• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
https://doi.org/10.11606/T.18.2009.tde-14012011-102258
Documento
Autor
Nombre completo
Dimas Betioli Ribeiro
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 2009
Director
Tribunal
Paiva, João Batista de (Presidente)
Aoki, Nelson
Coda, Humberto Breves
Mesquita Neto, Euclides de
Palermo Junior, Leandro
Título en portugués
Estudo e aplicação de um elemento de contorno infinito na análise da interação solo-estrutura via combinação MEC/MEF
Palabras clave en portugués
Acoplamento MEC/MEF
Edifício
Elementos de contorno infinitos
Interação solo/estrutura
Solo não-homogêneo
Resumen en portugués
Neste trabalho, é desenvolvido um programa de computador para a análise estática e tridimensional de problemas de interação solo-estrutura. O programa permite considerar várias camadas de solo, cada qual com características físicas diferentes. Sobre este solo, o qual pode conter estacas, podem ser apoiados diversos tipos de estruturas, tais como placas e até um edifício. Todos os materiais considerados são homogêneos, isotrópicos, elásticos e lineares. O solo tridimensional é modelado com o método dos elementos de contorno (MEC), empregando as soluções fundamentais de Kelvin e uma técnica alternativa na consideração do maciço não-homogêneo. Esta técnica, que é uma contribuição original deste trabalho, é baseada no relacionamento das soluções fundamentais de deslocamento dos diferentes domínios, permitindo que sejam analisados como um único sólido sem a necessidade de equações de equilíbrio e compatibilidade. Isso reduz o sistema de equações final e melhora a precisão dos resultados, conforme comprovado nos exemplos apresentados. Para reduzir o custo computacional sem prejudicar a precisão dos resultados, é utilizada uma malha de elementos de contorno infinitos (ECI) nas bordas da malha de ECs para modelar o comportamento das variáveis de campo em longas distâncias. A formulação do ECI mapeado utilizado é outra contribuição original deste trabalho, sendo baseado em um EC triangular. É demonstrado por meio de exemplos que tal formulação é eficiente para a redução de malha, contribuindo de forma significativa na redução do custo computacional. Todas as estruturas que interagem com o solo, incluindo as de fundação, são simuladas empregando o método dos elementos finitos (MEF). Cada estaca é modelada como uma linha de carga empregando um único elemento finito com 14 parâmetros nodais, o qual utiliza funções de forma do quarto grau para aproximar os deslocamentos horizontais, do terceiro grau para as forças horizontais e deslocamentos verticais, do segundo grau para as forças cisalhantes verticais e constantes para as reações da base. Este elemento é empregado em outros trabalhos, no entanto os autores utilizam as soluções fundamentais de Mindlin na consideração da presença da estaca no solo. Desta forma, a formulação desenvolvida neste trabalho com as soluções fundamentais de Kelvin pode ser considerada mais uma contribuição original. No edifício, que pode incluir um radier como estrutura de fundação, são utilizados dois tipos de EFs. Os pilares e vigas são simulados com elementos de barra, os quais possuem dois nós e seis graus de liberdade por nó. As lajes e o radier são modelados empregando elementos planos, triangulares e com três nós. Nestes EFs triangulares são superpostos efeitos de membrana e flexão, totalizando também seis graus de liberdade por nó. O acoplamento MEC/MEF é feito transformando as cargas de superfície do MEC em carregamentos nodais reativos no MEF. Além de exemplos específicos nos Capítulos teóricos, um Capítulo inteiro é dedicado a demonstrar a abrangência e precisão da formulação desenvolvida, comparando-a com resultados de outros autores.
Título en inglés
Study and application of an infinite boundary element for soil-structure interaction analysis via FEM/BEM coupling
Palabras clave en inglés
Building
FEM/BEM coupling
Infinite boundary elements
Layered soil
Soil-structure interaction
Resumen en inglés
In this work, a computer code is developed for the static analysis of three-dimensional soil-structure interaction problems. The program allows considering a layered soil, which may contain piles. This soil may support several structures, such as shells or even an entire building. All materials are considered homogeneous, isotropic, elastic and linear. The three-dimensional soil is modeled with the boundary element method (BEM), employing Kelvin fundamental solutions and an alternative multi-region technique. This technique, which is an original contribution of this work, is based on relating the displacement fundamental solution of the different domains, allowing evaluating them as an unique solid and not requiring compatibility or equilibrium equations. In such a way, the final system of equations is reduced and more accurate results are obtained, as demonstrated in the presented examples. In order to reduce the computational cost maintaining the accuracy, an infinite boundary element (IBE) mesh is employed at the BE mesh limits to model the far field behavior. The mapped IBE utilized, based on a triangular EC, is another original contribution of this work. In the presented examples it is demonstrated that this IBE formulation is efficient for mesh reduction, implying on a significant computational cost reduction. All structures that interact with the soil, including the foundations, are simulated with de finite element method (FEM). The piles are modeled using a one-dimensional 14 parameter finite element, with forth degree shape functions for horizontal displacement approximation, third degree shape functions for horizontal forces and vertical displacement, second degree shape functions for vertical share force, and constant for the base reaction. This element is employed in other works, however the authors utilize Mindlin fundamental solutions for the pile presence consideration in the soil. In such a way, the formulation developed in this work with Kelvin fundamental solutions may be considered one more original contribution. The building, which may include a radier as a foundation structure, is modeled using two types os FEs. Piles and beams are simulated using bar FEs with two nodes and six degrees of freedom per node. The radier and pavements are modeled employing plane triangular three-node FEs. In these FEs plate and membrane effects are superposed, totalizing six degrees of freedom per node. FEM/BEM coupling is made by transforming the BEM tractions in nodal reactions in the FEM. Even though specific examples are presented in the theoretical Chapters, a role Chapter is dedicated for demonstrating the formulation accuracy and coverage. In most examples, the results are compared with the ones obtained by other authors.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2011-01-18
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2024. Todos los derechos reservados.