4.3.3 Modelagem matemática do M_R em função do E_o e do estado de tensão considerando-se os solos desta e de outras pesquisas desenvolvidas na EESC-USP

Levando-se em consideração que a presente pesquisa contava apenas com três tipos de solos e visando dar uma maior abrangência ao estudo, conforme citado no item 4.3.2, foram incluídos nesta análise resultados de ensaios triaxiais cíclicos e de compressão simples de duas outras pesquisas desenvolvidas na Escola de Engenharia de São Carlos/USP: a dissertação de mestrado de CUNTO (1998) e a dissertação de mestrado de CARMO (1998).

Os três solos utilizados por CUNTO (1998) são predominantemente arenosos. A tabela 4.12 mostra a granulometria destes materiais e a tabela 4.13 apresenta as classificações, limites de consistência, massa específica seca máxima e umidade ótima destes solos, sendo que as massas específicas secas máximas e as umidades ótimas foram determinadas na energia normal de compactação.

Os solos da sub-base e base da rodovia CE-085 foram coletados no Estado do Ceará, entre as cidades de Caucaia e Barrento. O solo do Parnaíba foi coletado no município de Parnaíba, Estado do Piauí, onde é utilizado no recobrimento das estradas vicinais da região.

Solo -	Granulometria (%) (NBR – 6502)			
	Areia	Silte	Argila	% pass. #200
CE-085 (Sub-base)	82,1	4,7	13,2	21,0
CE-085 (Base)	88,6	3,8	7,6	15,0
Parnaíba-Pl	56,4	19,1	24,5	48,0

TABELA 4.12- Granulometria dos solos da pesquisa de CUNTO (1998)

Solo				
	CE-085 (Sub-base)	CE-085 (Base)	Parnaíba-Pl	
HRB	A-2-4	A-2-4	A-3	
USCS	SC	SC	CL	
MCT	LA'	LA	LG'	
LL (%)	20,2	NL	26,2	
IP (%)	6,7	-	7,9	
Energia de compactação	Normal	Normal.	Normal	
ρ _{dmáx} (g/cm³)	2,043	1,968	1,912	
W _{ot} (%)	10,07	9,76	14,00	

TABELA 4.13– Características e classificação dos três solos da pesquisa de CUNTO (1998)

Os dois solos utilizados por CARMO (1998) são um areno-argiloso utilizado na construção das camadas de reforço e base da rodovia SCA-040, em São Paulo, e outro argiloso, proveniente da região de Uberaba.

A tabela 4.14 mostra a granulometria destes materiais e a tabela 4.15 apresenta as classificações, limites de consistência, massa específica seca máxima e umidade ótima destes dois solos, sendo que as massas específicas secas máximas e as umidades ótimas foram determinadas na energia normal e intermediária de compactação e a tabela 4.15 mostra a granulometria destes materiais.

Solo	Granulometria (%) (NBR – 6502)			
	Areia	Silte	Argila	% pass. #200
SCA-040 (SP)	77,0	3,0	19,97	29,25
Uberaba (MG)	19,0	32,0	48,0	88,44

TABELA 4.14– Granulometria dos solos da pesquisa de CARMO (1998)

	SCA-040 (SP)		Uberaba (MG)	
HRB	A-2-4		A-7-5	
USCS	SC		С	L
МСТ	LA'		L	G'
LL (%)	27,60		48,40	
IP (%)	9,24		14,74	
Energia de	Normal	Intorm	Normal	Intorm
compactação	nomai	menn.	Normai.	menn.
ρ _{dmáx} (g/cm ³)	1,960	2,015	1,550	1,700
W _{ot} (%)	11,30	10,10	27,00	25,00

TABELA 4.15– Características e classificação dos solos da pesquisa de C	CARMO	(1998)
Solo		

A tabela 4.16 apresenta o conjunto dos valores do módulo tangente inicial obtidos a partir dos ensaios de compressão simples realizados nas pesquisas de CARMO (1998) e CUNTO (1998).

Solo	Classificação	Energia de Compactação	E₀ (MPa)
CE-085 (sub-base)	LA'	Normal	24
CE-085 (base)	LA'	Normal	28
Parnaíba	LG'	Normal	55
SCA-040 (SP)	LA'	Normal	402
		Intermediária	1560
Uberaba (MG)	LG'	Normal	123
		Intermediária	446

TABELA 4.16 – Módulo tangente inicial dos materiais utilizados nas pesquisas de CUNTO (1998) e CARMO (1998)

Enfatiza-se que todas as análises apresentadas a seguir foram realizadas tomando como base o módulo de resiliência determinado a partir dos parâmetros do modelo composto, expresso pela equação 4.5, pois como constatado no item 4.3.2 este modo de análise proporciona maiores coeficientes de determinação. A tabela 4.17

apresenta os parâmetros de regressão obtidos do modelo da equação 4.5 aplicado aos solos de CUNTO (1998) e CARMO (1998).

Solos	En. Compactação	Par. Regressão		
CUNTO (1998)				
		k ₁ = 234		
CE – 085	Normal	k ₂ = -0,18		
(Sub-base)		k ₃ = -0,04		
		k ₁ = 911		
CE – 085 (Base)	Normal	$k_2 = 0,09$		
		$k_3 = 0,47$		
		k ₁ = 600		
Parnaíba (PI)	Normal	k ₂ = -0,10		
		$k_3 = 0,47$		
	CARMO (1998)			
		k ₁ = 810		
	Normal	k ₂ = 0,01		
SCA = 040 (SP)		$k_3 = 0,14$		
007 - 040 (01)		k ₁ = 1284		
	Intermediária	$k_2 = 0,11$		
		$k_3 = 0,10$		
		k ₁ = 118		
	Normal	k ₂ = -0,53		
Uberaba (MG)		$k_3 = 0,98$		
		k ₁ = 752		
	Intermediária	$k_2 = -0,19$		
		k ₃ = 0,11		

TABELA 4.17–Parâmetros de regressão do modelo da equação 4.5 aplicado aos solos de CUNTO (1998) e CARMO (1998)

A tabela 4.18 apresenta as expressões matemáticas analisadas e os coeficientes de determinação (R²) correspondentes para o conjunto dos oito solos considerados nesta etapa da pesquisa. Foram utilizadas um total de 472 observações.

	Solos desta e de outras pesquisas	
Função	Expressões	R ²
$M_{R} = f(E_{o};\sigma_{d};\sigma_{3})$	$M_{R} = 42,06 \cdot E_{o}^{0,38} + 0,30 \cdot \sigma_{d}^{-1,93} + 971,35 \cdot \sigma_{3}^{0,75}$	0,65
$M_R = f(E_o; \sigma_d)$	$M_R = 116,09 \cdot E_o^{0,26} + 0,05 \cdot \sigma_d^{-2,41}$	0,62
$M_R = f(E_o;\sigma_3)$	$M_{\rm R} = 78,53 \cdot {\rm E_0}^{0,31} + 438,66 \cdot {\rm \sigma_3}^{0,50}$	0,48
$M_{R} = f(E_{o}; \sigma_{d}; \sigma_{3})$	$M_{R} = 57,45 \cdot E_{o}^{0,34} + 185,05 \cdot (\sigma_{3}/\sigma_{d})^{0,81}$	0,63
$M_{R} = f(E_{o};\!\sigma_{d};\!\theta)$	$M_{R} = 43,38 \cdot E_{o}^{0,37} + 61,05 \cdot (\theta/\sigma_{d})^{0,90}$	0,64
$M_{R} = f(E_{o};\sigma_{d};\sigma_{3})$	$M_{R} = 142,62 \cdot E_{o}^{0,25} \cdot \sigma_{d}^{-0,29} \cdot \sigma_{3}^{0,27}$	0,63
$M_{R} = f(E_{o}; \sigma_1; \sigma_3)$	$M_{\rm R} = 225,75 \cdot {\rm E_o}^{0,25} \cdot {\rm \sigma_1}^{-0,51} \cdot {\rm \sigma_3}^{0,51}$	0,60
$M_R = f(E_o;\!\sigma_d;\!\theta)$	$M_{R} = 84,91 \cdot E_{o}^{0,25} \cdot \sigma_{d}^{-0,39} \cdot \theta^{0,38}$	0,64
$M_R = f(E_o; \sigma_3)$	$M_{R} = 196,92 \cdot E_{0}^{0,24} \cdot \sigma_{3}^{0,11}$	0,48
$M_R = f(E_o; \theta)$	$M_{R} = 132,70 \cdot E_{o}^{0,24} \cdot \theta^{-0,06}$	0,47
$M_R = f(E_{o}; \sigma_1; \sigma_3)$	$M_{R} = 107,25 \cdot E_{o}^{0,27} + 2,69 \cdot \sigma_{1}^{-1,52} + 8,01 \cdot \sigma_{3}^{4,02}$	0,50
$M_{R} = f(E_{o}; \sigma_1; \sigma_3)$	$M_{R} = 96,75 \cdot E_{0}^{0,28} + 1060,70 \cdot (\sigma_{3}/\sigma_{1})^{3,33}$	0,63
$M_R = f(E_o; \sigma_1; \theta)$	$M_{R} = 84,77 \cdot E_{0}^{0,30} + 3,13 \cdot (\theta/\sigma_{1})^{5,35}$	0,63

TABELA 4.18– Expressões matemáticas analisadas para representar a variação do módulo de resiliência em função do módulo tangente inicial e estado de tensão englobando solos desta e de outras pesquisa

Analisando-se os resultados apresentados na tabela 4.18 e tomando-se os valores dos coeficientes de determinação (R^2) como uma medida comparativa do desempenho dos diversos modelos, concluí-se que o modelo da equação 4.21 ($R^2 = 0,65$) é o que melhor descreve a relação entre o módulo de resiliência, o módulo tangente inicial e o estado de tensão, apesar de outros oito deles apresentarem coeficientes de determinação (R^2) muito próximos (0,60 a 0,64).

$$M_{\rm R} = 42,06 \cdot {\rm E_0}^{0,38} + 0,30 \cdot {\rm \sigma_d}^{-1,93} + 971,35 \cdot {\rm \sigma_3}^{0,75}$$
(4.21)

onde:

M_R - módulo de resiliência em MPa;

- σ_d tensão desvio em MPa;
- σ_3 tensão de confinamento em MPa;
- E_o módulo tangente inicial em MPa.

A figura 4.27 apresenta os valores do módulo de resiliência determinados a partir de parâmetros do modelo composto (eq. 4.5) e os valores deste mesmo módulo determinados utilizando a equação 4.21.

Conforme apresentado na Revisão Bibliográfica, solos argilosos e arenosos, sofrem a influência, quase que exclusiva, da tensão desvio e confinante, respectivamente. Esta constatação enseja que relações entre o módulo de resiliência e o módulo tangente inicial correspondentes a solos predominantemente argilosos ou arenosos não devam ser únicas.

Com o propósito de analisar a consequência de se considerar solos puramente argilosos ou arenosos separadamente, foram estudadas relações envolvendo solos predominantemente argilosos e em seguida, os predominanatemente arenosos.

A tabela 4.19 apresenta as expressões matemáticas e os correspondentes coeficientes de determinação obtidos segundo a nova condição de análise, tomando-se os solos predominantemente argilosos. O número de observações consideradas é igual a 256 e foram considerados os solos argiloso, areno-argiloso e Uberaba (MG).

TABELA 4.19– Expressões matemáticas analisadas para representar a variação do módulo de resiliência em função do módulo tangente inicial e estado de tensão englobando os solos de predominância argilosa desta e de outras pesquisa.

Solos argilosos desta e de outras pesquisas	
Expressões	R ²
$M_{R} = 0.95 \cdot E_{0}^{1.08} + 25.60 \cdot \sigma_{d}^{-0.79} + 1339.21 \cdot \sigma_{3}^{1.69}$	0,97
$M_{R} = 1,20 \cdot E_{0}^{1,04} + 26,31 \cdot \sigma_{d}^{-0,78}$	0,97
$M_{R} = 14,86 \cdot E_{0}^{0.68} - 5,21 \cdot \sigma_{3}^{-0.57}$	0,74
$M_{R} = 1,15 \cdot E_{o}^{1,05} + 228,97 \cdot (\sigma_{3}/\sigma_{d})^{0,55}$	0,93
$M_{R} = 0.78 \cdot E_{o}^{1,11} + 99.75 \cdot (\theta/\sigma_{d})^{0.63}$	0,92
$M_{R} = 12,30 \cdot E_{o}^{0,62} \cdot \sigma_{d}^{-0,28} \cdot \sigma_{3}^{0,08}$	0,96
$M_{R} = 19,65 \cdot E_{0}^{0,63} \cdot \sigma_{1}^{-0,59} \cdot \sigma_{3}^{0,41}$	0,95
$M_{R} = 10,54 \cdot E_{o}^{0.62} \cdot \sigma_{d}^{-0.30} \cdot \theta^{0.09}$	0,96
$M_{R} = 14,33 \cdot E_{0}^{0,71} \cdot \sigma_{3}^{0,52}$	0,74
$M_{R} = 9,64 \cdot E_{0}^{0,72} \cdot \theta^{-0,15}$	0,76
$M_{R} = 104,44 \cdot E_{0}^{0,42} - 1004,21 \cdot \sigma_{1}^{0,49} + 347,83 \cdot \sigma_{3}^{184,24}$	0,84
$M_{R} = 3,78 \cdot E_{0}^{0,87} + 666,39 \cdot (\sigma_{3}/\sigma_{1})^{2,01}$	0,93
$M_{R} = 2,61 \cdot E_{0}^{0,92} + 18,24 \cdot (\theta/\sigma_{1})^{3,36}$	0,93
	Solos argilosos desta e de outras pesquisas Expressões $M_R = 0.95 \cdot E_o^{-1.08} + 25.60 \cdot \sigma_d^{-0.79} + 1339.21 \cdot \sigma_3^{-1.69}$ $M_R = 1.20 \cdot E_o^{-1.04} + 26.31 \cdot \sigma_d^{-0.78}$ $M_R = 14.86 \cdot E_o^{-0.68} - 5.21 \cdot \sigma_3^{-0.57}$ $M_R = 1.15 \cdot E_o^{-1.05} + 228.97 \cdot (\sigma_3/\sigma_d)^{0.55}$ $M_R = 0.78 \cdot E_o^{-1.11} + 99.75 \cdot (\theta/\sigma_d)^{0.63}$ $M_R = 12.30 \cdot E_o^{-0.62} \cdot \sigma_d^{-0.28} \cdot \sigma_3^{-0.08}$ $M_R = 19.65 \cdot E_o^{-0.63} \cdot \sigma_1^{-0.59} \cdot \sigma_3^{-0.41}$ $M_R = 10.54 \cdot E_o^{-0.72} \cdot \theta^{-0.15}$ $M_R = 104.44 \cdot E_o^{-0.72} \cdot \theta^{-0.15}$ $M_R = 104.44 \cdot E_o^{-0.42} - 1004.21 \cdot \sigma_1^{-0.49} + 347.83 \cdot \sigma_3^{-184.24}$ $M_R = 3.78 \cdot E_o^{-0.92} + 18.24 \cdot (\theta/\sigma_1)^{3.36}$

Analisando-se os resultados apresentados na tabela 4.19, concluí-se que o modelo da equação 4.22 ($R^2 = 0.97$) e os modelos expressos em função da tensão

desvio combinada com a tensão confinante apresentam idênticos e maiores valores de coeficiente de determinação.

$$M_{\rm R} = 1,20 \cdot E_{\rm o}^{-1,04} + 26,31 \cdot \sigma_{\rm d}^{-0,78}$$
(4.22)

onde:

M_R - módulo de resiliência em MPa;

 σ_d - tensão desvio em MPa;

E_o – módulo tangente inicial em MPa.

Na figura 4.28 encontram-se os valores do M_R determinados a partir dos parâmetros do modelo composto (eq. 4.5) e os valores previstos pela equação 4.22.

FIGURA 4.28 – Módulo de resiliência: valores determinados através dos parâmetros do modelo composto versus os valores determinados pela equação 4.22.

Comparando-se a análise conjunta de todos os solos e a análise considerando-se apenas os predominantemente argilosos, observa-se que esta última

conduziu a modelos com coeficientes de determinação R² mais elevados que a análise primitiva, confirmando a observação realizada anteriormente para os solos desta pesquisa.

A tabela 4.20 mostra as expressões matemáticas e os correspondentes coeficientes de determinação obtidos considerando-se conjuntamente os solos de predominância arenosa desta e das outras pesquisas. O número de observação nesta condição foi de 216. Foram considerados nesta análise os solos arenoso, CE-085 (Sub-base), CE-085 (Base), Parnaíba-PI e SCA-040 (SP).

TABELA 4.20- Expressões matemáticas analisadas para representar a variação do módulo de resiliência em função do módulo tangente inicial e estado de tensão englobando solos de predominância arenosa desta e de outras pesquisa

Solos arenosos desta e de outras pesquisas				
Função	Expressões	R ²		
$M_{R} = f(E_{o};\sigma_{d};\sigma_{3})$	$M_{R} = 2,91 \cdot E_{o}^{0,69} - 663,89 \cdot \sigma_{d}^{48,32} + 667,04 \cdot \sigma_{3}^{0,32}$	0,82		
$M_R = f(E_o; \sigma_d)$	$M_R = 3,06 \cdot E_0^{0,68} + 454,76 \cdot \sigma_d^{0,22}$	0,81		
$M_{R} = f(E_{o}; \sigma_3)$	$M_{\rm R} = 2,91 \cdot {\sf E_0}^{0,69} + 677,04 \cdot {\sigma_3}^{0,32}$	0,82		
$M_{R} = f(E_{o};\sigma_{d};\sigma_{3})$	$M_{R} = 3,04 \cdot E_{o}^{0,68} + 270,17 \cdot (\sigma_{3}/\sigma_{d})^{-0,05}$	0,77		
$M_{R} = f(E_{o}; \sigma_{d}; \theta)$	$M_{R} = 3,04 \cdot E_{o}^{0,68} + 300,73 \cdot (\theta/\sigma_{d})^{-0,07}$	0,78		
$M_{R} = f(E_{o};\sigma_{d};\sigma_{3})$	$M_{R} = 305,03 \cdot E_{o}^{0,19} \cdot \sigma_{d}^{0,10} \cdot \sigma_{3}^{0,13}$	0,73		
$M_{R} = f(E_{o};\sigma_1;\sigma_3)$	$M_{R} = 271,15 \cdot E_{o}^{0,19} \cdot \sigma_{1}^{0,16} \cdot \sigma_{3}^{0,06}$	0,73		
$M_R = f(E_o;\!\sigma_d;\!\theta)$	$M_{R} = 231,16 \cdot E_{o}^{0,19} \cdot \sigma_{d}^{0,03} \cdot \theta^{0,20}$	0,73		
$M_R = f(E_o;\sigma_3)$	$M_{R} = 303,84 \cdot E_{0}^{0,19} \cdot \sigma_{3}^{0,22}$	0,72		
$M_R = f(E_o; \theta)$	$M_{R} = 224,36 \cdot E_{0}^{0,19} \cdot \theta^{0,02}$	0,73		
$M_R = f(E_{o}; \sigma_1; \sigma_3)$	$M_{R} = 2,90 \cdot E_{0}^{0,69} - 126,37 \cdot \sigma_{1}^{166,99} + 677,04 \cdot \sigma_{3}^{0,32}$	0,82		
$M_R = f(E_o; \sigma_1; \sigma_3)$	$M_{R} = 3,05 \cdot E_{o}^{0,68} + 253,33 \cdot (\sigma_{3}/\sigma_{1})^{-0,09}$	0,77		
$M_{R} = f(E_{o}; \sigma_1; \theta)$	$M_{R} = 3,04 \cdot E_{0}^{0,68} + 310,09 \cdot (\theta/\sigma_{1})^{-0,20}$	0,78		

Analisando-se os resultados apresentados na tabela 4.20, concluí-se que o modelo da equação 4.23 ($R^2 = 0.82$) e os modelos expressos em função da tensão confinante combinada com a tensão desvio e da tensão confinante combinada com a tensão principal maior apresentam idênticos e maiores valores de coeficiente de determinação.

$$M_{\rm R} = 2,91 \cdot E_0^{0,69} + 677,04 \cdot \sigma_3^{0,32} \tag{4.23}$$

onde:

M_R - módulo de resiliência em MPa;

 σ_3 – tensão de confinamento em MPa;

E_o – módulo tangente inicial em MPa.

A figura 4.29 apresenta os valores do módulo de resiliência determinados a partir dos parâmetros do modelo composto (eq. 4.5) e os valores deste mesmo módulo determinado utilizando a equação 4.23.

FIGURA 4.29 – Módulo de resiliência: valores determinados através dos parâmetros do modelo composto versus os valores determinados pela equação 4.23.

Analisando-se as três últimas equações desenvolvidas neste item, 4.21, 4.22 e 4.23, pode-se concluir que quando foram usados os oito solos o coeficiente de determinação foi de 0,65, ao passo que, quando foram separados estes materiais em solos de predominância argilosa e de predominância arenosa, influenciados pela tensão desvio e pela tensão de confinamento, nesta ordem, os coeficientes de determinação sofreram significativo acréscimo. Este fato indica que o procedimento de separar-se os solos em duas categorias, segundo a suas frações granulométricas predominante, é adequado para análises deste gênero. Finalmente, os valores elevados de R² alcançados são indicativos da viabilidade de relações que possibilitem a estimativa do módulo de resiliência a partir do E_o obtido em ensaios de compressão simples.