• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.18.2007.tde-18102007-111532
Documento
Autor
Nome completo
Manoel Dênis Costa Ferreira
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2007
Orientador
Banca examinadora
Venturini, Wilson Sergio (Presidente)
Ferreira, Luiz Eduardo Teixeira
Lindenberg Neto, Henrique
Título em português
Análise inversa em sólidos bidimensionais utilizando o método dos elementos de contorno
Palavras-chave em português
Fratura coesiva
Método dos elementos de contorno
Métodos de regularização
Problemas inversos
Resumo em português
A aplicação da análise inversa é objeto de estudo nos mais diversos campos da ciência e da engenharia. A motivação para o tratamento de tais problemas se deve ao fato de que em muitas aplicações dessas áreas do conhecimento, há a necessidade da identificação de parâmetros físicos e geométricos a partir de dados do domínio medidos experimentalmente, já que tais parâmetros de entrada são desconhecidos para uma análise direta do problema. Neste tipo de análise o problema principal está na quantidade e qualidade dos dados experimentais obtidos, que são na maioria das vezes insuficientes para garantir que o sistema gerado apresente solução única, gerando com isto um problema essencialmente mal-posto. Assim, de forma geral o emprego confiável da análise inversa implica na utilização de ferramentas eficientes de aquisição de dados experimentais aliada a técnicas numéricas de regularização que buscam a minimização da função objetiva gerada por algum método numérico, como por exemplo, o método dos elementos de contorno (MEC). Sendo assim, o presente trabalho tem por objetivo apresentar uma formulação para resolução de problemas inversos de valor de contorno e estimativa dos parâmetros do modelo coesivo, através de medidas de campos de deslocamentos, em sólidos bidimensionais com domínio formado por multi-regiões via (MEC), utilizando-se de técnicas tais como: mínimos quadrados, regularização de Tikhonov, decomposição em valor singular (SVD) e filtro de Tikhonov, para regularização do problema. Além disto, são apresentados alguns exemplos de aplicação da formulação desenvolvida.
Título em inglês
Inverse analysis in two-dimensional solid using the boundary element method
Palavras-chave em inglês
Boundary element method
Cohesive fracture
Inverse problems
Regularization methods
Resumo em inglês
The application of inverse analysis is nowadays subject of research of many fields in engineering and science. The motivation to consider this problem is due to the fact that in many applications of these knowledge areas, physical and geometric parameters, that are not directly known, can be identified using domain data measured experimentally. In this kind of analysis the main problem is the quantity and the quality of the obtained experimental data, which, many times, are not sufficient to guarantee that the generated system of equations has only one solution, leading therefore to an ill-posed problem. Thus, in general the reliable use of the inverse analysis requires using efficient tools for experimental data acquisition together with the numerical techniques of regularization needed to impose the minimization of the objective function written by using any numerical method, as the boundary element method (BEM) for instance. In this context, the objective of the present work is to derive a formulation for resolution of boundary-value inverse problems and to estimate the material parameters of the cohesive model, by using measured displacements fields, in multi-region two-dimensional solid by BEM, using techniques such as: least squares, Tikhonov regularization, singular value decomposition (SVD) and Tikhonov filtering, for the problem regularization. Some application examples are presented using the developed formulation to illustrate its performance.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2007-10-22
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.