• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.18.2004.tde-28102015-095425
Document
Author
Full name
Carlos de Marqui Junior
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2004
Supervisor
Committee
Belo, Eduardo Morgado (President)
Góes, Luiz Carlos Sandoval
Marques, Flavio Donizeti
Resende, Hugo Borelli
Santoro, Fernando Garcia
Title in Portuguese
Estudo teórico e experimental de um controlador para supressão de Flutter
Keywords in Portuguese
Aeroelasticidade
Controle
Flutter
Modelo experimental
Abstract in Portuguese
Flutter é uma instabilidade aeroelástica dinâmica que envolve a interação de forças aerodinâmicas, elásticas e inerciais. Esta instabilidade pode ocorrer em superfícies de aeronaves, como asas, que apresentarão um comportamento oscilatório auto-sustentado e possíveis problemas estruturais se o mesmo não for suprimido. Um dos tipos clássicos de flutter envolve o acoplamento dos modos de vibrar de flexão e torção. Este tipo de flutter binário é conhecido como flutter flexo-torcional. Um dispositivo flexível é desenvolvido para testes de flutter flexo-torcional com asas rígidas em túnel de vento. O procedimento de projeto deste dispositivo flexível é baseado em simulações realizadas com um modelo em elementos finitos cujos resultados são testados em simulações realizadas com um modelo aeroelástico formulado para simular o comportamento aeroelástico do sistema experimental. Então, para se verificar os resultados analíticos, uma análise modal experimental é realizada e as freqüências e a forma dos modos são identificadas utilizando-se o Eigensystem Realization Algorithm. Depois disso, alguns testes em túnel de vento são realizados para a verificação da obtenção do flutter, para a caracterização do flutter e para a identificação do flutter. O desenvolvimento deste sistema experimental permite o estudo e a aplicação de leis de controle para a supressão ativa do flutter, que é o objetivo principal deste trabalho. Um controlador ativo para supressão de flutter através de realimentação de estados é projetado a partir do modelo Aeroelástico previamente desenvolvido. Este controlador é inicialmente testado em simulação e, então, são realizados experimentos em túnel de vento. O objetivo é suprimir o flutter e manter a estabilidade do sistema em malha fechada. O modelo para testes no túnel de vento é uma asa rígida retangular com perfil NACA 0012 com uma superfície de controle no bordo de fuga utilizada como atuador.
Title in English
Theoretical and experimental study on a Flutter suppression controller
Keywords in English
Aeroelasticity
Control
Experimental model
Flutter
Abstract in English
Flutter is a dynamic aeroelastic instability that involves the interaction of aerodynamic, elastic and inertial forces. This instability may occur in aircraft surfaces, like wings, which will present a self-sustained oscillatory behaviour and possible structural problems if not suppressed. One of the classical types of flutter involves the coupling of bending and torsion vibration modes. This binary type of flutter is known as flexural-torsional flutter. A flexible mount system is developed for flexural-torsional flutter tests with rigid wings in wind tunnels. The design procedure of this mount system is based in simulations performed with a finite element model which results are tested in simulations performed with an Aeroelastic model formulated to simulate the aeroelastic behaviour of the experimental system. Then, to verify the analytical results, an experimental modal analysis is performed and mode shapes and frequencies are identified using the Eigensystem Realization Algorithm. After this, some wind tunnel tests are performed to verify flutter achievement, for flutter characterization and for flutter identification. The development of this experimental system allows the study and application of active control laws for active flutter suppression, which is the main goal of this work. A state feedback controller for active flutter suppression is designed using the aeroelastic model previously developed. This controller is initially tested in simulations and, then, wind-tunnel experiments are performed. The goal is to suppress flutter and to maintain the stability of the closed loop system. The wind tunnel model is a rigid rectangular wing with a NACA 0012 airfoil section with a trailing edge control surface used as actuator.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2015-10-28
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2024. All rights reserved.