ESTIMADOR DE ESTADO E PARÂMETROS DE LINHA DE TRANSMISSÃO, BASEADO NAS EQUAÇÕES NORMAIS

MADELEINE ROCIO MEDRANO CASTILLO

Dissertação apresentada à Escola de Engenharia de São Carlos, da Universidade de São Paulo, como parte dos requisitos para a obtenção do título de Mestre em Engenharia Elétrica.

ORIENTADOR: Prof. Dr. João Bosco A. London Junior

São Carlos 2006

A meus queridos pais, Lucio e Maria, e meus irmãos Flor Rosário, Yenny e Lucio.

Agradecimentos

A Deus por dar-me forças e ajudar-me a vencer os obstáculos e alcançar mais este objetivo em minha vida.

À minha família, raízes da liberdade, que incentivaram em mim o gosto por novas buscas e por que me ensinaram a lutar pelo que queria com perseverança e muito trabalho.

A meu querido pai por ter sido sempre meu ponto de apoio em todos os momentos, por ter me dado à oportunidade de escolher e acreditado em min.

A minha querida mãe Maria Pilar pelo seu imenso amor e sabedoria que sempre me motivaram a seguir em frente, e por nunca medir esforços pensando sempre no melhor para min.

Ao Prof. Dr. João Bosco London, pela orientação.

Ao Prof. Dr. Newton Geraldo Bretas, pelos ensinamentos.

A todos os amigos do LACO, pela amizade e união.

A todos os colegas, professores e funcionários do Departamento de Engenharia Elétrica da EESC/USP, pela colaboração.

SUMÁRIO

LISTA DE FIGURAS	i
LISTA DE TABELAS	iii
LISTA DE ABREVIATURAS E SIGLAS	v
LISTA DE SIMBOLOS	vi
RESUMO	viii
ABSTRACT	іх
CAPÍTULO 1	
1. INTRODUÇÃO	1
1.1 Objetivos e Discriminação dos próximos capítulos	4
CAPÍTULO 2	
2. REVISÃO BIBLIOGRAFICA	9
2.1 Etapas envolvidas no processo de Estimação de Estado em	9
Sistemas Elétricos de Potência	
2.2 Métodos para o tratamento de erros de parâmetros	14
2.2.1 Métodos baseados na análise de sensibilidade dos	14
resíduos	
2.2.2 Métodos que aumentam o vetor de estado	16
CAPÍTULO 3	
3. ESTIMAÇÃO DE ESTADO EM SISTEMAS ELÉTRICOS DE	
POTÊNCIA	18
3.1 Estimador de estado estático baseado no método dos	19
mínimos quadrados	
3.2 Detecção e identificação de medidas com erros grosseiros	21
3.2.1Detecção de medidas com erros grosseiros	22
3.3 Identificação de medidas com erros grosseiros	22

CAPÍTULO 4

4. ANALISE DE OBSERVABILIDADE BASEADA NA FATORAÇÃO	26
TRIANGULAR DA MATRIZ GANHO E EM CONCEITOS DE	
CAMINHOS DE GRAFO	
4.1 Desacoplamento do modelo	27
4.2 Analise de observabilidade baseada na fatoração triangular	29
da matriz ganho e em conceitos contidos em caminhos de grafo	
4.2.1 Algoritmo para analise de observabilidade	31
4.2.2 Algoritmo para identificação de ilhas observáveis	31
4.3 Exemplo	32
CAPÍTULO 5	
5. METODOLOGIA PARA ESTIMAÇÃO DE ESTADO E	40
PARÂMETRO DE LINHAS DE TRANSMISSÃO, BASEADA NAS	
EQUAÇÕES NORMAIS	
5.1 Introdução	40
5.2 Fase 1: Determinação do conjunto de medidas a ser	41
utilizado	
5.3 Fase 3: Estimação de estado e parâmetros	42
5.4 Fase 2: Analise de observabilidade para o estimador de	44
estado e parâmetros proposto	
5.4.1 Obtenção da matriz GAum	50
5.4.2 Algoritmo para analise de observabilidade para o	50
estimador de estado e parâmetro proposto	
5.5 Exemplo	51
CAPÍTULO 6	
6. TESTES E ANALISE DOS RESULTADOS	66
6.1 Testes com o sistema de 6 barras do IEEE	66
6.2 Testes com o sistema de 14 barras do IEEE	74
6.3 Testes com o sistema de 30 barras do IEEE	86
6.4 Analise dos resultados	97

6.4 Analise dos resultados

CAPÍTULO 7

7. CONCLUSÕES	99
REFERENCIAS BIBLIOGRAFICAS	103
APÊNDICE A – Escalonamento de linhas e colunas	109

LISTA DE FIGURAS

FIGURA 1.1	Parte do Sistema Elétrico Sul do Peru	4
FIGURA 1.2	Comparação entre a potências de transferência	4
	registrada e a simulada computacionalmente	
FIGURA 4.1	Sistema de 6 barras do IEEE associado a um conjunto	33
	de medidas (exemplo 1)	
FIGURA 4.2	Caminho de grafo associado com a matriz ${}^{U_{ heta}}$	35
FIGURA 4.3	Sistema de 6 barras do IEEE, associado a um conjunto	36
	de medidas (exemplo 2)	
FIGURA 4.4	Caminhos de grafo associados com a matriz $U_{ heta}$.	37
FIGURA 4.5	Rede de 6 barras utilizada	38
FIGURA 4.6	Caminhos de grafo, associados com a matriz U_{θ} .	39
FIGURA 5.1	Modelo П- Equivalente generalizado	46
FIGURA 5.2	Sistema teste de 3 barras (1º exemplo)	52
FIGURA 5.3	Matriz G _{Aum} fatorada	54
FIGURA 5.4	Caminho de grafo	54
FIGURA 5.5	Sistema teste de 3 barras (2° exemplo)	55
FIGURA 5.6	Matriz G _{Aum} fatorada	56
FIGURA 5.7	Caminho de Grafo	56
FIGURA 5.8	Matriz G _{Aum} fatorada	57
FIGURA 5.9	Caminho de grafo	57
FIGURA 5.10	Sistema de 5 barras (3º exemplo)	58
FIGURA 5.11	Matriz G _{Aum} fatorada	60
FIGURA 5.12	Caminho de grafo	60
FIGURA 5.13	Sistema teste de 5 barras (4° exemplo)	62
FIGURA 5.14	Matriz G _{Aum} fatorada	62
FIGURA 5.15	Caminho de grafo	63
FIGURA 5.16	Matriz G _{Aum} fatorada	63
FIGURA 5.17	Caminho de grafo	64
FIGURA 6.1	Sistema teste de 6 barras(teste1)	67
FIGURA 6.2	Matriz G _{Aum} fatorada	68
FIGURA 6.3	Caminho de grafo	69

FIGURA 6.4	Sistema teste de 6 barras(teste 2)	71
FIGURA 6.5	Matriz G _{Aum} fatorada	72
FIGURA 6.6	Caminho de grafo	72
FIGURA 6.7	Matriz G _{Aum} fatorada	73
FIGURA 6.8	Caminho de grafo	73
FIGURA 6.9	Sistema de 14 barras do IEEE (teste 3)	75
FIGURA 6.10	Matriz G _{Aum} fatorada	77
FIGURA 6.11	Caminho de grafo	78
FIGURA 6.12	Sistema de 14 barras do IEEE (teste 4)	81
FIGURA 6.13	Matriz G _{Aum} fatorada	82
FIGURA 6.14	Caminho de grafo	82
FIGURA 6.15	Matriz G _{Aum} fatorada	83
FIGURA 6.16	Caminho de grafo	84
FIGURA 6.17	Sistema de 30 barras do IEEE	86
FIGURA 6.18	Matriz G _{Aum} fatorada	8
FIGURA 6.12	Sistema de 14 barras do IEEE (teste 4)	81
FIGURA 6.13	Matriz G _{Aum} fatorada	82
FIGURA 6.14	Caminho de grafo	82
FIGURA 6.15	Matriz G _{Aum} fatorada	83
FIGURA 6.16	Caminho de grafo	84
FIGURA 6.17	Sistema de 30 barras do IEEE	86
FIGURA 6.18	Matriz G _{Aum} fatorada	89

LISTA DE TABELAS

TABELA 5.1	Parâmetros de linha do sistema de 3 barras	53
TABELA 5.2	Tensões complexas obtidas via um estimador de estado	53
	convencional WLS	
TABELA 5.3	Valores do conjunto de medidas ilustrado na figura 5.2	54
TABELA 5.4	Resultados do 1° exemplo	55
TABELA 5.5	Valores do conjunto de medidas ilustrado na figura 5.5	58
TABELA 5.6	Resultados do 2º exemplo	58
TABELA 5.7	Parâmetros de linha do sistema de 5 barras	59
TABELA 5.8	Dados das magnitudes de tensão e ângulo do sistema	59
	de 5 barras	
TABELA 5.9	Valores do conjunto de medidas ilustrado na figura 5.10	61
TABELA 5.10	Resultados do 3º exemplo, os parâmetros e tensões	61
	estão dados em p.u. e os ângulos em radianos.	
TABELA 5.11	Valores do conjunto de medidas ilustrado na figura 5.13	64
TABELA 5.12	Resultados do 4º exemplo, os parâmetros e tensões	65
	estão dados em p.u. e os ângulos em radianos.	
TABELA 6.1	Parâmetros de linha do sistema de 6 barras	67
TABELA 6.2	Tensões complexas obtidas via um estimador de estado	68
	convencional WLS	
TABELA 6.3	Valores do conjunto de medidas ilustrado na figura 6.1	69
TABELA 6.4	Resultados do teste 1	70
TABELA 6.6	Resultados do teste 2	74
TABELA 6.7	Parâmetros de linha do sistema de 14 barras	76
TABELA 6.8	Tensões complexas utilizadas para a obtenção da	77
	matriz G _{Aum}	
TABELA 6.9	Valores do conjunto de medidas ilustrado na figura 6.9	79
TABELA 6.10	Resultados do teste 3 (os valores dos ângulos estão em	80
	radianos e das demais variáveis em p.u.)	

TABELA 6.11	Resultados do teste 4 (os valores dos ângulos estão	85		
	em radianos e das demais variáveis em p.u.)			
TABELA 6.12	Parâmetros de linha do sistema de 30 barras do IEEE			
	(os valores dos ângulos estão em radianos e das			
	demais variáveis em p.u.)			
TABELA 6.13	Dados das magnitudes de tensão e ângulo do sistema	88		
	de 30 barras.			
TABELA 6.14	Valores do conjunto de medidas ilustrado na figura	90		
	6.17			
TABELA 6.15	Resultados do teste 5 (os valores dos ângulos estão	91		
	em radianos e das demais variáveis em p.u.)			
TABELA 6.16	Resultados do teste 6 (os valores dos ângulos estão	93		
	em radianos e das demais variáveis em p.u.)			
TABELA 6.17	Valores do conjunto de medidas utilizado no teste 7			
TABELA 6.18	Resultados referentes à situação 1 (estimador	96		
	proposto)			
TABELA 6.19	Resultados referentes à situação 2 (estimador	96		
	proposto)			
TABELA 6.20	Resultados referentes à situação 1 (estimador	97		
	proposto em [Liu&Wu(1992)])			
TABELA 6.21	Resultados referentes à situação 2 (estimador	97		
	proposto em [Liu&Wu(1992)])			

LISTA DE ABREVIATURAS E SIGLAS

- SEP Sistema Elétrico de Potência
- PEPCO Potomac Electric Power Company -USA
- EGs Erros Grosseiros
- UTRs Unidades Terminais Remotas
- SCADA Sistema de Aquisição e Supervisão de Dados
- EMS Sistema de Gerenciamento de Energia
- EESEP Estimação de Estados em Sistemas Elétricos de Potência
- COES Comitê de Operação Econômica do Sistema
- WSCC Western Systems Coordinating Council
- WLS Mínimos quadrados ponderados
- FPA Fluxo de Potência Ativa
- FPR Fluxo de Potencia Reativa
- PZ Pivô zero
- IEEE Institute of Electrical and Electronic Engineer

LISTA DE SIMBOLOS

Condutâncias série de Linha de Transmissão Aéreas G_{km} Susceptâncias série de Linhas de Transmissão Aéreas B_{km} Vetor de medidas Ζ h(.) Vetor de funções não lineares Vetor das variáveis de estado verdadeiras X_{ν} Vetor dos erros das medidas w Numero de medidas т Numero de variáveis de estado a serem estimadas п WMatriz de ponderação para as medidas J(x)Função Quadrática H(x)Matriz Jacobiana Erro de estimação Δz Vetor resíduo de estimação r Matriz sensibilidade do resíduo Г Matriz Identidade Ι Matriz de covariância R Resíduos normalizados τ_i Desvio Padrão unitário ρ_{ii} Erro grosseiro da medida j b_i Média do resíduo de estimação r Elemento (i,j) da matriz Γ γ_{ij} au_{i}^{\max} Maior resíduo normalizado Limite de identificação α Fluxo de potencia ativa, da barra k para a barra m P_{km} Fluxo de potencia reativa, da barra k para a barra m Q_{km}

G_{θ} Matriz Ganho

- $H_{P\theta}$ Matriz Jacobiana, relacionada apenas às medidas de potência ativa
- Z_{p} Vetor de medidas de potência ativa
- W_{p} Matriz de ponderação das medidas de potência ativa
- V_k Magnitude de tensão da barra k
- *V_m* Magnitude de tensão da barra m
- θ_{km} Ângulo de defasagem entre a barra k e a barra m
- *nb* Numero de barras
- U_{θ} Matriz ganho superior fatorada
- Z_{Aum} Vetor de medidas aumentado
- $h_{Aum}(.)$ Vetor de funções não lineares, que relaciona as medidas com as variáveis de estado aumentado.
- X_{vAum} Vetor de estado aumentado verdadeiro
- W_{Aum} Vetor dos erros nas medidas
- n_{Aum} Número de variáveis de estado e parâmetros, a ser estimado.
- m_{Aum} Número de medidas selecionadas na Fase1.
- L Ramos
- *H*_{Aum} Matriz Jacobiana aumentada
- W_{Aum} Matriz de Ponderação das medidas aumentadas
- y_{km} Admitancia série da linha de transmissão k-m
- y_{km}^{sh} Susceptância shunt
- $a_{km}e^{j\theta p}$ A relação de transformação
- *G*_{Aum} Matriz ganho aumentada

RESUMO

O processo de estimação de estado em sistemas elétricos de potência está sujeito a três tipos de erros: erros nas medidas analógicas (erros grosseiros); erros devido a informações erradas quanto aos estados de chaves e/ou disjuntores (erros topológicos) e erros causados por informações erradas de algum parâmetro do sistema (erros de parâmetros). É drástico o efeito de erros de parâmetros, para o processo de estimação de estado, normalmente intolerável, sendo, entretanto, menos evidente que os erros grosseiros e topológicos. Aproveitando o fato de que certas medidas não sofrem mudanças significativas de valor, durante um determinado intervalo de tempo, propõe-se uma metodologia para estimação de estado e parâmetros de linhas de transmissão. Na metodologia proposta, que se baseia nas equações normais, o vetor de estado convencional é aumentado para a inclusão dos parâmetros a serem estimados. Este vetor de estado "aumentado" é então estimado através de uma grande quantidade de medidas, obtidas em diversas amostras, durante um intervalo de tempo em que as variáveis de estado do sistema não tenham sofrido alterações significativas de valor. Esta situação ocorre tipicamente à noite, fora dos horários de pico. Propõe-se também uma metodologia para análise de observabilidade para o estimador proposto. Para comprovar a eficiência das metodologias propostas, vários testes foram realizados, utilizando os sistemas de 6, 14 e 30 barras do IEEE.

Palavras-chave: Sistemas Elétricos de potência, Estimação de Estado, Estimação de Parâmetro, Análise de Observabilidade.

ABSTRACT

The process of power system state estimation is subjected to three types of errors: errors in analogical measurements (gross errors), incorrect information about the status of switching devices (topology errors) and incorrect information about the model of the systems equipment (parameter errors). The effects of parameter errors on the process of power system state estimation are drastic and less evident to detect than gross and topology errors. Taking advantage of the fact that a certain fraction of the measurements varies over a small range in a certain period of time, a methodology to estimative transmission line parameters and state based on normal equations has been proposed. In such methodology, which is based on normal equations, the traditional state vector is expanded to include the parameters to be estimated. This "augmented" state vector is estimated through a large collection of measurements, recorded within several snapshots of the power system, during which the actual system state varies over a small range. This situation typically occurs during the night offpeak periods. An observability analysis methodology is also proposed for the presented estimator. To prove the efficiency of the methodologies, several tests were made using the systems of 6, 14 and 30 buses from IEEE.

Key-words: Electrical Power Systems, State Estimation, Parameters Estimation, Observability Analysis.

Capítulo 1

Introdução

Em vários países ao redor do mundo, mudanças importantes estão acontecendo na estrutura da indústria de potência. As estruturas reguladoras estão sendo modificadas para permitir negócios sem limites de geração, transmissão e distribuição, abrindo caminho para competição. Na América do Sul, razões distintas, peculiares a cada país, também estão motivando a reestruturação do setor de energia elétrica [RUDNICK H. (1996)]. Este é o caso do Brasil, que lançou um programa de privatização das empresas elétricas nacionais e mudou seus regulamentos para atrair investimentos privados ao setor elétrico [VENTURA F (1996)].

O impacto do crescimento da demanda de energia elétrica, bem como da expansão dos Sistemas Elétricos de Potência (SEP), sobre o volume de informações oriundas do Sistema de Aquisição e Supervisão de Dados, SCADA (do inglês Supervisory Control and Data Aquisition), vem evidenciando a necessidade do tratamento destes dados através de aplicativos computacionais avançados de análise em tempo-real. Segue-se, deste modo, a tendência mundial de evolução em direção aos denominados Sistemas de Gerenciamento de Energia, EMS (do inglês, Energy Management System), para auxiliar o operador no tratamento das informações, viabilizando a verificação rápida das condições de operação do sistema.

Através do EMS torna-se possível executar funções relacionadas com a segurança da operação dos SEP, que possuem o objetivo de determinar o estado operativo corrente dos SEP, isto é, se os sistemas estão ou não operando adequadamente e, caso não estejam, devem indicar o que deve ser feito para corrigir essa operação inadequada.

Um SEP não está operando da forma adequada quando existem cargas não atendidas, equipamentos com limites de operação desrespeitados, etc.

A primeira função executada pelo EMS é a modelagem da rede elétrica em tempo-real, e, para isto, o processo de Estimação de Estado em Sistemas Elétricos de Potencia (EESEP) é de fundamental importância.

A finalidade do processo de EESEP é fornecer, em tempo-real, as variáveis de estado do sistema, isto é, as tensões complexas nas barras do mesmo, a partir do processamento de informações obtidas em tempo-real (medidas analógicas¹ e lógicas²), provenientes do sistema SCADA e de informações estáticas, disponíveis no banco de dados das companhias de energia elétrica (os parâmetros do sistema³). Através das variáveis de estado do SEP, define-se o estado operativo corrente do mesmo.

O sucesso do processo de EESEP depende da qualidade das informações que lhe são fornecidas, pois, erros nessas informações podem levar o processo de estimação à variáveis de estado muito distantes das verdadeiras, ou, até mesmo, à não convergência.

Tendo em vista as informações fornecidas ao processo de EESEP, supracitadas, o mesmo está sujeito a três tipos de erros: erros grosseiros (erros nas medidas analógicas); erros topológicos (erros devido a informações erradas quanto aos estados de chaves e/ou disjuntores) e erros de parâmetros (erros causados por informações erradas de algum parâmetro do sistema).

É drástico o efeito de um erro de parâmetro, para o processo de EESEP, normalmente intolerável, sendo, entretanto, menos evidente que os erros grosseiros e topológicos [ZARCO & EXPÓSITO (2000); MEZA et al (2006)]. Os parâmetros do sistema podem estar incorretos fruto de [ZARCO & EXPÓSITO (2000); MEZA et al (2006)]: dados imprecisos fornecidos pelos fabricantes; estimativas grosseiras do comprimento de linhas de transmissão; alterações de projeto não atualizadas na base de dados; preenchimento incorreto da base de dados; variação de parâmetros devido ao envelhecimento de componentes do sistema, etc.

¹ Medidas de fluxo de potência ativa e reativa nas linhas, injeção de potência ativa e reativa e algumas magnitudes de tensão nas barras.

² Consistem em estados de chaves e disjuntores.

³ Impedância de linhas de transmissão e posição de taps de transformadores.

Como mencionado anteriormente, a partir das variáveis de estado obtidas pelo processo de EESEP, determina-se o estado operativo corrente do sistema, e, em seguida, determinam-se as ações de controle cabíveis. Em razão disto, os erros de parâmetros podem trazer conseqüências drásticas para a operação de um SEP.

Na seqüência apresentamos dois exemplos reais de problemas causados por erros de parâmetros, que demonstram a importância do desenvolvimento de metodologias que possibilitem a obtenção de parâmetros mais confiáveis.

Sistema Elétrico do Peru: Após a interligação do sistema Centro-Norte com o sistema Sul, em Setembro de 2000, apareceram muitos problemas relacionados à estabilidade do sistema. Vários estudos foram feitos para determinar a margem de estabilidade, porém, não se tem tanta confiabilidade nos resultados devido a inúmeras incertezas nos parâmetros daquele sistema.

No evento acontecido em nove de Junho de 2002⁴, durante um teste de estabilidade (inclusão de uma pequena perturbação) após o desligamento da linha de transmissão L-1011 (vide figura 1.1), o sistema apresentou oscilações interárea trazendo como conseqüência o desligamento das linhas L-1005 e L-1006 e interrupção do fornecimento da energia em muitas áreas do sistema. Tais acontecimentos não puderam ser previstos através das simulações computacionais. A principal razão deste problema, de acordo com o COES (comitê de operação econômica do sistema), é a não disponibilidade dos dados corretos do sistema.

³

⁴ Dados obtidos da página do COES-PERU, www.coes.org.pe

Figura 1.1 Parte do Sistema Elétrico Sul do Peru. Os testes computacionais com os dados fornecidos pelas empresas geradoras não puderam predizer as oscilações após a abertura da linha L-1011.

Sistema WSCC (Western Systems Coordinating Council): Conforme relatado em [DEMITRY, (2004)], no dia 10 de agosto de 1996 ocorreu um blecaute de energia no sistema WSCC (Western Systems Coordinating Council), enquanto as simulações computacionais prediziam operação normal (sistema estável) nas mesmas condições de perturbação. Na figura 1.2, mostra-se a comparação entre as curvas de potência de transferência (interligação Califórnia-Oregon) real (registrada) e a obtida computacionalmente.

Figura 1.2 Comparação entre a potências de transferência registrada e a simulada computacionalmente.

Dentre os métodos desenvolvidos para o tratamento de erros de parâmetros, destacam-se aqueles que aumentam o vetor de estado para incluírem os parâmetros do sistema, como se eles fossem variáveis de estado independentes. Assim, os parâmetros são estimados juntamente com os ângulos e as magnitudes de tensão. Considerando o tratamento que se dá a esse modelo aumentado, tais métodos podem ser divididos em dois grupos: (1) Métodos que utilizam as Equações Normais; (2) Métodos que utilizam a teoria do Filtro de Kalman.

A limitação dos métodos que utilizam as equações normais está relacionada à observabilidade, isto é, raramente o número de medidas disponível é suficiente para estimar todas as variáveis de estado "aumentadas", uma vez que o vetor de estado aumenta, mas o conjunto de medidas continua o mesmo.

Na tentativa de superar essa limitação, os métodos que utilizam o Filtro de Kalman aumentam também o vetor de medidas, através de pseudomedidas, que correspondem ao vetor de estado aumentado estimado no instante anterior. Entretanto, a grande limitação desses métodos está na determinação da matriz transição de estado. Na maioria das pesquisas realizadas, essa matriz é considerada como sendo uma matriz identidade, admitindo-se que o sistema seja quase-estático.

Vale destacar ainda o estimador generalizado desenvolvido por [ALSAÇ et al (1998)]. Neste estimador, o vetor de estado convencional ganha novas variáveis de estado, que são os fluxos de potência ativa e reativa, através dos disjuntores e dos ramos cujos parâmetros serão estimados. Novas pseudomedidas são também introduzidas no modelo, permitindo assim uma melhor discriminação entre erros grosseiros, topológicos e erros de parâmetros.

Devido à grande quantidade de informações, envolvidas no processo de estimação generalizada de estado, tal estimador pode tornar-se inviável para aplicação em tempo-real. Em razão disto, os autores indicam a sua utilização apenas em situações especiais, isto é, quando existe a suspeita da existência de erros topológicos ou de parâmetros [ALSAÇ et al (1998)].

A deterioração que o erro de parâmetro pode causar ao processo de estimação de estado foi analisada em [ZARCO & EXPÓSITO (2000)]. Naquele trabalho, realizou-se ainda um detalhado estudo dos métodos já desenvolvidos

para estimação de parâmetros, a cujo respeito se relacionam, a seguir, algumas conclusões:

1. Para obter-se uma estimação de parâmetros confiável, independentemente do método utilizado, requer-se um adequado nível de redundância das medidas, nas vizinhanças dos elementos suspeitos de estarem com erros de parâmetros;

2. Os métodos baseados na análise da sensibilidade, relativa aos resíduos das medidas, são os mais plausíveis de se incorporarem aos estimadores de estado convencionais. Por outro lado, dentre os métodos que aumentam o vetor de estado, aqueles que utilizam as Equações Normais são mais propícios a se estenderem aos estimadores convencionais, em comparando-os com os que utilizam a teoria do Filtro de Kalman, porquanto estes requerem rotinas muito diferentes daquelas, utilizadas pelos estimadores convencionais;

3. Utilizar medidas de diversas amostras para o processo de estimação na forma seqüencial ou no mesmo instante, possibilita a obtenção de estado e parâmetros mais confiáveis;

4. Estimação da posição de Taps de transformadores, assim como a determinação da posição de chaves e/ou disjuntores, que é uma tarefa a realizar-se "on-line". Já a estimação dos parâmetros de um ramo, como a indutância e a capacitância de linhas de transmissão, que permanecem constantes por um longo período de tempo, são tarefas que podem ser realizadas "off-line" (algumas vantagens do processamento off-line desses parâmetros são apresentadas com mais detalhes em [ZARCO & EXPÓSITO (2000)]);

5. Os métodos que aumentam o vetor de estado superam, claramente, aqueles baseados na análise da sensibilidade dos resíduos das medidas. Entretanto, importa lembrar que, para a identificação dos ramos suspeitos, a análise do resíduo das medidas é ainda necessária. O que até então não se solucionou é o dilema: se a melhor escolha, para a estimação dos parâmetros, é um método utilizando as Equações Normais, ou um método fundamentado na teoria do Filtro de Kalman. A opinião dos autores [ZARCO & EXPÓSITO (2000)] é de que, para a estimação de parâmetros variáveis com o tempo, são mais apropriados os métodos que utilizam a teoria do Filtro de Kalman. Já os métodos que utilizam as Equações Normais são, por sua vez, mais atrativos

para a estimação dos parâmetros que permanecem constantes, por um longo período de tempo;

6. A seleção dos ramos suspeitos pode ser realizada através da análise de dados históricos.

1.1 Objetivos e Discriminação dos próximos capítulos

O presente trabalho tem como objetivo elaborar uma metodologia para estimação de estado e parâmetros, baseado nas equações normais, que aumente ambos os vetores de estado e de medidas. Aproveitando o fato de certas medidas não sofrerem mudanças significativas de valor, durante um determinado intervalo de tempo, o aumento do vetor de estado realizar-se-á para a inclusão dos parâmetros a serem estimados; já o vetor de medidas será aumentado para considerar medidas de diversas amostras, desde que não tenham sofrido uma alteração significativa dos seus valores. Assim, a ocorrência de problemas de observabilidade diminuirá, uma vez que o aumento do vetor de estado será acompanhado pelo aumento do vetor de medidas.

Cumpre observar que, em razão de as medidas não mudarem significativamente de valor, no período de tempo considerado, podemos considerar que as respectivas variáveis de estado sejam "quase-estáticas", nesse intervalo de tempo, daí não se exigindo a determinação de uma matriz transição de estado.

Os parâmetros a serem estimados, pela metodologia proposta, são as condutâncias série (G_{km}) e as susceptâncias série (B_{km}) de linhas de transmissão aéreas, classificadas como médias e longas, isto é, com comprimento acima de 80 km (50 milhas). Decidiu-se estimar apenas esses parâmetros, por serem os principais responsáveis pelas perdas em um SEP [KUSIC & GARRISON (2004)].

Para verificar as porções observáveis do sistema, isto é, as variáveis de estado aumentadas possíveis de serem estimadas pelas medidas disponíveis, propõe-se, também, um método para análise de observabilidade. Para isto

pretendemos utilizar como base o método desenvolvido por BRETAS (1996)⁵, isto em razão de o mesmo ser simples, de fácil implementação, rápida execução e de não exigir a solução de equações algébricas.

Vale salientar que a idéia de atacar o problema de estimação de parâmetros, da forma aqui proposta, surgiu em função da constatação dos engenheiros da PEPCO (Potomac Electric Power Company - USA) de que certas medidas não experimentavam mudanças significativas de valor, durante um determinado intervalo de tempo, principalmente entre 1:00 e 4:00 horas da manhã, face à pequena variação de carga nesse período de tempo; em função também das conclusões apresentadas em [ZARCO & EXPÓSITO (2000)], descritas anteriormente⁶.

Este trabalho está estruturado em sete capítulos, além desta introdução e de mais um apêndice. No capitulo 2 apresenta-se uma ampla revisão bibliográfica sobre as diferentes metodologias de estimação de estado, bem como uma análise das vantagens e desvantagens das metodologias desenvolvidas para o tratamento de erros de parâmetros. No capítulo 3 descreve-se a base teórica do processo de estimação de estado, por mínimos quadrados ponderados. No Capítulo 4 apresenta-se, em linhas gerais, a metodologia para análise de observabilidade desenvolvida por BRETAS (1996).

No Capítulo 5 encontra-se a proposição deste trabalho, que consiste no estimador de estado e parâmetros e na metodologia para análise de observabilidade, para o modelo aumentado. No Capítulo 6 são apresentados os testes realizados para comprovar a eficiência das metodologias propostas. As conclusões da dissertação estão no capítulo 7. Por fim, no Apêndice, encontra-se um breve desenvolvimento teórico, sobre o método de escalonamento que foi utilizado para melhorar o condicionamento numérico da matriz Ganho Aumentada, que será apresentada no capítulo 5.

⁵ O método desenvolvido por BRETAS (1996) destina-se ao estimador de estado tradicional, isto é, sem a inclusão dos parâmetros como variáveis de estado a serem estimadas.

⁶ Conclusões 1, 3 e 4, apresentadas na seção anterior.

Capítulo 2

Revisão Bibliográfica

Neste capítulo é apresentado um pequeno histórico, destacando as principais características de algumas metodologias destinadas ao tratamento das diversas etapas envolvidas no processo de estimação de estado, em sistemas elétricos de potência. Em especial aquelas que tratam de erros de parâmetros.

2.2 Etapas envolvidas no processo de Estimação de Estado em Sistemas Elétricos de Potência

A estimação de estado em SEP abrange dois campos, o fluxo de potência e a estatística.

O estimador destina-se a obtensão das variáveis de estado de um SEP, através de um conjunto redundante de medidas imperfeitas. Em razão da redundância e imperfeição dessas medidas, a estimação se baseia em processos estatísticos, onde se tenta tornar mínimos ou máximos os critérios estabelecidos, daí se determinando o valor mais provável das variáveis de estado.

A estimação de estado em sistemas elétricos de potência vem sendo alvo de inúmeras pesquisas, desde o final da década de 60 [SCHWEPPE (1970); SCHWEPPE & DOUGLAS (1970); SCHWEPPE & WILDES (1970); COUTTO FILHO et al. (1990); MONTICELLI (1999); ABUR & EXPÓSITO (2004)].

Tradicionalmente são quatro as etapas envolvidas no processo de estado [MONTICELLI (1999)]:

• 1^a Etapa: Obtenção da topologia do sistema, no modelo barra linha.

A partir das medidas lógicas, bem como de informações quanto ao tipo e à localização dos medidores instalados no sistema, o configurador de sistemas determina a topologia e a correspondente configuração de medidores, no modelo barra linha.

• 2ª Etapa: Análise e Restauração da Observabilidade do Sistema

Através do modelo barra/linha, obtido pelo configurador de sistemas, verifica-se se é possível, através das medidas analógicas e virtuais⁷ disponíveis, determinar as variáveis de estado em todas as barras do sistema. Em caso afirmativo, o sistema é dito observável. Caso contrário essa falta de medidas pode ser suprida, em algumas situações, por pseudo-medidas, que são dados de previsão de carga, previsão de geração, dados históricos, etc, que fazem parte do banco de dados dos centros de operação através das quais o sistema se torna observável como um todo. Uma alternativa, para essa situação, é determinar as partes observáveis do sistema, isto é, as ilhas observáveis.

A maioria dos métodos desenvolvidos para análise de observabilidade pode dividir-se em dois grupos: os métodos topológicos e os numéricos.

Os métodos do primeiro grupo caracterizam-se pela criação de rotinas específicas, que não exigem cálculos, mas que são de natureza combinatória heurística e complexa [KRUMPHOLZ et al. (1980); QUINTANA et al. (1982)]. Já os do segundo grupo são mais simples, visando à utilização de rotinas já disponíveis nos programas de estimadores de estado. Entretanto, estão sujeitos a erros numéricos [MONTICELLI & WU (1985a); MONTICELLI & WU (1985b)].

O método para análise e restauração de observabilidade, apresentado por [SLUTSKER & SCUDDER (1987)] baseia-se na redução simbólica da matriz Jacobiana, caracterizando-se por ser extremamente simples e rápido. Nesse método, os autores não levam em conta o valor real dos elementos não nulos da matriz Jacobiana e sim a posição desses elementos. Três anos depois, [CHEN (1990)] apresentou uma versão modificada do método, considerando valores inteiros para os elementos não nulos da matriz Jacobiana.

[CONTAXIS & KORRES (1988)] propuseram um algoritmo, utilizando em conjunto as análises de observabilidade topológica e numérica. Assim, o

⁷ Medidas virtuais são medidas de injeção zero, em barras de passagem do sistema.

tamanho da rede é reduzido, através de processos topológicos, realizando-se então a análise e restauração da observabilidade, por meio de processos numéricos. Uma vez que a rede ficou reduzida, reduzir-se-á conseqüentemente a quantidade de cálculos requeridos.

Em [MONTICELLI et al. (1992)], foram apresentados problemas que podem aparecer nas análises de observabilidade, realizadas por métodos fundamentados apenas em informações topológicas. Para tratar desta limitação, os autores sugerem um método numérico de análise de observabilidade, baseado na fatoração triangular da matriz Ganho.

Algum tempo depois, [BRETAS (1996)] desenvolveu um método baseado em conceitos de caminhos de fatoração e na fatoração triangular da matriz Ganho. É um método simples, que não exige a solução de equações algébricas e de fácil implementação, uma vez que usa sub-rotinas já existentes em programas destinados à estimação de estado.

• 3^a Etapa: Estimação de Estado

Considerando a topologia do sistema, obtida pelo configurador de sistemas, e através dos seus parâmetros armazenados no banco de dados, bem como do conjunto disponível de medidas, o estimador de estado permite determinar as variáveis de estado de todas as barras do sistema.

Dos muitos estimadores desenvolvidos, os mais difundidos e pesquisados são os Estimadores Estáticos⁸ por Mínimos Quadrados Ponderados, originalmente proposto por [SCHWEPPE (1970)].

Considerando a dinâmica do vetor de estado, algumas pesquisas buscaram algoritmos para a estimação dinâmica de estado. Dentre elas, algumas acompanham as mudanças das variáveis de estado com o tempo, valendo-se do chamado estimador "tracking" [MASIELLO & SCHWEPPE (1971); FALCÃO et al. (1982)]; outras adicionaram aos estimadores "tracking " a teoria do filtro de Kalman [DEBS & LARSON (1970); LEITE da SILVA et al. (1987); BRETAS (1989)].

⁸ O termo estático refere-se ao fato de o modelo de rede utilizada ser estático, não se considerando as variações entre as grandezas e a variável tempo.

4ª Etapa: Processamento de Erros Grosseiros (EGs) em Medidas Analógicas

Como mencionado no Capítulo 1, as medidas analógicas, fornecidas ao estimador de estado, estão sujeitas aos EGs⁹. Na prática, esses erros são causados, por exemplo, por problemas nos canais de comunicação, instrumentos de medição defeituosos, erro na modelagem de pseudo-medidas, etc.

Devido a essa fragilidade do conjunto de medidas, o estimador de estado deve ser robusto o suficiente para detectar e identificar a ocorrência de EGs. As medidas identificadas como portadoras de EGs são eliminadas e as variáveis de estado estimadas novamente.

Dentre os diversos métodos desenvolvidos, para detecção e identificação de medidas com EGs, os mais utilizados são aqueles baseados na análise estatística dos resíduos das medidas que é a diferença entre entre o valor medido e o valor estimado das medidas.

Apesar de esses métodos apresentarem um bom desempenho, para diversas situações, possuem algumas limitações, como, por exemplo, o fato de não detectarem EGs em medidas críticas as quais são as medidas que, quando perdida, faz um sistema de potência observável tornar-se não observável [CLEMENTS et al. (1981)] e não identificarem EGs em conjuntos críticos de medidas o qual é formado por medidas não criticas, em que a eliminação de uma qualquer, a ale pertencente, torna as demais críticas [MILI et al. (1984)]. Isto em razão de as medidas críticos apresentarem resíduos nulos e as medidas de um conjunto crítico possuírem resíduos normalizados idênticos.

Para contornar essas limitações, foram desenvolvidos métodos que permitem a obtenção de planos de medição isentos de medidas críticas e de conjuntos críticos de medidas [CLEMENTS et al. (1982); KORRES & CONTAXIS (1994); ABUR & MAGNAGO (1999); LONDON Jr. et al. (2003)].

⁹ Medidas portadoras de EGs são aquelas com grau de imprecisão muito maior do que é suposto pelo modelo de medição.

Entretanto, possuir um plano de medição confiável não é uma condição suficiente para o sucesso de um Estimador de Estado. É uma condição necessária, mas não suficiente. Isto porque, durante a operação de um sistema de potência, podem ocorrer problemas no sistema de aquisição de dados (sistema de telemedição), acarretando a perda de medidas e/ou Unidades Terminais Remotas (UTRs) o qual é um equipamento eletrônico de uso dedicado, responsável pela leitura de informações dos sistemas, nas usinas e subestações, e pelo seu envio aos Centros de Operação do Sistema, dificultando, ou, até mesmo, impedindo a estimação de estado. Para tornar ainda possível uma estimação de estado confiável, em situações como essa, em [LONDON Jr. et al (2004a)] foi proposto um método que, com a máxima brevidade possível, permite a obtenção das seguintes informações: (i) Se o sistema em análise continua observável; (ii) Caso continue observável, quais as características qualitativas do conjunto de medidas disponível naquele momento (presença de medidas críticas e de conjuntos críticos de medidas); (iii) Caso o sistema tenha perdido a observabilidade, quais as pseudo-medidas necessárias à sua restauração.

Como vimos anteriormente, as Etapas 2, 3 e 4 baseiam-se na topologia obtida na 1ª Etapa. Em razão disto, caso ocorra algum erro topológico e este não tenha sido detectado pelo configurador de sistemas, tal erro pode causar um aumento nos resíduos das medidas analógicas, localizadas nas vizinhanças dos elementos erroneamente configurados do sistema. Assim, na 4ª Etapa, as medidas analógicas, com resíduos elevados, serão identificadas como portadoras de erros grosseiros. Nessa situação, dar-se-á início a um processo de eliminação de medidas analógicas, e, eventualmente, o processo poderá reduzir a zero o nível de redundância local. Logo, não será mais detectado erro grosseiro em medida analógica, mas o erro topológico permanece. Conseqüentemente, o modelo do sistema não representará corretamente a sua atual situação.

Similar análise pode realizar-se, considerando erros nos parâmetros do sistema, pois, as Etapas 3 e 4 baseiam-se nos parâmetros fornecidos ao estimador, na 3ª Etapa. Assim, caso a informação de algum parâmetro do sistema tenha sido erroneamente fornecida ao estimador de estado, tal erro causará um aumento nos resíduos das medidas analógicas, localizadas nas

13

vizinhanças do elemento, cujo parâmetro é o que forneceu aquela informação errada.

Diante disto, vários autores realizaram então trabalhos, em busca de métodos para a análise de erros topológicos e de parâmetros. Entretanto, pouco se sabe sobre o sucesso da implantação prática desses métodos [MONTICELLI (1999); ABUR & EXPÓSITO (2004)].

2.2 Métodos para o tratamento de erros de parâmetros

Em [KUSIC & GARRISON (2004)] mostra-se a razão por que, numa proporção de 25% a 30%, os parâmetros do circuito equivalente das linhas de transmissão de um sistema, armazenados nos bancos de dados das companhias de energia elétrica, possuem erros. Através de um estudo econômico, demonstra-se que tais erros podem acarretar prejuízos, na ordem de milhões de dólares por ano, para essas companhias (a análise a que se procedeu foi realizada para companhias americanas).

De uma forma geral, os métodos desenvolvidos para o tratamento de erros de parâmetros podem ser divididos em dois grupos:

Grupo 1: Métodos baseados na análise da sensibilidade dos resíduos^{10;}

Grupo 2: Métodos que aumentam o vetor de variáveis de estado.

Os métodos referentes a esses dois grupos dependem de uma estimação de estado convencional, para a determinação dos ramos suspeitos os quais são ramos incidentes às medidas com resíduos elevados, de estarem com erros de parâmetros.

Grupo 1: Métodos baseados na análise da sensibilidade dos resíduos

Os métodos deste grupo utilizam o vetor de estado convencional e baseiam-se na análise da sensibilidade dos resíduos das medidas, incidentes aos ramos suspeitos. Através dessa análise, identificam os parâmetros suspeitos de estarem com erros em seus valores.

Uma das primeiras pesquisas buscando a identificação de erros de parâmetros, através da análise estatística dos resíduos das medidas, foi proposta em [ABOYTES & CORY (1975)]. Neste trabalho, desenvolveu-se um

¹⁰ Resíduo de estimação é a diferença entre o valor medido e o valor estimado das medidas.

estudo estatístico dos efeitos dos erros grosseiros, topológicos e de parâmetros, no processo de estimação de estado, donde se obtiveram as seguintes conclusões: (i) o uso de medidas de injeções nodais aumenta a dificuldade de identificar erros de configuração e de parâmetros; (ii) os erros de parâmetros podem ser identificados mais efetivamente, quando o fluxo de potência de uma linha, cujo parâmetro está com erro, é medido somente em um dos terminais.

Baseando-se na forte relação entre o fluxo de potência reativa, através do transformador, e a posição do tap do mesmo, [FLETCHER & STADLIN (1983)] lançaram um método para estimação da posição de taps de transformadores. A diferença entre os fluxos de potência reativa, medidos e calculados, através do transformador, é utilizada para verificar se a posição do tap é correta ou não. Os autores definem a posição inicial do tap como sendo metade da escala de variação do transformador em [SMITH (1985)], o valor inicial do tap é definido como sendo 1 p.u.).

[CUTSEN & QUINTANA (1988)] propuseram um método para estimação de parâmetros que se baseia na análise do efeito dos erros de parâmetros nos resíduos das medidas. Embora o método se aplique a qualquer parâmetro da rede, maior ênfase foi dada para erros na posição de tap de transformadores.

Em [LIU & LUN (1992)] propõe-se a estimação dos erros de parâmetros, que, uma vez estimados, permitem a correção desses parâmetros errados do sistema. Tal estimação realiza-se através de um novo tratamento do vetor de resíduo. As limitações deste método são as seguintes: (i) número grande de iterações, pois o algoritmo encerra duas estimações independentes, a primeira para estimar os resíduos¹¹ e a segunda para estimar os erros de parâmetros; (ii) as matrizes utilizadas no processo de estimação dos erros de parâmetros são geralmente singulares, o que provoca problemas de observabilidade; e (iii) os autores não consideram erros grosseiros nas medidas.

A grande limitação dos métodos, baseados na análise da sensibilidade dos resíduos, é distinguir entre o resíduo causado por um erro grosseiro daquele causado por um erro de parâmetro.

¹¹ Através de um estimador por mínimos quadrados iterativo.

Grupo 2: Métodos que aumentam o vetor de variáveis de estado

Os métodos deste grupo aumentam o vetor de variáveis de estado, para incluírem os parâmetros suspeitos, como se estes fossem variáveis independentes. Desta maneira, os parâmetros são estimados juntamente com as tensões complexas das barras do sistema de potência, o que se denomina de estimação simultânea de estado e parâmetros.

Uma das alternativas para trabalhar com este modelo aumentado realiza-se através das equações normais, o que corresponde exatamente à mesma formulação do estimador de estado convencional, porém com o vetor de estado aumentado.

Um dos primeiros métodos de estimação de estado e parâmetros, a desenvolver-se dessa maneira, foi proposto por [ALLAN & LAUGHTON (1974)]. Além de estimar estado e parâmetros, através da diferença entre os valores dos parâmetros, fornecidos pelo banco de dados, e os seus valores estimados, esse método permite identificar se os ramos do sistema estão fora de operação ou não.

[ALSAÇ et al (1998)] propuseram um estimador generalizado, que melhora o processo de obtenção de informação; sua principal contribuição é a inclusão de erros de topologia e erros de parâmetros, na estimação e no processo de análise de erros. Este estimador permite a modelagem das subestações suspeitas, ao nível de seção de barra.Para isto, o vetor de estado convencional, formado pelas magnitudes e ângulos das tensões, ganha novas variáveis de estado, que são os fluxos de potência ativa e reativa, através dos disjuntores e dos ramos cujos parâmetros serão estimados. Novas pseudomedidas são também introduzidas no modelo, permitindo assim uma melhor discriminação entre erros grosseiros, topológicos e erros de parâmetros.

Devido à grande quantidade de informações, envolvidas no processo de estimação generalizada de estado, tal estimador pode tornar-se inviável para aplicação em tempo real.

De uma forma geral, é possível afirmar que a limitação dos métodos que usam equações normais está relacionada à observabilidade, isto é, raramente o número de medidas disponível é suficiente para estimar todas as variáveis de estado aumentadas, uma vez que as mesmas aumentam, mas o conjunto de medidas continua o mesmo [ZARCO & EXPÓSITO (2000)]. Para evitar o problema de observabilidade, foram propostos também métodos baseados na teoria do filtro de Kalman. Estes métodos aumentam o vetor de medidas com pseudomedidas, referentes ao vetor de estado aumentado, estimado no instante anterior.

A possibilidade de estimar-se o vetor de estado aumentado, através de um algoritmo recursivo, baseado no filtro de Kalman, foi investigada inicialmente por [DEBS (1974)]. Nesse trabalho, os parâmetros são modelados como sendo constantes e as tensões complexas das barras são atualizadas segundo o processo de Markov. As limitações de tal formulação são as seguintes: - problemas de convergência, quando aplicada a sistemas grandes e/ou com muitos parâmetros incorretos; - as medidas são tratadas como sendo exatas e os parâmetros como constantes, limitando a flexibilidade do algoritmo, visto que alguns parâmetros, em razão das perdas por efeito corona, são variáveis no tempo.

Diferentemente do anterior, os parâmetros não são considerados constantes em [SLUTSKER & CLEMENTS (1996)], pois, assim como as tensões e os ângulos das barras do sistema, tais parâmetros são também atualizados segundo o processo de Markov. Deste modo, permite-se a estimação de parâmetros, variáveis com o tempo.

A grande limitação dos métodos, baseados na teoria do filtro de Kalman, está na determinação da matriz transição de estados. Muitos autores consideram essa matriz como sendo uma matriz identidade, isto é, consideram que os estados e parâmetros não sofram mudanças com o tempo.

Capítulo 3

Estimação de Estado em Sistemas Elétricos de Potência

O problema de estimação de estado consiste em um conjunto de algoritmos para processar tele-medidas realizadas em todo o sistema. Essas tele-medidas são em geral redundantes e corrompidas por erros de medição, erros de conversão analógico-digital e ruídos de transmissão. O estimador processa essas tele-medidas com o objetivo de fornecer estimativas confiáveis para as variáveis de estado do sistema. Para isto, dos muitos critérios estatísticos existentes, o mais utilizado, para estimação de estado em sistemas elétricos de potência, é o dos mínimos quadrados ponderados (W.L.S¹²).

O estimador de estado pode ser dinâmico ou estático. A grande limitação do estimador dinâmico está na determinação da matriz transição de estado. Na maioria dos artigos, essa matriz é considerada como sendo uma matriz identidade, assumindo que o sistema seja quase estático.

No estimador estático, supõe-se que o sistema esteja em condições de regime permanente, ou seja, não se considera a variação entre as grandezas envolvidas com a variável tempo. Por isso, a rede é representada por um conjunto de equações algébricas [LONDON Jr. (2000)].

A seguir apresenta-se a formulação do estimador de estado estático por mínimos quadrados ponderados.

¹² Do inglês W.L.S. – Weighted Least Square.

3.1 Estimador de Estado Estático baseado no Método dos Mínimos Quadrados

A estimação de estados, através dos mínimos quadrados, formula-se considerando:

$$\underline{z} = h(\underline{x}_v) + \underline{w} \tag{3.1}$$

Onde: z – vetor de medidas (mx1); h(.) - vetor de funções não lineares, relacionando as medidas com os estados (mx1); xv – vetor das variáveis de estado verdadeiras (nx1); w – vetor dos erros das medidas (mx1); m – número de medidas; n – número de variáveis de estado a serem estimadas.

A melhor estimativa do vetor xv, designada por $\frac{\hat{x}}{x}$, é o valor de x que torna mínimo o índice J(x), dado por:

$$J(\underline{x}) = \underline{w}^t W \ \underline{w} \tag{3.2}$$

ou

$$J(\underline{x}) = [\underline{z} - h(\underline{x})]^{t} W [\underline{z} - h(\underline{x})]$$
(3.3)

Onde W é uma matriz de ponderação para as medidas; é o inverso da matriz covariância das mesmas. É uma matriz diagonal, cujos valores diferentes de zero são os inversos das variâncias de cada medida $(\sigma_{ii}^{-1})_2$ [HANDSCHIN et al. (1975), HORISBERGER et al. (1976)]. Através dessa matriz, as medidas são ponderadas conforme as suas qualidades.

Da equação (3.3) deduz-se que $J(\underline{x})$ é uma função quadrática. Considerando que \underline{x}_v torna mínimo $J(\underline{x})$, podemos dizer que $J(\underline{x})$ é convexo nas proximidades de \underline{x}_v . Desta forma, para obter $\underline{\hat{x}}$, que torne $J(\underline{x})$ mínimo, fazemos:

$$\frac{\partial J(\underline{x})}{\partial \underline{x}} = 0 \tag{3.4}$$

portanto

$$2H(\hat{x})^{t} W[\underline{z} - h(\hat{x})] = 0$$
(3.5)

onde $H(\hat{x})$ é a matriz Jacobiana, dada por:

$$H(\underline{\hat{x}}) \Delta = \frac{\partial h(\underline{x})}{\partial \underline{x}} \Big|_{\underline{\hat{x}}}$$
(3.6)

Como podemos ver, a solução da equação (3.5) fornece o vetor $\frac{\hat{x}}{\hat{x}}$. Devido à não linearidade de $H(\hat{x}) = h(\hat{x})$, a solução direta dessa equação não é possível. Assim, o vetor estimado $\frac{\hat{x}}{\hat{x}}$ é obtido através de técnicas iterativas.

Para isso, utiliza-se o método de Newton-Raphson.

Expandindo em série de Taylor a equação $h(\underline{x})$, e tomando apenas os termos lineares em torno de um ponto inicial \underline{x}^{0} , têm-se:

$$\underline{h}(\underline{x}) \cong \underline{h}(\underline{x}^{0}) + H(\underline{x}^{0})\Delta \underline{x}^{0}$$
(3.7)

Sendo: $\Delta \underline{x}^{\circ} = \underline{x} - \underline{x}$

De (3.1) obtêm-se:

$$\underline{z} = \underline{h}(\underline{x}^{0}) + H(\underline{x}^{0})\Delta \underline{x}^{0} + \underline{w}$$
(3.8)

Define-se:

$$\Delta \underline{z}(\underline{x}^{0}) = \underline{z} - \underline{h}(\underline{x}^{0}) \tag{3.9}$$

Onde $\Delta \underline{z}$ é o erro de estimação, obtendo-se:

$$\Delta \underline{z}(\underline{x}^{0}) = H(\underline{x})^{0} \Delta \underline{x}^{0} + \underline{w}$$
(3.10)

Assim, a função objetivo passa a ser:

$$J(\underline{x}) = [\Delta \underline{z}(\underline{x}^{0}) - H(\underline{x}^{0})\Delta \underline{x}^{0}]^{t} W[\Delta \underline{z}(\underline{x}^{0}) - H(\underline{x}^{0})\Delta \underline{x}^{0}]$$
(3.11)
E o mínimo é encontrado fazendo-se:

$$H(\underline{x}^{0})^{t}W[\Delta \underline{z}(\underline{x}^{0}) - H(\underline{x}^{0})\Delta \underline{x}^{0}] = 0$$
(3.12)

Portanto:

$$\Delta \underline{x}^{0} = [H(\underline{x}^{0})^{t} W H(\underline{x}^{0})]^{-1} H(\underline{x}^{0})^{t} W \Delta \underline{z}(\underline{x}^{0})$$
(3.13)

Onde a matriz ganho é dada por:

$$G(\underline{x}^{0}) = [H(\underline{x}^{0})^{t} W H(\underline{x}^{0})]$$
(3.14)

e
$$\underline{x}^{1} = \underline{x}^{0} + \Delta \underline{x}^{0}$$
(3.1

Assim, a estimativa de $\frac{x}{v}$ corresponde ao valor de $\frac{x}{v}$ para uma determinada iteração, em que se verifique um índice de convergência pré fixado.

3.2 Detecção e identificação de medidas com erros grosseiros

Conforme já mencionado, medidas analógicas com erros grosseiros (EGs) podem inviabilizar o processo de estimação de estado. Assim, tais medidas precisam ser identificadas e eliminadas e as variáveis de estado estimadas novamente.

Como a maioria dos estimadores de estado são dependentes da análise dos resíduos, são apresentados, nesta seção, os processos de detecção e identificação de medidas com erros grosseiros, através da análise dos resíduos de estimação.

O termo detecção é entendido aqui como o teste da hipótese de que não há EG no conjunto de medidas. Se o resultado do teste é negativo, parte-se então para o processo de identificação das medidas que contém EG.

5)

3.2.1 Detecção de medidas com erros grosseiros

A detecção é feita através do índice $J(\hat{x})$. Considerando a hipótese de que não haja erro grosseiro, o valor do índice $J(\hat{x})$, calculado para \hat{x} obtido após a convergência do processo de estimação de estado, é comparado com o parâmetro λ . O valor de λ é previamente determinado, supondo uma distribuição χ^2 , com (m-n) graus de liberdade¹³ para o índice $J(\hat{x})$ e fixada uma certa probabilidade ρ de se tomar a decisão errada, rejeitando-se a hipótese quando ela é verdadeira.

Se $J(\hat{\underline{x}}) > \lambda$, rejeita-se a hipótese de que não haja erro grosseiro, e, se $J(\hat{\underline{x}}) < \lambda$ aceita-se a mesma.

Se a hipótese de que não haja erro grosseiro for aceita, consideram-se confiáveis os resultados obtidos pelo estimador de estado. Mas, se essa hipótese for rejeitada, importa identificar e eliminar as medidas que estejam com erros grosseiros.

3.3 Identificação de medidas com erros grosseiros

Os métodos mais empregados, para identificação de medidas com EGs, têm sido aqueles que se baseiam na análise estatística dos resíduos de estimação normalizados. O vetor resíduo de estimação pode ser definido como:

$$\underline{r} = \underline{z} - h(\hat{x}) \tag{3.16}$$

Que pode ser representado também da seguinte forma [HANDSCHIN et al.(1975)]:

$$\underline{r} = \Gamma \underline{w} \tag{3.17}$$

Onde:

 $\frac{w}{2}$ - é o vetor aleatório dos erros das medidas;

¹³ Lembrando que m e n representam, respectivamente, o número de medidas e variáveis de estado de um sistema de potência.

 Γ - é a matriz sensibilidade do resíduo, dada por:

$$\Gamma = I - H(\hat{x})[H(\hat{x})^{t} W H(\hat{x})]^{-1} H(\hat{x})^{t} W$$
(3.18)

Sendo *I* uma matriz identidade.

A matriz covariância do vetor $\frac{r}{c}$ é a matriz R dada por:

$$R = W - H(\hat{\underline{x}})[H(\hat{\underline{x}})^{t}W^{-1}H(\hat{\underline{x}})]^{-1}H(\hat{\underline{x}})^{t}$$
(3.19)

Considerando ρ_{ii} o elemento (i,i) da matriz R, os resíduos normalizados τ_i ficam definidos como:

$$\tau_i = \frac{r_i}{\sqrt{\rho_{ii}}} \tag{3.20}$$

com i=1,2,...m.

Onde τ_i é aproximadamente uma distribuição normal de média $\overline{\tau}_i$, dada por:

$$\overline{\tau}_{i} = \frac{\overline{r}_{i}}{\sqrt{\rho_{ii}}}$$
(3.21)

E desvio padrão unitário.

Quando for detectada a presença de medidas com erros grosseiros, é acrescentada à equação (3.1) um vetor determinístico b, para representar os erros grosseiros. Assim a equação (3.1) toma a seguinte forma:

$$\underline{Z} = h(\underline{x}_{v}) + \underline{w} + \underline{b}$$
(3.22)

Considerando que apenas a medida j possua erro grosseiro, o vetor b será dado por:

Assim, a média do resíduo de estimação é:

$$\bar{\underline{r}} = \Gamma \underline{b} = \begin{bmatrix} \gamma_{1j} \\ \cdot \\ \cdot \\ \gamma_{ij} \\ \cdot \\ \cdot \\ \gamma_{mj} \end{bmatrix} b j \Rightarrow \bar{r}_i = b_j \cdot \gamma_{ij}$$
, $i = 1, 2, 3, ..., m.$

onde γ_{ij} é o elemento (i,j) da matriz Γ , que é obtida pela equação (3.18). Através da equação (3.20) chegamos à expressão:

$$\overline{\tau}_{i} = \frac{b_{j} \cdot \gamma_{ij}}{\sqrt{\rho_{ii}}}, \quad i = 1, 2, \dots, m$$
(3.23)

Entretanto, para cada medida, somente um pii é encontrado. Desta forma, as médias dos resíduos normalizados de cada medida são diferentes, mas com variâncias iguais e unitárias. Portanto, as distribuições de probabilidade dos resíduos normalizados, de cada medida, diferem apenas no que se refere às médias. Conseqüentemente, para a identificação de medidas com erros grosseiros, basta examinar as médias dos resíduos normalizados de cada medida. A medida que tiver o $\overline{\tau}_i$ mais distante das demais, ou seja, a medida que tiver o maior resíduo normalizado corresponderá à medida com erro grosseiro [SCHWEPPE (1970), HANDSCHIN et al. (1975)].

Então, τ_i^{\max} o maior resíduo normalizado, se $\tau_i^{\max} > \alpha$, a correspondente medida "i" é portadora de erro grosseiro (α é o limite de identificação e depende de níveis de probabilidade aceitáveis de falso-alarme e de não identificação [MONTICELLI (2000)]).

Observação 3.1: Quando uma medida com erro grosseiro é identificada, a mesma é eliminada do conjunto de medidas¹⁴, sendo necessário proceder-se novamente à estimação de estado, através do novo conjunto de medidas. O método de identificação de medidas, descrito acima, permite identificar uma medida de cada vez; assim, para situações em que ocorram múltiplos erros, esse processo torna-se muito pesado, pois, para cada medida com erro grosseiro que se elimine, realizar-se-á uma nova estimação de estado, até que todas as medidas com erros grosseiros sejam eliminadas.

Existem métodos que propiciam a eliminação de mais de uma medida de cada vez, reduzindo assim o tempo de processamento, para detectar e identificar medidas com erros grosseiros [MILI et al. (1984)].

¹⁴ Em [GARCIA et al. (1979)], ao invés de eliminar a medida com erro, elimina-se o efeito dessa medida.

Capítulo 4

Análise de Observabilidade, baseada na fatoração triangular da matriz Ganho e em conceitos de caminhos de grafo.

Neste capítulo será apresentado, em linhas gerais, o método para análise e restauração da observabilidade, desenvolvido por [BRETAS (1996)], que será utilizado como base para o desenvolvimento do novo método a ser proposto, destinado à análise de observabilidade para o estimador de estado e parâmetros.

Através do desacoplamento $\frac{P\theta}{-QV}$, conhecido como desacoplamento do modelo, que é obtido considerando o fato de as sensibilidades $\frac{\partial \underline{P}}{\partial \underline{\theta}} = \frac{\partial \underline{Q}}{\partial \underline{V}}$ serem mais intensas que as sensibilidades $\frac{\partial \underline{P}}{\partial \underline{V}} = \frac{\partial \underline{Q}}{\partial \underline{\theta}}$ (este tipo de relação

verifica-se principalmente para redes com a relação $\frac{X}{R}$ bem alta), podemos realizar a análise de observabilidade algébrica separadamente, para cada um dos modelos.

Em razão de o método de [BRETAS (1996)] realizar a análise considerando o modelo P θ ¹⁵, também conhecido como modelo ativo ou linear, apresenta-se a seguir uma análise do mencionado desacoplamento do modelo.

¹⁵ A maioria dos métodos desenvolvidos para análise e restauração da observabilidade utiliza o modelo linear [MONTICELLI & WU (1985a) e MONTICELLI & WU (1985b)].

4.1 Desacoplamento do modelo

O número de variáveis de estado, a serem estimadas para um sistema de potência com nb barras, é igual a *(2nb-1),* sendo:

 (nb-1) ângulos de fase, pois o ângulo de uma das barras é considerado como referência angular;

- *nb* magnitudes de tensão;

Assim, para realizar a análise de observabilidade de um sistema de potência, é necessário verificar se é possível, através do conjunto de medidas disponível¹⁶, estimar as suas *(2nb-1)* variáveis de estado.

Então, considerando a equação (3.13), um sistema é observável se a correspondente matriz G tiver posto igual ao número de variáveis de estado a serem estimadas, isto é:

$$Posto(G) = 2nb - 1 \tag{4.1}$$

Entretanto, através do desacoplamento $\frac{P\theta}{QV}$, conhecido como desacoplamento do modelo, podemos realizar a análise de observabilidade separadamente, para cada um dos modelos.

Logo, para determinar se o sistema é P θ observável, importa verificar se é possível, considerando apenas as medidas de potência ativa, estimar os ângulos de fase de *(nb-1)* barras desse sistema.

Da mesma forma, para determinar se o sistema é QV observável, releva verificar se é possível, considerando apenas as medidas de potência reativa e as de magnitude de tensão, estimar as magnitudes de tensão em todas as nb barras desse sistema.

Face ao exposto e considerando a equação (3.13), pode-se afirmar que: Um sistema é P θ observável se:

$$Posto(G_{\rho}) = nb - 1 \tag{4.2}$$

Um sistema é QV observável se:

$$Posto(G_V) = nb \tag{4.3}$$

¹⁶Como já mencionado, usualmente, as medidas disponíveis são: fluxo de potência ativa e reativa nas linhas, injeção de potência ativa e reativa e algumas magnitudes de tensão nos barramentos.

Considerando o que se disse, para um sistema em que as medições de potência ativa e reativa são realizadas aos pares, a existência de, pelo menos uma medida de magnitude de tensão, faz com que o número de variáveis de estado, a serem estimadas para o modelo $\frac{QV}{P}$, seja igual ao do modelo $\frac{P\theta}{P}$.

Assim, se tal sistema é $\frac{P\theta}{2}$ observável, será também $\frac{QV}{2}$ observável.

Usualmente, nos sistemas de potência, as medições de potência ativa e reativa são realizadas aos pares, existindo mais de uma medida de magnitude de tensão. Logo, garantindo-se que o sistema seja $\frac{P\theta}{P}$ observável, garantir-seá que o mesmo será $\frac{QV}{P}$ observável, embora a recíproca possa não ser verdadeira.

Assim, restringir a análise ao modelo $\frac{P\theta}{P}$, ou ao modelo linear, é uma medida conservadora.

Para o modelo linear, a equação (3.13) tem a seguinte forma:

$$H_{P\theta}^{t}W_{P}H_{P\theta}\underline{\theta} = H_{P\theta}^{t}W_{P}Z_{P}$$
(4.4)

com

$$G_{\theta} = H_{P\theta}^{t} . W_{P} . H_{P\theta} \tag{4.5}$$

logo

$$G_{\theta}\underline{\theta} = H_{P\theta}^{t}.W_{p}.\underline{z}_{p}$$
(4.6)

Onde: G_{θ} é a matriz ganho, correspondente às medidas de potência ativa; $H_{P\theta}$ é a matriz Jacobiana, relacionada apenas às medidas de potência ativa; Ξ_{P} é o vetor de medidas de potência ativa e W_{p} é a matriz de ponderação das medidas de potência ativa.

De acordo com o método proposto por [MONTICELLI & WU (1985a) e MONTICELLI & WU (1985b)], um sistema é observável se qualquer fluxo na rede possa ser observado, por algum tipo de indicação no conjunto de medidas. Em outras palavras, se todas as medidas (fluxo e injeção de potência ativa) forem zero, então todos os fluxos devem ser zero, quando o sistema é observável. Por outro lado, se houver algum fluxo não zero, significa que esse fluxo não recebe informação das medidas, ou seja, o ramo correspondente a esse fluxo é não observável.

Para o modelo linear, o fluxo de potência ativa, da barra k para a barra m, é dado pela seguinte expressão:

$$P_{km} = \frac{\theta_k - \theta_m}{x_{km}} \tag{4.7}$$

Assim, para " P_{km} " ser nulo é necessário que $\theta_k = \theta_m$.

Considerando essas observações, em [MONTICELLI & WU (1985a) e MONTICELLI & WU (1985b)] demonstrou-se que, para analisar a observabilidade de um sistema, basta verificar se a solução da equação (4.6); para $\underline{z}_p = 0$ é do tipo $\theta_i = k$, i = 1, 2...nb, isto é, basta verificar se há uma única referência de ângulo de tensão quando $G_{\theta} \underline{\theta} = \underline{0}$.

4.2 Análise de observabilidade, baseada na fatoração triangular da matriz Ganho e em conceitos contidos em caminhos de grafo.

Assim como foi feito em [PEREIRA (2005)], são apresentadas, a seguir, algumas propriedades demonstradas em [BRETAS (1996)] e [MONTICELLI & WU (1985a) e MONTICELLI & WU (1985b)].

Propriedade 1: Se o sistema é observável, a fatoração da matriz G_{θ} , dada pela equação (4.5), quando não se define nenhum ângulo de fase como referência, resulta em somente um caminho de fatoração conexo [BRETAS (1996)]. A matriz G_{θ} , resultante dessa fatoração, apresenta a seguinte forma [BRETAS (1996); MONTICELLI & WU (1985a) e MONTICELLI & WU (1985b)]:

(4.7)

Em que "nb" representa o número de barras do sistema (a área escura corresponde aos possíveis elementos não nulos). A submatriz, sem a ultima linha e a última coluna, é não singular, existindo apenas um caminho de grafo associado a ela. É necessário que, pelo menos, um dos elementos da ultima coluna de U θ faça conexão com o grafo da submatriz anterior; caso contrário a variável correspondente àquela coluna seria uma variável isolada do sistema.

Propriedade 2: Se durante a fatoração de G_{θ} , um pivô zero (PZ) aparecer na diagonal (i,i), sendo i < nb, o sistema é não observável como um todo, sendo os outros elementos da linha e coluna "i" nulos [MONTICELLI & WU (1985a) e MONTICELLI & WU (1985b)]. Isto significa que os nós restantes, correspondentes às colunas de U_{θ} , de i+1 até nb, farão parte de outros caminhos de fatoração, que não possuíram conexão com o caminho de fatoração anterior [BRETAS (1996)]. A matriz G_{θ} , resultante dessa fatoração, terá a seguinte forma [MONTICELLI & WU (1985b)]:

(4.8)

Observação 4.1: Com base nas Propriedade 1 e 2, [BRETAS (1996)] demonstrou que o número de pivôs nulos, encontrados na fatoração da matriz G_{θ} , é igual ao número de caminhos de grafos associados a essa fatoração.

Propriedade 3: Identificação das ilhas observáveis: se, na fatoração triangular de G_{θ} , existir mais de um caminho de grafo, podem ocorrer duas situações: i) Não havendo medidas de injeção de potência, relacionando nós de diferentes caminhos de grafos, o sistema como um todo é não observável e cada subrede, associada a cada caminho de grafo isolado, constitui-se em uma ilha observável da rede [BRETAS (1996)]; ii) Havendo medidas de injeção de potência, relacionando nós de diferentes caminhos de grafo, o sistema como um todo é não observável, não sendo possível assegurar que as subredes, associadas a cada caminho de grafo isolado, constituem ilhas observáveis. Para encontrar as ilhas observáveis, aquelas medidas devem ser identificadas e descartadas17, para a obtenção da nova matriz G_{θ} . Em seguida essa matriz deve ser fatorada.

O processo de descarte de medidas e de fatoração termina, quando não existir medida de injeção relacionando nós de diferentes caminhos de grafo. Cada sub-rede, associada a um caminho da grafo isolado, constituirá uma ilha observável [BRETAS (1996)].

4.2.1 Algoritmo para Análise de Observabilidade

É apresentado, a seguir, o algoritmo desenvolvido em [BRETAS (1996)], para análise de observabilidade de redes.

ALGORITMO:

PASSO 1: com o conjunto de medidas disponível, montar a matriz Jacobiana H_{θ}

PASSO 2: obter a matriz ganho G_{θ} .

PASSO 3: realizar a fatoração triangular da matriz ganho G_{θ} .

PASSO 4: encontrar os caminhos de fatoração, associados à fatoração triangular da matriz ganho G_{θ} . Se apenas um caminho de grafo for encontrado, a rede é observável como um todo. Pare. Caso contrário, a rede como um todo é não observável.

4.2.2 Algoritmo para identificação de ilhas observáveis

Em [BRETAS (1996)], um algoritmo para identificação de ilhas observáveis foi apresentado.

¹⁷ Essas medidas são medidas irrelevantes, no que diz respeito à estimação de estado das ilhas observáveis.

PASSO 1: Na medida em que se obtém mais de um caminho de grafo, associado à fatoração triangular da matriz ganho G_{θ} , e:

Não existam medidas de injeção de potência, relacionando nós de diferentes caminhos de grafos, então as sub-redes associadas a cada caminho de grafo já constituem ilhas observáveis. Pare.

Existam medidas de injeção de potência relacionando nós de diferentes caminhos de grafos, então nada poderá ser dito a respeito da observabilidade das redes, associadas a estes caminhos de grafos. Vá para o passo 2.

PASSO 2: Identificar essas medidas e removê-las do conjunto de medidas original. Estas são medidas irrelevantes, em termos de estimação de estado.

PASSO 3: Atualizar a matriz ganho G_{θ} e refazer a fatoração triangular.

PASSO 4: Identificar os caminhos de fatoração e retornar ao passo 1.

Observação 4.2: O algoritmo pode tornar-se um processo iterativo, no caso de acontecer a situação b do passo 1. A razão disto é que, quando medidas irrelevantes são identificadas e descartadas, outras medidas irrelevantes podem aparecer.

4.3 Exemplo

Exemplo 1

O sistema da figura abaixo será usado para mostrar como o algoritmo de análise de observabilidade e o de identificação de ilhas observáveis funcionam.

Figura 4.1: Sistema de 6 barras do IEEE associado a um conjunto de medidas (exemplo 1)

Conjunto de medidas: [P1, P2, P3, P4, P5, P6].

AGORITMO PARA ANÁLISE DE OBSERVABILIDADE:

Passo 1: A partir do conjunto de medidas disponível, montar a matriz Jacobiana. Para facilitar o cálculo, as reatâncias das linhas são consideradas unitárias, bem como os elementos da matriz de ponderação W.

	P1	2	-1	-1	0	0	0	
$H_{\theta} =$	P2	0	0	-1	3	-1	-1	
	<i>P</i> 3	1	-1	0	0	0	0	(4.9)
	P4	-1	1	0	0	0	0	(-)
	P5	0	0	1	-1	0	0	
	<i>P</i> 6	0	0	0	1	-1	0	

Passo 2: Obter a matriz Ganho.

$$G_{\theta} = \begin{bmatrix} 6 & -4 & -2 & 0 & 0 & 0 \\ -4 & 3 & 1 & 0 & 0 & 0 \\ -2 & 1 & 3 & -4 & 1 & 1 \\ 0 & 0 & -4 & 11 & -4 & -3 \\ 0 & 0 & 1 & -4 & 2 & 1 \\ 0 & 0 & 1 & -3 & 1 & 1 \end{bmatrix}$$
(4.10)

Passo 3: Fazer a fatoração triangular da matriz G_{θ} .

$$U_{\theta} = \begin{bmatrix} 1 & -0.67 & -0.33 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & -2 & 0.5 & 0.5 \\ 0 & 0 & 0 & 1 & -0.67 & -0.33 \\ 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
(4.11)

Passo 4: Identificar os caminhos de fatoração.

Os caminhos de fatoração são obtidos através da análise dos elementos não nulos do triângulo superior da matriz U_{θ} . Percorre-se a linha (i), a partir do elemento (i, i), até o primeiro elemento não nulo (i, j) e passa-se para a próxima linha. O processo é repetido até à penúltima linha da matriz U_{θ} .

Voltando para a matriz U_{θ} , temos:

$$U_{\theta} = \begin{bmatrix} (1) \rightarrow (-0.67) & -0.33 & 0 & 0 & 0 \\ \downarrow & & & \\ 0 & (1) \rightarrow (-1) & 0 & 0 & 0 \\ \downarrow & & & \\ 0 & 0 & (1) \rightarrow (-2) & 0.5 & 0.5 \\ \downarrow & & & \\ 0 & 0 & 0 & (1) \rightarrow (-0.67) & -0.33 \\ \downarrow & & & \\ 0 & 0 & 0 & 0 & (1) \rightarrow (-1) \\ \downarrow & & & \\ 0 & 0 & 0 & 0 & 0 & (0) \end{bmatrix}$$

Verificam-se as seguintes conexões¹⁸:

Linha 1: elementos [1, 1] e [1, 2] - barra 1 conectada com a barra 2. Linha 2: elementos [2, 2] e [2, 3] - barra 2 conectada com a barra 3. Linha 3: elementos [3, 3] e [3, 4] - barra 3 conectada com a barra 4. Linha 4: elementos [4, 4] e [4, 5] - barra 4 conectada com a barra 5. Linha 5: elementos [5, 5] e [5, 6] - barra 5 conectada com a barra 6.

O caminho de fatoração associado com a matriz U_{θ} é mostrado, graficamente, através do caminho de grafo da figura 4.2.

Figura 4.2: Caminho de grafo associado com a matriz $U_{ heta}$

Existe apenas um caminho de fatoração, associado com a fatoração triangular da matriz G_{θ} , o caminho n1. Assim, de acordo com a propriedade 1, o sistema é observável como um todo, em relação ao conjunto de medidas disponível.

Exemplo 2

Outro exemplo com o mesmo sistema será mostrado, mas com um conjunto de medidas diferente, ilustrado na figura 4.3.

¹⁸ Os elementos não nulos [i, i] e [i, j] indicam a existência de conexão entre as barras correspondentes às suas colunas, isto é, conexão entre as barras "i" e "j".

Conjunto de medidas: [P1, P2, P3, P4].

AGORITMO PARA ANÁLISE DE OBSERVABILIDADE:

Passo 1: Obter a matriz Jacobiana.

<i>P</i> 1	0	0	-1	3	-1	-1]
и_ ^{P2}	1	0	-1	0	0	0
$II_{\theta} = P3$	0	0	0	1	-1	0
<i>P</i> 4	0	0	0	-1	0	1

Passo 2: Obter a Matriz Ganho.

[2	1	-4	1	0	0
	1	1	-3	1	0	0
C	-4	-3	10	3	0	0
$G_{\theta} =$	1	1	-3	3	-1	-1
	0	0	0	-1	1	0
	0	0	0	-1	0	1

Passo 3: Fazer a fatoração triangular da matriz G_{θ} .

Passo 4: Identificar os caminhos de fatoração.

Como no exemplo anterior, verificam-se as seguintes conexões: Linha 1: elementos [1, 1] e [1, 2] 7– barra 1 conectada com a barra 2. Linha 2: elementos [2, 2] e [2, 3] – barra 2 conectada com a barra 3. Linha 3: barra 3 não tem conexão com as barras 4, 5 e 6 (linha de zeros) . Linha 4: elementos [4, 4] e [4, 5] – barra 4 conectada com a barra 5. Linha 5: elementos [5, 5] e [5, 6] – barra 5 conectada com a barra 6.

Os caminhos de fatoração associados com a matriz U_{θ} são mostrados, graficamente, através dos caminhos de grafo da figura 4.4.

Figura 4.4: Caminhos de grafo associados com a matriz $U_{ heta}$.

Neste caso aparecem dois caminhos de fatoração, associados com a fatoração triangular, o caminho n1 e o caminho n2.

De acordo com a propriedade 3, chega-se à conclusão de que o sistema não é observável como um todo, com relação ao conjunto de medidas disponível.

A partir deste ponto, importa identificar as ilhas observáveis do sistema.

AGORITMO PARA IDENTIFICAÇÃO DE ILHAS OBSERVÁVEIS:

Passo 1: Através dos caminhos de fatoração, verificar se existem medidas de injeção, relacionando nós de diferentes caminhos de fatoração: Medida P1: relaciona os nós 3 e 4, que estão em caminhos de fatoração diferentes.

Passo 2: Remover essa(s) medida(s).

Figura 4.5 Rede de 6 barras utilizada

Conjunto de medidas atualizado: [P2, P3, P4].

Passo 3: Atualizar a matriz G_{θ} e refazer fatoração triangular.

Passo 4: Identificar caminhos de fatoração.

Linha 1: elementos [1, 1] e [1, 3] – barra 1 conectada com a barra 3.

Linha 2: barra 2 não tem conexão com as barras 3, 4, 5 e 6 (linha de zeros).

Linha 3: barra 3 não tem conexão com as barras 4, 5 e 6 (linha de zeros).

Linha 4: elementos [4, 4] e [4, 5] – barra 4 conectada com a barra 5.

Linha 5: elementos [5, 5] e [5, 6] – barra 5 conectada com a barra 6.

Os caminhos de fatoração associados com a matriz U_{θ} são mostrados, graficamente, através dos caminhos de grafo da figura 4.6

Figura 4.6: Caminhos de grafo associados com a matriz $U_{ heta}$.

Neste caso aparecem três caminhos de fatoração, associados com a fatoração triangular de G_{θ} .

Passo 1: Através dos caminhos de fatoração, verificar se existem medidas de injeção, relacionando nós de diferentes caminhos de grafos.

Como não existe medida de injeção com as características acima, de acordo com a propriedade 3, chega-se à conclusão de que o sistema não é observável como um todo e as sub-redes, associadas com cada caminho de fatoração isolado, constituem ilhas observáveis.

Observação 4.3: Além dos algoritmos apresentados nesta seção, em [BRETAS (1996)] é apresentado um algoritmo para restaurar a observabilidade do sistema.

Capítulo 5

Metodologia para Estimação de Estado e Parâmetros de Linhas de Transmissão, baseada nas Equações Normais

5.1 Introdução

Propõe-se, neste capítulo, uma metodologia para estimação de estado e parâmetros de linhas de transmissão, sendo que o vetor de estado será expandido, para a inclusão dos parâmetros a serem estimados; já o vetor de medidas será aumentado, para considerar medidas de diversas amostras, desde que não tenham sofrido uma alteração significativa dos seus valores.

Em estimação de estado utiliza-se, para representação de linhas de transmissão, o modelo ∏ equivalente, a ser apresentado na seção 5.4. Tal modelo possibilita a representação de uma linha de transmissão, através de parâmetros concentrados.

Importa destacar que, em termos de estimação de estado, como as medidas são tomadas apenas nas extremidades da linha, não há diferença entre a representação com parâmetros concentrados ou distribuídos, mesmo para linhas de transmissão aéreas, classificadas como longas [STEVENSON (1986)].

Como mencionado na introdução deste trabalho, os parâmetros a serem estimados, pela metodologia proposta, são as condutâncias (G_{km}) série e as

susceptâncias (B_{km}) série de linhas de transmissão aéreas, classificadas como médias e longas, isto é, com comprimento acima de 80 km (50 milhas)¹⁹. Através dos parâmetros do modelo Π equivalente, distingue-se uma linha aérea classificada como curta, das classificadas como médias e longas, através da sua susceptância shunt, que será igual a zero. Isto porque uma linha aérea classificada como curta, isto é, com comprimento de até 80 km (50 milhas), possui uma capacitância em derivação muito pequena, que pode ser inteiramente desprezada, sem perda apreciável de precisão, sendo suficiente considerar apenas a resistência em série e a indutância em série, para todo o comprimento da linha.

A metodologia proposta compreende três fases:

Fase 1: Determinação do conjunto de medidas, a ser utilizado no processo de estimação de estado e parâmetros, isto é, determinação das medidas que não tenham sofrido uma alteração significativa dos seus valores, durante um certo período de tempo;

Fase 2: Análise de Observabilidade, baseada na fatoração triangular da matriz ganho e nos conceitos de caminho grafo, para o modelo aumentado, isto é, o modelo correspondente aos vetores de estado e de medidas, aumentados;

Fase 3: Estimação de estado e parâmetros, propriamente dita.

A seguir será apresentada cada uma dessas fases.

5.2 Fase 1: Determinação do Conjunto de Medidas a ser utilizado

Para determinar as medidas a serem utilizadas, o primeiro passo consiste em determinar as variáveis de estado, não sujeitas a uma variação significativa, durante um determinado intervalo de tempo. De posse dessas variáveis de estado, as medidas das diversas amostras, obtidas naquele intervalo de tempo, incidentes apenas às barras cujas variáveis de estado não estejam variando significativamente, são selecionadas para serem utilizadas na estimação de estado e parâmetros.

¹⁹ Decidiu-se estimar apenas esses parâmetros, em razão de serem os principais responsáveis pelas perdas em um SEP [KUSIC & GARRISON (2004)].

Consideramos que uma variável de estado não está sujeita a uma variação significativa, durante um determinado intervalo de tempo, se a diferença entre o valor mais alto e o valor mais baixo, que a mesma assumiu naquele período de tempo, for igual ou menor que 1% (o índice utilizado para análise da convergência do estimador de estado).

Antes de apresentar o método proposto para analise de observabilidade do modelo aumentado (Fase 2), será apresentada a formulação do proposto estimador de estado e parâmetros (Fase 3).

5.3 Fase 3: Estimador de Estado e Parâmetros

O estimador de estado e parâmetros proposto baseia-se nas equações normais. Conseqüentemente, a sua formulação é praticamente a mesma do estimador de estado convencional, por mínimos quadrados ponderados, descrita no capitulo 3.

Tomando essa formulação como base, os vetores de medidas e de estado passam a ser chamados, respectivamente, de vetor de medidas aumentado (\underline{Z}_{Aum}) e de estado aumentado (\underline{X}_{Aum}).

Considerando este modelo de medição aumentado, a equação (3.1) torna-se:

$$\underline{z}_{Aum} = h_{Aum}(\underline{x}_{vAum}) + \underline{w}_{Aum}$$
(5.1)

Onde: \underline{Z}_{Aum} : vetor de medidas aumentado (mAumx1);

 $h_{Aum}(.)$: vetor de funções não lineares, que relaciona as medidas com as variáveis de estado aumentado, a serem estimadas (mAumx1);

 $\frac{X_{vAum}}{2}$: vetor de estado aumentado verdadeiro (nAumx1);

 $\frac{W}{M}$: vetor dos erros nas medidas (mAumx1);

 n_{Aum} : número de variáveis de estado e parâmetros, a ser estimado.

 m_{Aum} : número de medidas selecionadas na Fase 1.

Neste trabalho, os parâmetros a serem estimados são as condutâncias (G_{km}) e as susceptâncias (B_{km}) série de linhas de transmissão médias e longas, isto é, daquelas que apresentam a susceptância shunt não nula (modelo Π equivalente). Conseqüentemente, para um sistema com "L" ramos e "nb" barras, temos " $n_{Aum} = 2nb - 1 + 2L$ " variáveis de estado "aumentado", a serem estimadas (sendo "nb" magnitudes de tensão; "nb-1" ângulos de tensão e "2L" parâmetros).

A melhor estimativa do vetor $\frac{x}{vAum}$, designada por $\frac{\hat{x}Aum}{\hat{x}Aum}$, é o valor de $\frac{x}{Aum}$, que torna mínimo o índice J(x), dado por:

$$J(\underline{x}_{Aum}) = \underline{w}_{Aum}{}^{t} W_{Aum} \underline{w}_{Aum}$$
(5.2)

ou

$$J(\underline{x}_{Aum}) = \left[\underline{z}_{Aum} - h_{Aum}(\underline{x}_{Aum})\right]^{t} W_{Aum} \left[\underline{z}_{Aum} - h_{Aum}(\underline{x}_{Aum})\right],$$
(5.3)

Onde W_{Aum} é a correspondente matriz de ponderação das medidas aumentadas.

Obtém-se o mínimo da expressão dada por (5.3), fazendo:

$$\frac{\partial J(\underline{x}_{Aum})}{\partial \underline{x}_{Aum}} = 0 \tag{5.4}$$

portanto

$$H_{Aum}(\underline{x}_{Aum})^{t}W_{Aum}[\underline{z}_{Aum} - h_{Aum}(\underline{x}_{Aum})] = 0$$
(5.5)

onde $H_{Aum}(\underline{x}_{Aum})$ é a matriz Jacobiana aumentada, dada por:

$$H(\underline{x}_{Aum}) \underline{\Delta} \frac{\partial h_{Aum}(\underline{x}_{Aum})}{\partial \underline{x}_{Aum}} | \underline{x}_{Aum} = \underline{\hat{x}}_{Aum}$$
(5.6)

A solução da equação (5.5) fornece o estado estimado $\hat{\underline{X}}_{Aum}$, mas, devido à não linearidade de $H_{Aum}(\underline{x}_{Aum})$ e $h_{Aum}(\hat{\underline{x}}_{Aum})$, a solução direta dessa equação não é possível. Assim, o estado estimado $\hat{\underline{X}}_{Aum}$ é obtido através de técnicas iterativas. Para isto, utiliza-se o método de Newton-Raphson.

Expandindo em série de Taylor a equação $h_{Aum}(\underline{x}_{Aum})$, e tomando apenas os termos lineares, em torno de um ponto inicial \underline{x}^{0}_{Aum} , têm-se:

$$\underline{h}_{Aum}(\underline{x}_{Aum}) \cong \underline{h}_{Aum}(\underline{x}_{Aum}^{0}) + \underline{H}_{Aum}(\underline{x}_{Aum}^{0})\Delta \underline{x}_{Aum}^{0}$$
(5.7)

De (5.1) obtêm-se:

$$\underline{z}_{Aum} = \underline{h}_{Aum}(\underline{x}^{0}_{Aum}) + \underline{H}_{Aum}(\underline{x}^{0}_{Aum})\Delta \underline{x}^{0}_{Aum} + \underline{w}_{Aum}$$
(5.8)

Define-se:

$$\Delta \underline{z_{Aum}}(\underline{x}_{Aum}^{o}) = \underline{z}_{Aum} - \underline{h}_{Aum}(\underline{x}_{Aum}^{0})$$
(5.9)

Onde $\Delta \underline{Z}_{Aum}$ é o erro de estimação, obtendo-se:

$$\Delta \underline{z}_{Aum}(\underline{x}_{Aum}^{0}) = H_{Aum}(\underline{x}_{Aum}^{0})\Delta \underline{x}_{Aum}^{0} + \underline{w}_{Aum}$$
(5.10)

Assim, a função objetivo passa a ser:

$$J(\underline{x}_{Aum}) = [\Delta \underline{z}(\underline{x}_{Aum}^{0}) - H_{Aum}(\underline{x}_{Aum}^{0})\Delta \underline{x}_{Aum}^{0}]^{t} W_{Aum} \left[\Delta \underline{z}_{Aum}(\underline{x}^{0}) - H(\underline{x}_{Aum}^{0})\Delta \underline{x}_{Aum}^{0}\right]$$
(5.11)

E o mínimo é encontrado fazendo-se:

$$H_{Aum}(\underline{x}^{0}_{Aum})^{t}W_{Aum}[\Delta \underline{z}_{Aum}(\underline{x}^{0}_{Aum}) - H(\underline{x}^{0}_{Aum})\Delta \underline{x}^{0}_{Aum}] = 0$$
(5.12)

Portanto:

$$\Delta \underline{x}_{Aum}^{0} = \left[H_{Aum}(\underline{x}_{Aum}^{0})^{t} W_{Aum} H(\underline{x}_{Aum}^{0})\right]^{-1} H_{Aum}(\underline{x}_{Aum}^{0})^{t} W_{Aum} \Delta \underline{z}_{Aum}(\underline{x}_{Aum}^{0})$$
(5.13)

Onde a matriz ganho aumentada é dada por:

$$G_{Aum}(\underline{x}^{0}) = \left[H_{Aum}(\underline{x}^{0})^{t} W_{Aum} H_{Aum}(\underline{x}^{0})\right]$$
(5.14)

е

$$\underline{x}_{Aum}^{1} = \underline{x}_{Aum}^{0} + \Delta \underline{x}_{Aum}^{0}$$
(5.15)

A estimativa de estado $\frac{\hat{x}_{Aum}}{\underline{x}_{Aum}}$ é o valor de $\frac{x_{Aum}}{\underline{x}_{Aum}}$, para uma determinada iteração, em que se verifique um critério de convergência pré fixado.

A seguir, propõe-se um método para análise de observabilidade, referente ao modelo aumentado.

5.4 Fase 2: Análise de Observabilidade para o Estimador de Estado e Parâmetros

De posse do conjunto de medidas a ser utilizado, é necessário determinar quais as variáveis de estado e parâmetros, a serem possivelmente estimadas, isto é, determinar as ilhas observáveis do sistema. Isto se faz

necessário, uma vez que, possivelmente, diversas medidas sofram mudanças significativas em seus valores, durante o intervalo de tempo considerado. Logo, não será possível incluir todas as medidas realizadas no sistema, no conjunto de medidas a ser utilizado no processo de estimação de estado e de parâmetros.

Considerando a formulação do estimador de estado e parâmetros, apresentada na seção anterior, a matriz Jacobiana Aumentada (H_{Aum}), dada pela equação (5.6), contém as derivadas das funções, referentes a:

$$\underline{z}_{Aum} = \begin{bmatrix} FPA \\ FPR \\ E \end{bmatrix}$$
, onde "FPA", "FPR" e "E" indicam, respectivamente, o vetor

L^L J, onde "FPA", "FPR" e "E" indicam, respectivamente, o vetor de medidas de fluxo de potência ativa, reativa e medidas de magnitude de

$$\underline{x}_{Aum} = \begin{bmatrix} \underline{p} \\ \underline{v} \\ \theta \end{bmatrix}$$

tensão^{20,} em relação a $\lfloor \underline{\theta} \rfloor$, em que " $\underline{\theta}$ " e " $\underline{\nu}$ " são, respectivamente, os vetores dos ângulos e das magnitudes das tensões das barras do sistema; e "p" o vetor dos parâmetros a serem estimados.

$$H_{Aum} = \begin{bmatrix} H_{Pp} & H_{Pv} & H_{P\theta} \\ H_{Qp} & H_{Qv} & H_{Q\theta} \\ H_{Vp} & H_{Vv} & H_{V\theta} \end{bmatrix} = \begin{bmatrix} \frac{\partial FPA}{\partial p} & \frac{\partial FPA}{\partial v} & \frac{\partial FPA}{\partial \theta} \\ \frac{\partial FPR}{\partial p} & \frac{\partial FPR}{\partial v} & \frac{\partial FPR}{\partial \theta} \\ \frac{\partial E}{\partial p} & \frac{\partial E}{\partial v} & \frac{\partial E}{\partial \theta} \end{bmatrix}$$
(5.16)

Das equações de fluxo de potência, considerando o modelo Π Equivalente generalizado, apresentado a seguir na figura 5.1 [Monticelli (1999)], tem-se:

²⁰ Inicialmente não estão sendo consideradas medidas de injeção de potência.

Onde:

 V_k, V_p, V_m – Magnitude de tensão das barras k, p e m. $\theta_k, \theta_p, \theta_m$ – Ângulo de tensão das barras k,p e m. $y_{km} = g_{km} + jb_{km}$ – Admitância série da linha de transmissão k-m. y_{km}^{sh} – susceptância shunt. 1: $t_{km} = a_{km}e^{j\theta_p}$ – a relação de transformação

Figura 5.1. Modelo ∏ - Equivalente generalizado

$$FPA = P_{km} = a_{km}^2 V_k^2 g_{km} - a_{km} V_k a_{mk} V_m g_{km} \cos(\theta_{km} + \varphi_{km} - \varphi_{mk}) - a_{km} V_k a_{mk} V_m b_{km} \sin(\theta_{km} + \varphi_{km} - \varphi_{mk})$$
(5.17)

$$FPR = Q_{km} = -a_{km}^2 V_k^2 (b_{km} + b_{km}^{sh}) + a_{km} V_k a_{mk} V_m b_{km} \cos(\theta_{km} + \varphi_{km} - \varphi_{mk}) - a_{km} V_K a_{mk} V_m g_{km} sen(\theta_{km} + \varphi_{km} - \varphi_{mk})$$
(5.18)

No caso de linhas de transmissão, $a_{km} = a_{mk} = 1$ e $\varphi_{km} = \varphi_{mk} = 0$; para transformadores em-fase com tap no lado da barra k, $y_{km}^{sh} = y_{mk}^{sh} = 0$, $\varphi_{km} = \varphi_{mk} = 0$, e $a_{mk} = 1$; e para os defasadores puros, com regulador no lado da barra k, $y_{km}^{sh} = y_{mk}^{sh} = 0$, da barra k, $y_{km}^{sh} = y_{mk}^{sh} = 0$, $a_{km} = a_{mk} = 1$, e $\varphi_{mk} = 0$.

Logo, os elementos da matriz Jacobiana Aumentada (H_{Aum}) são os seguintes:

$$\frac{\partial P_{km}}{\partial g_{km}} = a_{km}^2 V_k^2 - a_{km} V_k a_{mk} V_m \cos(\theta_{km} + \varphi_{km} - \varphi_{mk})$$
(5.19)

$$\frac{\partial P_{km}}{\partial b_{km}} = -a_{km}V_k a_{mk}V_m sen(\theta_{km} + \varphi_{km} - \varphi_{mk})$$
(5.20)

$$\frac{\partial P_{km}}{\partial V_k} = 2a_{km}^2 V_k g_{km} - a_{km} a_{mk} V_m g_{km} \cos(\theta_{km} + \varphi_{km} - \varphi_{mk}) - a_{km} a_{mk} V_m b_{km} sen(\theta_{km} + \varphi_{km} - \varphi_{mk})$$
(5.21)

$$\frac{\partial P_{km}}{\partial V_m} = -a_{km}a_{mk}V_kg_{km}\cos(\theta_{km} + \varphi_{km} - \varphi_{mk}) - a_{km}a_{mk}V_kb_{km}sen(\theta_{km} + \varphi_{km} - \varphi_{mk})$$
(5.22)

$$\frac{\partial P_{km}}{\partial \theta_k} = a_{km} V_k a_{mk} V_m g_{km} sen(\theta_{km} + \varphi_{km} - \varphi_{mk}) - a_{km} V_k a_{mk} V_m b_{km} \cos(\theta_{km} + \varphi_{km} - \varphi_{mk})$$
(5.23)

$$\frac{\partial P_{km}}{\partial \theta_m} = -a_{km}V_k a_{mk}V_m g_{km}sen(\theta_{km} + \varphi_{km} - \varphi_{mk}) + a_{km}V_k a_{mk}V_m b_{km}\cos(\theta_{km} + \varphi_{km} - \varphi_{mk})$$
(5.24)

$$\frac{\partial Q_{km}}{\partial g_{km}} = -a_{km}V_{K}a_{mk}V_{m}sen(\theta_{km} + \varphi_{km} - \varphi_{mk})$$
(5.25)

$$\frac{\partial Q_{km}}{\partial b_{km}} = -a_{km}^2 V_k^2 + a_{km} V_k a_{mk} V_m \cos(\theta_{km} + \varphi_{km} - \varphi_{mk})$$
(5.26)

$$\frac{\partial Q_{km}}{\partial V_k} = -2a_{km}^2 V_k \left(b_{km} + b_{km}^b \right) + a_{km} a_{mk} V_m b_{km} \cos(\theta_{km} + \varphi_{km} - \varphi_{mk}) - a_{km} a_{mk} V_m g_{km} \sin(\theta_{km} + \varphi_{km} - \varphi_{mk})$$
(5.27)

$$\frac{\partial Q_{km}}{\partial V_m} = a_{km}a_{mk}V_kb_{km}\cos(\theta_{km} + \varphi_{km} - \varphi_{mk}) - a_{km}a_{mk}V_kg_{km}sen(\theta_{km} + \varphi_{km} - \varphi_{mk})$$
(5.28)

$$\frac{\partial Q_{km}}{\partial \theta_k} = -a_{km}V_k a_{mk}V_m b_{km} sen(\theta_{km} + \varphi_{km} - \varphi_{mk}) - a_{km}V_k a_{mk}V_m g_{km} \cos(\theta_{km} + \varphi_{km} - \varphi_{mk})$$
(5.29)

$$\frac{\partial Q_{km}}{\partial \theta_m} = a_{km} V_k a_{mk} V_m b_{km} sen(\theta_{km} + \varphi_{km} - \varphi_{mk}) + a_{km} V_k a_{mk} V_m g_{km} \cos(\theta_{km} + \varphi_{km} - \varphi_{mk})$$
(5.30)

Assim, de uma forma mais detalhada, a estrutura da matriz Jacobiana Aumentada é a seguinte:

$$H_{Aum} = \begin{bmatrix} H_{Pp} & H_{Pv} & H_{P\theta} \\ H_{Qp} & H_{Qv} & H_{Q\theta} \\ H_{Vp} & H_{Vv} & H_{V\theta} \end{bmatrix} = \begin{bmatrix} \frac{\partial P_{km}}{\partial g_{km}} & \frac{\partial P_{km}}{\partial b_{km}} & \frac{\partial P_{km}}{\partial V_{k}} & \frac{\partial P_{km}}{\partial V_{m}} & \frac{\partial P_{km}}{\partial \theta_{k}} & \frac{\partial P_{km}}{\partial \theta_{m}} \\ \frac{\partial Q_{km}}{\partial g_{km}} & \frac{\partial Q_{km}}{\partial b_{km}} & \frac{\partial Q_{km}}{\partial V_{k}} & \frac{\partial P_{km}}{\partial V_{m}} & \frac{\partial P_{km}}{\partial \theta_{k}} & \frac{\partial P_{km}}{\partial \theta_{m}} \\ 0 & 0 & \frac{\partial V_{k}}{\partial V_{k}} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{\partial V_{k}}{\partial V_{m}} & 0 & 0 \end{bmatrix}$$

A matriz Ganho Aumentada (G_{Aum}), que será utilizada no processo de estimação de estado e parâmetros, dada pela equação 5.14, tem a seguinte forma:

$$G_{Aum} = [H_{Aum}]^{t} [W_{Aum}] [H_{Aum}] = \begin{bmatrix} G_{p} & G_{pv} & G_{p\theta} \\ G_{vp} & G_{v} & G_{v\theta} \\ G_{\theta p} & G_{\theta v} & G_{\theta} \end{bmatrix}$$
(5.32)

Onde:

$$G_{p} = [H_{Pp}]^{T}[W_{P}][H_{Pp}] + [H_{Qp}]^{T}[W_{Q}][H_{Qp}] + [H_{Vp}]^{T}[W_{V}][H_{Vp}]$$

$$G_{pv} = [H_{Pp}]^{T}[W_{P}][H_{Pv}] + [H_{Qp}]^{T}[W_{Q}][H_{Qv}] + [H_{Vp}]^{T}[W_{V}][H_{Vv}]$$

$$G_{p\theta} = [H_{Pp}]^{T}[W_{P}][H_{P\theta}] + [H_{Qp}]^{T}[W_{Q}][H_{Q\theta}] + [H_{Vp}]^{T}[W_{V}][H_{V\theta}]$$

$$G_{vp} = [H_{Pv}]^{T}[W_{P}][H_{Pp}] + [H_{Qv}]^{T}[W_{Q}][H_{Qp}] + [H_{Vv}]^{T}[W_{V}][H_{Vp}]$$

$$G_{v} = [H_{Pv}]^{T}[W_{P}][H_{Pv}] + [H_{Qv}]^{T}[W_{Q}][H_{Qv}] + [H_{Vv}]^{T}[W_{V}][H_{Vp}]$$

(5.31)

$$G_{\nu\theta} = [H_{P\nu}]^{T} [W_{P}] [H_{P\theta}] + [H_{Q\nu}]^{T} [W_{Q}] [H_{Q\theta}] + [H_{V\nu}]^{T} [W_{V}] [H_{V\theta}]$$

$$G_{\theta p} = [H_{P\theta}]^{T} [W_{P}] [H_{Pp}] + [H_{Q\theta}]^{T} [W_{Q}] [H_{Qp}] + [H_{V\theta}]^{T} [W_{V}] [H_{Vp}]$$

$$G_{\theta v} = [H_{P\theta}]^{T} [W_{P}] [H_{PV}] + [H_{Q\theta}]^{T} [W_{Q}] [H_{QV}] + [H_{V\theta}]^{T} [W_{V}] [H_{Vv}]$$

$$G_{\theta} = [H_{P\theta}]^{T} [W_{P}] [H_{P\theta}] + [H_{Q\theta}]^{T} [W_{Q}] [H_{Q\theta}] + [H_{V\theta}]^{T} [W_{V}] [H_{V\theta}]$$

O algoritmo ora proposto para análise de observabilidade baseia-se na fatoração da matriz ganho aumentada G_{Aum} e nos conceitos de caminho grafo21. Inicialmente, o método permite verificar se o sistema é observável. Não o sendo, o mesmo permite a identificação das ilhas observáveis.

Para possibilitar a utilização dos caminhos de grafo, na determinação das ilhas observáveis, é necessário que as equações em análise relacionem pelo menos duas das variáveis a serem estimadas [TINNEY et al (1985)].

Face ao exposto, o método proposto para análise de observabilidade não considera, em sua análise, as medidas de magnitude de tensão, nem mesmo as variáveis de estado de magnitude de tensão, nas barras que possuem pelo menos uma medida de tensão. Em razão dessas particularidades, a nova matriz Jacobiana Aumentada (H_{Aum}), que será considerada na análise de observabilidade, apresentará a seguinte estrutura:

$$H_{Aum} = \begin{bmatrix} H_{Pp} & H_{Pv^{S}} & H_{P\theta} \\ H_{Qp} & H_{Qv^{S}} & H_{Q\theta} \end{bmatrix}$$
(5.33)

Onde "vS" indica as variáveis de magnitude de tensão a serem estimadas, isto é, aquelas correspondentes às barras sem medidas de magnitude de tensão.

Tendo em vista essa nova matriz H_{Aum} , a matriz G_{Aum} , que será utilizada para análise de observabilidade, terá a seguinte estrutura:

²¹ O método utiliza as propriedades descritas no capitulo 4, demonstradas em [BRETAS (1996)] e [MONTICELLI & WU (1985a) e MONTICELLI & WU (1985b)].

$$G_{Aum} = [H_{Aum}]^{t} [W_{Aum}] [H_{Aum}] = \begin{bmatrix} G_{p} & G_{pv^{S}} & G_{p\theta} \\ G_{v^{S}p} & G_{v^{S}} & G_{v^{S}\theta} \\ G_{\theta p} & G_{\theta v^{S}} & G_{\theta} \end{bmatrix}$$
(5.34)

5.4.1. Obtenção da matriz G_{Aum}

A condição inicial usualmente utilizada no processo iterativo de cálculo de fluxo de potência ou estimação de estado não linear é: $\theta_i = 0$ e $v_i = 1$, para i = 1,...,nb. Entretanto, essa condição inicial não pode ser utilizada nas Fases 2 e 3 da metodologia proposta. Isto em razão de tal condição zerar os elementos da matriz H_{Aum}, resultantes das derivadas das medidas de potência em relação aos parâmetros que serão estimados [equações: (5.19), (5.20), (5.25) e (5.26)].

Face ao exposto, a condição inicial a ser considerada nas Fases 2 e 3 da metodologia proposta é assim constituída:

- Valores dos parâmetros do sistema: consideram-se os parâmetros disponíveis;

Valores das tensões complexas nas barras do sistema: são aquelas obtidas por um estimador de estado convencional, por mínimos quadrados ponderados (WLS), que é processado considerando os parâmetros e as medidas disponíveis. Vale ressaltar que a condição inicial para este estimador WLS é a usual (θi = 0 e vi = 1, para i = 1,...,nb).

5.4.2. Algoritmo para análise de observabilidade para o estimador de estado e parâmetros proposto

As propriedades apresentadas no capitulo 4, relacionadas à fatoração triangular da matriz G e aos conceitos de caminhos de grafo, são válidas para a matriz G_{Aum} , dada pela equação (5.33). Desta forma, propõe-se o seguinte algoritmo, para análise de observabilidade do modelo aumentado:

Passo 1: Fazendo W=I obtenha a matriz G_{Aum} [veja equação (5.34)]^{22.} Em seguida executar a fatoração triangular dessa matriz. Se aparecer apenas um

²² De acordo com as observações contidas na seção 5.4.1.

PZ, o sistema é observável como um todo; PARE. Caso contrário, vá para o próximo passo;

Passo 2: identificar os caminhos de grafo, associados com a matriz fatorada U_{Aum} . Se não existir medida de potência, relacionando nós de diferentes caminhos de grafo, então cada sub-rede, associada a cada caminho de grafo isolado, constitui uma ilha observável da rede; Pare. Caso contrário, vá para o próximo passo.

Passo 3: eliminar as medidas de potência, relacionando nós de caminhos de grafos diferentes (essas medidas são irrelevantes, em considerando estimação de estado e parâmetros para as ilhas observáveis). Atualizar a fatoração de G_{Aum} e retornar ao passo 2.

Uma vez que as ilhas observáveis tenham sido determinadas, a estimação de estado e parâmetros será realizada separadamente, para cada uma destas ilhas.

5.5 Exemplo

Serão apresentados, nesta seção, quatro exemplos da aplicação da metodologia proposta, utilizando-se dois sistemas, com três e cinco barras, respectivamente.

Em todos os exemplos que serão apresentados nesta seção, considerase um erro de 3,33% para todos os parâmetros a serem estimados. Para se chegar a esse valor de erro realizou-se uma análise das pesquisas já desenvolvidas para o tratamento de erros de parâmetros. Verificou-se, então, que a grande maioria dessas pesquisas não considera erro em todos os parâmetros a serem estimados. Além disto, tendo em vista a grande variedade de valores assumidos, naquelas pesquisas, para os erros de parâmetros, observa-se que ainda não se definiu um valor padrão para ser considerado como erro de parâmetro.

Face ao exposto, decidiu-se utilizar um erro de 3,33%, em razão de ser esse o valor assumido, na maioria das pesquisas da área, para o desvio padrão das medidas fornecidas ao estimado de estado.

Em todos os exemplos que serão apresentados partimos das seguintes considerações: Como já mencionado, considera-se um erro de 3,33% em todos os parâmetros a serem estimados, isto é, as condutâncias (G_{km}) e as susceptâncias (B_{km}) série das linhas de transmissão aéreas, classificadas como médias e longas, isto é, aquelas com susceptâncias shunt não nulas (modelo Π equivalente);

Valores corretos para todos os parâmetros que não serão estimados, isto é, todas as susceptâncias shunt e os parâmetros de linhas curtas e transformadores;

Para os ramos correspondentes a transformadores ou linhas de transmissão curtas, o processo de estimação de estado e parâmetros vai estimar apenas as tensões complexas nas barras adjacentes, funcionando, para tais ramos, como um estimador de estado convencional;

Valores corretos para todas as medidas que serão utilizadas no processo de estimação de estado e parâmetros (Fase 3). Esses valores são obtidos através do programa de fluxo de potência Ana Rede.

1º exemplo: O método é aplicado ao sistema de três barras, ilustrado na figura 5.2. Os parâmetros de linha desse sistema, que serão considerados como condição inicial, são apresentados na segunda coluna da tabela 5.1.

Figura 5.2: Sistema teste de 3 barras (1° exemplo)

	Condição	Valores
	inicial	verdadeiros
G12 (pu)	5.1657	4.9991
G23 (pu)	1.1728	1.1350
B12 (pu)	-15.772	-15.263
B23 (pu)	-4.9412	-4.7819
Bsh12 (pu)	0.0264	0.0264
Bsh 23(pu)	0.0219	0.0219

Tabela 5.1: Parâmetros de linha do sistema de 3 barras.

Fase 1: vamos considerar que as medidas indicadas na Figura 5.2 foram previamente selecionadas para serem utilizadas.

Fase 2: Análise de observabilidade:

Passo 1: Obtenha a matriz G considerando: - as medidas ilustradas na Figura 5.2; - os parâmetros apresentados na coluna 2 da Tabela 5.1; - as tensões complexas obtidas por um estimador de estado convencional WLS²³, contidas na Tabela 5.2; e, fazendo W = I.

Tabela 5.2: Tensões complexas obtidas via um estimador de estadoconvencional WLS

Barra	Tensão (pu)	Ângulo (rad)	
1	1.0593	0	
2	1.0447	-0.0420	
3	1.0108	-0.2197	

Uma vez obtida a matriz G_{Aum} , faz-se a fatoração triangular da mesma resultando em:

²³ O estimador de estado tradicional foi processado considerando as medidas corretas apresentadas na tabela 5.3.

Figura 5.3: matriz G_{Aum} fatorada

Como apareceu apenas um PZ (elemento $U_{Aum}(\theta^{3},\theta^{3})$), o sistema é observável como um todo, com relação ao conjunto de medidas disponível. O caminho de fatoração associado com a matriz U_{Aum} é mostrado, graficamente, através do caminho de grafo abaixo:

Figura 5.4: Caminho de grafo

Fase 3: Estimação de estado e parâmetros: considerando a configuração de medidores, indicada na figura 5.2, e seus valores corretos (veja Tabela 5.3), o vetor de variáveis de estado aumentado é estimado. Os resultados obtidos nesta fase são apresentados na tabela 5.4.

Tabela 5.3: valores	do conjunto	de medidas	ilustrado na	figura 5.2
---------------------	-------------	------------	--------------	------------

Medidas d	le fluxo de	Medidas de	e fluxo de	Medidas de	e magnitude
notência ati	va (P II)	notência rea	tiva (P II)	de tensão (P u)	
	va (i .a.)	potentiarea			.u.)
P12	0.812	012	-0.010	V1	1.060
	0.012	Q12	0.010	• •	1.000
P21	-0.801	Q21	-0.014	V2	1.045
P23	0.984	Q23	0.017	V3	1.010
P32	-0.942	Q32	0.112		

	Condição	Valores	Valores
	inicial	estimados	verdadeiros
θ1 (rad)	0	0	0
θ2 (rad)	-0.0420	-0.0430	-0.0436
θ3 (rad)	-0.2197	-0.2260	-0.2268
V1 (pu)	1.0593	1.0600	1.0600
V2 (pu)	1.0447	1.0450	1.0450
V3 (pu)	1.0108	1.0100	1.0100
G12 (pu)	5.1657	5.0096	4.9991
G23 (pu)	1.1728	1.1445	1.1350
B12 (pu)	-15.771	-15.398	-15.263
B23 (pu)	-4.9412	-4.7922	-4.7819
Bsh12 (pu)	0.0264	Fixo	0.0264
Bsh23 (pu)	0.0219	Fixo	0.0219

Tabela 5.4 Resultados do 1º Exemplo.

2º exemplo: O método é aplicado ao sistema de três barras, associado ao conjunto de medidas ilustrado na Figura 5.5. Os parâmetros de linha desse sistema, que serão considerados como condição inicial, esta na segunda coluna da tabela 5.1.

Figura 5.5: Sistema teste de 3 barras(2° exemplo)

Fase 1: Considerando o conjunto de medidas indicado na figura 5.5, que é o mesmo do 1° exemplo, entretanto, sem as medidas P_{32} e Q_{32} , como foram previamente selecionadas para serem utilizadas.

Fase 2: Análise de Observabilidade

Passo 1: obtêm-se a matriz G_{Aum} e faz-se a fatoração triangular da mesma²⁴. A estrutura da matriz G_{Aum} fatorada é apresentada na figura 5.6. A estrutura da G_{Aum} fatorada é a seguinte:

Figura 5.6: matriz G_{Aum} fatorada

Como existem dois PZs, elementos $U_{Aum}(\theta_2, \theta_2)$ e $U_{Aum}(\theta_3, \theta_3)$, o sistema não é observável como um todo; vá para o passo 2.

O caminho de fatoração associado com a matriz U_{Aum} é mostrado, graficamente, através do caminho de grafo abaixo:

Figura 5.7: Caminho de grafo

Passo 2: existem dois caminhos de grafos: CG1={G12, B12, G23, B23, θ 1, θ 2}; e CG2={ θ 3}; como as medidas de potência P_{23} e Q_{23} relacionam nós de caminhos de grafo diferentes; vá para o seguinte passo.

Passo 3: P_{23} e Q_{23} são removidas. A nova G_{Aum} é obtida e fatorada.

²⁴ Para montar G_{Aum} consideramos:- as medidas ilustradas na figura 5.5;- W=I; - os parâmetros apresentados na tabela 5.1;- os valores das tensões complexas apresentadas na tabela 5.2.

A estrutura da nova matriz G_{Aum} fatorada é apresentada na figura 5.8:

Figura 5.8: Matriz G_{Aum} fatorada

Passo 2: existem quatro caminhos de grafos: CG1={G12, B12, θ1, θ2}; CG2={G23}; CG3={B23}; e CG5={θ3}.

Figura 5.9: Caminho de grafo

Não existe medida de potência relacionando os nós de diferentes caminhos de grafos; então o sistema não é observável como um bloco e cada sub-rede, associada a cada caminho de grafo isolado, constitui uma ilha observável da rede.

Observação: a estimação de estado e parâmetros não é processada para ilha observável, formada por apenas uma barra.

Fase 3: considerando as ilhas observáveis, formadas pelas barras 1 e 2, a estimação de estado e parâmetros é processada. Utilizando apenas medidas exatas (veja Tabela 5.5), o vetor de estado aumentado foi estimado (veja Tabela 5.6).

Medidas	e fluxo de Medidas de fluxo de		Medidas de magnitu		
potência a	ativa (P.u.)	potência reativa (P.u.)		de tensão (P.u.)	
P12	0.812	Q12	-0.01	V1	1.060
P21	-0.801	Q21	0.014	V2	1.045

Tabela 5.5: Valores do conjunto de medidas ilustrado na figura 5.5

Tabela 5.6 Resultados do 2º Exemplo.

	Condição	Valores	Valores
	inicial	estimados	verdadeiros
θ1 (rad)	0	0	0
θ2 (rad)	-0.0420	-0.0427	-0.0436
V1 (pu)	1.0593	1.0600	1.0600
V2(pu)	1.0447	1.0450	1.0450
G12 (pu)	5.1657	5.0220	4.9991
B12 (pu)	-15.771	-15.3920	-15.2631

3° exemplo: O método é aplicado ao sistema de cinco barras, ilustrado na figura 5.10. Os parâmetros de linha desse sistema, que serão considerados como condição inicial, são apresentados na segunda coluna da tabela 5.7^{25.}

²⁵ A linha entre as barras 4-5 é uma linha curta (B^{sh}=0). Em razão disso, os seus parâmetros não serão estimados.

	Condição	Valores
	inicial	verdadeiros
G12 (pu)	5.1658	4.9991
G15 (pu)	1.0601	1.0259
G23 (pu)	1.1728	1.1350
G24 (pu)	1.7422	1.6860
G25 (pu)	1.7578	1.7011
G34 (pu)	2.0522	1.9860
G45 (pu)	6.8410	6.8410
B12 (pu)	-15.7719	-15.2631
B15 (pu)	-4.3762	-4.2349
B23 (pu)	-4.9413	-4.7819
B24 (pu)	-5.2864	-5.1158
B25 (pu)	-5.3671	-5.1939
B34 (pu)	-5.2378	-5.0688
B45 (pu)	-21.578	-21.578
Bsh12 (pu)	0.0264	0.0264
Bsh15 (pu)	0.0246	0.0246
Bsh23 (pu)	0.0219	0.0219
Bsh24 (pu)	0.017	0.017
Bsh25 (pu)	0.0173	0.0173
Bsh34 (pu)	0.0064	0.0064
Bsh45 (pu)	0	0

Tabela 5.7: Parâmetros de linha do sistema de 5 barras

Fase 1: considera-se o conjunto de medidas previamente selecionadas para serem usadas, indicadas na figura 5.10.

Fase 2: Análise de observabilidade:

Passo 1: Obtenha a matriz G considerando: - as medidas ilustradas na figura 5.10; - os parâmetros apresentados na coluna 2 da Tabela 5.7; - as tensões complexas obtidas por um estimador de estado convencional WLS²⁶, contidas na Tabela 5.8; - fazendo W = I.

Uma vez obtida a matriz G_{Aum} , faz-se a fatoração triangular da mesma.

²⁶ O estimador de estado tradicional foi processado considerando as medidas corretas, apresentadas na tabela 5.9.

Barra	Tensão (pu)	Ângulo (rad)
1	1.0591	0
2	1.0446	-0.0498
3	1.0106	-0.1577
4	1.0321	-0.1015
5	1.0381	-0.0808

 Tabela 5.8: Dados das magnitudes de tensão e ângulo do sistema de 5 barras

A estrutura da G_{Aum} fatorada é a seguinte:

Figura 5.11: Matriz $G_{\rm Aum}$ fatorada

Como apareceu apenas um PZ (elemento $U_{Aum}(\theta 5, \theta 5)$), o sistema é observável como um todo, em relação ao conjunto de medidas disponível.

O caminho de fatoração associado à matriz U_{Aum} é mostrado graficamente, através do caminho de grafo abaixo:

Figura 5.12: Caminho de grafo

Fase 3: Estimação de estado e parâmetros: considerando o conjunto de medidas indicado na figura 5.10, e usando somente medidas corretas (veja Tabela 5.9), o vetor de variáveis de estado aumentado é estimado. Os resultados obtidos nesta fase são apresentados na Tabela 5.10.

Medidas	de fluxos de	Medidas c	le fluxo de	Medidas de	magnitude
potência	ativa (P.u.)	potência re	ativa (P.u.)	de tensão (P.u.)	
P12	0.955	Q12	-0.049	∨1	1.060
P21	-0.939	Q21	0.039	V2	1.045
P15	0.417	Q15	-0.008	√3	1.010
P51	-0.409	Q51	-0.012	∨4	1.032
P23	0.61	Q23	0.049	√5	1.038
P32	-0.593	Q32	-0.027		
P24	0.318	Q24	-0.039		
P42	-0.312	Q42	0.019		
P25	0.195	Q25	-0.039		
P52	-0.193	Q52	0.007		
P34	-0.349	Q34	0.009		
P43	0.357	Q43	-0.002		
P45	-0.522	Q45	0.023		
P54	0.526	Q54	-0.012		

Tabela 5.9: valores do conjunto de medidas ilustrado na figura 5.10

 Tabela 5.10 Resultados do 3º Exemplo, os parâmetros e tensões estão dados

	Condição Inicial	Valores estimados	Valores Verdadeiros
θ1	0	0	0
θ2	-0.0498	-0.0517	-0.0506
63	-0.1577	-0.1626	-0.1623
84	-0.1015	-0.1042	-0.1047
05	-0.0808	-0.0834	-0.0838
V1	1.0591	1.0600	1.0600
V2	1.0446	1.0450	1.0450
V3	1.0106	1.0100	1.0100
∨4	1.0321	1.0320	1.0320
\√5	1.0381	1.0380	1.0380
G12	5.1657	4.9312	4.9991
G15	1.0601	1.0411	1.0259
G23	1.1728	1.1543	1.1350
G24	1.7422	1.7472	1.6860
G25	1.7578	1.7935	1.7011
G34	2.0521	1.9714	1.9860
G45	6.8409	Fixo	6.8409
B12	-15.771	-15.183	-15.263
B15	-4.3761	-4.2444	-4.2349
B23	-4.9412	-4.7902	-4.7819
B24	-5.2863	-5.1468	-5.1158
B25	-5.3670	-5.2636	-5.1939
B34	-5.2377	-5.0658	-5.0688
B45	-21.578	Fixo	-21.578
Bsh12	0.0264	Fixo	0.0264
Bsh15	0.0246	Fixo	0.0246
Bsh23	0.0219	Fixo	0.0219
Bsh24	0.0170	Fixo	0.0170
Bsh25	0.0173	Fixo	0.0173
Bsh34	0.0064	Fixo	0.0064
B ^{sh} 45	Q	Fixo	Q

em p.u. e os ângulos em radianos.

÷

4º exemplo: O método proposto é aplicado ao sistema de 5 barras, associado ao conjunto de medidas ilustrado na figura 5.13 (os parâmetros utilizados como condição inicial estão na segunda coluna da tabela 5.7).

Passo 1: consideremos o conjunto de medidas indicado na figura 5.13, que é o mesmo do 3° exemplo, mas sem as medidas P_{51} , P_{52} , P_{54} , Q_{51} , Q_{52} , e Q_{54} ; W=I; os parâmetros apresentados na coluna 2 da tabela 5.7; e, os valores das tensões complexas apresentados na tabela 5.8, obtêm-se a matriz G_{Aum} e fazse a fatoração triangular da mesma (passo 1). A estrutura da matriz G_{Aum} fatorada é apresentada na figura 5.14.

Figura 5.14: Matriz G_{Aum} fatorada

Como existem dois PZs: elementos $U_{Aum}(\theta_4, \theta_4)$ e $U_{Aum}(\theta_5, \theta_5)$, o sistema não é observável como um todo; vá para o passo 2.

Passo 2: Como ilustrado na figura 5.15, existem dois caminhos de grafos: CG1={G12, G15, G23, G24, G25, G34, G45, B12, B15, B23, B24, B25, B34, B45, θ1, θ2, θ3, θ4 }; e CG2={θ5}.

Como as medidas de potência P_{15} , P_{25} , P_{45} , Q_{15} , Q_{25} e Q_{45} , relacionam nós de caminhos de grafo diferentes, vá para o seguinte passo.

Figura 5.15: Caminho de grafo

Passo 3: as medidas P_{15} , P_{25} , P_{45} , Q_{15} , Q_{25} e Q_{45} , são removidas. A nova matriz G_{Aum} é obtida e fatorada.

A estrutura da nova matriz G_{Aum} fatorada é apresentada na figura 5.16:

Figura 5.16: Matriz G_{Aum} fatorada

Passo 2:

Existem oito caminhos de grafos: (veja figura 5.17) CG1={G12, G23, G24, G34, B12, B23, B24, B34, θ 1, θ 2, θ 3, θ 4 }; CG2={G15}; CG3={G25}; CG4={G45}, CG5={B15}, CG6={B25}, CG7={B45}, CG8={ θ 5}.

Figura 5.17: Caminho de grafo

Não existe medida de potência relacionando os nós de diferentes caminhos de grafos; então o sistema não é observável como um bloco e cada sub-rede, associada a cada caminho de grafo isolado, constitui uma ilha observável da rede.

Observação 5.1: a estimação de estados e parâmetros não é processada, em caso que a ilha observável, é formada por somente uma barra isolada.

Fase 3: considerando as ilhas observáveis, formadas pelas barras 1, 2, 3 e 4, a estimação de estado e parâmetros é processada. Utilizando apenas valores corretos para as medidas ainda disponíveis (veja tabela 5.11), o vetor de estado e parâmetros foi estimado (veja tabela 5.12).

Medida	s de fluxos de	Medidas de fluxo de		Medidas de magnitude de	
potenc	ia ativa (P.u.)	potencia reativa (P.u.)		tensã	io(P.u.)
P12	0.955	Q12	-0.049	V1	1.060
P21	-0.939	Q21	0.039	V2	1.045
P23	0.610	Q23	0.049	V3	1.010
P32	-0.593	Q32	-0.027	V4	1.032
P24	0.318	Q24	-0.039		
P42	-0.312	Q42	0.019		
P25	0.195	Q25	-0.039		
P52	-0.193	Q52	0.007		

Tabela 5.11: valores do conjunto de medidas ilustrado na figura 5.13

	Condição	Valores	Valores
	inicial	estimados	verdadeiros
θ1	0	0	0
θ2	-0.0498	-0.0518	-0.0506
θ3	-0.1577	-0.1631	-0.1623
θ4	-0.1015	-0.1055	-0.1047
V1	1.0591	1.0600	1.0600
V2	1.0446	1.0450	1.0450
V3	1.0106	1.0100	1.0100
V4	1.0321	1.0320	1.0320
G12	5.1657	4.9142	4.9991
G23	1.1728	1.1481	1.1350
G24	1.7422	1.6892	1.6860
G34	2.0521	2.0215	1.9860
B12	-15.771	-15.134	-15.263
B23	-4.9412	-4.7785	-4.7819
B24	-5.2863	-5.0421	-5.1158
B34	-5.2377	-5.1286	-5.0688

Tabela 5.12 Resultados obtidos do 4º exemplo, os parâmetros e tensões estãodados em p.u. e os ângulos em radianos.

Observação 5.2: Neste capítulo, foram apresentados 4 exemplos de aplicação do método proposto, que demonstram a sua eficácia. No próximo capítulo, serão apresentados testes realizados com os sistemas de 6, 14 e 30 barras, do IEEE.

Capítulo 6

Testes e Análise dos Resultados

Neste capítulo apresentam-se testes para comprovar a eficiência da metodologia proposta, destinada à estimação de estado e parâmetros de linhas de transmissão, com a utilização dos sistemas IEEE 6, 14 e 30 barras.

Analogamente ao que procedemos na seção 5.5, do capitulo 5, nos testes 1, 2, 3, 4, 5 e 6, consideramos:

- Erro de 3,33% em todos os parâmetros a serem estimados, isto é, as condutâncias série (G_{km}) e as susceptâncias série (B_{km}) das linhas de transmissão aéreas, classificadas como médias e longas (aquelas com susceptâncias shunt não nulas);
- Valores corretos para todos os parâmetros que não serão estimados, isto é, todas as susceptâncias shunt e os parâmetros de linhas curtas e transformadores;
- Para os ramos correspondentes a transformadores, ou a linhas de transmissão curtas, o processo de estimação de estado e parâmetros destinar-se-á apenas às tensões complexas nas barras adjacentes, funcionando, para tais ramos, como um estimador de estado convencional;
- Valores corretos para todas as medidas que serão utilizadas no processo de estimação de estado e parâmetros (Fase 3). Estes valores são obtidos através do programa de fluxo de potência Ana Rede.

6.1 Testes com o sistema de 6 barras do IEEE

Teste 1

O método é aplicado ao sistema de 6 barras, ilustrado na figura 6.1. Os parâmetros de linha desse sistema, que serão considerados como condição inicial, são apresentados nas colunas 2 e 5 da tabela

Tabela 6.1: Parâmetros de linha do sistema de 6

	Condição	Valores		Condição	Valores
	inicial	verdadeiros		inicial	verdadeiros
G12 (pu)	5.1658	4.9991	B25 (pu)	-5.3671	-5.1939
G15 (pu)	1.0601	1.0258	B34 (pu)	-5.2378	-5.0688
G23 (pu)	1.1728	1.1350	B45 (pu)	-21.5786	-21.5786
G24 (pu)	1.7422	1.6860	B56 (pu)	-3.9679	-3.9679
G25 (pu)	1.7578	1.7011	Bsh12 (pu)	0.0264	0.0264
G34 (pu)	2.0522	1.9859	Bsh 15(pu)	0.0246	0.0246
G45 (pu)	6.8409	6.8409	Bsh23(pu)	0.0219	0.0219
G56 (pu)	0	0	Bsh 24(pu)	0.0170	0.0170
B12 (pu)	-15.7719	-15.2630	Bsh25(pu)	0.0173	0.0173
B15 (pu)	-4.3762	-4.2349	Bsh 34(pu)	0.0064	0.0064
B23 (pu)	-4.9413	-4.7818	Bsh45 (pu)	0	0
B24 (pu)	-5.2864	-5.1158	Bsh 56(pu)	0	0

Fase 1: vamos a considerar que as medidas indicadas na figura 6.1 foram previamente selecionadas para serem utilizadas.

Fase 2: Analise de observabilidade:

Passo 1: Obtenha a matriz G considerando: - as medidas ilustradas na figura 6.1; - os parâmetros apresentados nas colunas 2 e 5 da Tabela 6.1; - as tensões complexas obtidas por um estimador de estado convencional WLS^{27} , contidas na Tabela 6.2; - fazendo W = I.

 Tabela
 6.2:
 Tensões
 complexas
 obtidas
 via
 um
 estimador
 de
 estado

 convencional WLS

Barra	Tensão (pu)	Ângulo (rad)
1	1.0590	0
2	1.0444	-0.0541
3	1.0105	-0.1649
4	1.0254	-0.1084
5	1.0282	-0.0880
6	1.0699	-0.1119

Uma vez obtida a matriz G_{Aum} faz-se a fatoração triangular da mesma. A estrutura da G_{Aum} fatorada é a seguinte:

²⁷ O estimador de estado tradicional foi processado considerando as medidas corretas,apresentadas na tabela 6.4.

Como apareceu apenas um PZ (elemento $U_{Aum}(\theta_6, \theta_6)$), o sistema é observável como um todo, com relação ao conjunto de medidas disponível.

O caminho de fatoração associado com a matriz U_{Aum} é mostrado, graficamente, através do caminho de grafo abaixo:

Figura 6.3: Caminho de grafo

Fase 3: Estimação de estado e parâmetros: considerando a configuração de medidores indicada na figura 6.1, e seus valores corretos (veja Tabela 6.3), o vetor de variáveis de estado aumentado é estimado. Os resultado obtidos nesta fase são apresentados na tabela 6.4.

Tabela 6.3: Valores do conjunto de medidas ilustrado na figura 6.1

Medidas	de fluxos	Medidas	de fluxo	Medidas d	е
de pote	ncia ativa	de potenc	ia reativa:	magnitude	e de tensão
(P	.u.)	(P.u.)		(P	.u.)
P12	1.031	Q12	-0.069	V1	1.060
P21	-1.013	Q21	0.067	V2	1.045
P15	0.459	Q15	0.032	V3	1.010
P51	-0.449	Q51	-0.044	∨4	1.025
P23	0.625	Q23	0.047	V5	1.028
P32	-0.608	Q32	-0.022	V6	1.070
P24	0.343	Q24	-0.006		
P42	-0.337	Q42	-0.012		
P25	0.228	Q25	0.011		
P52	-0.225	Q52	-0.04		
P34	-0.334	Q34	0.044		
P43	0.342	Q43	-0.038		
P45	-0.483	Q45	0.089		
P54	0.486	Q54	-0.079		
P56	0.112	Q45	0.147		
P65	-0.112	Q54	-0.14		

	Condição	Valores	Valores
	inicial	estimados	verdadeiros
θ1(rad)	0	0	0
θ2 (rad)	-0.0541	-0.0560	-0.0559
θ3 (rad)	-0.1649	-0.1695	-0.1693
θ4 (rad)	-0.1084	-0.1109	-0.1117
θ5 (rad)	-0.0880	-0.0906	-0.0907
θ6 (rad)	-0.1119	-0.1136	-0.1152
V1 (pu)	1.0590	1.0600	1.0600
V2 (pu)	1.0444	1.0450	1.0450
V3 (pu)	1.0105	1.0100	1.0100
V4 (pu)	1.0254	1.0250	1.0250
V5 (pu)	1.0282	1.0280	1.0280
V6 (pu)	1.0699	1.0700	1.0700
G12 (pu)	5.1658	4.9134	4.9991
G15 (pu)	1.0601	1.0306	1.0258
G23 (pu)	1.1728	1.1571	1.1350
G24 (pu)	1.7422	1.7004	1.6860
G25 (pu)	1.7578	1.6956	1.7011
G34 (pu)	2.0522	1.9327	1.9859
G45 (pu)	6.8409	Fixo	6.8409
G56 (pu)	0	Fixo	0
B12 (pu)	-15.7719	-15.2283	-15.2630
B15 (pu)	-4.3762	-4.2954	-4.2349
B23 (pu)	-4.9413	-4.8133	-4.7818
B24 (pu)	-5.2864	-5.2474	-5.1158
B25 (pu)	-5.3671	-5.2663	-5.1939
B34 (pu)	-5.2378	-5.0051	-5.0688
B45 (pu)	-21.5786	Fixo	-21.5786
B56 (pu)	-3.9679	Fixo	-3.9679
Bsh12 (pu)	0.0264	Fixo	0.0264
Bsh 15(pu)	0.0246	Fixo	0.0246
Bsh23(pu)	0.0219	Fixo	0.0219
Bsh 24(pu)	0.0170	Fixo	0.0170
Bsh25(pu)	0.0173	Fixo	0.0173
Bsh 34(pu)	0.0064	Fixo	0.0064
Bsh45 (pu)	0	Fixo	0
Bsh 56(pu)	0	Fixo	0

Tabela 6.4: Resultados do teste 1

Teste 2

O método é aplicado ao sistema de 6 barras, associado ao conjunto de medidas ilustrado na figura 6.4. Os parâmetros de linha desse sistema, que

serão considerados como condição inicial, estão nas colunas 2 e 5 da tabela 6.1.

Fase 1: Considerando o conjunto de medidas indicadas na figura 6.4, que é o mesmo do teste 1, entretanto, sem as medidas P21, P43, P32, P54, Q21, Q43, Q32 e Q54, como foram previamente selecionadas para serem utilizadas.

Fase 2: Analise de observabilidade:

Passo 1: Obtêm-se a matriz G_{Aum} e faz-se a fatoração triangular da mesma28.

A estrutura da matriz G_{Aum} fatorada é apresentada na figura 6.5.

²⁸ Para montar G_{Aum} consideramos as medidas ilustradas na figura 6.4; W=I; - os parâmetros apresentados na tabela 6.1;- os valores das tensões complexas apresentadas na tabela 6.2.

Figura 6.5: Matriz G_{Aum} fatorada

Como existem dois PZs, elementos $U_{Aum}(\theta_3, \theta_3)$ e $U_{Aum}(\theta_6, \theta_6)$ o sistema não é observável como um todo; vá para o passo 2.

O caminho de fatoração associado com a matriz U_{Aum} é mostrado, graficamente, através do caminho de grafo abaixo:

Passo 2: existem dois caminhos de grafos: CG1={G12, G15, G23, G24, G25, G45, B12, B15, B23, B24, B25, B45, θ 1, θ 2, θ 4, θ 5, θ 6}; e CG2={G34, B34, θ 3}; como as medidas de potência P_{23} , P_{34} , Q_{23} e Q_{34} , relacionam nós de caminhos de grafo diferentes; vá para o seguinte passo.

Passo 3: P_{23} , P_{34} , Q_{23} e Q_{34} , são removidas. A nova G_{Aum} é obtida e fatorada.

A estrutura da nova matriz G_{Aum} fatorada é apresentada na figura 6.7:

Figura 6.7: Matriz G_{Aum} fatorada

Passo 2:

Existem seis caminhos de grafos: CG1={G12, G15, G24, G25, G45, G56, B12, B15, B24, B25, B45, 01, 02, 04, 05, 06}; CG2={G23}; CG3={G34}; CG4={B23}, CG5={B34}, CG6={03}.

Figura 6.8: Caminho de grafo

Não existe medida de potência relacionando os nós de diferentes caminhos de grafos, então o sistema é não observável como um bloco e cada sub-rede associada a cada caminho de grafo isolado constitui uma ilha observável da rede.

Observação 6.1: a estimação de estado e parâmetros não é processada para ilha observável, formada por apenas uma barra.

Fase 3: considerando as ilhas observáveis, formadas pelas barras 1, 2, 4, 5 e 6, a estimação de estado e parâmetros é processada. Utilizando apenas valores corretos para as medidas ainda disponíveis (veja Tabela 6.3), o vetor de estado e parâmetro foi estimado (veja Tabela 6.6).

	Condição	Valores	Valores
	inicial	estimados	verdadeiros
θ1 (rad)	0	0	0
θ2 (rad)	-0.0541	-0.0560	-0.0559
θ4 (rad)	-0.1084	-0.1099	-0.1117
θ5 (rad)	-0.0880	-0.0895	-0.0907
θ6 (rad)	-0.1119	-0.1134	-0.1152
V1 (pu)	1.0590	1.0600	1.0600
V2 (pu)	1.0444	1.0450	1.0450
V4 (pu)	1.0254	1.0250	1.0250
V5 (pu)	1.0282	1.0280	1.0280
V6 (pu)	1.0699	1.0700	1.0700
G12 (pu)	5.1658	4.9055	4.9991
G15 (pu)	1.0601	1.0356	1.0258
G24 (pu)	1.7422	1.6138	1.6860
G25 (pu)	1.7578	1.7186	1.7011
G45 (pu)	6.8409	Fixo	6.8409
G56 (pu)	0	Fixo	0
B12 (pu)	-15.7719	-15.2235	-15.2630
B15 (pu)	-4.3762	-4.3003	-4.2349
B24 (pu)	-5.2864	-5.2576	-5.1158
B25 (pu)	-5.3671	-5.2797	-5.1939
B45 (pu)	-21.5786	Fixo	-21.5786
B56 (pu)	-3.9679	Fixo	-3.9679

Tabela 6.6: Resultados do teste 2

6.2 Testes com o sistema de 14 barras do IEEE

Teste 3

O método é aplicado ao sistema de 14 barras, associado com o conjunto de medidas ilustrado na figura 6.9. Os parâmetros de linha desse sistema, que

serão considerados para a nossa análise, são apresentados nas colunas 2 e 5 da Tabela 6.7.

Figura 6.9: Sistema de 14 barras do IEEE (teste 3)

	Condição inicial	Valores verdadeiros		Condição	Valores
				inicial	verdadeiros
G12 (pu)	5.1658	4.9991	B611 (pu)	-4.0940	-4.0940
G15 (pu)	1.0601	1.0258	B612 (pu)	-3.1759	-3.1759
G23 (pu)	1.1728	1.1350	B613 (pu)	-6.1027	-6.1027
G24 (pu)	1.7422	1.6860	B78 (pu)	-5.6769	-5.6769
G25 (pu)	1.7578	1.7011	B79 (pu)	-9.0900	-9.0900
G34 (pu)	2.0522	1.9859	B910 (pu)	-10.3653	-10.365
G45 (pu)	6.8409	6.8409	B914 (pu)	-3.0290	-3.0290
G47 (pu)	0	0	B1011 (pu)	-4.4029	-4.4029
G49 (pu)	0	0	B1213 (pu)	-2.2519	-2.2519
G56 (pu)	0	0	B1314 (pu)	-2.3149	-2.3149
G611 (pu)	1.9550	1.9550	Bsh12 (pu)	0.0264	0.0264
G612 (pu)	1.5259	1.5259	Bsh15 (pu)	0.0246	0.0246
G613 (pu)	3.0989	3.0989	Bsh23 (pu)	0.0219	0.0219
G78 (pu)	0	0	Bsh24 (pu)	0.017	0.017
G79 (pu)	0	0	Bsh25 (pu)	0.0173	0.0173
G910 (pu)	3.9020	3.9020	Bsh34 (pu)	0.0064	0.0064
G914 (pu)	1.4240	1.4240	Bsh45 (pu)	0	0
G1011 (pu)	1.880	1.8808	Bsh47 (pu)	0	0
G1213 (pu)	2.489	2.4890	Bsh49 (pu)	0	0
G1314 (pu)	1.136	1.1369	Bsh56 (pu)	0	0
B12 (pu)	-15.772	-15.263	Bsh611 (pu)	0	0
B15 (pu)	-4.3761	-4.2349	Bsh612 (pu)	0	0
B23 (pu)	-4.9412	-4.7818	Bsh613 (pu)	0	0
B24 (pu)	-5.2864	-5.1158	Bsh78 (pu)	0	0
B25 (pu)	-5.3671	-5.1939	Bsh79 (pu)	0	0
B34 (pu)	-5.2378	-5.0688	Bsh910 (pu)	0	0
B45 (pu)	-21.578	-21.578	Bsh914 (pu)	0	0
B47 (pu)	-4.7819	-4.7819	Bsh1011 (pu)	0	0
B49 (pu)	-1.7979	-1.7979	Bsh1213 (pu)	0	0
B56 (pu)	-3.9679	-3.9679	Bsh1314 (pu)	0	0

Tabela 6.7: Parâmetros de linha, do sistema de 14 barras

Fase 1: vamos considerar que as medidas indicadas na figura 6.9 foram previamente selecionadas para serem utilizadas.

Fase 2: Analise de observabilidade:

Passo 1: Obtenha a matriz G considerando: - as medidas ilustradas na figura 6.9; - os parâmetros apresentados nas colunas 2 e 5 da Tabela 6.7; - as tensões complexas obtidas por um estimador de estado convencional WLS, contidas na Tabela 6.8; - fazendo W = I.

Barra	Tensão(pu)	Ângulo (rad)
1	1.0588	0
2	1.0443	-0.0843
3	1.0103	-0.2154
4	1.0178	-0.1748
5	1.0196	-0.1481
6	1.0700	-0.2431
7	1.0616	-0.2281
8	1.0901	-0.2281
9	1.0560	-0.2556
10	1.0511	-0.2584
11	1.0569	-0.2531
12	1.0552	-0.2579
13	1.0504	-0.2593
14	1.0357	-0.2747

Tabela 6.8: Tensões complexas utilizadas para a obtenção da matriz $G_{\rm Aum}$

Uma vez obtida a matriz $G_{{\scriptscriptstyle Aum}}$, faz-se a fatoração triangular da mesma.

Como apareceu apenas um PZ [elemento $U_{Aum}(\theta_{14}, \theta_{14})$], o sistema é observável como um todo, com relação ao conjunto de medidas disponível.

O caminho de fatoração associado com a matriz U_{Aum} é mostrado, graficamente, através do caminho de grafo abaixo:

Fase 3: Estimação de estado e parâmetros: considerando a configuração de medidores indicada na figura 6.9, e seus valores corretos (veja Tabela 6.9), o vetor de variáveis de estado aumentado é estimado. Os resultado obtidos nesta fase são apresentados na tabela 6.10.

Medidas de fluxo de potencia		Medidas de flu	xo de potencia	Medidas de magnitude de		
ativa	(P.u.)	reativa	ı (P.u.)	tensão (P.u.)		
P12	1.569	Q12	-0.204	V1	1.060	
P21	-1.526	Q21	0.277	V2	1.045	
P15	0.755	Q15	0.039	V3	1.010	
P51	-0.727	Q51	0.022	V4	1.018	
P23	0.732	Q23	0.036	V5	1.020	
P32	-0.709	Q32	0.016	V6	1.070	
P24	0.561	Q24	-0.016	V7	1.062	
P42	-0.545	Q42	0.03	V8	1.090	
P25	0.415	Q25	0.012	V9	1.056	
P52	-0.406	Q52	-0.021	V10	1.051	
P34	-0.233	Q34	0.045	V11	1.057	
P43	0.237	Q43	-0.048	V12	1.055	
P45	-0.612	Q45	0.158	V13	1.050	
P54	0.617	Q54	-0.142	V14	1.036	
P47	0.281	Q47	-0.097			
P74	-0.281	Q74	0.114			
P49	0.161	Q49	-0.004			
P94	-0.161	Q94	0.017			
P56	0.441	Q56	0.125			
P65	-0.441	Q65	-0.081			
P611	0.074	Q611	0.036			
P116	-0.073	Q116	-0.034			
P612	0.076	Q612	0.025			
P126	-0.077	Q126	-0.024			
P613	0.177	Q613	0.072			
P136	-0.175	Q136	-0.068			
P78	0	Q78	-0.172			
P87	0	Q87	0.176			
P79	0.281	Q79	0.058			
P97	-0.281	Q97	-0.050			
P910	0.052	Q910	0.042			
P109	-0.052	Q109	-0.042			
P914	0.094	Q914	0.036			
P149	-0.093	Q149	-0.034			
P1011	-0.038	Q1011	-0.016			
P1110	0.038	Q1110	0.016			
P1213	0.016	Q1213	0.008			
P1312	-0.016	Q1312	-0.007			
P1314	0.056	Q1314	0.017			
P1413	-0.056	Q1413	-0.017			

Tabela 6.9: valores do conjunto de medidas ilustrado na figura 6.9

	Condição inicial	Valores Estimados	Valores Verdadeiros		Condição inicial	Valores Estimados	Valores Verdadeiros
θ1	0	0	0	G45	6.8409	Fixo	6.8409
θ2	-0.0843	-0.0872	-0.0872	G47	0	Fixo	0
θ3	-0.2154	-0.2230	-0.2217	G49	0	Fixo	0
θ4	-0.1748	-0.1798	-0.1798	G56	0	Fixo	0
θ5	-0.1481	-0.1530	-0.1536	G611	1.9550	Fixo	1.9550
θ6	-0.2431	-0.2480	-0.2478	G612	1.5259	Fixo	1.5259
θ7	-0.2281	-0.2331	-0.2338	G613	3.0989	Fixo	3.0989
θ8	-0.2281	-0.2331	-0.2338	G78	0	Fixo	0
θ9	-0.2556	-0.2607	-0.2600	G79	0	Fixo	0
θ10	-0.2584	-0.2634	-0.2635	G910	3.9020	Fixo	3.9020
θ11	-0.2531	-0.2581	-0.2583	G914	1.4240	Fixo	1.4240
θ12	-0.2579	-0.2630	-0.2635	G1011	1.8808	Fixo	1.8808
θ13	-0.2593	-0.2644	-0.2653	G1213	2.4890	Fixo	2.4890
θ14	-0.2747	-0.2797	-0.2792	G1314	1.1369	Fixo	1.1369
V1	1.0588	1.0600	1.0600	B12	-15.7718	-15.2160	-15.263
V2	1.0443	1.0450	1.0450	B15	-4.37614	-4.2374	-4.2349
V3	1.0103	1.0100	1.0100	B23	-4.9412	-4.7591	-4.7818
V4	1.0178	1.0180	1.0180	B24	-5.2863	-5.1386	-5.1158
V5	1.0196	1.0200	1.0200	B25	-5.3670	-5.2249	-5.1939
V6	1.0700	1.0700	1.0700	B34	-5.2377	-4.9502	-5.0688
V7	1.0616	1.0620	1.0620	B45	-21.578	Fixo	-21.578
V8	1.0901	1.0901	1.0900	B47	-4.7819	Fixo	-4.7819
V9	1.0560	1.0560	1.0560	B49	-1.7979	Fixo	-1.7979
V10	1.0511	1.0511	1.0510	B56	-3.9679	Fixo	-3.9679
V11	1.0569	1.0570	1.0570	B611	-4.0940	Fixo	-4.0940
V12	1.0552	1.0552	1.0550	B612	-3.1759	Fixo	-3.1759
V13	1.0504	1.0504	1.0500	B613	-6.1027	Fixo	-6.1027
V14	1.0357	1.0360	1.0360	B78	-5.6769	Fixo	-5.6769
G12	5.1657	4.9946	4.9991	B79	-9.0900	Fixo	-9.0900
G15	1.0600	1.0221	1.0258	B910	-10.365	Fixo	-10.365
G23	1.1728	1.1186	1.1350	B914	-3.0290	Fixo	-3.0290
G24	1.7422	1.6895	1.6860	B1011	-4.4029	Fixo	-4.4029
G25	1.7578	1.7038	1.7011	B1213	-2.2519	Fixo	-2.2519
G34	2.0521	1.9262	1.9859	B1314	-2.3149	Fixo	-2.3149

Tabela 6.10 Resultados do teste 3 (os valores dos ângulos estão em radianose das demais variáveis em P.u.)

Teste 4

O método é aplicado ao sistema de 14 barras, associado ao conjunto de medidas ilustrado na figura 6.12.

Figura 6.12: Sistema de 14 barras do IEEE (teste 4)

Fase 1: Considerando o conjunto de medidas indicado na figura 6.12, que é o mesmo do teste 3, entretanto, sem as medidas P51, Q51, P52, Q52, P54, Q54,

P56, Q56, P32, Q32, P34 e Q32, como foram previamente selecionadas para serem utilizadas.

Fase 2: Analise de observabilidade:

Passo 1: Obtêm-se a matriz G_{Aum} e faz-se a fatoração triangular da mesma. A estrutura da matriz G_{Aum} fatorada é apresentada na figura 6.13.

Figura 6.13: Matriz G_{Aum} fatorada

Como existem três PZs, elementos $U_{Aum}(\theta_3, \theta_3)$, $U_{Aum}(\theta_5, \theta_5)$ e $U_{Aum}(\theta_{14}, \theta_{14})$, o sistema é observável como um todo; vá para o passo 2.

O caminho de fatoração associado com a matriz U_{Aum} é mostrado, graficamente, através do caminho de grafo abaixo:

Figura 6.14: Caminho de grafo

Passo 2: existem três caminhos de grafos CG1= { G12, G15, G23, G24, G25, G45, G47, G49, G611, G612, G613, G78, G79, G910, G914, G1011, G1213, G1314, B12, B15, B23, B24, B25, B45, B47, B49, B611, B612, B613, B78, B79, B910, B914, B1011, B1213, B1314, θ1, θ2, θ4, θ6, θ7, θ8, θ9, θ10, θ11, θ12, θ13, θ14}; CG2={ G34, B34, θ3} e CG3={G56, B56, θ5}; como as medidas de potência P15, P23, P25, P43, P45, P65, Q15, Q23, Q25, Q43, Q45 e Q65 relacionam nós de caminhos de grafo diferentes; vá para o seguinte passo.

Passo 3: P15, P23, P25, P43, P45, P65, Q15, Q23, Q25, Q43, Q45 e Q65 são removidos. A nova G_{Aum} é obtida e fatorada.

Figura 6.15: Matriz G_{Aum} fatorada

Passo 2: existem quinze caminhos de grafos: CG1= { G12, G24, G47, G49, G611, G612, G613, G78, G79, G910, G914, G1011, G1213, G1314, B12, B24, B47, B49, B611, B612, B613, B78, B79, B910, B914, B1011, B1213, B1314, 01, 02, 04, 06, 07, 08, 09, 010, 011, 012, 013, 014}; CG2={ G15}; CG3={G23}; CG4={G25}; CG5={G34}; Cg6={G45}; CG7={G56}; CG8={B15}; CG9={B23}; CG10={B25}; CG11={B34}; CG12={ B45}; CG13={B56}; CG14={03}; e CG15={05};

Figura 6.16: Caminho de grafo

Não existe medida de potência relacionando os nós de diferentes caminhos de grafos; então o sistema não é observável como um bloco e cada sub-rede, associada a cada caminho de grafo isolado, constitui uma ilha observável da rede.

Fase 3: considerando as ilhas observáveis, formadas pelas barras 1, 2, 4, 6, 7, 8, 9, 10, 11, 12, 13 e 14 a estimação de estado e parâmetros é processada. Utilizando apenas medidas exatas (veja tabela 6.9) o vetor de estado foi estimado (veja tabela 6.11).

	Condição inicial	Valores Estimados	Valores Verdadeiros		Condição inicial	Valores Estimados	Valores Verdadeiros
θ1	0	0	0	G47	0	Fixo	0
θ2	-0.0843	-0.0871	-0.0872	G49	0	Fixo	0
θ4	-0.1748	-0.1788	-0.1798	G611	1.9550	Fixo	1.9550
θ6	-0.2431	-0.2470	-0.2478	G612	1.5259	Fixo	1.5259
θ7	-0.2281	-0.2320	-0.2339	G613	3.0989	Fixo	3.0989
8 0	-0.2281	-0.2320	-0.2339	G78	0	Fixo	0
θ9	-0.2556	-0.2596	-0.2601	G79	0	Fixo	0
θ10	-0.2584	-0.2624	-0.2635	G910	3.9020	Fixo	3.9020
θ11	-0.2531	-0.2570	-0.2583	G914	1.4240	Fixo	1.4240
θ12	-0.2579	-0.2619	-0.2636	G1011	1.8808	Fixo	1.8808
θ13	-0.2593	-0.2633	-0.2653	G1213	2.4890	Fixo	2.4890
θ14	-0.2747	-0.2786	-0.2793	G1314	1.1369	Fixo	1.1369
V1	1.0588	1.0600	1.0600	B12	-15.771	-15.2372	-15.263
V2	1.0443	1.0450	1.0450	B24	-5.2863	-5.1852	-5.1158
V4	1.0178	1.0180	1.0180	B47	-4.7819	Fixo	-4.7819
V6	1.0700	1.0700	1.0700	B49	-1.7979	Fixo	-1.7979
V7	1.0616	1.0620	1.0620	B611	-4.0940	Fixo	-4.0940
V8	1.0901	1.0900	1.0900	B612	-3.1759	Fixo	-3.1759
V9	1.0560	1.0560	1.0560	B613	-6.1027	Fixo	-6.1027
V10	1.0511	1.0510	1.0510	B78	-5.6769	Fixo	-5.6769
V11	1.0569	1.0570	1.0570	B79	-9.0900	Fixo	-9.0900
V12	1.0552	1.0550	1.0550	B910	-10.365	Fixo	-10.365
V13	1.0504	1.0500	1.0500	B914	-3.0290	Fixo	-3.0290
V14	1.0357	1.0360	1.0360	B1011	-4.4029	Fixo	-4.4029
G12	5.1657	4.9932	4.9991	B1213	-2.2519	Fixo	-2.2519
G24	1.7422	1.7181	1.6860	B1314	-2.3149	Fixo	-2.3149

Tabela 6.11 Resultados do teste 4 (os valores dos ângulos estão em radianose das variáveis em P.u.)

Teste 5

O método é aplicado ao sistema de 30 barras, ilustrado na figura 6.17. Os parâmetros de linha desse sistema, que serão considerados para a nossa análise, são apresentados nas colunas 2 e 5 da tabela 6.12.

6.3 Testes com o sistema de 30 barras do IEEE

Tabela 6.12 Parâmetros de linha do sistema de 30 barras do IEEE. (os valoresdas ângulos estão em radianos e das demais variáveis em p.u.)

	Condição	Valores		Condição	Valores		Condição	Valores
	inicial	verdadeiros		inicial	verdadeiros		inicial	verdadeiros
G12	5.3988	5.2246	B12	-16.168	-15.646	B ^{sh} 12	0.0264	0.0264
G13	1.5922	1.5408	B13	-5.8193	-5.6316	B ^{sh} 13	0.0204	0.0204
G24	1.7624	1.7055	B24	-5.3706	-5.1973	Bsh24	0.0184	0.0184
G25	1.1738	1.1359	B25	-4.9315	-4.7724	Bsh25	0.0209	0.0209
G26	1.7423	1.6861	B26	-5.2870	-5.1164	Bsh26	0.0187	0.0187
G34	8.4686	8.1954	B34	-24.315	-23.530	Bsh34	0.0042	0.0042
G46	6.6268	6.4131	B46	-23.054	-22.311	Bsh46	0.0045	0.0045
G412	0	0	B412	-4.0364	-4.0364	Bsh412	0	0
G57	3.0524	2.9540	B57	-7.6975	-7.4492	Bsh57	0.0102	0.0102
G67	3.7099	3.5902	B67	-11.393	-11.026	Bsh67	0.0085	0.0085
G68	6.4989	6.2893	B68	-22.746	-22.012	Bsh68	0.0045	0.0045
G69	0	0	B69	-4.9679	-4.8076	Bsh69	0	0
G610	0	0	B610	-1.8585	-1.7985	Bsh610	0	0
G628	4.5083	4.3628	B628	-15.979	-15.463	Bsh628	0.0065	0.0065
G828	1.4921	1.4439	B828	-4.6921	-4.5408	Bsh828	0.0214	0.0214
G911	0	0	B911	-4.8076	-4.8076	Bsh911	0	0
G910	0	0	B910	-9.0909	-9.0909	Bsh910	0	0
G1020	1.7848	1.7848	B1020	-3.9853	-3.9853	Bsh1020	0	0
G1017	3.9560	3.9560	B1017	-10.317	-10.317	Bsh1017	0	0
G1021	5.1018	5.1018	B1021	-10.980	-10.980	Bsh1021	0	0
G1022	2.6193	2.6193	B1022	-5.4007	-7.1428	Bsh1022	0	0
G1213	0	0	B1213	-7.1428	-3.1734	Bsh1213	0	0
G1214	1.5265	1.5265	B1214	-3.1734	-4.1043	Bsh1214	0	0
G1215	3.0954	3.0954	B1215	-6.0972	-15.646	Bsh1215	0	0
G1216	1.9519	1.9519	B1216	-4.1043	-5.6316	Bsh1216	0	0
G1415	2.4909	2.4909	B1415	-2.2508	-2.2508	Bsh1415	0	0
G1518	1.8108	1.8108	B1518	-3.6874	-3.6874	Bsh1518	0	0
G1523	1.9683	1.9683	B1523	-3.9760	-3.9760	Bsh1523	0	0
G1617	1.3190	1.3190	B1617	-4.8407	-4.8407	Bsh1617	0	0
G1819	3.0757	3.0757	B1819	-6.2187	-6.2187	Bsh1819	0	0
G1920	5.8823	5.8823	B1920	-11.764	-11.764	Bsh1920	0	0
G2122	16.774	16.774	B2122	-34.127	-34.127	Bsh2122	0	0
G2224	2.5405	2.5405	B2224	-3.9544	-3.9544	Bsh2224	0	0
G2324	1.4614	1.4614	B2324	-2.9892	-2.9892	Bsh2324	0	0
G2425	1.3098	1.3099	B2425	-2.2876	-2.2876	Bsh2425	0	0
G2526	1.2165	1.2165	B2526	-1.8171	-1.8171	Bsh2526	0	0
G2527	1.9693	1.9693	B2527	-3.7602	-3.7602	Bsh2527	0	0
G2729	0.9955	0.9955	B2729	-1.8810	-1.8810	Bsh2729	0	0
G2730	0.6874	0.6874	B2730	-1.2939	-1.2939	Bsh2730	0	0
G2728	0	0	B2728	-2.5252	-2.5252	Bsh2728	0	0
G2930	0.9120	0.9120	B2930	-1.7233	-1.7233	Bsh2930	0	0

Fase 1: considera-se o conjunto de medidas previamente selecionadas para serem usadas, indicadas na figura 6.17.

Fase 2: Analise de observabilidade :

Passo 1: Obtenha a matriz G considerando: - as medidas ilustradas na figura 6.17; - os parâmetros apresentados tabela 6.12 (condição inicial); - as tensões complexas obtidas por um estimador de estado convencional WLS, contidas na Tabela 6.13; - fazendo W = I.

Uma vez obtida a matriz G_{Aum} , faz –se a fatoração triangular da mesma.

 Tabela 6.13: Dados das magnitudes de tensão e ângulo do sistema de 30 barras.

Barra	Tensão(pu)	Ângulo(rad)
1	1.0579	0
2	1.0415	-0.0906
3	1.0198	-0.1276
4	1.0111	-0.1572
5	1.0095	-0.2397
6	1.0097	-0.1873
7	1.0021	-0.2177
8	1.0095	-0.1999
9	1.0501	-0.2389
10	1.0446	-0.2659
11	1.0803	-0.2389
12	1.0567	-0.2530
13	1.0701	-0.2530
14	1.0422	-0.2681
15	1.0377	-0.2697
16	1.0441	-0.2629
17	1.0396	-0.2686
18	1.0284	-0.2801
19	1.0259	-0.2830
20	1.0299	-0.2797
21	1.0326	-0.2734
22	1.0331	-0.2732
23	1.0274	-0.2764
24	1.0218	-0.2797
25	1.0171	-0.2740
26	0.9999	-0.2809
27	1.0227	-0.2656
28	1.0063	-0.1978
29	1.0032	-0.2864
30	0.9921	-0.3013

Como apareceu apenas um PZ (elemento $U_{Aum}(\theta_{30}\theta_{30})$), o sistema é observável como um todo, com relação ao conjunto de medidas disponível.

Observação 6.2: Devido à dimensão do sistema de 30 barras do IEEE, não apresentar-se-ão todos os passos do processo de análise de observabilidade, como tem sido feito até o momento. Assim, a partir de agora, vamos colocar apenas os resultados dos testes realizados.

Fase 3: Estimação de estado e parâmetros: considerando a configuração de medidores indicada na figura 6.17, e usando somente medidas exatas (veja Tabela 6.14), o vetor de variáveis de estado aumentado é estimado. Os resultado obtidos nesta fase são apresentados na Tabela 6.15.

Medid	as de flux	os de pote	encia	Medidas de fluxo de potencia			Medidas de magnitude				
	ativa ((P.u.)			reativa (P.u.)				de tensão (P.u.)		
P12	1.732	P1213	0	Q12	-0.211	Q1213	-0.105	V1	1.06		
P21	-1.68	P1312	0	Q21	0.308	Q1312	0.106	V2	1.043		
P13	0.877	P1214	0.079	Q13	0.046	Q1214	0.024	V3	1.021		
P31	-0.846	P1412	-0.078	Q31	0.024	Q1412	-0.022	V4	1.012		
P24	0.436	P1215	0.179	Q24	0.039	Q1215	0.068	V5	1.01		
P42	-0.426	P1512	-0.177	Q42	-0.047	Q1512	-0.064	V6	1.01		
P25	0.824	P1216	0.072	Q25	0.018	Q1216	0.034	V7	1.002		
P52	-0.794	P1612	-0.072	Q52	0.062	Q1612	-0.032	V8	1.01		
P26	0.603	P1415	0.016	Q26	0.004	Q1415	0.006	V9	1.051		
P62	-0.584	P1514	-0.016	Q62	0.015	Q1514	-0.006	V10	1.045		
P34	0.822	P1518	0.060	Q34	-0.036	Q1518	0.016	V11	1.082		
P43	-0.813	P1815	-0.060	Q43	0.052	Q1815	-0.015	V12	1.057		
P46	0.721	P1523	0.050	Q46	-0.163	Q1523	0.029	V13	1.071		
P64	-0.715	P2315	-0.050	Q64	0.176	Q2315	-0.028	V14	1.042		
P412	0.442	P1617	0.037	Q412	0.142	Q1617	0.014	V15	1.038		
P124	-0.442	P1716	-0.037	Q124	-0.096	Q1716	-0.014	V16	1.044		
P57	-0.148	P1819	0.028	Q57	0.117	Q1819	0.006	V17	1.04		
P75	0.149	P1918	-0.028	Q75	-0.133	Q1918	-0.006	V18	1.028		
P67	0.381	P1920	-0.067	Q67	-0.030	Q1920	-0.028	V19	1.026		
P76	-0.377	P2019	0.067	Q76	0.024	Q2019	0.028	V20	1.030		
P68	0.296	P2122	-0.018	Q68	-0.081	Q2122	-0.014	V21	1.033		
P86	-0.294	P2221	0.018	Q86	0.076	Q2221	0.014	V22	1.033		
P69	0.277	P2224	0.057	Q69	-0.082	Q2224	0.031	V23	1.027		
P96	-0.277	P2422	-0.057	Q96	0.098	Q2422	-0.030	V24	1.021		
P610	0.158	P2324	0.018	Q610	0.002	Q2324	0.012	V25	1.016		
P106	-0.158	P2423	-0.018	Q106	0.011	Q2423	-0.012	V26	0.999		
P628	0.187	P2425	-0.012	Q628	0	Q2425	0.020	V27	1.022		
P286	-0.186	P2524	0.012	Q286	-0.015	Q2524	-0.020	V28	1.007		
P828	-0.005	P2526	0.035	Q828	-0.004	Q2526	0.024	V29	1.002		
P288	0.005	P2625	-0.035	Q288	-0.04	Q2625	-0.023	V30	0.991		
P911	0	P2527	-0.048	Q911	-0.157	Q2527	-0.004				
P119	0	P2725	0.048	Q119	0.162	Q2725	0.004				
P910	0.277	P2729	0.062	Q910	0.059	Q2729	0.017				
P109	-0.277	P2927	-0.061	Q109	-0.051	Q2927	-0.015				
P1020	0.090	P2730	0.071	Q1020	0.037	Q2730	0.017				
P2010	-0.089	P3027	-0.069	Q2010	-0.035	Q3027	-0.014				
P1017	0.053	P2728	-0.181	Q1017	0.044	Q2728	0.050				
P1710	-0.053	P2827	0.181	Q1710	-0.044	Q2827	-0.037				
P1021	0.158	P2930	0.037	Q1021	0.100	Q2930	0.006				
P2110	-0.157	P3029	-0.037	Q2110	-0.098	Q3029	-0.005				
P1022	0.076			Q1022	0.046		-				
P2210	-0.076			Q2210	-0.045						

Tabela 6.14: valores do conjunto de medidas ilustrado na figura 6.17

P.u.)							
	Condição	Valores	Valores		Condição	Valores	Valores
	inicial	estimados	verdadeiros		inicial	estimados	verdadeiros
θ1	0	0	0	G69	0	0.0000	0
θ2	-0.0906	-0.0934	-0.0925	G610	0	0.0000	0
03	-0.1275	-0.1321	-0.1309	G628	4.5083	5.0808	4.3628
04	-0.1571	-0.1629	-0.1623	G828	1.4921	1.8127	1.4439
85	-0.2390	-0.2472	-0.2476	G910 G911	0	0.0000	0
00 07	-0.2176	-0.2236	-0.2251	G1017	1 7848	1 8443	1 7848
07	-0.1998	-0.2070	-0.2059	G1020	3.9560	4.0879	3.9560
09	-0.2387	-0.2446	-0.2461	G1021	5.1018	5.2719	5.1018
θ10	-0.2665	-0.2717	-0.2740	G1022	2.6193	2.7065	2.6193
θ11	-0.2387	-0.2446	-0.2461	G1213	0	0.0000	0
θ12	-0.2531	-0.2589	-0.2618	G1214	1.5265	1.5773	1.5265
013	-0.2531	-0.2589	-0.2618	G1215	3.0954	3.1986	3.0954
014	-0.2687	-0.2740	-0.2775	G1216	1.9519	2.0171	1.9519
016	-0.2703	-0.2756	-0.2792	G1415	2.4909	2.5739	2.4909
010	-0.2033	-0.2000	-0.2705	G1516	1.0100	2.0330	1.0100
017 018	-0.2093	-0.2745	-0.2775	G1523	1 3190	2.0339	1.9085
θ19	-0.2842	-0.2888	-0.2915	G1819	3.0757	3.1782	3.0757
θ20	-0.2807	-0.2856	-0.2879	G1920	5.8823	6.0784	5.8823
θ21	-0.2743	-0.2793	-0.2827	G2122	16.774	17.333	16.774
θ22	-0.2741	-0.2790	-0.2827	G2224	2.5405	2.6252	2.5405
θ23	-0.2774	-0.2822	-0.2862	G2324	1.4614	1.5101	1.4614
θ24	-0.2809	-0.2855	-0.2897	G2425	1.3098	1.3535	1.3099
θ25	-0.2755	-0.2796	-0.2827	G2526	1.2165	1.2570	1.2165
026	-0.2827	-0.2866	-0.2897	G2527	1.9693	2.0348	1.9693
027	-0.2671	-0.2714	-0.2740	G2729	0.9955	1.0286	0.9955
028	-0.1977	-0.2033	-0.2042	G2730	0.6874	0.7103	0.6874
029	-0.2886	-0.2922	-0.2949	G2728	0	0.0000	0
030	-0.3040	-0.3072	-0.3107	G2930	0.9120	0.9423	0.9120
V1 V2	1.0363	1.0399	1.0000	B12 B13	-10.100	-5.6098	-15.040
V2 V3	1.0410	1.0423	1.0430	B24	-5 3706	-5.6098	-5 1973
V0 V4	1 0115	1 0104	1 0120	B25	-4 9315	-4 7742	-4 7724
V5	1.0098	1.0098	1.0100	B26	-5.2870	-5.1324	-5.1164
V6	1.0101	1.0104	1.0100	B34	-24.315	-22.728	-23.530
V7	1.0024	1.0019	1.0020	B46	-23.054	-23.402	-22.311
V8	1.0098	1.0100	1.0100	B412	-4.0364	-4.0363	-4.0364
V9	1.0505	1.0505	1.0510	B57	-7.6975	-7.1676	-7.4492
V10	1.0448	1.0449	1.0450	B67	-11.393	-11.126	-11.026
V11	1.0816	1.0807	1.0820	B68	-22.746	-20.370	-22.012
V12	1.0572	1.0565	1.0570	B69	-4.8076	-4.9678	-4.8076
V13	1.0711	1.0699	1.0710	B610	-1.7985	-1.8585	-1.7985
V 14 V15	1.0423	1.0421	1.0420	B828	-10.979	-10.009	-15.403
V15	1.0370	1.0370	1.0380	B020	-4.8076	-4 9678	-4.8076
V17	1.0396	1.0399	1.0400	B911	-9.0909	-9.3938	-9.0909
V18	1.0280	1.0285	1.0280	B1017	-3.9853	-4.1181	-3.9853
V19	1.0255	1.0261	1.0260	B1020	-10.317	-10.661	-10.317
V20	1.0296	1.0300	1.0300	B1021	-10.980	-11.347	-10.980
V21	1.0324	1.0329	1.0330	B1022	-5.4007	-5.5808	-5.4007
V22	1.0329	1.0333	1.0330	B1213	-7.1428	-7.3808	-7.1428
V23	1.0271	1.0274	1.0270	B1214	-3.1734	-3.2792	-3.1734
V24	1.0212	1.0218	1.0210	B1215	-6.0972	-6.3005	-6.0972
V25	1.0167	1.0168	1.0160	B1216	-4.1043	-4.2411	-4.1043
V26	0.9990	0.9996	0.9990	B1415	-2.2508	-2.3259	-2.2508
V21 \/28	1.0225	1.0221	1.0220	B1523	-3.0074	-3.0103	-3.0074
V20 V/20	1.0007	1.0000	1.0070	B1617	-4 8407	-5.0020	-4 8407
V30	0.9911	0,9916	0,9910	B1819	-6.2187	-6.4260	-6.2187
G12	5.3988	5.2293	5.2246	B1920	-11.764	-12.156	-11.764
G13	1.5922	1.5242	1.5408	B2122	-34.127	-35.265	-34.127
G24	1.7624	1.7313	1.7055	B2224	-3.9544	-4.0862	-3.9544
G25	1.1738	1.1362	1.1359	B2324	-2.9892	-3.0887	-2.9892
G26	1.7423	1.6799	1.6861	B2425	-2.2876	-2.3638	-2.2876
G34	8.4686	8.8915	8.1954	B2526	-1.8171	-1.8776	-1.8171
G46	6.6268	5.5408	6.4131	B2527	-3.7602	-3.8854	-3.7602
G412	0	0.0000	0	B2729	-1.8810	-1.9437	-1.8810
G57	3.0524	2.8418	2.9540	B2730	-1.2939	-1.3371	-1.2939
G67	3.7099	3.9122	3.5902	B2728	-2.5252	-2.6094	-2.5252
668	0.4989	5.9646	0.2893	B2930	-1.7233	-1.7808	-1.7233

Teste 6

Fase 1: O método proposto é aplicado novamente ao sistema de 30 barras do IEEE, associado ao conjunto de medidas ilustrado na figura 6.17, mas sem considerar as medidas: $P_{27,30}$, $Q_{27,30}$, $P_{30,27}$, $Q_{30,27}$, $P_{10,22}$, $Q_{10,22}$, $P_{22,10}$, $Q_{22,10}$, $P_{12,15}$, $Q_{12,15}$, $P_{15,12}$ e $Q_{15,12}$.

Fase 2: Análise de observabilidade: Considerando os parâmetros do sistema de 30 barras apresentados nas colunas 2 e 5 da Tabela 6.7, bem como os valores das tensões complexas apresentadas na tabela 6.13, obtêm-se a matriz GAum. A fatoração triangular da mesma resulta em sete caminhos de grafos, que são os seguintes: CG1={G12, G13, G24, G25, G26, G34, G46, G412, G57, G67, G68, G69, G610, G628, G828, G910, G911, G1017, G1020, G1021, G1213, G1214, G1216, G1415, G1518, G1523, G1617, G1819, G1920, G2122, G2224, G2324, G2425, G2526, G2527, G2729, G2728, G2930, B12, B13, B24, B25, B26, B34, B46, B412, B57, B67, B68, B69, B610, B628, B828, B910, B911, B1017, B1020, B1021, B1213, B1214, B1216, B1415, B1518, B1523, B1617, B1819, B1920, B2122, B2224, B2324, B2425, B2526, B2527, B2729, B2728, B2930, 01, 02, 03, 04, 05, 06, 07, 08, 09, 010, 011, 012, 013, 014, 015, 016, 017, 018, 020, 021, 022, 023, 024, 025, 026, 027, 028, 029, CG2={G2730}; CG3={G1022}; CG4={G1215}; **θ30**}; CG5={B2730}; CG6={B1022}; e CG7={B1215};

Em razão de não existir medida de potência, relacionando os nós de caminhos de grafos distintos, chega-se a conclusão de que o sistema não é observável como um todo e as sub-redes, associadas com cada caminho de fatoração isolado, constituem ilhas observáveis.

Fase 3: Estimação de estado e parâmetros: considerando a configuração de medidores indicada na Fase 1 e usando somente os vetores corretos para essas medidas (veja Tabela 6.14), o vetor de variáveis de estado aumentado é estimado. Os resultado obtidos nesta fase são apresentados na Tabela 6.16.
	Condicão	Valores	Valores		Condicão	Valores	Valores
	Inicial	Estimados	Verdadeiros		Inicial	Estimados	Verdadeiros
01	g	l g	g	G57	3.0524	2.8339	2.9540
02	-0.0906	-0.0935	-0.0925	G67	3.7099	3.6272	3.9502
03	-0.1275	-0.1317	-0.1309	G68	6.4989	6.2869	6.2893
04	-0.1571	-0.1623	-0.1623	G69	Ő	Fixo	Ő
0 5	-0.2396	-0.2473	-0.2478	G610	Q	Fixo	Q
0 6	-0.1872	-0.1923	-0.1937	G628	4.5083	4.4560	4.3628
07	-0.2176	-0.2232	-0.2251	G828	1.4921	1.4695	1.4439
08	-0.1998	-0.2072	-0.2059	G910	Ő	Fixo	Ő
0 9	-0.2387	-0.2436	-0.2461	G911	Ő	Fixo	<u>Ő</u>
010	-0.2665	-0.2713	-0.2740	G1017	1.7848	Fixo	1.7848
011	-0.2387	-0.2436	-0.2461	G1020	3.9560	Fixo	3.9560
012	-0.2531	-0.2581	-0.2618	G1021	5.1018	Fixo	5.1018
013	-0.2531	-0.2581	-0.2618	G1213	Ő	Fixo	Ő
014	-0.2687	-0.2737	-0.2775	G1214	1.5265	Fixo	1.5265
015	-0.2703	-0.2753	-0.2792	G1216	1.9519	Fixo	1.9519
016	-0.2633	-0.2682	-0.2705	G1415	2.4909	Fixo	2.4909
017	-0.2693	-0.2741	-0.2775	G1518	1.8108	Fixo	1.8108
0 18	-0.2811	-0.2860	-0.2897	G1523	1.9683	Fixo	1.9683
019	-0.2842	-0.2890	-0.2915	G1617	1.3190	Fixo	1.3190
020	-0.2807	-0.2856	-0.2879	G1819	3.0757	Fixo	3.0757
021	-0.2743	-0.2791	-0.2827	G1920	5.8823	Fixo	5.8823
022	-0.2741	-0.2788	-0.2827	G2122	16.774	Fixo	16.774
023	-0.2774	-0.2821	-0.2862	G2224	2.5405	Fixo	2.5405
024	-0.2809	-0.2852	-0.2897	G2324	1.4614	Fixo	1.4614
025	-0.2755	-0.2777	-0.2827	G2425	1.3098	Fixo	1.3098
026	-0.2827	-0.2849	-0.2897	G2526	1.2165	Fixo	1.2165
027	-0.2671	-0.2685	-0.2740	G2527	1.9693	Fixo	1.9693
028	-0.1977	-0.1965	-0.2042	G2729	0.9955	Fixo	0.9955
029	-0.2886	-0.2899	-0.2949	G2728		Fixo	U U
030	-0.3040	-0.3053	-0.3107	G2930	0.9120	FIX0	0.9120
	1.0503	1.0600	1.0600	B12	-10,100	-15.619	-15.040
	1.0410	1.0430	1.0430	B13 B24	-3.0193	-5.6201	-5.6310
	1.0202	1.0210	1.0210	B25	-4.9315	-4 7745	-4 7724
	1.0098	1.0100	1.0100	B26	-5.2870	-5.1114	-5.1164
V6	1.0101	1.0100	1.0100	B34	-24.315	-23.536	-23.530
V7	1.0024	1.0020	1.0020	B46	-23.054	-23.329	-22.311
V8	1.0098	1.0100	1.0100	B412	-4.0364	Fixo	-4.0364
<u></u>	1.0505	1.0510	1.0510	857	-7.6975	-7.0174	-7.4492
	1.0448	1.0450	1.0450	867	-11.393	-11.052	-11.026
V11	1.0816	1.0820	1.0820	860	-22.746	-22.188 Fixo	-22.012
V13	1.0372	1.0370	1.0370	8610	-4.0070	Fixo	-4.0070
V14	1.0423	1.0420	1.0420	B628	-15,979	-15,530	-15.463
V15	1.0376	1.0380	1.0380	B828	-4.6921	-4.6129	-4.5408
V16	1.0443	1.0440	1.0440	B910	-4.8076	Fixo	-4.8076
V17	1.0396	1.0400	1.0400	B911	-9.0909	Fixo	-9.0909
V18	1.0280	1.0280	1.0280	B1017	-3.9853	Fixo	-3.9853
V19	1.0255	1.0260	1.0260	B1020	-10.317	Fixo	-10.317
V20	1.0296	1.0300	1.0300	81021	-10.980	Fixo	-10.980
V21	1.0324	1.0330	1.0330	B1213	-7.1428	Fixo	-7.1428
V22	1.0329	1.0330	1.0330	B1214	-3.1734	FIX0 Fixe	-3.1734
V24	1.0217	1 0210	1 0210	B1415	-2 2508	Fixo	-2 2508
V25	1.0167	1.0160	1.0160	B1518	-3.6874	Fixo	-3.6874
V26	0.9990	0.9990	0.9990	B1523	-3.9760	Fixo	-3.9760
V27	1.0225	1.0220	1.0220	B1617	-4.8407	Fixo	-4.8407
V28	1.0067	1.0070	1.0070	B1819	-6.2187	Fixo	-6.2187
V29	1.0025	1.0020	1.0020	B1920	-11.764	Fixo	-11.764
V30	0.9911	0.9910	0.9910	B2122	-34.127	Fixo	-34.127
G12	5.3988	5.2222	5.2246	82224	-3.9544	Fixo	-3.9544
G13	1.5922	1.5282	1.5408	82324	-2.9892	Fixo	-2.9892
624	1.7624	1.7443	1.7055	B2526	-2.2876	FIX0 Fixo	-2.2876
G25 G26	1.1730	1.1372	1.1333	B2520	-1.0171	Fixo	-1.0171
G34	8.4686	8.1585	8.1954	B2729	-1.8810	Fixo	-1.8810
G46	6.6268	6.3125	6.4131	B2728	-2.5252	Fixo	-2.5252
G412	Ő	Eixe.	Ő	B2930	-1.7233	Fixo	-1.7233

 Tabela 6.16
 Resultados do teste 6 (os valores dos ângulos estão em radianos

e das demais variáveis em P.u.)

Neste teste será analisada a capacidade do estimador proposto, no sentido da obtenção de boas estimativas, para diferentes porcentagens de erros, em um determinado parâmetro e na presença de medidas com ruído.

Face ao exposto, utilizar-se-á um conjunto de medidas que torne o sistema em análise observável, não sendo necessário o processamento das Fases 1 e 2, da metodologia proposta.

O estimador de estado e parâmetros proposto será aplicado ao sistema de 30 barras do IEEE, associado ao conjunto de medidas ilustrado na figura 6.17, adicionando erros aleatórios ($\leq 2\%$)²⁹, para todas as medidas disponíveis, assim como foi realizado em [Liu&Wu(1992)]. Os valores dessas medidas são apresentados na Tabela 6.17.

O desempenho do estimador de estado e parâmetros proposto será avaliado quanto à variação do erro, nos seguintes parâmetros:

Situação 1: erro na susceptância série da linha entre as barras 10 e 20 (os demais parâmetros do sistema sem erro). Os resultados estão na tabela 6.18;
Situação 2: erro na susceptância série da linha entre as barras 2 e 4 (os demais parâmetros do sistema sem erro). Os resultados estão na tabela 6.19.

²⁹ Gerado através da função "rand" do Matlab.

Medidas de fluxos de potencia ativa (P.u.)			Medidas de fluxo de potencia reativa (P.u.)			Medidas de magnitude			
						de tensão (P.u.)			
P12	1.765	P1213	0	Q12	-0.2135	Q1213	-0.1053	V1	1.06
P21	-1.688	P1312	0	Q21	0.3084	Q1312	0.1061	V2	1.043
P13	0.887	P1214	0.0803	Q13	0.0463	Q1214	0.0242	V3	1.021
P31	-0.854	P1412	-0.0788	Q31	0.0243	Q1412	-0.0224	V4	1.012
P24	0.444	P1215	0.1815	Q24	0.0396	Q1215	0.0693	V5	1.01
P42	-0.432	P1512	-0.1785	Q42	-0.0477	Q1512	-0.0643	V6	1.01
P25	0.831	P1216	0.0724	Q25	0.0180	Q1216	0.0341	V7	1.002
P52	-0.794	P1612	-0.0723	Q52	0.0626	Q1612	-0.0326	V8	1.01
P26	0.613	P1415	0.0161	Q26	0.0040	Q1415	0.0060	V9	1.051
P62	-0.589	P1514	-0.0162	Q62	0.0151	Q1514	-0.0061	V10	1.045
P34	0.832	P1518	0.0604	Q34	-0.0361	Q1518	0.0163	V11	1.082
P43	-0.826	P1815	-0.0607	Q43	0.0527	Q1815	-0.0152	V12	1.057
P46	0.734	P1523	0.0502	Q46	-0.1653	Q1523	0.0295	V13	1.071
P64	-0.726	P2315	-0.0507	Q64	0.1786	Q2315	-0.0280	V14	1.042
P412	0.444	P1617	0.0373	Q412	0.1434	Q1617	0.0140	V15	1.038
P124	-0.446	P1716	-0.0376	Q124	-0.0971	Q1716	-0.0142	V16	1.044
P57	-0.151	P1819	0.0285	Q57	0.1173	Q1819	0.0061	V17	1.04
P75	0.152	P1918	-0.0283	Q75	-0.1342	Q1918	-0.0061	V18	1.028
P67	0.384	P1920	-0.0677	Q67	-0.0304	Q1920	-0.0284	V19	1.026
P76	-0.384	P2019	0.0682	Q76	0.0244	Q2019	0.0284	V20	1.030
P68	0.296	P2122	-0.0183	Q68	-0.0814	Q2122	-0.0141	V21	1.033
P86	-0.296	P2221	0.0182	Q86	0.0764	Q2221	0.0140	V22	1.033
P69	0.281	P2224	0.0579	Q69	-0.0834	Q2224	0.0311	V23	1.027
P96	-0.277	P2422	-0.0578	Q96	0.0985	Q2422	-0.0301	V24	1.021
P610	0.158	P2324	0.0181	Q610	0.0020	Q2324	0.0121	V25	1.016
P106	-0.158	P2423	-0.0181	Q106	0.0112	Q2423	-0.0122	V26	0.999
P628	0.188	P2425	-0.0121	Q628	0	Q2425	0.0202	V27	1.022
P286	-0.188	P2524	0.0121	Q286	-0.0151	Q2524	-0.0203	V28	1.007
P828	-0.005	P2526	0.0355	Q828	-0.0040	Q2526	0.0242	V29	1.002
P288	0.005	P2625	-0.0352	Q288	-0.0401	Q2625	-0.0232	V30	0.991
P911	0	P2527	-0.0488	Q911	-0.1590	Q2527	-0.0040		
P119	0	P2725	0.0485	Q119	0.1626	Q2725	0.0040		
P910	0.279	P2729	0.0625	Q910	0.0600	Q2729	0.0173		
P109	-0.282	P2927	-0.0619	Q109	-0.0512	Q2927	-0.0150		
P1020	0.091	P3027	0.0718	Q1020	0.0371	Q2730	0.0171		
P2010	-0.089	P2730	-0.0696	Q2010	-0.0357	Q3027	-0.0140		
P1017	0.054	P2728	0.1835	Q1017	0.0444	Q2728	0.0507		
P1710	-0.054	P2827	-0.1832	Q1710	-0.0443	Q2827	-0.0375		
P1021	0.159	P2930	0.0376	Q1021	0.1006	Q2930	0.0061		
P2110	-0.159	P3029	-0.0377	Q2110	-0.0987	Q3029	-0.0051		
P1022	0.077			Q1022	0.0464				
P2210	-0.076			Q2210	-0.0455				

Tabela 6.17: Valores do conjunto de medidas utilizado no Teste 7

Valor verdadeiro b=3.9854							
Caso	Condição inicial	% error	Valor estimado	% error			
		(original)	(b)	(corregido)			
1	3.785	5	3.8944	2.28			
2	3.585	10	3.8944	2.28			
3	3.185	20	3.8944	2.28			
4	2.385	40	3.8944	2.28			
5	0.785	80	3.8944	2.28			

Tabela 6.18 Resultados referentes à Situação 1 (estimador proposto)

 Tabela 6.19
 Resultados referentes à Situação 2 (estimador proposto)

Valor verdadeiro b=5.1974							
Caso	Condição inicial	% error	Valor estimado	% error			
		(original)	(b)	(corregido)			
1	5.457	5	5.2045	0.137			
2	5.717	10	5.2045	0.137			
3	6.238	20	5.2045	0.137			
4	7.274	40	5.2045	0.137			
5	9.387	80	5.2045	0.137			

É importante observar que o estimador proposto permite corrigir significativamente o erro no parâmetro, mesmo na presença de um erro de até 80%.

Nas Tabelas 6.20 e 6.21, acham-se os resultados da aplicação do estimador de parâmetros proposto em [Liu&Wu(1992)], para análise das situações 1 e 2, respectivamente. Vale destacar que, conforme mencionado no capítulo 2, em [LIU & LUN (1992)] propõe-se a estimação dos erros de parâmetros, atravé da análise do vetor de resíduo, e, através dessas estimativas, realiza-se a correção dos parâmetros errados do sistema.

Valor verdadeiro b=3.9854							
Caso	Condição inicial	% error	Valor estimado	% error			
		(original)	(b)	(corregido)			
1	3.785	5	3.970	0.38			
2	3.585	10	3.950	0.88			
3	3.185	20	3.893	2.30			
4	2.385	40	3.685	7.51			
5	0.785	80	2.531	36.47			

Tabela 6.20 Resultados referentes à Situação 1 (estimador proposto em[Liu&Wu(1992)])

Tabela 6.21 Resultados referentes à Situação 2 (estimador proposto em[Liu&Wu(1992)])

Valor verdadeiro b=5.1974							
Caso	Condição inicial	% error	Valor estimado	% error			
		(original)	(b)	(corregido)			
1	5.457	5	5.192	0.1			
2	5.717	10	5.187	0.19			
3	6.238	20	5.176	0.43			
4	7.274	40	5.148	0.96			
5	9.387	80	5.082	2.23			

6.4 Análise dos resultados

Apreciando os resultados coerentes, obtidos em todos os testes realizados, permite-se-nos afirmar que:

- Está comprovada a eficiência do método proposto para análise de observabilidade, para o modelo aumentado;

- Importa salientar que as estimativas de estado obtidas, pelo estimador de estado e parâmetros proposto, levam-nos a valores mais próximos dos verdadeiros, em relação àqueles oriundos das estimativas obtidas pelo estimador de estado convencional, por mínimos quadrados ponderados. Isto se comprova analisando as tabelas que apresentam os resultados das análises (tabelas: 6.4, 6.6, 6.10, 6.11, 6.15 e 6.16), pois, as condições iniciais, de todos os testes apresentados, foram obtidas através de um estimador de estado convencional, por mínimos quadrados, processado com os

mesmos parâmetros incorretos e os mesmos valores das medidas, usados nos testes. Comparando os valores correspondentes a essas condições iniciais, com os respectivos valores fornecidos pelo estimador de estado e parâmetros proposto, também apresentados naquelas tabelas, verifica-se a superioridade deste, que, por permitir a estimação dos parâmetros das linhas de transmissão médias e longas, permitiu a obtenção de estimativas melhores para as tensões complexas, com poucas exceções. Acreditamos sejam essas exceções devidas a problemas numéricos, resultantes do mau condicionamento da matriz GAum. Para melhorar o condicionamento dessa matriz, já foi implementado o método de escalonamento por linhas e colunas, que será apresentado no apêndice A. - No teste 7 comprova-se a capacidade do estimador proposto, no sentido de

obter boas estimativas, para diferentes porcentagens de erro em um parâmetro e na presença de medidas com ruído;

- Comparando os resultados obtidos pelo estimador aqui proposto, constantes nas Tabelas 6.18 e 6.19, e os obtidos pelo estimador desenvolvido em [Liu&Wu(1992)], apresentados nas Tabelas 6.20 e 6.21, comprova-se a viabilidade do estimador proposto. Vale destacar, entretanto, que tomando por base esses resultados, não podemos afirmar que o nosso estimador seja superior ao desenvolvido em [Liu&Wu(1992)]. Isto porque, em razão de não ter sido apresentado o conjunto de medidas utilizado naquela referência, não é possível realizar uma comparação mais justa entre as duas metodologias. Contudo, de qualquer forma, já é um indicativo da viabilidade da metodologia proposta.

Capítulo 7

Conclusões

Este capítulo resume o trabalho apresentado e destaca as principais contribuições do mesmo. Além disso, salienta algumas perspectivas de extensão da metodologia proposta.

Inicialmente, se mostrou que os métodos desenvolvidos, para o tratamento de erros de parâmetros, podem ser divididos em dois grupos: métodos baseados na análise da sensibilidade dos resíduos e aqueles que aumentam o vetor de variáveis de estado.

Os métodos referentes a esses dois grupos dependem de uma estimação de estado convencional, para a determinação dos ramos suspeitos de estarem com erros de parâmetros. A grande limitação dos métodos baseados na análise da sensibilidade dos resíduos é a dificuldade para distinguir entre o resíduo causado por um erro grosseiro daquele causado por um erro de parâmetro.

Os métodos que aumentam o vetor de estado podem ser ainda divididos em: métodos que utilizam as Equações Normais e métodos que utilizam a teoria do filtro de Kalman.

A principal limitação dos métodos que usam Equações Normais está relacionada à observabilidade, isto é, raramente o número de medidas disponível é suficiente para estimar todas as variáveis de estado aumentadas, uma vez que as mesmas aumentam, mas o conjunto de medidas continua o mesmo.

Os métodos baseados na teoria do filtro de kalman supera tal limitação, aumentando-se o vetor de medidas, através de pseudo-medidas, que correspondem às variáveis de estado e aos parâmetros estimados no instante anterior. Entretanto, a grande limitação destes métodos está na determinação da matriz transição de estado. Com o objetivo de contribuir para a solução do problema de estimação de parâmetros, em sistemas elétricos de potência, iniciou-se esta pesquisa, buscando desenvolver um estimador de estado e parâmetros baseado nas equações normais. Vale destacar que, para o desenvolvimento deste trabalho, contamos com a colaboração do professor Lamine Mili (Virginia Tech – Alexandria Research Institute).

Os parâmetros a serem estimados, pela metodologia proposta, são as admitâncias série de linhas de transmissão aéreas, classificadas como médias e longas (com comprimento acima de 80 km).

O que se propôs, neste trabalho, foi um a metodologia para estimação de estado e parâmetros, baseada nas equações normais, em que os vetores de estado e de medidas são aumentados. O vetor de estado é aumentado para a inclusão dos parâmetros a serem estimados, citados anteriormente; já o vetor de medidas é aumentado para considerar medidas de diversas amostras, desde que não tenham sofrido uma alteração significativa dos seus valores.

Face ao exposto, os vetores de medidas e de estado passam a ser chamados, respectivamente, de vetor de medidas aumentado e de vetor de estado aumentado.

Para determinar a porção do sistema, cujo vetor de estado aumentado possa ser estimado, desenvolveu-se, também, um método para análise de observabilidade. Este método baseia-se na fatoração triangular da matriz ganho aumentada G_{Aug} e em conceitos de caminhos de grafo. Inicialmente, o método permite verificar se o sistema é observável como um todo. Não o sendo, o mesmo permite a identificação das ilhas observáveis. Para isto, utilizou-se como base o método proposto por Bretas (1996), que se destina à análise de observabilidade para o estimador de estado convencional. Decidiu-se utilizar tal método como base, em razão de o mesmo ser simples, de fácil implementação, rápida execução e não exigir a solução de equações algébricas.

Além das técnicas estendidas para a estimação de estado e parâmetros, apresentaram-se, de forma breve, as utilizadas para estimação de estado convencional, destacando-se as diferenças existentes entre os dois processos. Um ponto não abordado neste trabalho é a consideração das medidas de injeção de potência ativa e reativa, no plano de medição, que poderiam auxiliar na análise de observabilidade, em função de aumentar o nível de redundância das medidas.

Importa destacar que o método proposto para análise de observabilidade, para o modelo aumentado, pode ser utilizado para qualquer outro estimador de estado e parâmetros, que trabalhe com o vetor de estado aumentado.

A implementação, tanto do "observador", quanto do estimador de estado e parâmetros, foi realizada utilizando linguagem C, compilado em Builder C++, em ambiente com sistema operacional Windows, num processador Pentium IV. No estimador implementado utilizou-se a técnica de escalonamento, para contornar o problema do mau condicionamento da matriz GAum. O relatório de saída indica se o sistema é ou não observável como um todo, sendo que, em caso negativo, indica as ilhas observáveis do sistema. Em seguida, estima-se o vetor de estado aumentado de todo o sistema, ou, de cada uma das suas ilhas observáveis.

Na maioria dos testes realizados, utilizaram-se medidas corretas, obtidas através do programa de fluxo de potência Ana Rede, considerando, como condição inicial, as tensões complexas obtidas por um estimador de estado convencional, processado considerando um erro de 3.33% em todos os parâmetros a serem estimados.

Conforme indicam as simulações efetuadas, o estimador de estado e parâmetros proposto conseguiu estimar as variáveis de estado com melhor precisão, relativamente a um estimador de estado convencional, submetido aos mesmos valores de medidas e parâmetros.

No teste 7, comprovou-se a capacidade do estimador proposto, quanto à obtenção de boas estimativas, para diferentes porcentagens de erro em um parâmetro e na presença de medidas com ruído.

Observação 7.1: As idéias iniciais deste trabalho foram publicadas em LONDON Jr. et al (2004b). A metodologia, da forma como foi apresentada neste trabalho, acaba de ser aceita para publicação no XVI Congresso Brasileiro de Automática, que será realizado em outubro deste ano, em Salvador – BA.

Perspectivas Futuras

Embora o estimador de estado e parâmetros proposto se mostre eficiente nos testes realizados, o mesmo apresenta as seguintes limitações: - a necessidade de uma análise inicial, para a determinação do conjunto de medidas a ser utilizado; - falta de robustez, quando se consideram todas as medidas e todos os parâmetros com ruído. Entretanto, estudos realizados nas fases finais do desenvolvimento deste trabalho indicam, através da utilização de técnicas de sincronização de sistemas e Homotopia [LEE, J. & Chiang, H. D.(2001)] a possibilidade de superarmos aquelas limitações.

Face ao exposto, pretendemos, num trabalho futuro, investigar a possibilidade de utilizarmos o estimador proposto e as citadas técnicas, para a obtenção de um estimador de estado e parâmetros, com capacidade para proporcionar-nos boas estimativas, mesmo na presença de ruído em todas as medidas e parâmetros, e que não exija uma análise inicial, para a determinação do conjunto de medidas a ser utilizado.

Referências Bibliográficas

ALSAÇ, O.; VEMPATI, N.; STOTT, B. & MONTICELLI, A. (1998). Generalized state estimation. IEEE Transactions on Power Systems. Vol. 13, No. 3, Agosto.

ABOYTES F & CORY B. (1975) Identification of measurement, parameter and configuration errors in static state estimation, in PICA Conference Proceedings, p. 298-302, Junho.

ALLAN, M. & LAUGHTON, M. A. (1974). A general algorithm for estimating power system variables and network parameters. IEEE PES Summer Meeting & Energy Resources Conf., Anaheim, Cal., Julho.

ABUR, A. & MAGNAGO, H. (1999). Optimal meter placement for maintaining observability during single branch outages. IEEE Transaction on Power Systems, Vol.14, N° 4, p.1273-1278, novembro.

ABUR, A. & EXPÓSITO, A.G. (2004). Power system state estimation: theory and implementation. Marcel & Dekker Publishers, Nova York, EUA.

BRETAS, N. G. (1996). Network observability: Theory and algorithms based on triangular factorization and path graph concepts. IEE Proceedings, Generation, Transmission and Distribution, VOL.143, N°1, p. 123-128, Janeiro.

BRETAS, N.G. (1989). An iterative dynamic state estimation and bad data processing. International Journal of Electrical Power & Energy System, Vol. 11, p. 70-74, janeiro.

CHEN, R. L. (1990). A fast integer algorithm for observability analysis using network topology. IEEE Transactions on Power Systems, VOL.5, N°3,p.1001-1009, Agosto.

CONTAXIS, G. C. & KORRES, G. N. (1988). A reduced model for power system observability analysis and restoration. IEEE Transactions on Power Systems, VOL.3, °4,p.1411-1417, Novembro.

COUTO FILHO, M. B; LEITE da SILVA, A. M. & FALCÃO, D. M. (1990). Bibliography on Power System State Estimation (1968-1989). IEEE Transactions on Power Apparatus and Systems. VOL.5, N°3, p. 950-961, Agosto.

CUTSEM TH. V. & QUINTANA V.H. (1988). Network parameter estimation using online data with application to transformer tap position estimation IEE Proceedings, VOL. 135, Pt. C. N°. 1, Janeiro.

CLEMENTS, K. A. ; KRUMPHOLZ, G. R. & DAVIS, P. W. (1981). Power system state estimation residual analysis: an algorithm using network topology. IEEE Transactions on Power Apparatus and Systems, VOL.-PAS 100, N°4, p.1779- 1787, Abril.

CLEMENTS, K.A.; KRUMPHOLZ, G.R. & DAVIS, P.W. (1982). State estimation measurement system reliability evaluation – an efficient algorithm based on topology observability theory. IEEE Transactions on Power Apparatus and Systems, VOL. PAS-101, N°4, p.997-1004, Abril.

DEBS, A.S. (1974). Parameter estimation for power systems in the steady state. IEEE Transactions on Automatic Control. Vol. Ac-19, no. 6, Dezembro.

DEBS, A.S. & LARSON, R.E. (1970). A dynamic estimator for tracking the state of a power system. IEEE Transactions on Power Apparatus and Systems, Vol. PAS-89,N°7, p. 1670-1678, setembro/otubro.

DEMITRY, K. (2004) Hydro Turbine-Governor Model Validation in Pacific Northwest, IEEE Transaction on Power System, Vol: 19 No 2, May. p. 1144 – 1149.

FALCÃO, D.M.; COOKE, P.A. & BRAMELLER, A. (1982). Power system tracking state estimation and bad data processing. IEEE Transactions on Power Apparatus and Systems, Vol. PAS-101,N°2, p. 325-333, fevereiro.

FLETCHER, D.L. & STADLIN, W.O. (1983). Transformer tap position estimation. IEEE Transactions on Power Apparatus and Systems. VOL. PAS-102, No. 11, Novembro.

GARCIA ET. AL. (1979). "Fast Decoupled State Estimation and Bad Data Processing", IEEE Transactions on Power Apparatus and Systems. VOL. PAS-98, No. 5, Sept./Oct.

HANDSCHIN, E.; SCHWEPPE, F.C.; KOHLAS, J. & FIECHTER, A. (1975). Bad data analysis for power systems state estimation. IEEE Transactions on Power Apparatus and Systems, Vol. PAS-94, N°2, p. 329-337, março/abril.

HORISBERGER, H.P.; RICHARD, J.C. & ROSSIER, C. (1976). A fast decoupled static state estimator for eletric power systems. IEEE Transactions on Power Apparatus and Systems, Vol. PAS-95, N°1, p. 208-215, janeiro/fevereiro.

JENNINGS A. (1985) "Matrix Computation for Engineers and Scientists". Wiley – Interscience publication. Outubro

KRUMPHOLZ, G. R.; CLEMENTS, K. A. & DAVIS, P. W. (1980). Power Systems Observability: A Practical Algorithm Using Network Topology. IEEE Transactions on Power Apparatus and Systems. VOL.PAS-99, N°4, p. 1534-1542, Julho/Agosto.

KORRES, G.N. & CONTAXIS, G.C. (1994). A tool for the evaluation and selection of state estimator measurement schemes. IEEE Transaction on Power Systems, Vol. 9, N°2, p.1110-1116, maio.

KUSIC, G. L. & GARRISON D. L. (2004) Measurement of Transmission Line Parameters from SCADA Data. Power Systems conference and Exposition, 2004 IEEE PES 10-13 vol.1, Page(s):440 – 445,outubro.

LEITE da SILVA, A.M.; COUTTO FILHO, M.B.D. & CANTERA, J.M.C. (1987). An efficient dynamic state estimation algorithm including bad data processing. IEEE Transaction on Power Systems, Vol.2, N°4, p.1050-1058, novembro.

LEE, J. & Chiang, H. D.(2001) Convergent Regions of the Newton Homotopy Method for Nonlinear Systems: Theory and Computacional Applications. IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, Vol. 48, No. 1, Janeiro.

LIU, W.H.E.; WU F.F. & LUN, S.M. (1992). Estimation of parameter errors from measurement residuals in state estimation. IEEE Transactions on Power Systems. Vol. 7, No. 1, p.81-89, Fevereiro.

LIU, W.H.E. & LIM, S.M. (1995). Parameter error identification and estimation in power system state estimation. IEEE Transactions on Power Systems. Vol. 10, No. 1, p.200-209, Fevereiro.

LONDON Jr. (2000). "Identificação do nível de redundância das medidas de um sistema de potência, para efeito da Estimação de seus estados". Tese (Doutorado), Escola Politécnica - Universidade de São Paulo.

LONDON Jr., J.B.A.; BRITO, G.L.R. & BRETAS, N.G. (2003). "Method for meter and RTU placement for state estimation purposes". In Proc. IEEE Bologna Power Tech. Conf., Bologna, Italy, Junho.

LONDON Jr., J.B.A.; BRETAS, A.S. & BRETAS, N.G. (2004a). "Algorithms to solve qualitative problems in power system state estimation". International Journal of Electrical Power & Energy Systems, Vol.26/8, pp.583-592.

LONDON J., J.B.A.; MILI, L. & BRETAS, N.G. (2004b). An observability analysis method for a combined parameter and state estimation of a power system 8th International Conference on Probabilistic Methods Applied to Power Systems, Iowa State University, Ames, Iowa, setembro 12-16, 2004

MASIELLO, R.D. & SCHWEPPE, F.C. (1971). A tracking static state estimator. IEEE Transactions on Power Apparatus and Systems, Vol. PAS-90, N°3, p. 1025-1033, maio/junho.

MEZA E. B. M.; DO COUTTO FILLO M. B.; STACCHINI DE SOUZA J.; SCHILLING TH. M. (2006) "Estimação de Parâmetros de redes elétricas" X Simpósio de especialistas em planejamento da operação e expansão elétrica, maio.

MILI, L.;VAN CUTSEM, Th. & RIBBENS-PAVELLA, M. (1984). Hypothesis testing identification: A new method for bad data analysis in power system state estimation. IEEE Transactions on Power Apparatus and Systems, Vol. PAS-103,N°11, p. 3239-3252, novembro.

MONTICELLI, A. & WU, F. F. (1985a). Network Observability: Identification of Observable Islands and Measurement Placement. IEEE Transactions on Power Apparatus and Systems. VOL.PAS-104, N°5, p. 1035-1041, Maio.

MONTICELLI, A. & WU, F. F. (1985b). Network Observability: Theory. IEEE Transactions on Power Apparatus and Systems. VOL.PAS-104, N°5, p. 1042-1048, Maio.

MONTICELLI, A.; GARCIA, A. V. & SLUTSKER, I. W. (1992). Handling discardable measurements in power system state estimation. IEEE

Transactions on Power Systems, VOL.7, N°3, p. 1333-1340, Agosto.

MONTICELLI, A. (1999). "-State estimation in electric power systems". Kluwer Academic Publishers, Massachusetts, USA.

MONTICELLI, A. (2000). Testing equality constraint hypotheses in weighted least squares state estimators. IEEE Transactions on Power Systems, VOL.15, N°3, p. 950-954, Agosto.

PEREIRA, F.S. (2005) Analise de observabilidade para estimador de estado e parâmetros do sistema elétrico de potência. Dissertação (Mestrado) – Escola de Engenharia de São Carlos, Universidade de São Paulo.

QUINTANA, V. H.; SIMOES-COSTA, A. & MANDEL, A. (1982). Power System Topological Observability Using a Direct Graph-Theoretic Approach. IEEE Transactions on Power Apparatus and Systems. VOL.PAS-101, N°3, p. 617-626, Março.

RUDNICK H. (1996). Pioneering Electricity Reform in South America, IEEE Spectrum, Vol. 33, N° 8, pp. 38-44.

SCHWEPPE, F. C. (1970). Power System Static-State Estimation, Part III: Exact Model. IEEE Transactions on Power Apparatus and Systems, VOL.PAS-89, N°1,p.130-135, Janeiro.

SCHWEPPE, F. C. & DOUGLAS. B. R. (1970). Power System Static-State Estimation, Part II: Approximate Model. IEEE Transactions on Power Apparatus and Systems, VOL.PAS-89, N°1,p.125-130, Janeiro.

SCHWEPPE, F. C. & WILDES, J. (1970). Power System Static-State Estimation, Part I: Exact Model. IEEE Transactions on Power Apparatus and Systems, VOL.PAS-89, N°1,p.120-125, Janeiro.

SLUTSKER, I. W. & SCUDDER, J. L. (1987). Network Observability Analysis Through Measurement Jacobian Matrix Reduction. IEEE Transactions on Power Systems, VOL. PWRS-2, N°2, p.331-338, Maio.

SLUTSKER, I.W. & CLEMENTS, K.A. (1996). Real time recursive parameter estimation in Energy Management systems. IEEE Transactions on Power Systems. Vol. 11, No. 3, Agosto.

SMITH, R.A. (1985). Transformer tap estimation at Florida Power Corporation. IEEE Transactions on Power Apparatus and Systems. Vol. PAS-104, No. 12, Dezembro.

STEVENSON (1986). Elementos de análise de sistemas de potência. McGRAW-HILL, São Paulo

TINNEY, W.F.; BRANDWAJN,V. & CHAN, S.M. (1985). Sparse vector methods. IEEE Transactions on Power Apparatus and Systems, Vol. PAS-104, N°2, p. 295-301, fevereiro

VENTURA F. A., (1996) Utilities for Sale, IEEE Spectrum, Vol. 33, Nº 6, 1996, pp. 29-33.

ZARCO, P. & EXPÓSITO, A. G. (2000). Power System Parameter Estimation: A Survey. IEEE Transactions on Power Systems. VOL.15,N°1, p.216-222, Fevereiro.

Apêndice A

Neste apêndice apresenta-se a técnica de escalonamento de linhas e colunas que foi implementada neste trabalho.

Escalonamento de linhas e colunas

Se cada equação de um conjunto linear Ax = b for escalonada, este tem o efeito de escalonamento das linhas da matriz de coeficientes. Se r_i for o fator de escalonamento para a equação i, então a equação torna-se-á:

$$\begin{bmatrix} r_{1}a_{11} & r_{1}a_{12} \dots & r_{1}a_{1n} \\ r_{2}a_{21} & r_{2}a_{22} \dots & r_{2}a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ r_{n}a_{n1} & r_{n}a_{n2} \dots & r_{n}a_{nn} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{3} \end{bmatrix} = \begin{bmatrix} r_{1}b_{1} \\ r_{2}b_{2} \\ \vdots \\ r_{n}b_{n} \end{bmatrix}$$
(A.1)

Por outro lado, se cada variável x_i for substituída por x_i/c_i , o efeito nos coeficientes da matriz será o escalonamento nas colunas. Com ambas linhas e colunas escalonadas a equação torna-se:

$$\begin{bmatrix} r_{1}a_{11}c1 & r_{1}a_{12}c_{2}\dots & r_{1}a_{1n}c_{n} \\ r_{2}a_{21}c_{1} & r_{2}a_{22}c_{2}\dots & r_{2}a_{2n}c_{n} \\ \vdots & \vdots & \vdots & \vdots \\ r_{n}a_{n1}c_{1} & r_{n}a_{n2}c_{2}\dots & r_{n}a_{nn}c_{n} \end{bmatrix} \begin{bmatrix} x_{1} / c_{1} \\ x_{2} / c_{2} \\ \vdots \\ x_{3} / c_{n} \end{bmatrix} = \begin{bmatrix} r_{1}b_{1} \\ r_{2}b_{2} \\ \vdots \\ r_{n}b_{n} \end{bmatrix}$$
(A.2)

Se R e C forem matrizes diagonais de fatores de escalonamento de linhas e colunas respectivamente, a equação modificada (A.2) poderá ser escrita como :

$$\overline{A}\overline{x} = \overline{b} \tag{A.3}$$

onde
$$\overline{A} = RAC, \overline{b} = Rb$$
 e $x = C\overline{x}$.

A matriz simétrica pode ser escalonada, simetricamente, fazendo $r_i = c_i$. Se uma matriz simétrica definida positiva for escalonada de tal modo que $r_i = c_i = a_{ii}^{-1/2}$, então a matriz resultante terá uma diagonal contendo apenas elementos unitários. Alem disso, usando a propriedade de uma matriz definida positiva que $a_{ij}^2 < a_{ii}a_{jj}$, define-se:

$$\left|\overline{a}_{ij}\right| = \left|r_{i}a_{ij}c_{j}\right| = a_{ii}^{-1/2}a_{jj}^{-1/2}\left|a_{ij}\right| < 1$$
(A.4)

Assim, o escalonamento simétrico, de uma matriz simétrica definida positiva, que torna unitário todos os elementos da diagonal principal, assegura que todos os elementos fora da diagonal tenham um módulo menor que a unidade.

O escalonamento pode ter um efeito marcado na escolha de pivôs onde a seleção de pivô é adotada. Por exemplo, se a matriz.

$$A = \begin{bmatrix} -0.001 & 1 & 1 \\ 1 & 0.78125 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
(A.5)

é escalonada usando as matrizes R=C=[2000 1 1], então

$$\overline{A} = \begin{bmatrix} -4000 & 2000 & 2000\\ 2000 & 0.78125 & 0\\ 2000 & 0 & 0 \end{bmatrix}$$
(A.6)

Conseqüentemente, o elemento não nulo menor de A será convertido em um elemento maior de \overline{A} . Na realidade, é possível converter qualquer elemento não nulo de uma matriz no elemento de maior magnitude da matriz escalonada, adotando fatores de escalonamento de linhas e colunas satisfatórios.