- CAPÍTULO 4 APRESENTAÇÃO E ANÁLISE DOS RESULTADOS

4.1 – INTRODUÇÃO

Neste capítulo são analisados os resultados dos ensaios triaxiais cíclicos, cujos resultados são apresentados no Anexo A, para a determinação do módulo de resiliência dos três solos objetos de estudo desta pesquisa. Inicialmente, é estudada a influência das tensões aplicadas no valor do M_R e propostos modelos para a sua representação. Estudou-se ainda a existência de relações matemáticas entre o módulo de resiliência e módulo tangente inicial (E_o) obtido a partir de ensaios de compressão simples. Finalmente, faz-se uma comparação entre os resultados dos ensaios triaxiais cíclicos realizados na COPPE-UFRJ e na EESC-USP.

4.2 – ENSAIOS TRIAXIAIS CÍCLICOS E A MODELAGEM DO MÓDULO DE RESILIÊNCIA EM FUNÇÃO DO ESTADO DE TENSÃO

4.2.1 Introdução

Conforme observado no Capítulo 2, Revisão Bibliográfica, o módulo de resiliência dos solos sofre grande influência do estado de tensão. Vários autores apresentaram diferentes modelos matemáticos que procuram descrever este comportamento. Neste trabalho, além de se analisar a influência das tensões desvio e confinante no valor do M_R , é também discutido o desempenho dos modelos descritos pelas equações 4.1 a 4.8, por serem os modelos mais usuais na representação do M_R em função das tensões aplicadas.

$$M_{\rm R} = k_1 \cdot \sigma_3^{k_2} \tag{4.1}$$

$$M_{\rm R} = k_1 \cdot \sigma_{\rm d}^{\ k_2} \tag{4.2}$$

$$M_{R} = k_{1} \cdot \sigma_{1}^{k_{2}} \tag{4.3}$$

$$\mathsf{M}_{\mathsf{R}} = \mathsf{k}_1 \cdot \theta^{\mathsf{k}_2} \tag{4.4}$$

$$M_{R} = k_{1} \cdot \sigma_{3}^{k_{2}} \cdot \sigma_{d}^{k_{3}}$$
(4.5)

$$M_{\mathsf{R}} = \mathbf{k}_1 \cdot \boldsymbol{\sigma}_3^{\ \mathbf{k}_2} \cdot \boldsymbol{\sigma}_1^{\ \mathbf{k}_3} \tag{4.6}$$

$$\mathbf{M}_{\mathsf{R}} = \mathbf{k}_1 \cdot \mathbf{\theta}^{\mathbf{k}_2} \cdot \mathbf{\sigma}_{\mathsf{d}}^{\mathbf{k}_3} \tag{4.7}$$

$$M_{\mathsf{R}} = \mathsf{k}_1 \cdot \theta^{\,\mathsf{k}_2} \cdot \sigma_1^{\,\mathsf{k}_3} \tag{4.8}$$

onde:

M_R - módulo de resiliência;

k₁, k₂ e k₃ - parâmetros de regressão;

 θ - primeiro invariante de tensão;

 σ_3 - tensão de confinamento;

 σ_{d} - tensão desvio;

 σ_{1} - tensão principal maior.

4.2.2 Solo Argiloso

O solo argiloso, conforme descrito no Capítulo 3, Materiais e Métodos, é classificado como A-7-5, MH e LG' nos sistemas HRB, USCS e MCT, respectivamente. Os ensaios triaxiais cíclicos para a determinação do módulo de resiliência do solo em questão foram realizados em três corpos-de-prova na energia normal e três corpos-de-prova na energia intermediária. No caso da energia intermediária, um dos ensaios foi desconsiderado em razão de problemas ocorridos durante a sua execução.

As influências da tensão desvio e da tensão de confinamento no módulo de resiliência do solo argiloso encontram-se ilustradas através das figuras 4.1 a 4.4. A variação do M_R em função da tensão desvio para diversos níveis de confinamento e a variação do M_R em função da tensão confinante, para as faixas de σ_d escolhidas são apresentadas nas figuras 4.1 e 4.2, respectivamente, considerando-se o material na energia normal. Esta mesma representação foi repetida para os corpos-de-prova compactados na energia intermediária nas figuras 4.3 e 4.4.

FIGURA 4.1 – Módulo de resiliência versus tensão desvio para o solo argiloso compactado na energia normal, a partir dos resultados dos ensaios de três corpos-deprova

FIGURA 4.2 – Módulo de resiliência versus tensão confinamento para o solo argiloso compactado na energia normal, a partir dos resultados dos ensaios de três corpos-deprova

FIGURA 4.3 – Módulo de resiliência versus tensão desvio para o solo argiloso compactado na energia intermediária, a partir dos resultados dos ensaios de dois corpos-de-prova

FIGURA 4.4 – Módulo de resiliência versus tensão confinamento para o solo argiloso compactado na energia intermediária, a partir dos resultados dos ensaios de dois corpos-de-prova

Analisando-se as figuras 4.1 e 4.3, que apresentam o M_R versus tensão desvio, respectivamente para o solo argiloso compactado nas energias normal e intermediária, observa-se que o M_R diminui com o aumento da tensão desvio para todos os níveis de tensões confinantes consideradas. Repetindo-se a mesma análise para as figuras 4.2 e 4.4, que apresentam o M_R versus tensão confinante, respectivamente para as energias normal e intermediária, observa-se que a influência da tensão confinante é pequena, se comparada com a tensão desvio, com a exceção dos corpos-de-prova compactados na energia intermediária e ensaiados com tensão desvio na faixa de 21 a 62 kPa.

As tabelas 4.1 e 4.2 apresentam os modelos utilizados na representação da variação do módulo de resiliência com o estado de tensão e os correspondentes parâmetros de calibração e coeficientes de determinação, respectivamente para as energias normal e intermediária. Os modelos foram calibrados a partir dos resultados dos ensaios de três e dois corpos-de-prova, respectivamente para as energias normal e intermediária, tomados conjuntamente.

A opção pela análise conjunta dos resultados de diferentes corpos-de-prova, deve-se ao fato de entender-se que o modelo assim determinado é mais representativo do comportamento do material, considerando-se a não uniformidade dos mesmos. Destaca-se que este procedimento conduz a valores de coeficientes de determinação menores que aqueles obtidos da análise de corpos-de-prova considerados isoladamente.

Expressões	k ₁ (MPa)	k ₂	k ₃	R ²	Equação
$M_{R} = k_{1} \cdot \sigma_{3}^{k_{2}}$	112	-0,32		0,40	4.1
$M_{R} = k_{1} \cdot \sigma_{d}^{k_{2}}$	121	-0,36		0,80	4.2
$M_{R} = k_{1} \cdot \sigma_{1}^{k_{2}}$	133	-0,41		0,75	4.3
$M_{R} = k_{1} \cdot \theta^{k_{2}}$	167	-0,36		0,54	4.4
$M_{R} = k_{1} \cdot \sigma_{3}^{k_{2}} \cdot \sigma_{d}^{k_{3}}$	131	0,07	-0,42	0,82	4.5
$\mathbf{M}_{R} = \mathbf{k}_1 \cdot \boldsymbol{\sigma}_3^{\mathbf{k}_2} \cdot \boldsymbol{\sigma}_1^{\mathbf{k}_3}$	213	0,32	-0,66	0,81	4.6
$M_{R} = k_{1} \cdot \theta^{k_{2}} \cdot \sigma_{d}^{k_{3}}$	121	0,04	-0,39	0,80	4.7
$M_{R} = k_{1} \cdot \theta^{k_{2}} \cdot \sigma_{1}^{k_{3}}$	135	0,11	-0,49	0,73	4.8

TABELA 4.1– Modelos, parâmetros de calibração e R² para o solo argiloso compactado na energia normal

TABELA 4.2– Modelos, parâmetros de calibração e R² para o solo argiloso compactado na energia intermediária

Expressões	k₁ (MPa)	k ₂	k ₃	R ²	Equação
$M_{R} = k_{1} \cdot \sigma_{3}^{k_{2}}$	292	-0,20		0,27	4.1
$M_{R} = k_{1} \cdot \sigma_{d}^{k_{2}}$	259	-0,31		0,78	4.2
$M_{R} = k_{1} \cdot \sigma_{1}^{k_{2}}$	302	-0,30		0,63	4.3
$M_{R} = k_{1} \cdot \theta^{k_{2}}$	368	-0,27		0,48	4.4
$\mathbf{M}_{\mathbf{R}} = \mathbf{k}_1 \cdot \boldsymbol{\sigma}_3 \mathbf{k}_2 \cdot \boldsymbol{\sigma}_d \mathbf{k}_3$	316	0,15	-0,41	0,84	4.5
$\mathbf{M}_{R} = \mathbf{k}_1 \cdot \boldsymbol{\sigma}_3 {}^{\mathbf{k}_2} \cdot \boldsymbol{\sigma}_1 {}^{\mathbf{k}_3}$	498	0,40	-0,65	0,84	4.6
$M_{R} = k_{1} \cdot \theta^{k_{2}} \cdot \sigma_{d}^{k_{3}}$	228	0,23	-0,49	0,84	4.7
$M_{R} = k_1 \cdot \theta^{k_2} \cdot \sigma_1^{k_3}$	195	0,95	-1,21	0,84	4.8

Adotando-se o valor do coeficiente de determinação (R^2) como critério para a medida de adequação de cada um dos modelos na representação da variação do M_R com o estado de tensão, pode-se afirmar que, com à exceção dos modelos correspondentes às equações 4.1 e 4.2, todas os demais apresentam um bom

desempenho. As equações 4.1 e 4.4 consideram, respectivamente, as tensões confinante e octaédrica isoladamente e é sabido que estas variáveis têm pouca influência no comportamento resiliente dos solos argilosos.

Considerando-se as duas energias de compactação, o modelo correspondente à equação 4.5, que contempla as tensões desvio e confinante conjuntamente, é o que mostra o melhor desempenho. As equações 4.9 e 4.10 apresentam o modelo em questão calibrado para as energias normal e intermediária, respectivamente.

$$M_{\rm R} = 131 \cdot \sigma_3^{0.07} \cdot \sigma_d^{-0.42} \tag{4.9}$$

$$M_{\rm R} = 316 \cdot \sigma_3^{0,15} \cdot \sigma_{\rm d}^{-0,41} \tag{4.10}$$

onde:

M_R - módulo de resiliência (MPa);

 σ_d - tensão desvio (MPa);

 σ_3 - tensão de confinamento (MPa).

Analisando-se as equações 4.9 e 4.10, observa-se que o expoente da tensão desvio é negativo, indicando que o M_R decresce com o aumento desta variável, conforme verificado anteriormente. Observa-se ainda que os valores absolutos dos expoentes da tensão confinante são de 16% a 37% dos valores absolutos dos expoentes da tensão desvio. Como estas tensões são de mesma ordem, este fato indica que a influência da tensão confinante no M_R é pequena quando comparada com a influência da tensão desvio, corroborando a constatação de que solos argilosos são pouco afeitos à variação da tensão confinante.

As figuras 4.5 e 4.6 apresentam a representação gráfica dos modelos descritos pelas equações 4.9 e 4.10.

FIGURA 4.5 – Representação do modelo descrito pela equação 4.9 para o solo argiloso compactado na energia normal

FIGURA 4.6 – Representação do modelo descrito pela equação 4.10 para o solo argiloso compactado na energia intermediária

Vale salientar que a energia de compactação também exerce importante efeito no valor do módulo de resiliência do solo argiloso. Tomando-se conjuntamente os valores de M_R determinados para todos os níveis de tensões aplicadas durante os ensaios, aqueles correspondentes à energia normal são da ordem de 55% daqueles

correspondentes à energia intermediária. A figura 4.7 ilustra a influência da energia de compactação no valor do M_{R} .

FIGURA 4.7 – Representação da influência da energia de compactação no valor do M_R do solo argiloso compactado na energia normal e intermediária, a partir dos resultados dos ensaios de todos os corpos-de-prova

4.2.3 Solo Areno-argiloso

O solo areno-argiloso, conforme descrito no Capítulo 3, Materiais e Métodos, é classificado como A-4 e SC nos sistemas HRB e USCS, respectivamente, e como LG' na classificação MCT. Os ensaios triaxiais cíclicos para a determinação do módulo de resiliência do solo em questão foram realizados em três corpos-de-prova na energia intermediária e três corpos-de-prova na energia modificada. No caso da energia modificada, um dos ensaios foi desconsiderado em razão de problemas ocorridos durante a sua execução.

As influências da tensão desvio e da tensão de confinamento no módulo de resiliência do solo areno-argiloso encontram-se ilustradas através das figuras 4.8 a 4.11. A variação do M_R em função da tensão desvio para diversos níveis de confinamento e a variação do M_R em função da tensão confinante, para as faixas de σ_d escolhidas são apresentadas nas figuras 4.8 e 4.9, respectivamente, considerando-se

o material na energia intermediária. Esta mesma representação foi repetida para os corpos-de-prova compactados na energia modificada nas figuras 4.10 e 4.11.

Analisando-se as figuras 4.8 e 4.10, que apresentam o M_R versus tensão desvio, respectivamente para o solo areno-argiloso compactado nas energias intermediária e modificada, observa-se que o M_R diminui com o aumento da tensão desvio para todos os níveis de tensões confinantes consideradas. Repetindo-se a mesma análise para as figuras 4.9 e 4.11, que apresentam o M_R versus tensão confinante, respectivamente para as energias intermediária e modificada, observa-se que a influência da tensão confinante é pequena, se comparada com a tensão desvio.

FIGURA 4.8 – Módulo de resiliência versus tensão desvio para o solo areno-argiloso compactado na energia intermediária, a partir dos resultados dos ensaios de três corposde-prova

FIGURA 4.9 – Módulo de resiliência versus tensão confinamento para o solo arenoargiloso compactado na energia intermediária, a partir dos resultados dos ensaios de três corpos-de-prova

FIGURA 4.10 – Módulo de resiliência versus tensão desvio para o solo areno-argiloso compactado na energia modificada, a partir dos resultados dos ensaios de dois corposde-prova

FIGURA 4.11 – Módulo de resiliência versus tensão confinamento para o solo arenoargiloso compactado na energia modificada, a partir dos resultados dos ensaios de dois corpos-de-prova

As tabelas 4.3 e 4.4 apresentam os modelos utilizados na representação da variação do módulo de resiliência com o estado de tensão e os correspondentes parâmetros de calibração e coeficientes de determinação, respectivamente para as energias intermediária e modificada. Os modelos foram calibrados a partir dos resultados dos ensaios de três e dois corpos-de-prova, respectivamente para as energias intermediária e modificada, tomados conjuntamente.

A opção pela análise conjunta dos resultados de diferentes corpos-de-prova, deve-se ao fato de entender-se que o modelo assim determinado é mais representativo do comportamento do material, considerando-se a não uniformidade dos mesmos. Destaca-se que este procedimento conduz a valores de coeficientes de determinação menores que aqueles obtidos da análise de corpos-de-prova considerados isoladamente.

Expressões	k ₁ (MPa)	k ₂	k ₃	R ²	Equação
$M_{R} = k_{1} \cdot \sigma_{3}^{k_{2}}$	287	-0,19		0,23	4.1
$M_R = k_1 \cdot \sigma_d^{k_2}$	290	-0,23		0,52	4.2
$M_{R} = k_{1} \cdot \sigma_{1}^{k_{2}}$	317	-0,24		0,45	4.3
$M_{R} = k_{1} \cdot \theta^{k_{2}}$	365	-0,23		0,37	4.4
$\mathbf{M}_{\mathbf{R}} = \mathbf{k}_1 \cdot \boldsymbol{\sigma}_3 \mathbf{k}_2 \cdot \boldsymbol{\sigma}_d \mathbf{k}_3$	339	0,11	-0,30	0,55	4.5
$\mathbf{M}_{R} = \mathbf{k}_1 \cdot \boldsymbol{\sigma}_3 \cdot \boldsymbol{\sigma}_1^{\mathbf{k}_2} \cdot \boldsymbol{\sigma}_1^{\mathbf{k}_3}$	475	0,30	-0,49	0,55	4.6
$\mathbf{M}_{\mathbf{R}} = \mathbf{k}_{1} \cdot \mathbf{\theta}^{\mathbf{k}_{2}} \cdot \mathbf{\sigma}_{\mathbf{d}}^{\mathbf{k}_{3}}$	265	0,18	-0,37	0,55	4.7
$\mathbf{M}_{\mathbf{R}} = \mathbf{k}_1 \cdot \mathbf{\theta}^{\mathbf{k}_2} \cdot \mathbf{\sigma}_1^{\mathbf{k}_3}$	236	0,71	-0,90	0,55	4.8

TABELA 4.3– Modelos, parâmetros de calibração e R² para o solo areno-argiloso compactado na energia intermediária

TABELA 4.4– Modelos, parâmetros de calibração e R^2 para o solo areno-argiloso compactado na energia modificada

Expressões	k ₁ (MPa)	k ₂	k 3	R ²	Equação
$M_{R} = k_{1} \cdot \sigma_{3}^{k_{2}}$	357	-0,12		0,19	4.1
$M_{R} = k_{1} \cdot \sigma_{d}^{k_{2}}$	335	-0,18		0,64	4.2
$M_{R} = k_{1} \cdot \sigma_{1}^{k_{2}}$	366	-0,18		0,50	4.3
$M_{R} = k_{1} \cdot \theta^{k_{2}}$	412	-0,17		0,38	4.4
$M_{R} = k_{1} \cdot \sigma_{3}^{k_{2}} \cdot \sigma_{d}^{k_{3}}$	432	0,19	-0,31	0,78	4.5
$\mathbf{M}_{\mathbf{R}} = \mathbf{k}_1 \cdot \mathbf{\sigma}_3^{\mathbf{k}_2} \cdot \mathbf{\sigma}_1^{\mathbf{k}_3}$	607	0,37	-0,49	0,78	4.6
$M_{R} = k_{1} \cdot \theta^{k_{2}} \cdot \sigma_{d}^{k_{3}}$	289	0,29	-0,41	0,78	4.7
$M_{R} = k_{1} \cdot \theta^{k_{2}} \cdot \sigma_{1}^{k_{3}}$	253	0,89	-1,01	0,78	4.8

Adotando-se o valor do coeficiente de determinação (R^2) como critério para a medida de adequação de cada um dos modelos na representação da variação do M_R com o estado de tensão, pode-se afirmar que, com à exceção dos modelos

correspondentes às equações 4.1 e 4.4, todas os demais apresentam um bom desempenho. As equações 4.1 e 4.4 consideram, respectivamente, as tensões confinante e octaédrica isoladamente, e é sabido que estas variáveis têm pouca influência no comportamento resiliente dos solos argilosos. Neste caso, apesar do solo não ser puramente argiloso, no tocante à resiliência, ele comporta-se como tal.

Considerando-se as duas energias de compactação, os modelos correspondentes às equação 4.5, 4.6, 4.7 e 4.8 apresentam os melhores e idênticos desempenhos (R^2 = 0,55 e 0,78, respectivamente nas energias intermediária e modificada). As equações 4.11 e 4.12 destacam o modelo da equação 4.5 calibrado para as energias intermediária e modificada, respectivamente.

$$M_{\rm R} = 339 \cdot \sigma_3^{0,11} \cdot \sigma_d^{-0,30} \tag{4.11}$$

$$M_{\rm R} = 432 \cdot \sigma_3^{0,19} \cdot \sigma_{\rm d}^{-0,31} \tag{4.12}$$

onde:

M_R - módulo de resiliência (MPa);

 σ_d - tensão desvio (MPa);

 σ_3 - tensão de confinamento (MPa).

Analisando-se as equações 4.11 e 4.12, observa-se que o expoente da tensão desvio é negativo, indicando que o M_R decresce com o aumento desta variável, conforme verificado anteriormente. Observa-se ainda que os valores absolutos dos expoentes da tensão confinante são de 36% a 61% dos valores absolutos dos expoentes da tensão desvio. Como estas tensões são de mesma ordem, este fato indica que a influência da tensão confinante no M_R é menor que a influência da tensão desvio. Comportamento do solo areno-argiloso com o comportamento do solo argiloso analisado no item 4.2.2, apesar da influência da tensão desvio ser predominante para ambos os materiais, esta predominância é menos marcante para o solo areno-argiloso.

As figuras 4.12 e 4.13 apresentam a representação gráfica dos modelos descritos pelas equações 4.11 e 4.12.

FIGURA 4.12 – Representação do modelo descrito pela equação 4.11 para o solo arenoargiloso compactado na energia intermediária

FIGURA 4.13 – Representação do modelo descrito pela equação 4.12 para o solo arenoargiloso compactado na energia modificada

Tomando-se conjuntamente os valores de M_R determinados para todos os níveis de tensões aplicadas durante os ensaios, aqueles correspondentes à energia intermediária são da ordem de 96% daqueles correspondentes à energia modificada. A figura 4.14 ilustra a influência da energia de compactação no valor do M_R. Comparando-se a influência da energia de compactação no módulo de resiliência do solo argiloso analisado no item 4.2.2, com o comportamento do solo areno-argiloso sob este aspecto, concluí-se que a variação da energia de compactação não altera significativamente o comportamento deste último material.

FIGURA 4.14 – Representação da influência da energia de compactação no valor do M_R do solo arenoso compactado na energia intermediária e modificada, a partir dos resultados dos ensaios de todos os corpos-de-prova

4.2.4 Solo Arenoso

O solo arenoso, conforme descrito no Capítulo 3, Materiais e Métodos, é classificado como A-2-4 e SM nos sistemas HRB e USCS, respectivamente, e como LA na classificação MCT. Os ensaios triaxiais cíclicos para a determinação do módulo de resiliência do solo em questão foram realizados em três corpos-de-prova na energia normal e três corpos-de-prova na energia intermediária.

As influências da tensão desvio e da tensão de confinamento no módulo de resiliência do solo arenoso encontram-se ilustradas através das figuras 4.15 a 4.19. A variação do M_R em função da tensão desvio para diversos níveis de confinamento e a variação do M_R em função da tensão confinante, para as faixas de σ_d escolhidas são apresentadas nas figuras 4.15 e 4.16, respectivamente, considerando-se o material na energia normal. Esta mesma representação foi repetida para os corpos-de-prova compactados na energia intermediária nas figuras 4.17 e 4.18.

FIGURA 4.15 – Módulo de resiliência versus tensão desvio para o solo arenoso compactado na energia normal, a partir dos resultados dos ensaios de três corpos-deprova

FIGURA 4.16 – Módulo de resiliência versus tensão confinamento para o solo arenoso compactado na energia normal, a partir dos resultados dos ensaios de três corpos-deprova

FIGURA 4.17 – Módulo de resiliência versus tensão desvio para o solo arenoso compactado na energia intermediária, a partir dos resultados dos ensaios de três corposde-prova

FIGURA 4.18 – Módulo de resiliência versus tensão confinamento para o solo arenoso compactado na energia intermediária, a partir dos resultados dos ensaios de três corposde-prova

Analisando-se as figuras 4.16 e 4.18, que apresentam o M_R versus tensão confinante, respectivamente para o solo arenoso compactado nas energias normal e intermediária, observa-se que o M_R aumenta com incrementos da tensão confinante para todas as faixas de tensões desvio consideradas. Repetindo-se a mesma análise para as figuras 4.15 e 4.17, que apresentam o M_R versus tensão desvio, respectivamente para as energias normal e intermediária, observa-se que a influência da tensão desvio é pequena, se comparada com a tensão confinante, com exceção dos corpos-de-prova compactados na energia normal e intermediária com σ_3 de 21 kPa e 34 kPa.

As tabelas 4.5 e 4.6 apresentam os modelos utilizados na representação da variação do módulo de resiliência com o estado de tensão e os correspondentes parâmetros de calibração e coeficientes de determinação, respectivamente para as energias intermediária e modificada. Os modelos foram calibrados a partir dos resultados dos ensaios de três corpos-de-prova na energia normal e de três corpos-de-prova na energia intermediária, tomados conjuntamente.

A opção pela análise conjunta dos resultados de diferentes corpos-de-prova, deve-se ao fato de entender-se que o modelo assim determinado é mais representativo do comportamento do material, considerando-se a não uniformidade dos mesmos. Destaca-se que este procedimento conduz a valores de coeficientes de determinação menores que aqueles obtidos da análise de corpos-de-provas considerados isoladamente.

Adotando-se o valor do coeficiente de determinação (R^2) como critério para a medida de adequação de cada um dos modelos na representação da variação do M_R com o estado de tensão, observa-se que os modelos correspondentes às equações 4.2, 4.3 e 4.4 são os que apresentam os piores desempenhos, independente da energia de compactação. As equações 4.2, 4.3 e 4.4 consideram, respectivamente, as tensões desvio, principal maior e octaédrica isoladamente, e é sabido que estas variáveis têm pouca influência no comportamento resiliente dos solos arenosos.

Expressões	k₁ (MPa)	k ₂	k 3	R ²	Eq.
$M_{R} = k_{1} \cdot \sigma_{3}^{k_{2}}$	644	0,18		0,33	4.1
$M_{R} = k_{1} \cdot \sigma_{d}^{k_{2}}$	431	0,05		0,041	4.2
$M_{R} = k_{1} \cdot \sigma_{1}^{k_{2}}$	458	0,10		0,12	4.3
$M_R = k_1 \cdot \theta^{k_2}$	454	0,14		0,20	4.4
$M_{R} = k_{1} \cdot \sigma_{3}^{k_{2}} \cdot \sigma_{d}^{k_{3}}$	697	0,35	-0,18	0,51	4.5
$\mathbf{M}_{R} = \mathbf{k}_1 \cdot \boldsymbol{\sigma}_3 \cdot \boldsymbol{\sigma}_1^{\mathbf{k}_3}$	847	0,46	-0,28	0,51	4.6
$M_{R} = k_{1} \cdot \theta^{k_{2}} \cdot \sigma_{d}^{k_{3}}$	324	0,55	-0,38	0,52	4.7
$M_{R} = k_1 \cdot \theta^{k_2} \cdot \sigma_1^{k_3}$	288	1,10	-0,92	0,51	4.8

TABELA 4.5– Modelos, parâmetros de calibração e R² para o solo arenoso compactado na energia normal

Expressões	k ₁ (MPa)	k ₂	k ₃	R ²	Eq.
$M_{R} = k_{1} \cdot \sigma_{3}^{k_{2}}$	852	0,31		0,81	4.1
$M_{R} = k_{1} \cdot \sigma_{d}^{k_{2}}$	516	0,16		0,35	4.2
$M_{R} = k_{1} \cdot \sigma_{1}^{k_{2}}$	531	0,23		0,53	4.3
$M_{R} = k_{1} \cdot \theta^{k_{2}}$	495	0,27		0,66	4.4
$\mathbf{M}_{\mathbf{R}} = \mathbf{k}_1 \cdot \boldsymbol{\sigma}_3 {}^{\mathbf{k}_2} \cdot \boldsymbol{\sigma}_{\mathbf{d}} {}^{\mathbf{k}_3}$	895	0,40	-0,09	0,85	4.5
$\mathbf{M}_{R} = \mathbf{k}_1 \cdot \mathbf{\sigma}_3^{\mathbf{k}_2} \cdot \mathbf{\sigma}_1^{\mathbf{k}_3}$	990	0,45	-0,15	0,85	4.6
$\mathbf{M}_{R} = \mathbf{k}_1 \cdot \mathbf{\theta}^{\mathbf{k}_2} \cdot \mathbf{\sigma}_{d}^{\mathbf{k}_3}$	374	0,63	-0,32	0,85	4.7
$\mathbf{M}_{R} = \mathbf{k}_1 \cdot \mathbf{\theta}^{\mathbf{k}_2} \cdot \mathbf{\sigma}_1^{\mathbf{k}_3}$	339	1,09	-0,78	0,85	4.8

TABELA 4.6– Modelos, parâmetros de calibração e R² para o solo arenoso compactado na energia intermediária

Considerando-se as duas energias de compactação, o modelo correspondente à equação 4.6, que contempla as tensões desvio e octaédrica conjuntamente, é o que mostra o melhor desempenho. Entretanto, este desempenho é praticamente coincidente com o do modelo correspondente à equação 4.5. Neste caso, para uniformizar a análise do solo arenoso com as análises dos solos precedentes, este modelo foi adotado como representativo do comportamento deste solo. As equações 4.13 e 4.14 apresentam o modelo em questão calibrado para as energias normal e intermediária, respectivamente.

$$M_{\rm R} = 697 \cdot \sigma_3^{0,35} \cdot \sigma_d^{-0,18} \tag{4.13}$$

$$M_{\rm R} = 894 \cdot \sigma_3^{0,40} \cdot \sigma_{\rm d}^{-0,09} \tag{4.14}$$

onde:

M_R - módulo de resiliência (MPa);

 σ_d - tensão desvio (MPa);

 σ_3 - tensão de confinamento (MPa).

Analisando-se as equações 4.13 e 4.14, observa-se que os expoentes das tensões confinante e desvio são, nesta ordem, positivos e negativos, indicando que o aumento destas variáveis acarreta o aumento e a diminuição, respectivamente, do M_R do solo arenoso. Observa-se ainda que os valores absolutos dos expoentes da tensão desvio são de 22% a 51% dos valores absolutos da tensão confinante. Como estas tensões são de mesma ordem, este fato indica que a influência da tensão desvio no M_R é pequena quando comparada com a influência da tensão confinante, corroborando a constatação de que solos arenosos são pouco afeitos à variação da tensão desvio.

As figuras 4.19 e 4.20 apresentam a representação gráfica dos modelos descritos pelas equações 4.13 e 4.14.

FIGURA 4.19 – Representação do modelo descrito pela equação 4.13 para o solo arenoso compactado na energia normal

FIGURA 4.20 – Representação do modelo descrito pela equação 4.14 para o solo arenoso compactado na energia intermediária

Tomando-se conjuntamente os valores de M_R determinados para todos os níveis de tensões aplicadas durante os ensaios, aqueles correspondentes à energia normal são da ordem de 93% daqueles correspondentes à energia intermediária. Comparando-se o comportamento dos três solos estudados nesta pesquisa no tocante ao efeito da energia de compactação no módulo de resiliência, conclui-se que apenas para o solo argiloso este efeito é marcante, diferença de 55% entre módulos determinados na energia normal e intermediária. A figura 4.21 ilustra a influência da energia de compactação no valor do M_R do solo arenoso.

FIGURA 4.21 – Representação da influência da energia de compactação no valor do M_R do solo arenoso compactado na energia normal e intermediária, a partir dos resultados dos ensaios de todos os corpos-de-prova

4.3 – MODELAGEM MATEMÁTICA CONSIDERANDO O $M_R E O E_0$ DO ENSAIO DE COMPRESSÃO SIMPLES

4.3.1 Ensaios de compressão simples

Para os solos desta pesquisa, foram realizados ensaios de compressão simples em três corpos-de-prova para cada uma das energias de compactação consideradas, e com os resultados destes ensaios foi possível a determinação de valores do módulo tangente inicial (E_o). Os ensaios foram realizados observando-se o procedimento descrito na NBR-12770 (1982).

É sabido que o módulo tangente inicial obtido a partir de curvas tensão x deformação guarda estreita relação com o módulo dinâmico (RUIZ, 1963) ou com o módulo de descarregamento/recarregamento (LADE, 1974). Como a determinação do módulo tangente inicial envolve deformações muito pequenas tais que os equipamentos de medida, na sua maioria, não indicam com precisão, procurou-se padronizar um procedimento que minimizasse o efeito deste aspecto. Optou-se então

pelo método proposto por DUNCAN & CHANG (1970) que supõe a curva tensão x deformação uma hipérbole, descrita pela equação (4.15):

$$\frac{\varepsilon_a}{\sigma_a} = a + b \cdot \varepsilon_a \tag{4.15}$$

onde:

 ϵ_a = deformação axial

 σ_a = tensão axial e

a e b = coeficientes de regressão considerando a reta que melhor se ajusta aos resultados experimentais.

Assim, o módulo tangente inicial E_o é determinado pela expressão 4.16:

$$E_o = \frac{1}{a} \tag{4.16}$$

onde:

E₀ = módulo tangente inicial

a = coeficiente de regressão considerando a reta que melhor se ajusta aos resultados experimentais

Com o propósito de exemplificar este procedimento, apresenta-se na figura 4.22, a determinação do E_o para um corpo-de-prova do solo argiloso compactado na energia intermediária. É mostrada nesta figura a reta de regressão que melhor se ajusta aos resultados experimentais, bem como o valor do parâmetro a e o E_o determinado neste ensaio.

FIGURA 4.22 – Exemplo da determinação do módulo tangente inicial, para um corpo-deprova do solo argiloso na energia intermediária, segundo proposto por DUNCAN & CHANG (1970)

A tabela 4.7 apresenta os valores do módulo tangente inicial (E_o) determinados para a totalidade dos corpos-de-prova ensaiados. Dos três valores de E_o obtidos foi calculada a média aritmética simples dos três resultados de cada terno. A ocorrência de um valor discrepante dentro do terno foi identificada através do desvio-padrão. Identificado o valor discrepante, descartou-se o mesmo, recalculando-se uma nova média através dos dois valores restantes. As curvas tensão x deformação obtidas a partir dos resultados dos ensaios de compressão simples encontram-se no anexo B.

A tabela 4.7 apresenta os valores do módulo tangente inicial obtidos a partir dos ensaios de compressão simples realizados nesta pesquisa, como também os valores médios de E_o que foram utilizados nas análises apresentadas a seguir.

Solo Classificação Energia de Compactação de- Prova E _o (MPa) E _o (MPa) Médio Argiloso A-7-5 Normal 2 125 118 Argiloso ML 3 111 1 LG' Intermediária 2 200 183 Areno- argiloso A-4 Intermediária 2 143 155 Areno- argiloso A-4 Intermediária 2 143 155 Areno- argiloso Intermediária 1 333 (*) 167 167			Energia de	Corpos-			
Argiloso A-7-5 ML LG' Normal 2 125 118 Argiloso A-7-5 ML LG' 1 167 167 Intermediária 2 200 183 3 250 (*) 1 333 (*) Intermediária 2 143 155 Areno- argiloso A-4 SC Intermediária 2 143 155 Intermediária 1 333 (*) 167 1 333 (*)	Solo	Classificação	Compactação	de-	E₀(MPa)	⊏ _o (IVIFa)	
Argiloso A-7-5 ML Normal 2 125 118 LG' 3 111 1 167 Intermediária 2 200 183 3 250 (*) 1 333 (*) Areno- argiloso A-4 SC Intermediária 2 143 155 Intermediária 1 333 (*) 167 1 333 (*)			Compactação	Prova		meano	
Argiloso A-7-5 ML LG' Normal 2 125 118 LG' 3 111 1 1 167 1 183 1 1 167 1 183 1 1 167 1 183 1 <th></th> <th></th> <th></th> <th>1</th> <th>59 (*)</th> <th></th>				1	59 (*)		
Argiloso ML 3 111 LG' 1 167 Intermediária 2 200 183 3 250 (*) 3 250 (*) Areno- argiloso A-4 Intermediária 2 143 155 Areno- argiloso A-4 3 167 1 333 (*)	Argiloso	A-7-5	Normal	2	125	118	
LG' 1 167 Intermediária 2 200 183 3 250 (*) 1 333 (*) Intermediária 2 143 155 Areno- argiloso LG' 1 333 (*)		ML		3	111		
Intermediária 2 200 183 3 250 (*) 3 250 (*) 1 333 (*) 1 333 (*) Areno- argiloso A-4 1 333 (*) LG' 1 333 (*)		LG'		1	167		
Areno- argiloso A-4 LG' Intermediária 2 143 155 1 333 (*) 167 1 333 (*) 167			Intermediária	2	200	183	
Areno- argiloso A-4 LG' Intermediária 2 143 155 1 333 (*) 3 167 1 333 (*)				3	250 (*)		
Areno- argiloso A-4 Intermediária 2 143 155 Areno- argiloso SC 3 167 1 333 (*)		A-4 SC LG'		1	333 (*)		
Areno- A-4 3 167 argiloso LG' 1 333 (*)			Intermediária	2	143	155	
argiloso 1 333 (*)	Areno-			3	167		
	argiloso		Modificada	1	333 (*)		
Modificada 2 250 250				2	250	250	
3 250				3	250		
1 12				1	12		
Normal 2 45 (*) 8		A 2 4	Normal	2	45 (*)	8	
A-2-4 Arenoso 3 4	Arenoso	A-2-4		3	4		
1 22 (*)				1	22 (*)		
Intermediária 2 10 11		LA	Intermediária	2	10	11	
3 11				3	11		

TABELA	4.7–	Valores	do	módulo	tangente	inicial	para	cada	um	dos	corpos-de-prov	а
ensaiado	S				_		-					

(*) valor descartado no cálculo da média final

4.3.2 Modelagem matemática do M_R em função do E_o e do estado de tensão considerando-se apenas os solos desta pesquisa

As relações entre o módulo de resiliência e o módulo tangente inicial determinado a partir de ensaios de compressão simples, para os estados de tensão do ensaio triaxial cíclico, foram determinadas por meio de regressões múltiplas através do aplicativo *STATISTICA 4.3*, utilizando-se o módulo de resiliência como variável dependente e analisando-se expressões matemáticas envolvendo a tensão de

confinamento (σ_3), tensão desvio (σ_d), primeiro invariante de tensão (θ), tensão principal maior (σ_1) e módulo tangente inicial (E_o), como variáveis independentes.

Primeiramente, foram analisados os três solos utilizados nesta pesquisa e posteriormente, no item 4.3.3, com o propósito de dar uma maior abrangência ao estudo, foram englobados além destes solos, os materiais utilizados em outras duas pesquisas de mestrado desenvolvidas na Escola de Engenharia de São Carlos – USP (CUNTO, 1998 e CARMO, 1998).

A tabela 4.8 mostra as expressões matemáticas analisadas e seus respectivos coeficientes de determinação (R²) obtidos, considerando-se conjuntamente os três tipos de solos ensaiados nesta pesquisa. Foram utilizadas um total de 280 observações e os valores foram tomados diretamente dos resultados dos ensaios triaxiais cíclicos.

	Todos os solos desta pesquisa	
Função	Expressões	R ²
$M_R = f(E_o; \sigma_d; \sigma_3)$	$M_{R} = 0,0002 \cdot E_{0}^{2,50} + 245,70 \cdot \sigma_{d}^{-0,16} + 48,71 \cdot \sigma_{3}^{11,23}$	0,38
$M_R = f(E_o;\sigma_d)$	$M_{R} = 0,0002 \cdot E_{o}^{2,50} + 245,70 \cdot \sigma_{d}^{-0,16}$	0,38
$M_R = f(E_o; \sigma_3)$	$M_{\rm R} = 0,0003 \cdot E_0^{2,45} + 297,66 \cdot \sigma_3^{-0,06}$	0,28
$M_{R} = f(E_{o};\sigma_{d};\sigma_{3})$	$M_{\rm R} = 0,0003 \cdot E_{\rm o}^{2,47} + 426,64 \cdot \left(\sigma_3/\sigma_{\rm d}\right)^{0,32}$	0,43
$M_R = f(E_o; \sigma_d; \theta)$	$M_{R} = 0,0006 \cdot E_{o}^{2,31} + 213,08 \cdot (\theta/\sigma_{d})^{0,51}$	0,46
$M_R = f(E_o;\sigma_d;\sigma_3)$	$M_{\rm R} = 270,96 \cdot {\rm E_o}^{0,09} \cdot {\rm \sigma_d}^{-0,29} \cdot {\rm \sigma_3}^{0,21}$	0,33
$M_R = f(E_o;\sigma_1;\sigma_3)$	$M_{R} = 373,29 \cdot E_{0}^{0,09} \cdot \sigma_{1}^{-0,46} \cdot \sigma_{3}^{0,38}$	0,33
$M_R = f(E_o; \sigma_d; \theta)$	$M_{R} = 169,01 \cdot E_{0}^{0,09} \cdot \sigma_{d}^{-0,45} \cdot \theta^{0,38}$	0,37
$M_R = f(E_o;\sigma_3)$	$M_{R} = 241,88 \cdot E_{0}^{0,08} \cdot \sigma_{3}^{-0,07}$	0,14
$M_R = f(E_o; \theta)$	$M_{R} = 260,57 \cdot E_{o}^{0.08} \cdot \theta^{-0.10}$	0,16
$M_R = f(E_o;\sigma_1;\sigma_3)$	$M_{R} = 0,0002 \cdot E_{0}^{2,50} + 272,53 \cdot \sigma_{1}^{-1,44} + 42,89 \cdot \sigma_{3}^{9,72}$	0,39
$M_{R} = f(E_{o};\sigma_1;\sigma_3)$	$M_{R} = 0,0002 \cdot E_{0}^{2,49} + 609,15 \cdot (\sigma_{3}/\sigma_{1})^{0,52}$	0,43
$M_R = f(E_o; \sigma_1; \theta)$	$M_{R} = 0,0016 \cdot E_{0}^{2,13} + 197,69 \cdot (\theta/\sigma_{1})^{1,10}$	0,45

TABELA 4.8– Expressões matemáticas analisadas para representar a variação do módulo de resiliência em função do módulo tangente inicial e estado de tensão para os solos desta pesquisa – Análise 1

Analisando-se os resultados apresentados na tabela 4.8 e tomando-se os valores dos coeficientes de determinação (R^2) como uma medida comparativa do desempenho dos diversos modelos, concluí-se que o modelo da equação 4.17 ($R^2 = 0,46$) é o que melhor descreve a relação entre o módulo de resiliência, o módulo tangente inicial e o estado de tensão.

$$M_{\rm R} = 0,0006 \cdot E_{\rm o}^{2,31} + 213,08 \cdot (\theta/\sigma_{\rm d})^{0,51}$$
(4.17)

onde:

M_R - módulo de resiliência em MPa;

 σ_d - tensão desvio em MPa;

 θ - primeiro invariante de tensão em MPa;

E_o – módulo tangente inicial em MPa.

A figura 4.23 apresenta os valores do módulo de resiliência determinados nos ensaios triaxiais cíclicos e os valores deste mesmo módulo determinado utilizando a equação 4.17.

FIGURA 4.23 – Módulo de resiliência: valores calculados através dos ensaios triaxiais cíclicos versus os valores determinados através da equação 4.17.

Os cálculos das relações apresentadas na tabela 4.8 realizados a partir dos módulos de resiliência obtidos diretamente dos ensaios englobam os desvios inerentes aos mesmos e assim, supõe-se que os baixos valores de R^2 são devidos, em parte, a este fato. Com o objetivo de minimizar esta influência, foi realizada uma nova análise, tomando-se como base valores de M_R determinados utilizando-se a equação 4.5, que conforme apresentado no item 4.2, é o modelo que melhor expressa a relação entre esta variável e o estado de tensão. Neste caso foram consideradas 183 observações.

A tabela 4.9 mostra as mesmas expressões matemáticas avaliadas anteriormente e os respectivos coeficientes de determinação (R²) obtidos a partir desta nova condição de análise.

	Todos os solos desta pesquisa	
Função	Expressões	R ²
$M_{R} = f(E_{o};\sigma_{d};\sigma_{3})$	$M_{R} = 0,0005 \cdot E_{0}^{2,35} + 89,75 \cdot \sigma_{d}^{-0,45} + 1670,75 \cdot \sigma_{3}^{1,06}$	0,66
$M_R = f(E_o; \sigma_d)$	$M_{R} = 0,0003 \cdot E_{0}^{2,43} + 202,89 \cdot \sigma_{d}^{-0,23}$	0,59
$M_R = f(E_o;\sigma_3)$	$M_{R} = 0,0004 \cdot E_{0}^{2,39} + 301,64 \cdot \sigma_{3}^{-0.05}$	0,41
$M_R = f(E_o;\sigma_d;\sigma_3)$	$M_{R} = 0,0006 \cdot E_{0}^{2,33} + 421,29 \cdot (\sigma_{3}/\sigma_{d})^{0,34}$	0,65
$M_R = f(E_o; \sigma_d; \theta)$	$M_{R} = 0,0006 \cdot E_{0}^{2,34} + 200,62 \cdot (\theta/\sigma_{d})^{0.54}$	0,65
$M_{R} = f(E_{o};\sigma_{d};\sigma_{3})$	$M_{R} = 266,60 \cdot E_{0}^{0,10} \cdot \sigma_{d}^{-0,31} \cdot \sigma_{3}^{0,24}$	0,51
$M_{R} = f(E_{o};\sigma_1;\sigma_3)$	$M_{R} = 376,19 \cdot E_{0}^{0,10} \cdot \sigma_{1}^{-0,50} \cdot \sigma_{3}^{0,24}$	0,51
$M_R = f(E_o; \sigma_d; \theta)$	$M_{R} = 159,78 \cdot E_{o}^{0.98} \cdot \sigma_{d}^{-0.44} \cdot \theta^{0.37}$	0,51
$M_R = f(E_o;\sigma_3)$	$M_{R} = 246,77 \cdot E_{0}^{0,93} \cdot \sigma_{3}^{-0,49}$	0,23
$M_R = f(E_o; \theta)$	$M_{R} = 222,87 \cdot E_{0}^{0,96} \cdot \theta^{-0,18}$	0,30
$M_{R} = f(E_{o};\sigma_1;\sigma_3)$	$M_{R} = 0,0005 \cdot E_{0}^{2,37} + 54,67 \cdot \sigma_{1}^{-0,73} + 2060,83 \cdot \sigma_{3}^{0,99}$	0,64
$M_{R} = f(E_{o};\sigma_1;\sigma_3)$	$M_{R} = 0,0006 \cdot E_{0}^{2,33} + 619,09 \cdot (\sigma_{3}/\sigma_{1})^{0,55}$	0,65
$M_R = f(E_o; \sigma_1; \theta)$	$M_{\rm R} = 0,0006 \cdot {\rm E_0}^{2,34} + 169,19 \cdot \left(\theta/\sigma_1\right)^{1,32}$	0,65

TABELA 4.9– Expressões matemáticas analisadas para representar a variação do módulo de resiliência em função do módulo tangente inicial e estado de tensão para os solos desta pesquisa – Análise 2

Analisando-se os resultados apresentados na tabela 4.9 e comparando-os com os resultados da tabela 4.8, observa-se que a utilização de valores de M_R calculados a partir do modelo que o relaciona com o estado de tensão, conduz a coeficientes de determinação mais elevados. Assim, pode-se concluir que este procedimento é eficaz para minimizar a propagação dos desvios dos ensaios para as relações entre o M_R e o E_o . As próximas análises, itens 4.3.2 e 4.3.3, serão realizadas observando-se este procedimento.

Dentre os modelos da tabela 4.9, o descrito pela equação 4.18 ($R^2 = 0,66$) é o que apresenta melhor desempenho, apesar de outros cinco deles apresentarem coeficientes de determinação (R^2) muito próximos (0,64 a 0,65).

$$M_{\rm R} = 0,0005 \cdot E_0^{2,35} + 89,75 \cdot \sigma_{\rm d}^{-0,45} + 1670,75 \cdot \sigma_3^{1,06}$$
(4.18)

onde:

M_R - módulo de resiliência em MPa;

 σ_d - tensão desvio em MPa;

 σ_3 – tensão de confinamento em MPa;

E_o – módulo tangente inicial em MPa.

A figura 4.24 apresenta os valores do módulo de resiliência determinados a partir do modelo descrito pela equação 4.5 e os valores deste mesmo módulo determinados pela equação 4.18

FIGURA 4.24 – Módulo de resiliência: valores calculados através dos parâmetros do modelo da equação 4.5 versus os valores determinados pela equação 4.18.

Conforme apresentado na Revisão Bibliográfica, solos argilosos e arenosos, sofrem a influência, quase que exclusiva, da tensão desvio e confinante, respectivamente. Este comportamento confirmou-se para os solos estudados nesta pesquisa: a tensão desvio concorre decisivamente para a variação do M_R do solo argiloso e a tensão confinante exerce este mesmo papel no tocante ao solo arenoso. Para o solo arenoso-argiloso, observou-se um comportamento intermediário aos demais, mas com uma predominância maior do efeito da tensão desvio. Esta constatação enseja que relações entre o módulo de resiliência e o módulo tangente inicial correspondentes a solos predominantemente argilosos ou arenosos não devam ser únicas.

Com o propósito de analisar a consequência de se considerar solos puramente argilosos ou arenosos separadamente, foram estudadas relações envolvendo apenas os solos argiloso e areno-argiloso e em seguida, os solos arenoso e o areno-argiloso.

A tabela 4.10 mostra as expressões matemáticas e os correspondentes coeficientes de determinação obtidos segundo a nova condição de análise tomando-se os solos argiloso e areno-argiloso. O número de observações considerados é igual a 101.

	Solos argiloso e areno-argiloso	
Função	Expressões	R ²
$M_{R} = f(E_{o};\sigma_{d};\sigma_{3})$	$M_{R} = 1,74 \cdot E_{o}^{0,99} + 20,74 \cdot \sigma_{d}^{-0,85} - 6,89 \cdot \sigma_{3}^{16,39}$	0,82
$M_R = f(E_o; \sigma_d)$	$M_{\rm R} = 1,74 \cdot E_{\rm o}^{0,99} + 20,74 \cdot \sigma_{\rm d}^{-0,85}$	0,82
$M_R = f(E_o;\sigma_3)$	$M_{\rm R} = 5,87 \cdot {\sf E_0}^{0,80} + 3,85 \cdot {\sigma_3}^{-1,04}$	0,48
$M_R = f(E_o;\sigma_d;\sigma_3)$	$M_R = 11,25 \cdot E_0^{0,69} + 153,50 \cdot (\sigma_3/\sigma_d)^{125,11}$	0,72
$M_R = f(E_o; \sigma_d; \theta)$	$M_{R} = 5,09 \cdot E_{0}^{0,81} + 10,20 \cdot (\theta/\sigma_{d})^{2,20}$	0,73
$M_R = f(E_o;\sigma_d;\sigma_3)$	$M_{\rm R} = 10,35 \cdot {\rm E_0}^{0.64} \cdot {\rm \sigma_d}^{-0.37} \cdot {\rm \sigma_3}^{0.14}$	0,87
$M_R = f(E_o;\sigma_1;\sigma_3)$	$M_{R} = 4,09 \cdot E_{0}^{0,66} \cdot \sigma_{1}^{-0,36} \cdot \sigma_{3}^{-0,70}$	0,77
$M_R = f(E_o; \sigma_d; \theta)$	$M_{R} = 7,66 \cdot E_{o}^{0.64} \cdot \sigma_{d}^{-0.45} \cdot \theta^{0.22}$	0,87
$M_R = f(E_o;\sigma_3)$	$M_{R} = 8,39 \cdot E_{0}^{0,66} \cdot \sigma_{3}^{-0,21}$	0,50
$M_R = f(E_o; \theta)$	$M_{R} = 9,34 \cdot E_{o}^{0,67} \cdot \theta^{-0,35}$	0,67
$M_{R} = f(E_{o};\sigma_1;\sigma_3)$	$M_{R} = 0,26 \cdot E_{0}^{-1,30} + 19,68 \cdot \sigma_{1}^{-1,12} + 31,97 \cdot \sigma_{3}^{-33,09}$	0,78
$M_{R} = f(E_{o};\sigma_1;\sigma_3)$	$M_{R} = 17,53 \cdot E_{0}^{0,63} - 318,34 \cdot (\sigma_{3}/\sigma_{1})^{276,38}$	0,40
$M_R = f(E_o; \sigma_1; \theta)$	$M_{R} = 5,32 \cdot E_{0}^{0,81} + 4,26 \cdot (\theta/\sigma_{1})^{5,65}$	0,73

TABELA 4.10– Expressões matemáticas analisadas para representar a variação do módulo de resiliência em função do módulo tangente inicial e estado de tensão para os solos argiloso e areno-argiloso

Analisando-se os resultados apresentados na tabela 4.10 e tomando-se os valores de R² como uma medida comparativa do desempenho dos diversos modelos, concluí-se que o modelo da equação 4.19 (R² = 0,87) e o modelo expresso em função das tensões desvio e octaédrica (R² = 0,87) são os que apresentam melhor desempenho. Entretanto, destaca-se o fato do modelo expresso apenas em função da tensão desvio também apresentar um bom desempenho (R² = 0,82).

$$M_{\rm R} = 10,35 \cdot E_0^{0,64} \cdot \sigma_{\rm d}^{-0,37} \cdot \sigma_3^{0,14}$$
(4.19)

onde:

M_R - módulo de resiliência em MPa;

 σ_d - tensão desvio em MPa;

 σ_3 – tensão de confinamento em MPa;

E_o – módulo tangente inicial em MPa.

A figura. 4.25 apresenta os valores do módulo de resiliência determinados do modelo da equação 4.5 e os valores deste mesmo módulo determinado pela equação 4.9.

FIGURA 4.25 – Módulo de resiliência: valores calculados através dos parâmetros do modelo da eq. 4.5 versus os valores determinados pela equação 4.19.

A tabela 4.9 apresenta as expressões matemáticas e os coeficientes de determinação obtidos tomando-se os solos areno-argiloso e arenoso, conjuntamente.

	Solos arenoso e areno-argiloso	
Função	Expressões	R ²
$M_R = f(E_o; \sigma_d; \sigma_3)$	$M_{R} = 1.90 \cdot E_{o}^{0.83} + 88.83 \cdot \sigma_{d}^{-0.41} + 974.02 \cdot \sigma_{3}^{0.76}$	0,74
$M_R = f(E_o; \sigma_d)$	$M_{R} = 2,29 \cdot E_{o}^{0,79} + 233,71 \cdot \sigma_{d}^{-0,17}$	0,64
$M_R = f(E_o;\sigma_3)$	$M_{\rm R} = 2,25 \cdot {\sf E_0}^{0,80} + 342,61 \cdot {\sigma_3}^{-0,003}$	0,50
$M_{R} = f(E_{o};\sigma_{d};\sigma_{3})$	$M_{R} = 2,25 \cdot E_{0}^{0,80} + 410,72 \cdot (\sigma_{3}/\sigma_{d})^{0,30}$	0,75
$M_R = f(E_o; \sigma_d; \theta)$	$M_{R} = 2,23 \cdot E_{o}^{0,80} + 215,51 \cdot (\theta/\sigma_{d})^{0,47}$	0,75
$M_R = f(E_o;\sigma_d;\sigma_3)$	$M_{R} = 294,39 \cdot E_{o}^{0,10} \cdot \sigma_{d}^{-0,26} \cdot \sigma_{3}^{0,22}$	0,77
$M_R = f(E_o;\sigma_1;\sigma_3)$	$M_{R} = 393,31 \cdot E_{0}^{0,10} \cdot \sigma_{1}^{-0,42} \cdot \sigma_{3}^{0,38}$	0,77
$M_R = f(E_o; \sigma_d; \theta)$	$M_{R} = 182,61 \cdot E_{0}^{0,10} \cdot \sigma_{d}^{-0,39} \cdot \theta^{0,34}$	0,77
$M_R = f(E_o;\sigma_3)$	$M_{\rm R} = 260,08 \cdot {\rm E_0}^{0,10} \cdot {\rm \sigma_3}^{-0,04}$	0,48
$M_R = f(E_o; \theta)$	$M_{R} = 240, 19 \cdot E_{o}^{0,10} \cdot \theta^{-0,14}$	0,55
$M_R = f(E_0;\sigma_1;\sigma_3)$	$M_{R} = 2,28 \cdot E_{0}^{0,80} + 257,22 \cdot \sigma_{1}^{-0,16} + 44,57 \cdot \sigma_{3}^{6,09}$	0,59
$M_R = f(E_o;\sigma_1;\sigma_3)$	$M_{R} = 2,27 \cdot E_{0}^{0,80} + 571,91 \cdot (\sigma_{3}/\sigma_{1})^{0,48}$	0,75
$M_R = f(E_o; \sigma_1; \theta)$	$M_{R} = 2,25 \cdot E_{0}^{0,80} + 185,88 \cdot (\theta/\sigma_{1})^{1.14}$	0,75

TABELA 4.11– Expressões matemáticas analisadas para representar a variação do módulo de resiliência em função do módulo tangente inicial e estado de tensão para os solos arenoso e areno-argiloso

Analisando-se os resultados apresentados na tabela 4.11, concluí-se que o modelo da equação 4.20 ($R^2 = 0,77$) e os modelos expressos em função da tensão desvio combinada com a tensão octaédrica e da tensão principal maior combinada com a tensão confinante apresentam idênticos e maiores valores de coeficiente de determinação.

$$M_{\rm R} = 294,39 \cdot {\rm E_0}^{0,10} \cdot {\rm \sigma_d}^{-0,26} \cdot {\rm \sigma_3}^{0,22}$$
(4.20)

onde:

M_R - módulo de resiliência em MPa;

 σ_d - tensão desvio em MPa;

 σ_3 – tensão de confinamento em MPa;

E_o – módulo tangente inicial em MPa

A figura 4.26 apresenta os valores de M_R determinados pelos parâmetros do modelo da equação 4.5 e os valores previstos pela equação 4.20.

FIGURA 4.26 – Módulo de resiliência: valores calculados através dos parâmetros do modelo da equaç 4.5 versus os valores determinados pela equação 4.20.

Ainda analisando-se a tabela 4.11, observa-se que quando se comparam as relações expressas em função das tensões desvio e confinante consideradas isoladamente, a primeira apresenta $R^2 = 0,64$ e a segunda $R^2 = 0,50$. Este fato indica que para o par formado pelos solos areno-argiloso e arenoso, a influência da tensão desvio é a predominante.

Comparando-se os dois pares analisados, concluí-se que o par formado pelos solos argiloso e areno-argiloso apresenta maior compatibilidade entre os seus componentes que aquele formado pelos solos arenoso e areno-argiloso.