• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.18.1999.tde-04022002-162950
Documento
Autor
Nome completo
Renato Tinós
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 1999
Orientador
Banca examinadora
Terra, Marco Henrique (Presidente)
Bergerman, Marcel
Costa, Oswaldo Luiz do Valle
Título em português
Detecção e diagnóstico de falhas em robôs manipuladores via redes neurais artificiais.
Palavras-chave em português
detecção e diagnóstico de falhas
mapa auto-organizável de Kohonen
perceptron multicamadas
rede com função de base radial
redes neurais artificiais
robôs manipuladores
Resumo em português
Neste trabalho, um novo enfoque para detecção e diagnóstico de falhas (DDF) em robôs manipuladores é apresentado. Um robô com falhas pode causar sérios danos e pode colocar em risco o pessoal presente no ambiente de trabalho. Geralmente, os pesquisadores têm proposto esquemas de DDF baseados no modelo matemático do sistema. Contudo, erros de modelagem podem ocultar os efeitos das falhas e podem ser uma fonte de alarmes falsos. Aqui, duas redes neurais artificiais são utilizadas em um sistema de DDF para robôs manipuladores. Um perceptron multicamadas treinado por retropropagação do erro é usado para reproduzir o comportamento dinâmico do manipulador. As saídas do perceptron são comparadas com as variáveis medidas, gerando o vetor de resíduos. Em seguida, uma rede com função de base radial é usada para classificar os resíduos, gerando a isolação das falhas. Quatro algoritmos diferentes são empregados para treinar esta rede. O primeiro utiliza regularização para reduzir a flexibilidade do modelo. O segundo emprega regularização também, mas ao invés de um único termo de penalidade, cada unidade radial tem um regularização individual. O terceiro algoritmo emprega seleção de subconjuntos para selecionar as unidades radiais a partir dos padrões de treinamento. O quarto emprega o mapa auto-organizável de Kohonen para fixar os centros das unidades radiais próximos aos centros dos aglomerados de padrões. Simulações usando um manipulador com dois graus de liberdade e um Puma 560 são apresentadas, demostrando que o sistema consegue detectar e diagnosticar corretamente falhas que ocorrem em conjuntos de padrões não-treinados.
Título em inglês
Fault detection and diagnosis in robotic manipulators via artificial neural networks.
Palavras-chave em inglês
multilayer perceptrons
artificial neural networks
fault detection and diagnosis
Kohonen’s self-organizing map
radial basis function networks
robotic manipulators
Resumo em inglês
In this work, a new approach for fault detection and diagnosis in robotic manipulators is presented. A faulty robot could cause serious damages and put in risk the people involved. Usually, researchers have proposed fault detection and diagnosis schemes based on the mathematical model of the system. However, modeling errors could obscure the fault effects and could be a false alarm source. In this work, two artificial neural networks are employed in a fault detection and diagnosis system to robotic manipulators. A multilayer perceptron trained with backpropagation algorithm is employed to reproduce the robotic manipulator dynamical behavior. The perceptron outputs are compared with the real measurements, generating the residual vector. A radial basis function network is utilized to classify the residual vector, generating the fault isolation. Four different algorithms have been employed to train this network. The first utilizes regularization to reduce the flexibility of the model. The second employs regularization too, but instead of only one penalty term, each radial unit has a individual penalty term. The third employs subset selection to choose the radial units from the training patterns. The forth algorithm employs the Kohonen’s self-organizing map to fix the radial unit center near to the cluster centers. Simulations employing a two link manipulator and a Puma 560 manipulator are presented, demonstrating that the system can detect and isolate correctly faults that occur in nontrained pattern sets.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
TDE.pdf (663.25 Kbytes)
Data de Publicação
2002-02-22
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.