• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
10.11606/T.18.2008.tde-08052008-090039
Documento
Autor
Nome completo
Daniel Nelson Maciel
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2008
Orientador
Banca examinadora
Coda, Humberto Breves (Presidente)
Laier, José Elias
Pavanello, Renato
Ribeiro, Hermano de Souza
Trindade, Marcelo Areias
Título em português
Análise de problemas elásticos não lineares geométricos empregando o método dos elementos finitos posicional
Palavras-chave em português
Elementos finitos
Não linearidade geométrica
Pórticos planos
Sólidos 3D
Resumo em português
Neste trabalho problemas não lineares geométricos envolvendo pórticos planos e sólidos tridimensionais são analisados através do método dos elementos finitos com formulação posicional. A formulação posicional utiliza como incógnitas as posições dos nós ao invés de deslocamentos. O referencial adotado da formulação é o lagrangiano total. Também se utiliza o algoritmo de Newton-Raphson para solução iterativa do problema não linear. Para problemas envolvendo dinâmica, a matriz de massa é consistente e o integrador temporal é o algoritmo de Newmark. Para o pórtico plano, a cinemática adotada é a de Reissner, onde a seção plana do pórtico não necessariamente permanece perpendicular ao seu eixo central após deformação. Com relação à formulação de sólido tridimensional, é adotada aproximação cúbica de variáveis com elementos finitos tretraédricos de 20 nós. É apresentada também a análise de impacto em anteparo rígido para estruturas tridimensionais utilizando o integrador de Newmark modificado para se garantir a estabilidade do problema. A formulação aqui proposta é validade em comparação com exemplos clássicos da literatura especializada.
Título em inglês
Elastic nonlinear geometric analysis with positional finite element method
Palavras-chave em inglês
2D frames
3D solids
Finite elements
Nonlinear geometric
Resumo em inglês
Non linear geometric analysis for 2D frames and 3D solids are analyzed in this work by employing the finite element method with positional description. The present formulation does not use the concept of displacement; it considers positions as the real variables of the problem. In addition, the formulation is developed through total lagrangian description. Besides, the Newton-Raphson method is applied for solving the iterative linear system. For dynamic problems, the mass matrix is consistent and it is applied the Newmark algorithm for time integration. For 2D frame analysis, Reissner kinematics is adopted, that is, initial plane cross-sections remain plane after deformation and angles are independent of the slope of central line. In respect to 3D solids, a cubic approximation for the variables is employed through tetraedric finite elements with 20 nodes. Moreover, impact analysis against rigid wall is performed for 3D solids by applying the modified Newmark procedure in order to guarantee a stabilized response. In order to validate the herein proposed formulation, numerical examples are compared to those in the specialized literature.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2008-05-09
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.