• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
10.11606/T.18.2008.tde-04072008-094655
Documento
Autor
Nome completo
Everthon Silva Fonseca
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2008
Orientador
Banca examinadora
Pereira, José Carlos (Presidente)
Fechine, Joseana Macêdo
Guido, Rodrigo Capobianco
Montagnoli, Arlindo Neto
Rodrigues, Hildebrando Munhoz
Título em português
Wavelets, predição linear e LS-SVM aplicados na análise e classificação de sinais de vozes patológicas
Palavras-chave em português
Classificador support vector machines
Filtro inverso de predição linear
Transformada wavelet
Vozes patológicas
Resumo em português
Neste trabalho, foram utilizadas as vantagens da ferramenta matemática de análise temporal e espectral, a transformada wavelet discreta (DWT), além dos coeficientes de predição linear (LPC) e do algoritmo de inteligência artificial, Least Squares Support Vector Machines (LS-SVM), para aplicações em análise de sinais de voz e classificação de vozes patológicas. Inúmeros trabalhos na literatura têm demonstrado o grande interesse existente por ferramentas auxiliares ao diagnóstico de patologias da laringe. Os componentes da DWT forneceram parâmetros de medida para a análise e classificação das vozes patológicas, principalmente aquelas provenientes de pacientes com edema de Reinke e nódulo nas pregas vocais. O banco de dados com as vozes patológicas foi obtido do Departamento de Otorrinolaringologia e Cirurgia de Cabeça e Pescoço do Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto (FMRP-USP). Utilizando-se o algoritmo de reconhecimento de padrões, LS-SVM, mostrou-se que a combinação dos componentes da DWT de Daubechies com o filtro LP inverso levou a um classificador de bom desempenho alcançando mais de 90% de acerto na classificação das vozes patológicas.
Título em inglês
Wavelets, LPC and LS-SVM applied for analysis and identification of pathological voice signals
Palavras-chave em inglês
Discrete wavelet transform
Linear prediction inverse filter
Pathological voices
Support vector machines classifier
Resumo em inglês
The main objective of this work was to use the advantages of the time-frequency analysis mathematical tool, discrete wavelet transform (DWT), besides the linear prediction coefficients (LPC) and the artificial intelligence algorithm, Least Squares Support Vector Machines (LS-SVM), for applications in voice signal analysis and classification of pathological voices. A large number of works in the literature has been shown that there is a great interest for auxiliary tools to the diagnosis of laryngeal pathologies. DWT components gave measure parameters for the analysis and classification of pathological voices, mainly that ones from patients with Reinke's edema and nodule in the vocal folds. It was used a data bank with pathological voices from the Otolaryngology and the Head and Neck Surgery sector of the Clinical Hospital of the Faculty of Medicine at Ribeirão Preto, University of Sao Paulo (FMRP-USP), Brazil. Using the automatic learning algorithm applied in pattern recognition problems, LS-SVM, results have showed that the combination of Daubechies' DWT components and inverse LP filter leads to a classifier with good performance reaching more than 90% of accuracy in the classification of the pathological voices.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Everthon.pdf (1.01 Mbytes)
Data de Publicação
2008-07-04
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.