• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
Documento
Autor
Nome completo
Edson Batista de Mello
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 1998
Orientador
Banca examinadora
Oliveira, Vilma Alves de (Presidente)
Joaquim, Marcelo Basílio
Mascarenhas, Nelson Delfino d'Ávila
Título em português
Restauração de imagens médicas utilizando o filtro de Kalman
Palavras-chave em português
Filtro de Kalman 2-D
Modelos AR
Restauração de imagens
Resumo em português
Neste trabalho técnicas de restauração de imagens aplicadas à filtragem de imagens médicas foram estudadas. Considera-se uma abordagem recursiva de filtragem e suas diversas implementações em duas dimensões. A implementação utilizada neste trabalho foi a do filtro de Kalman de atualização reduzida (RUKF). Na implementação do filtro de Kalman de atualização reduzida um quarto de plano (QP) foi tomado como região de suporte e um modelo autoregressivo bidimensional (AR 2-D) foi utilizado como modelo de imagem. Os parâmetros do modelo AR 2-D e a variância do ruído foram encontrados através de uma implementação do algoritmo de Levinson para duas dimensões baseada no algoritmo de Levinson em configuração multicanal. A ordem do modelo AR 2-D foi determinada pelo critério de informação de Akaike (AIC). Para análise de resultados o filtro de Kalman de atualização reduzida foi aplicado em uma imagem planar, considerada invariante no espaço e com ruído ele observação não estacionário, e os resultados comparados àqueles obtidos com o filtro de Wiener.
Título em inglês
not available
Palavras-chave em inglês
2-D Kalman filter
Image restoration
Models AR
Resumo em inglês
In this work image restoration techniques for the filtering of medicai images are studied. Emphasis is given to the recursive approach to image restoration and its different implementations are described. The implementation used in the restoration procedure is the reduced update Kalman filter (RUKF). In the implementation of the reduced update Kalman filter a quarter plane is adopted as the region of support and a 2-D autoregressive (AR) model is used as the image model. The parameters of the 2-D AR model and the variance of the driving noise are found by a 2-D implementation of the Levinson algorithm. The model order of the 2-D AR model is determined by the Akaike information criterion (AIC). For the analysis of the results, the reduced update Kalman filter is applied to a space invariant plane image with nonstationary noise. The results are compared to the results of the Wiener filter.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2017-12-12
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2014. Todos os direitos reservados.