LISTA DE SÍMBOLOS

A - Área da seção transversal do leito, m^2

A/C - Relação mássica ar/combustível, adim

Ar - Número de Arquimedes, *adim*

B - característica hidrodinâmica da fase bolha

B' - característica hidrodinâmica adimensional da fase bolha

*CaCO*₃ - Carbonato de cálcio

CaCO₃.MgCO₃ - Carbonato magnésio de cálcio

CaO - Óxido de cálcio

Ca/S - Relação cálcio/enxofre

*CaSO*₄ - Sulfato de cálcio

c_f - Calor específico do gás, kJ/(kg.K)

c_s Calor específico das partículas, kJ/(kg.K)

 C^{bH}_{SO2} - Concentração de SO_2 na fase de bolhas no topo do leito, $kmol_{SO2}/m^3$

 C^b_{SO2} - Concentração de SO_2 na fase de bolhas, $kmol_{SO2}/m^3$

 C^{sc}_{SO2} - Concentração de SO_2 sem alimen. de calcário, $kmol_{SO2}/m^3$

 C^{cc}_{SO2} - Concentração de SO_2 com alimen. de calcário, $kmol_{SO2}/m^3$

d_L - Diâmetro das partículas de calcário, *m*

 d_{Areia} - Diâmetro das partículas de areia do leito, m

 d_b - Diâmetro médio de bolha no leito, m

- Diâmetro médio das partículas do leito, *m*

 d_v - Diâmetro de uma esfera com mesmo volume da partícula de

areia, m

D - Diâmetro do Leito, *m*

 D_{bO} - Diâmetro inicial da bolha, m - Diâmetro máximo da bolha, m

D_c - Diâmetro da coluna dos injetores da placa distribuidora, *mm*

 D_{ex} - Diâmetro externo dos injetores da placa distribuidora, mm

D_h - Diâmetro hidráulico do Leito, *m*

D_H - Diâmetro local de bolhas no leito, *m*

 $(Db)_{su}$ - Diâmetro de bolha na superfície do leito

 D_f - Coeficiente de difusão do gás, m^2/s

 D_G - Coeficiente de difusão molecular na fase gasosa, m^2/s

D_r - Diâmetro radial dos injetores da placa distribuidora, *mm*

 D_t - Diâmetro do tubo, m

E - Coeficiente de difusão efetivo na fase de particulado, m^2/s

*E*_I - Característica arbitrária da fase de emulsão

 E_{I} - Característica arbitrária adimensional da fase de emulsão

f - Função

 f_b - Frequência de bolhas, 1/s

(FB') - Característica de transporte do leito

Fr - Número de Froude, adim.

Fr_H - Número de Froude local, adim.

g - Aceleração da gravidade, *m/s*²

 G_s - Parâmetro de fluxo de sólidos, $kg/(m^2.s)$

H -Altura do leito na velocidade de fluidização, m

 H_{mf} - Altura do leito na velocidade mínima de fluidização, m

k - Coeficientes de transferência de massa superficial,

K - Coeficiente de difusão efetivo vertical de partículas, m²/s

- Coeficiente de taxa de reação intrínseco, *m/s*

- Coeficiente global de taxa de reação, m/s

 k_C - Coeficiente de taxa de reação de carbono fixo intrínseco, m/s

 K_C - Coeficiente global de taxa de reação de carbono fixo, m/s

 K_{bp} - Coeficiente de troca de massa entre as fases de bolhas e de

particulado, m³/s

 K_f - Condutibilidade térmica gás, m^2/s

 K_h - Coeficiente de difusão horizontal de partículas, m^2/s

L - Comprimento de um lado de uma seção quadrada, m

 L_i - Raio dos injetores da placa distribuidora, mm

 $M_{
m areia}$ - Massa de areia no leito do reator, kg

 M_{Elutr} - Massa de areia elutriada do reator, kg

MgO - Óxido de magnésioMgSO₄ - Sulfato de magnésio

 m_L - Massa de uma partícula de calcário, kg

 $\dot{m}_{Calcário}$ - Taxa de alimentação de calcário, g/s;

 $\dot{m}_{Carvão}$ - Taxa de alimentação de carvão, g/s;

 M_{Leito} - Massa do leito, kg

 M_{Retida} - Massa de areia nos tubos de esvaziamento do leito, kg

n(*i*) - Número de moles de i, *mol*

*n*_L - Número de particulas de calcário, *adim*

*NO*_X - Óxidos de nitrogênio

 $N_{Re\ mf}$ - Número de Reynolds na velocidade mínima de fluidização,

adim

Nu - Número de Nusselt, adim

Nu_e - Número de Nusselt na fase de emulsão, *adim*

 P_{ap} - Pressão à montante da placa de orício, *mmca*

P_{local} - Pressão atmosférica média local, Pa

Pe_b - Número de Pecklet relativo à bolha, adim.

Pr - Número de Prandtl, *adim*

PSD - Função densidade de probabilidade das flutuações de pressão

R - Constante universal dos gases, J/(kmol K)

 R_A - Taxa total de consumo molar de calcário no leito, $kmol_{Ca+Mg}/s$

*Re*_b - Número de Reynolds relativo à bolha, *adim*

Re_mf - Número de Reynolds na velocidade mínima de fluidização,

adim

Sc - Número de Schmidt, adim

Sh - Número de Sherwood, adim

SO₂ - Dióxido de enxofreSO₃ - Trióxido de enxofre

 S_{ν} - Passo vertical, m

 S_h - Passo horizontal, m t - Tempo de reação, s

T - Temperatura do leito, ${}^{o}C$

 t_c - Tempo de calcinação, s

 T_{tubo} - Temperatura do ar na placa de orifício, ${}^{o}C$

U - Velocidade de fluidização, m/s

 U_b - Velocidade absoluta de bolha, m/s

 U_A - Velocidade de ascenção de uma bolha, m/s

 U_{mf} - Velocidade mínima de fluidização, m/s

 V_b - Volume de bolha, m^3

v - Vazão volumétrica de gás, m³

*v*_b - Velocidade relativa de uma bolha.

 W_{ar} - Massa molecular do ar, $kg/kmol_{Ar}$

 W_{Ca} - Massa molecular do Cálcio, $kg/kmol_{Ca}$

 W_{Mg} - Massa molecular do Magnésio, $kg/kmol_{Mg}$

 W_{su} - Velocidade media quadrática de ejeção das partículas do leit

 w_{SO_2} - Taxa de difusão molar de SO_2 no gás envolvente na direção da

partícula, kmol_{SO2}/s

X - Conversão média, kmol_{SO₂}/kmol_{Ca}

X_C - Conversão média de carbono fixo, *kmol_{CO2}/kmol_{Carvão}*

 Y_C - Fração de Carbono no carvão, $kg_C/kg_{carvão}$

 Y_{Ca} - Fração de Cálcio no calcário natural, $kg_{Ca}/kg_{calcário\ natural}$

 Y_{Mg} - Fração de Magnésio no calcário natural, $kg_{Mg}/kg_{calcário\ natural}$

z - Distância axial ao longo do leito, *m*

Letras gregas

 α_b - Volume relativo da bolha de gás

 α_{c_c} - Coeficiente de transferência de calor condutivo-convectivo

 α_{conv} - Coeficiente de transferência de calor por convecção na bolha

 $\alpha_{\rm e}$ - Coeficiente de transferência de calor da fase de emulsão

 $\alpha_{\rm fb}$ - coeficiente de transferência de calor no "freeboard"

β - Coeficiente de transferência de massa volumétrico

γ - Fator de fluxo bolhas/particulado, adim

 ΔP_{po} - Diferença de pressão na placa de orício, *mmca*

ε - Porosidade média do leito

 ε_b - Concentração de bolhas, *adim*

 \mathcal{E}_{mf} - Fração de vazio do leito na velocidade mínima de fluidização,

adim

 ψ - Função

 $oldsymbol{arphi}$ - Função

 φ_s - Esfericidade das partículas sólidas, *adim*

 μ_{Ar} - Viscosidade do ar no leito, kg/m.s

μf - Viscosidade dinâmica do gás, kg/m.s

 R_A - Taxa de reação de uma partícula de calcário, $kmol_{Ca+Mg}/s$

 R_{SO_2} - Taxa de consumo de SO_2 por uma partícula de calcário,

kmol_{SO2}/s

 ρ - Densidade no "freeboard"

 ρ_{su} - Densidade na superfície do leito

 ρ_{Ar} - Densidade do ar no leito, kg/m^3

 ρ_{Areia} - Densidade da areia de quartzo, kg/m^3

 ρ_b - Densidade do material do leito, kg/m^3

 ρ_c - Densidade aparente do carvão, kg/m^3

 ρ_f - Densidade dos gases de combustão, kg/m^3

 ρ_L - Densidade aparente do calcário, kg/m^3

- ξ Distância radial a partir do centro de uma partícula, m
- λ Relação n(ar)/n(ar estequimétrico) ou excesso de ar, adim.