,1
	0,7	4,7	0,0	207,6	207,6	0,0	1055,6
11	1,0	4,7	0,0	227,1	227,1	0,0	1041,0
	1,3	4,6	0,0	195,3	195,3	0,0	1080,0
	1,8	4,5	0,0	123,3	123,3	0,0	1036,1
	0,0	4,5	0,0	123,3	123,3	0,0	1036,1
	0,3	4,6	0,0	179,9	179,9	0,0	1099,6
P2	0,7	4,7	0,0	224,1	224,1	0,0	1050,7
ΓZ	1,0	4,8	0,0	237,4	237,4	0,0	933,4
	1,3	4,7	0,0	198,4	198,4	0,0	1011,6
_	1,8	4,5	0,0	140,8	140,8	0,0	1133,8

Tabela XIV.4 – Concentração	de compostos intermediários ao	longo do ciclo na condição VI
1		

Tempo	EtOH	ButOH	HAc	HPr	HIsoBut	HBut	HIsoVal	HVa	HCa
(h)	$(\mathbf{mg.L}^{\cdot 1})$	$(\mathbf{mg.L}^{\cdot 1})$	$(\mathbf{mg.L}^{\cdot 1})$	$(\mathbf{mg.L}^{-1})$	$(\mathbf{mg.L}^{-1})$	$(mg.L^{-1})$	$(\mathbf{mg.L}^{\cdot 1})$	$(\mathbf{mg.L}^{\cdot 1})$	$(\mathbf{mg.L}^{-1})$
0,0	499,4	5,9	922,5	81,5	44,7	431,9	10,9	43,6	235,1
0,3	459,6	5,7	855,4	57,5	38,7	395,3	10,1	32,5	219,7
0,7	410,7	5,5	781,5	51,3	34,6	347,6	9,8	29,9	203,1
1,0	352,2	5,1	763,8	43,1	25,8	279,4	8,7	25,4	146,1
1,3	392,9	5,3	803,9	59,5	21,4	332,2	8,4	22,9	186,7
1,8	467,64	5,6	928,7	83,4	36,3	398,6	9,3	44,1	220,6

Tabela XIV.5 – Produção volumétrica acumulada do biogás ao longo do ciclo na condição VI

Tempo	(h)	0,0	0,3	0,7	1,0	1,3	1,8
P1	(mL-CNTP)	0	275	642	982	1305	1704
P2	(mL-CNTP)	0	321	674	1024	1350	1760
P3	(mL-CNTP)	0	348	707	1042	1380	1800
Μ	(mL-CNTP)	0	314	674	1016	1345	1754

Tabela XIV.6 – Concentração dos compostos do biogás ao longo do ciclo na condição VI

	Tempo (h)	0,0	0,3	0,7	1,0	1,3	1,8
C_{H2}	P1	0,00	3,67	4,20	5,18	5,83	7,00
(mmol.L^{-1})	P2	0,00	3,93	4,37	5,05	6,00	7,22
	P3	0,00	3,82	4,28	5,08	5,98	7,09
	Μ	0,00	3,80	4,28	5,10	5,94	7,10
C _{CH4}	P1	0,00	0,00	0,00	0,00	0,00	0,00
(mmol.L^{-1})	P2	0,00	0,00	0,00	0,00	0,00	0,00
	P3	0,00	0,00	0,00	0,00	0,00	0,00
	М	0,00	0,00	0,00	0,00	0,00	0,00
C_{CO2}	P1	0,00	8,68	10,87	12,85	13,29	14,12
(mmol.L^{-1})	P2	0,00	9,17	11,08	12,41	13,52	14,67
	P3	0,00	8,94	10,94	12,18	13,40	14,32
	М	0,00	8,93	10,96	12,48	13,40	14,37