• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
10.11606/D.18.2001.tde-17062001-095633
Documento
Autor
Nombre completo
Valério Júnior Bitencourt de Souza
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 2001
Director
Tribunal
Coda, Humberto Breves (Presidente)
Lindenberg Neto, Henrique
Paiva, Joao Batista de
Título en portugués
Algoritmos de integração eficientes para o método dos elementos de contorno tridimensional.
Palabras clave en portugués
elasticidade tridimensional
elementos de contorno
técnicas de integração
Resumen en portugués
Neste trabalho é analisado o problema elástico tridimensional através do método dos elementos de contorno empregando a solução fundamental de Kelvin. São utilizadas duas formulações principais: a formulação clássica e a formulação hiper-singular. A primeira utiliza a solução fundamental de Kelvin clássica e a segunda aplica uma derivada direcional da solução fundamental de Kelvin. O contorno é discretizado utilizando-se elemento triangular plano com aproximações constante, linear e quadrática. As integrais singulares são desenvolvidas analiticamente para o elemento constante, e semi-analiticamente para os elementos linear e quadrático. São apresentadas técnicas de integração de contorno considerando-se a eficiência e a precisão para a integral quase singular. São apresentados vários exemplos numéricos, inclusive problemas esbeltos, e seus resultados são comparados com valores conhecidos pela teoria de elasticidade, ou ainda, comparados com valores disponíveis na literatura.
Título en inglés
Efficient integration algorithms for the three-dimensional boundary element method.
Palabras clave en inglés
boundary elements
integration techniques
three-dimensional elasticity
Resumen en inglés
In this work the three-dimensional elastic problem is analyzed by the boundary element method using the Kelvin fundamental solution. Two main formulations are applied. The first one uses the classical Kelvin fundamental solution and the other, hyper-singular, uses a derivative of the Kelvin fundamental solution. The boundary is discretized by flat triangular elements with constant, linear and quadratic approximations. The singular integrals are analytically developed for constant elements, while for linear and quadratic elements a semi-analytical process is employed. Different techniques to perform quasi-singular boundary integrals are presented and their efficiency and accuracy are compared. Several numerical examples are presented, including slender problems. The results are compared with known solutions given by the theory of elasticity, or with other results found in the literature.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2001-06-19
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
Centro de Informática de São Carlos
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2019. Todos los derechos reservados.