• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
10.11606/D.18.2001.tde-17062001-095633
Document
Auteur
Nom complet
Valério Júnior Bitencourt de Souza
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 2001
Directeur
Jury
Coda, Humberto Breves (Président)
Lindenberg Neto, Henrique
Paiva, Joao Batista de
Titre en portugais
Algoritmos de integração eficientes para o método dos elementos de contorno tridimensional.
Mots-clés en portugais
elasticidade tridimensional
elementos de contorno
técnicas de integração
Resumé en portugais
Neste trabalho é analisado o problema elástico tridimensional através do método dos elementos de contorno empregando a solução fundamental de Kelvin. São utilizadas duas formulações principais: a formulação clássica e a formulação hiper-singular. A primeira utiliza a solução fundamental de Kelvin clássica e a segunda aplica uma derivada direcional da solução fundamental de Kelvin. O contorno é discretizado utilizando-se elemento triangular plano com aproximações constante, linear e quadrática. As integrais singulares são desenvolvidas analiticamente para o elemento constante, e semi-analiticamente para os elementos linear e quadrático. São apresentadas técnicas de integração de contorno considerando-se a eficiência e a precisão para a integral quase singular. São apresentados vários exemplos numéricos, inclusive problemas esbeltos, e seus resultados são comparados com valores conhecidos pela teoria de elasticidade, ou ainda, comparados com valores disponíveis na literatura.
Titre en anglais
Efficient integration algorithms for the three-dimensional boundary element method.
Mots-clés en anglais
boundary elements
integration techniques
three-dimensional elasticity
Resumé en anglais
In this work the three-dimensional elastic problem is analyzed by the boundary element method using the Kelvin fundamental solution. Two main formulations are applied. The first one uses the classical Kelvin fundamental solution and the other, hyper-singular, uses a derivative of the Kelvin fundamental solution. The boundary is discretized by flat triangular elements with constant, linear and quadratic approximations. The singular integrals are analytically developed for constant elements, while for linear and quadratic elements a semi-analytical process is employed. Different techniques to perform quasi-singular boundary integrals are presented and their efficiency and accuracy are compared. Several numerical examples are presented, including slender problems. The results are compared with known solutions given by the theory of elasticity, or with other results found in the literature.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2001-06-19
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
Centro de Informática de São Carlos
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2019. Tous droits réservés.