• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
10.11606/T.18.2008.tde-27082008-111607
Documento
Autor
Nome completo
Wilson Wesley Wutzow
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2008
Orientador
Banca examinadora
Coda, Humberto Breves (Presidente)
Benallal, Ahmed
Laier, Jose Elias
Mesquita Neto, Euclides de
Schmitt, Nicolas
Título em português
Formulação do método dos elementos de contorno para materiais porosos reforçados
Palavras-chave em português
Acoplamento MEC/MEF
Enrijecedores
Método dos elementos de contorno
Poro-elasticidade
Poro-elasto-plasticidade
Sólidos não saturados
Resumo em português
Neste trabalho, propõe-se uma formulação não linear baseada no método dos elementos de contorno, para representação de domínios poro-elasto-plásticos reforçados. Esta formulação é apresentada para os casos saturado e não saturado. Para o problema poroso enrijecido um acoplamento com o método dos elementos finitos é empregado, e a técnica de mínimos quadrados permite a regularização dos deslocamentos e do vetor de forças de superfície ao longo das interfaces de acoplamento. São empregadas expressões analíticas para o tratamento das integrais de contorno e de domínio presentes na formulação do método dos elementos de contorno. A formulação de Biot é empregada para a descrição de meios porosos saturados e uma formulação energética baseada nos trabalhos de Coussy é adaptada para a extensão ao caso não saturado. Neste caso, a pressão capilar e energia das interfaces são levadas em consideração. O nível de saturação é descrito pelo modelo de Van Genuchten e o comportamento do esqueleto é descrito ou pelo modelo de Drucker-Prager ou pelo modelo de Cam-Clay modificado. O problema não linear obtido por uma descrição temporal associada a discretização espacial é resolvido pelo método de Newton-Raphson. No caso saturado, o operador tangente consistente é definido e utilizado para obtenção da solução do sistema. Exemplos numéricos são apresentados para validar a formulação proposta.
Título em inglês
Boundary element method formulation for reinforced porous material
Palavras-chave em inglês
BEM/FEM couplings
Boundary elements method
Non-saturated solids
Poro-elasticity
Poro-elasto-plasticity
Reinforcements
Resumo em inglês
In this work a nonlinear formulation of the boundary element method (BEM) is proposed to deal with saturated and unsaturated poro-elasto-plastic 2D reinforced domains. To model reinforced porous domains a BEM/FEM (Finite Element Method) modified coupling technique is employed. The coupling is made by using the least square method to regularize the displacement and traction distributions along the interfaces. Analytical expressions have been derived for all boundary and domain integrals required for the formulation. The Biot formulation is used for the description of the saturated porous environments and an energetic consistent formulation based on work of Coussy is adopted for its extension to the framework of unsaturated porous media. In this case, the capillar pressure and the interface energy are taken into account. The Van Genuchten model is used for the determination of saturation level in non-saturated poro-elasto-plastic problems. The Drucker-Prager modified model if used for the saturated poro-elasto-plastic problems and the modified Cam-Clay model for the representation of non-saturated poro-elasto-plastic problems. For the saturated case, the consistent tangent operator is derived and employed inside a Newton procedure to solve non-linear problems. Numerical solutions are presented to validate the proposed models.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2008-09-11
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.