• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
10.11606/T.18.2008.tde-08052008-090039
Document
Auteur
Nom complet
Daniel Nelson Maciel
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 2008
Directeur
Jury
Coda, Humberto Breves (Président)
Laier, José Elias
Pavanello, Renato
Ribeiro, Hermano de Souza
Trindade, Marcelo Areias
Titre en portugais
Análise de problemas elásticos não lineares geométricos empregando o método dos elementos finitos posicional
Mots-clés en portugais
Elementos finitos
Não linearidade geométrica
Pórticos planos
Sólidos 3D
Resumé en portugais
Neste trabalho problemas não lineares geométricos envolvendo pórticos planos e sólidos tridimensionais são analisados através do método dos elementos finitos com formulação posicional. A formulação posicional utiliza como incógnitas as posições dos nós ao invés de deslocamentos. O referencial adotado da formulação é o lagrangiano total. Também se utiliza o algoritmo de Newton-Raphson para solução iterativa do problema não linear. Para problemas envolvendo dinâmica, a matriz de massa é consistente e o integrador temporal é o algoritmo de Newmark. Para o pórtico plano, a cinemática adotada é a de Reissner, onde a seção plana do pórtico não necessariamente permanece perpendicular ao seu eixo central após deformação. Com relação à formulação de sólido tridimensional, é adotada aproximação cúbica de variáveis com elementos finitos tretraédricos de 20 nós. É apresentada também a análise de impacto em anteparo rígido para estruturas tridimensionais utilizando o integrador de Newmark modificado para se garantir a estabilidade do problema. A formulação aqui proposta é validade em comparação com exemplos clássicos da literatura especializada.
Titre en anglais
Elastic nonlinear geometric analysis with positional finite element method
Mots-clés en anglais
2D frames
3D solids
Finite elements
Nonlinear geometric
Resumé en anglais
Non linear geometric analysis for 2D frames and 3D solids are analyzed in this work by employing the finite element method with positional description. The present formulation does not use the concept of displacement; it considers positions as the real variables of the problem. In addition, the formulation is developed through total lagrangian description. Besides, the Newton-Raphson method is applied for solving the iterative linear system. For dynamic problems, the mass matrix is consistent and it is applied the Newmark algorithm for time integration. For 2D frame analysis, Reissner kinematics is adopted, that is, initial plane cross-sections remain plane after deformation and angles are independent of the slope of central line. In respect to 3D solids, a cubic approximation for the variables is employed through tetraedric finite elements with 20 nodes. Moreover, impact analysis against rigid wall is performed for 3D solids by applying the modified Newmark procedure in order to guarantee a stabilized response. In order to validate the herein proposed formulation, numerical examples are compared to those in the specialized literature.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2008-05-09
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
Centro de Informática de São Carlos
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2019. Tous droits réservés.