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Abstract

Multivariate survival data are presented in the literature in all shapes and sizes. A com-
mon situation is the presence of correlated lifetimes when an individual is followed-up for
the occurrence of two or more types of events, or when distinct individuals have depen-
dent event times. In many applications involving these type of data, it is common the
use of continuous random variable modeling approach. In this direction, the multivariate
normal distribution is the most common used since it has friendly properties such as a
readily interpretable dependence structure. Moreover, in most of these studies, there is
the presence of covariates such as treatments, group indicators, individual characteristics,
or environmental conditions, whose relationship to lifetime is of interest. In this situation,
it is needed to assume lifetime regression models. In this way, the well known Cox pro-
portional hazards model and its variations, using the marginal hazard functions employed
for the analysis of multivariate survival data in literature are not enough to explain the
complete dependence structure of pair of lifetimes on the covariate vector. In this thesis,
it is presented some new multivariate lifetime models assuming cure rate structure based
on mixture and non-mixture approaches for the analysis of long-term survivors applied
to medical studies. The proposed models could be also useful to study the dependence
structure of pair of lifetimes on the covariate vector X. The results emerging from this
study reinforce the fact that the search of appropriate multivariate lifetime distributions
could be extremely difficult depending on the correlation structure of the lifetime data.
However, the proposed methodology could be very useful in the medical lifetime data
analysis where the interest is the estimation of the fraction of patients in the studied
population who never experience the event of interest. In addition, the identification of
important covariates was also easily obtained assuming the proposed models even using
non-informative priors for the parameters of the model, under a Bayesian approach. The
results could be also extended to other cross-over trials in clinical research; reliability
analysis in engineering; risk analysis in economics; among many other areas. For repro-
ducible research, the general framework for the computer codes of the proposed modeling
approach is also presented which could be carried out using free R or OpenBugs free
softwares.

Keywords: Bayesian approach; multivariate models; cancer studies; continuous models;
cure rate; dependence structure; discrete models; medical studies; public health; regression
models; risk factors; survival analysis.



Resumo
Dados multivariados de sobrevida são apresentados na literatura em muitas formas e di-
recionamentos de modelagem. Uma situação comum é a presença de tempos de sobrevida
correlacionados quando um indivíduo é acompanhado até a ocorrência de dois ou mais
tipos de eventos, ou quando indivíduos distintos têm tempos dependentes para o mesmo
tipo de evento ocorrendo várias vezes. Em muitas aplicações envolvendo esses tipos de
dados, é comum o uso de uma abordagem de modelagem assumindo variáveis aleatórias
contínuas. Nessa direção, a distribuição normal multivariada é a mais comumente uti-
lizada uma vez que possui propriedades amigáveis como uma estrutura de dependência
prontamente interpretável. Além disso, na maioria desses estudos, há a presença de covar-
iáveis, como tratamentos, indicadores de grupos, características individuais ou condições
ambientais, cuja relação com o tempo de vida é de interesse. Nessa situação, é necessário
assumir modelos de regressão de longa duração. Dessa forma, o conhecido modelo de
riscos proporcionais de Cox e suas variações, utilizando funções de risco marginais usadas
para a análise de dados de sobrevida multivariada como observado na literatura, não são
suficientes para explicar a estrutura de dependência completa do par de tempos de vida
no vetor das covariáveis. Nesta tese, são apresentados alguns novos modelos multivariados
de longa duração assumindo uma estrutura de taxa de cura baseada em abordagens de
modelos de misturas e não-misturas para a análise de sobreviventes de longo prazo apli-
cados a dados de estudos médicos. Os modelos propostos também podem ser úteis para
estudar a estrutura de dependência do par de tempos de vidas no vetor de covariáveis X.
Os resultados que emergiram deste estudo reforçam o fato de que a busca de distribuições
multivariadas apropriadas podem ser extremamente difíceis, dependendo da estrutura de
correlação dos dados de sobrevida. No entanto, a metodologia proposta poderia ser muito
útil na análise dos dados de sobrevida médicos onde o interesse é a estimativa da fração
de pacientes na população estudada que nunca experimentaram o evento de interesse.
Além disso, a identificação de covariáveis importantes também foi facilmente obtida, as-
sumindo os modelos propostos, mesmo usando distribuições a priori não informativas
para os parâmetros do modelo, sob uma abordagem Bayesiana. Os resultados também
poderiam ser estendidos a outros tipos de ensaios clínicos; análise de confiabilidade em
engenharia; análise de risco em economia; entre muitas outras áreas. Para a pesquisa re-
produtível, também é apresentada a estrutura geral para os códigos de computador da
abordagem de modelagem proposta que pode ser realizada usando softwares livres R ou
OpenBugs.

Palavras-chave: análise Bayesiana; modelos multivariados; estudos de câncer; modelos
contínuos; taxa de cura; estrutura de dependência; modelos discretos; estudos médicos.
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Chapter 1

Introduction

1.1 Motivation

Multivariate lifetime distributions have been extensively studied in the literature
since for this class of models time-dependent association measures play a vital role as
it is seen in medical studies, toxicology studies, cancer studies and so on. In general, in
these situations, it is common the presence of censored data and the presence of a set of
covariates associated to each unit where it is common the use of a continuous random
variable modeling approach for the lifetime data analysis. It is important to point out
that even if the data are discrete, it is common to model the dataset by a continuous
distribution due to analytical tractability or facility to get parameter estimators using
existing statistical software where the most popular continuous lifetime distributions usu-
ally are implemented. However, in many applications it is impossible to measure lifetime
length of a device on a continuous scale, as in the on/off switching devices, number of
cycles until failure, or the number of accidents in a road (see for example, Kundu and
Dey, 2009; Kundu and Gupta, 2010; Kundu, 2014; Kundu and Nekoukhou, 2018).

Most of multivariate lifetime data are derived from studies that most of researchers
are interested in waiting time until the occurrence of an event of interest. As an example
clinical trials where the study involves following patients for a period of time and moni-
toring patient’s survival to assess the efficacy of a new treatment (Vahidpour, 2016). In
general, the event of interest in such studies could be death, cure, heart attack, remission
time, reaction time for a treatment, deterioration time of a organ, or adverse reaction;
and the follow-up time for the study may range from few weeks to many years. In the
literature, this kind of data is called time-to-event data. However, in some situations, the
event of interest may not occur for some individuals, even after a very long period of
follow-up time. In those cases, the standard survival models cannot accurately describe
the behavior of all individuals. According to Vahidpour (2016), cure rate models could be
useful to be fitted by on time-to-event data with long term survivors.
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From these considerations, there is a great motivation to introduce new lifetime
distributions with simple mathematical properties and simplifications, especially multi-
variate ones, to get the inferences of interest and capture the dependence structure among
two or more responses associated to each patient which is the main goal of this study. In
this direction, special attention has been given on bivariate geometric distributions and
bivariate Poisson distributions (see for example Arnold, 1975; Kocherlakota and Kocher-
lakota, 1992; Kocherlakota, 1995; Basu and Dhar, 1995; Kumar, 2008; Kemp, 2013; Lee
and Cha, 2014; Nekoukhou and Kundu, 2017; Kundu and Nekoukhou, 2018) as alterna-
tives to many bivariate continuous models introduced in the literature (see for example,
Gumbel, 1960; Freund, 1961; Marshall and Olkin, 1967a,b; Downton, 1970; Hawkes, 1972;
Block and Basu, 1974; Hougaard, 1986; Sarkar, 1987; Arnold and Strauss, 1988; Hanagal,
2006; Hanagal and Ahmadi, 2008; Balakrishnan and Lai, 2009).

1.2 Goals

1.2.1 Main Goals

In recent years, studies on multivariate survival models have been growing fast
where the use of Bayesian methods of inference have been very popular, especially under
MCMC (Markov Chain Monte Carlo) simulation techniques, to get accurate estimators
for the parameters of the probability models (see for example, Achcar and Leandro, 1998;
dos Santos and Achcar, 2011). Based on that, the main goal of this study is to introduce
new multivariate cure rate models using stress and shock models (Marshall and Olkin,
1967b) as well the Marshall-Olkin method to add a parameter to a family of distributions
(Marshall and Olkin, 1997); and to explore the accuracy of some multivariate models
as extensions of some existing multivariate models presented in the literature as, for
example, the bivariate exponential models (Gumbel, 1960; Freund, 1961; Downton, 1970;
Block and Basu, 1974) and bivariate geometric models (Arnold, 1975; Basu and Dhar,
1995; Krishna and Pundir, 2009) under a Bayesian approach for modeling of long-term
survivors in medical studies.

1.2.2 Specific Goals

∙ Introduce new multivariate models in presence of cure rate as well the main math-
ematical properties.

∙ Provide a great statistical background of Survival and Bayesian analysis; and data
analysis involving medical data in presence of risk or prognostic factors.

∙ Use of open source statistical softwares, as for example R and OpenBUGS softwares,
for reproducible research.
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1.3 Background

Survival data, lifetime data, failure time data, or time to event data are terms used
to describe data that measure the time to the occurrence of some event which arises in a
number of applied fields. In this thesis, a literature review of survival analysis techniques
as, for example, the Kaplan-Meier estimator (Kaplan and Meier, 1958), model diagnostics,
cure rate models and so on are presented in Chapter 2. Chapter 2 also presents some
concepts of Bayesian analysis as, for example, prior distributions, Markov Chains, Gibbs
sampling algorithm and so on. In Chapter 3, it is studied some construction methods
for bivariate models as the stress and shock methods and the Marshall-Olkin method.
The discrete bivariate generalized Rayleigh distribution and a class of bivariate Lindley
distributions are proposed using those methods and their main mathematical properties
are studied. Chapter 3 also presents an extension of the proposed models and classical
bivariate models using the cure rate models based on the mixture approach. A summary
of the proposed models concludes the Chapter 3.

In Chapter 4, it is presented three applications with medical data. The first one
is related to pelvic sarcomas which are unusual but not rare malignancies and account
for only 1% of adult solid tumors. For the data analysis, it is assumed a univariate dis-
crete Weibull model under cure rate based on mixture and non-mixture approaches. The
regression approach was also considered to investigate some risk factors for pelvic sarco-
mas and the residuals of the proposed model were checked by simulated envelopes. The
second application is related to tobacco which is one of the biggest public health threats
that the world has ever faced, killing more than 7 million people a year according to the
World Health Organization (2018). For the statistical analysis, it is considered the pro-
posed bivariate cure rate models based on a possible existing dependence between both
times. Finally, the third application is related to diabetic retinopathy disease which is a
chronic progressive, potentially sight-threatening disease of the retinal microvasculature
associated with the prolonged hyperglycaemia. For the statistical analysis, it is assumed
as lifetimes the times to blindness for the eye randomized to laser treatment and the times
to blindness for the eye randomized that not received the treatment. A regression model
was considered to investigate if the age of the patient was prognosticated with diabetes
as a potential risk factor for blindness.

In Chapter 5, it is presented the use of the proposed models in other fields of study
as, for example, reliability analysis and multivariate probability modeling. In the reliability
context, it is illustrated an industrial scenario involving series systems as well engine
winding reliability. In multivariate context, it is presented a new multivariate distribution
and its main mathematical properties as well two applications in medical studies. Finally,
Chapter 6 end this thesis with general conclusions on the study presented here.
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Chapter 2

Literature Review

2.1 An Introduction to Survival Analysis

Survival data, lifetime data, failure time data, or time to event data are terms
used to describe data that measure the time to the occurrence of some event and arises
in a number of applied fields, such as medicine, biology, public health, epidemiology,
engineering, economics, demography, among many other fields. According to Tutz et al.
(2016), in all of these fields, the focus is on the time modeling it takes until specific
event occurs, that is, time-to-event data as well on predicting the probability of response,
survival, or mean lifetime, comparisons of the survival distributions and the identification
of risk and/or prognostic factors related to the responses given by the lifetimes.

The event could be death, as the term suggest, but the event also could be any
well-defined circumstance. For example, in medical research, the event could be some
life-changing occurrence such as cure from a disease, remission time for a specific cancer,
times of exposed individuals until be infected by a disease, the times to deterioration level
or times to reaction for a treatment in pairs of lungs, kidneys, eyes or ears of humans;
in reliability analysis, the event could be related to break-down, repair of machines, or
lifetimes for the n-components of a engineering system. Other possibilities are also pre-
sented in toxicology studies where the failure times may be observed for the pups in each
litter or studies related to the effects of two drugs on brain activity; felons’ time to pa-
role (criminology); duration of first marriage (sociology); length of newspaper or magazine
subscription (marketing); and worker’s compensation claims (insurance) and their various
influencing risk or prognostic factors; among many other applications (see, for example,
Cox, 1972; Maller and Zhou, 1996; Klein and Moeschberger, 1997; De Angelis et al., 1999;
Fleming and Lin, 2000; Lee and Wang, 2003; Romeu, 2004; Rausand and Arnljot, 2004;
Ibrahim et al., 2005; Giolo and Colosimo, 2006; Sreeja and Sankaran, 2008; Singh and
Mukhopadhyay, 2011; Hougaard, 2012; Crowder, 2012; Eryilmaz and Tank, 2012; Li and
Dhar, 2013; Collett, 2015).
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In order to study those events, it is needed to define the time of occurrence of
the event of interest as well a time point, say, time 0, from which times are started to be
measured. For example, when the time is measured as age, the defining time point is birth;
in drugs study, the time point 0 is the time of start of treatment; in disease studies, the
time point 0 is the time of diagnosis of the disease; and so on. Once the time of occurrence
of an event has been defined, it is common the use of nonparametric, semi-parametric or
parametric modeling approach in the data analysis.

In Section 2.1.1, it is presented some examples to illustrate the main features of
survival data. These examples present data obtained from various research studies. A large
amount of examples can also be found in published literature. Some practical concerns in
designing a survival study are addressed in Section 2.1.2. Section 2.1.3 lays out the fun-
damental statistical concepts needed for modeling survival data, including distribution
characterization and commonly used parameters. After that, we discuss the important
issue of data incompleteness, that is, the censoring mechanisms in Section 2.1.4. More-
over, in Sections 2.1.5, 2.1.6 and 2.1.7, it is discussed some aspects of nonparametric and
parametric estimation procedures for censored data as well some diagnostics procedures.
Finally, Section 2.1.8 presents the cure rate model using a parametric approach which is
the main goal of study of this thesis.

2.1.1 Examples of Survival Data

In this section, it is presented some examples of survival data related to medical
studies. These examples motivate the methodological development in the following chap-
ters. Survival data in these examples are obtained from various types of study designs.

2.1.1.1 Bloodstream Infection

Overuse of antibiotics is a major driver of antibiotic resistance, a growing problem
in intensive care units (ICUs) worldwide. To examine the relationship between duration
of carbapenem administration and subsequent nosocomial multidrug resistant (MDR)
bloodstream infections (BSIs), a prospective observational study was undertaken at the
National University Hospital in Singapore for all adult patients admitted to an ICU or
high dependency unit (HDU) receiving more than 48 hours of a carbapenem antibiotic
(Donaldson et al., 2009; Li and Ma, 2013). During the two-year study period, 415 patients
were followed-up for an event of interest. The outcome of interest was the development
of BSI. This disease may not directly lead to death. In this study, the research question
of interest was whether the duration of carbapenem use would affect the probability of
developing BSI among patients in ICU and HDU.
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2.1.1.2 Lung Cancer

Lung cancer is the leading cause of cancer mortality as it is associated with a
low survival probability. Nonsmall cell lung cancer (NSCLC) is more common than small
cell lung cancer. Gene mutations may provide prognostic value to guide proper treatment
decisions. In this example, it is considered a research study led by Tan Tock Seng Hospital
in Singapore where Lim et al. (2009) used whole genome amplification (WGA) technology
to investigate how specific gene mutations affected the survival probability of patients with
NSCLC. In this study, 88 advanced-stage NSCLC patients were enrolled, and their low-
volume lung biopsies underwent WGA before direct sequencing for EGFR, KRAS, P53,
and CMET mutations. These genes have been suggested to be associated with lung cancer
in published studies. Each patient was followed-up from the time of diagnosis of cancer
to the time of death or the end of the study. The event of interest is the death outcome.
The time for a patient to arrive at this outcome is usually called the survival time. The
statistical analysis procedure to study the distribution of survival time is termed survival
analysis. Specifically, practitioners are interested in determining the probability that a
patient with NSCLS survives for a certain length of time, say one year, or five years, after
the diagnosis of disease (Li and Ma, 2013).

2.1.1.3 Melanoma Skin Cancer

For this example of survival data, let us consider a study presented in Lee and
Wang (2003) related to thirty melanoma patients (stages 2 to 4) which were studied to
compare the immunotherapies BCG (Bacillus Calmette-Guerin) and Corynebacterium
parvum for their abilities to prolong remission duration and survival time. It is important
to point out that the patients were resected before the treatment began and thus had no
evidence of melanoma at the time of the first treatment. The main goal with this type of
data is to determine the length of remission and survival and to compare the distributions
of remission and survival time in each group. Before comparing the remission and survival
distributions, we attempt to determine if the two treatment groups are comparable with
respect to prognostic factors.

2.1.1.4 Incidence of Retinopathy

For this example, let us consider a study of the incidence of retinopathy in Okla-
homa Indians with NIDDM conducted in the years period 1987-1990 as part of a prospec-
tive study of diabetic complications presented in Lee and Wang (2003). In this study, from
the 312 patients who were free of retinopathy at initial examination in the 1970s, 228 were
found to have developed the eye disease during the 10 to 16-year follow-up period (average
follow-up time 12.7 years). Also, twelve potential factors (assessed at time of baseline ex-
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amination) were considered to examine their possible relationship to retinopathy (RET):
age, gender, duration of diabetes (DUR), fasting plasma glucose (GLU), initial treat-
ment (TRT), systolic (SBP) and diastolicblood pressure (DBP), body mass index (BMI),
plasma cholesterol (TC), plasma triglyceride (TG), and presence of macrovascular dis-
ease (LVD) or renal disease (RD). The main goal with this type of data is to relate these
variables (prognostic factors) to the development of retinopathy.

2.1.1.5 Breast Cancer

As a fifth example, let us consider a study by Sedmak et al. (1989) designed to
determine if female breast cancer patients, originally classified as lymph node negative
by standard light microscopy (SLM), could be more accurately classified by immunohis-
tochemical (IH) examination of their lymph nodes with an anticytokeratin monoclonal
antibody cocktail, identical sections of lymph nodes were sequentially examined by SLM
and IH. According to Sedmak et al. (1989), the significance of this study is that 16%
of patients with negative axillary lymph nodes, by standard pathological examination,
developed recurrent disease within 10 years. In this way, forty-five female breast-cancer
patients with negative axillary lymph nodes and a minimum 10-year follow-up were se-
lected from the Ohio State University Hospitals Cancer Registry. Of the 45 patients, 9
were immunoperoxidase positive, and the remaining 36 remained negative.

2.1.1.6 Sexually Transmitted Diseases

A major problem in certain subpopulations is the occurrence of sexually trans-
mitted diseases (STD). Even if one ignores the lethal effects of the Acquired Immune
Deficiency Syndrome (AIDS), other sexually transmitted diseases still have a significant
impact on the morbidity of the community as for example gonorrhea and chlamydia (see
World Health Organization, 2011). According to Klein and Moeschberger (1997) these
diseases are of special interest because they are often asymptomatic in the female, and,
if left untreated, can lead to complications including sterility. The purpose of this kind
of study is to identify those factors which are related to time until reinfection by either
gonorrhea or chlamydia, given an initial infection of gonorrhea or chlamydia.

2.1.2 Design a Survival Study

A study that generates survival time data is necessarily longitudinal in nature, in
contrast to a cross-sectional study where data is collected at a fixed point of the time
line. The time measurements and other data for sampled subjects in a survival study can
be collected retrospectively, as in a case-control study, or prospectively (Lilienfeld and
Lilienfeld, 1980). A prospective survival study can be an observational cohort study or
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a randomized clinical trial. An observational follow-up study allows us to characterize
the natural history of the disease in quantitative terms. After we describe the severity
of a disease, priorities may then be established for clinical services and public health
programs. On the other hand, we usually conduct a trial to modify the natural history
of a disease so as to prevent or delay an adverse outcome such as death or disability
and to improve the health of an individual patient or the general population. A carefully
designed randomized trial can evaluate the effectiveness and side effects of new forms
of interventions. Currently, both observational studies and randomized clinical trials are
being widely practiced in medicine, and the choice of design depends on the goal of the
study, specific disease, and practical limitations (Li and Ma, 2013).

Statisticians can play an important role to protect patient safety and rights in
the course of a research study which usually consists of multiple phases. Even though
clinical trial may sound like a less frightening term than medical experiment, it essentially
places human subjects under a testing environment. Another design aspect relevant to
statisticians is the calculation of a proper sample size. The calculation approaches may
be based on a required precision of an interval estimate of the population parameter, or a
required significance and power for establishing the alternative hypothesis. One additional
numeric specification for sample size calculation is how large an effect size we expect to
detect. According to Li and Ma (2013), sometimes the limited resources allow only a
moderate sample size for the design, and accordingly we may evaluate the power of the
study under such a design. Either a sample size calculation or power analysis is necessary
at the design stage.

2.1.3 Description of Survival Distributions

Suppose that a patient is randomly selected from the population and denote his
time to the failure event as 𝑇 . According to Li and Ma (2013), it is important to fit a
probability distribution for the random variable 𝑇 in order to answer practical questions
such as “how long can a patient with lung cancer survive with a 90% probability?” or “will
treatment A be significantly more beneficial to the patients with a chronic mental illness
than treatment B?”

In order to answer the questions above, there are two functions which are the
great interest in the survival data analysis: the survival function and hazard function.
The survival function could be interpreted and defined as the probability of observing a
survival time longer than a fixed value 𝑡, that is,

𝑆(𝑡) = 𝑃 (𝑇 ≥ 𝑡) = 1 − 𝐹 (𝑡) (2.1)

where 𝐹 (𝑡) denoted as the cumulative distribution function is the probability of a ran-
domly selected subject dying before time 𝑡. According to Lawless (1982), the survival
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function is a non-increasing and left continuous function, that is, 𝑆(0) = 1 and 𝑆(∞) =

lim
𝑡→∞

𝑆(𝑡) = 0.

Another important related function for describing the survival distribution is the
hazard function. The hazard function could be defined as the probability of dying at time
𝑡 given the survival time is no less than 𝑡, that is,

ℎ(𝑡) = lim
Δ𝑡→0

𝑃 (𝑇 ∈ [𝑡, 𝑡+ ∆𝑡) | 𝑇 ≥ 𝑡)

∆𝑡
(2.2)

where ∆𝑡 is an infinitesimal increment of time. In some practical applications, ℎ(𝑡) is also
called instantaneous failure rate and could be expressed as ℎ(𝑡) = 𝑓(𝑡)/𝑆(𝑡) where 𝑓(𝑡) is
the probability density (or mass, in discrete case) function. The cumulative hazard, 𝐻(𝑡),
could be also obtained in terms of the survival function as

𝑆(𝑡) = exp{−𝐻(𝑡)} (2.3)

In summary, knowing one of the four functions, 𝑓(𝑡), 𝑆(𝑡), 𝐻(𝑡) and ℎ(𝑡), allows
us to derive the other three. These functions can serve an identical purpose of describing
the distribution of survival time. Conventionally, 𝑓(𝑡) and 𝑆(𝑡) are used to form the
likelihood functions for parameter estimation and hypothesis tests, while ℎ(𝑡) is usually
used to present a regression model as for example the Cox proportional hazards model
(Cox, 1972).

In probability theory, the moments of the probability distributions are usually
important summary measures of the distribution characteristics. Mean and variance are
familiar examples, and are the first-order and second-order moments, respectively. How-
ever, for most survival distributions, it is more relevant to summarize the survival distri-
bution by the moments for the truncated distribution since it is inappropriate to assume
a symmetrical distribution. One such useful moment parameter is the mean residual life,
which is defined as

𝑟(𝑡) = E(𝑇 − 𝑡 | 𝑇 ≥ 𝑡) =

∫︀∞
𝑡
𝑆(𝑢)𝑑𝑢

𝑆(𝑡)
(2.4)

and could be interpreted as the expected lifespan after a subject has survived up to time
𝑡. The mean of the overall survival time is simply 𝑟(0).

Another important measure in survival analysis is the percentile. The 100𝑡ℎ per-
centile of the survival distribution 𝐹 (𝑡) is given by

𝐹−1(𝑝) = inf{𝑡 : 𝐹 (𝑡) > 𝑝} (2.5)

The 50𝑡ℎ percentile is the median survival time and is interpreted as the time at which
half of the subjects in the study population can survive. It offers two advantages over the
mean survival time. First, its sample estimate is less affected by extremely large or small
values, while the mean estimate may be sensitive to a small number of outliers. Second,
we must observe all the deaths in the study population in order to evaluate the sample
mean.
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2.1.4 Censoring Mechanisms

According to Klein and Moeschberger (1997); Giolo and Colosimo (2006) and
Collett (2015), the main characteristic of survival data is the presence of censored or
truncated observations. The survival time of a patient is censored when the point of
interest was not observed for this patient. In general, this occurs because, for some reason,
the patient’s follow-up was interrupted or because the patient died of a cause other than
the one studied.

In the literature, three common types of censoring schemes are considered: right
censoring, where all that is known is that the individual is still alive at a given time,
left censoring when all that is known is that the individual has experienced the event of
interest prior to the start of the study, or interval censoring, where the only information
is that the event occurs within some interval.

The most common type of censoring presented in many studies is the right-
censoring scheme. This fact is related to that many studies only have limited funds,
and investigators cannot wait until all the subjects develop the event of interest. Math-
ematically, this censoring scheme could be defined using two random variables, that is,
let 𝑇 be a random variable related to the failure time of a patient and 𝐶 a random vari-
able independent of 𝑇 related to the censoring time. In this case, the observed time and
censoring scheme are, respectively, given by,

𝑡 = min(𝑇,𝐶) and 𝛿 =

⎧⎨⎩1, if 𝑇 ≤ 𝐶

0, if 𝑇 > 𝐶
(2.6)

On other hand, the left-censoring scheme could be also defined using two random
variables as the right-censoring scheme. In this case, t is equal to 𝑇 if the lifetime is
observed and 𝛿 indicates whether the exact lifetime T is observed (𝛿 = 1) or not (𝛿 = 0).
Therefore, for left censoring scheme, the observed data is given by 𝑡 = max(𝑇,𝐶).

It is important to point out that not considering the presence of censored obser-
vations, classical techniques, such as standard regression analysis with normal errors and
usually transformed data, could be used in the analysis of survival data. However, these
techniques – usually based on the assumption of normality or nonparametric methods –
could be inappropriate in the presence of censored observations or cure rates. In this way,
new techniques have been presented in the literature to deal with censored observations
or cure rates. The most popular technique is given by the Cox proportional hazards model
(Cox, 1972); long-term models (also refereed as cure rate models) (Wienke et al., 2006)
and frailty models (Price and Manatunga, 2001). For more details of survival analysis
techniques, see some standard existing lifetime books as for example: Lawless (1982);
Klein and Moeschberger (1997); Meeker and Escobar (1998); Kalbfleisch and Prentice
(2002); Lee and Wang (2003); Collett (2015).
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2.1.5 Nonparametric Kaplan-Meier Estimator

One of the basic goals in survival analysis is to estimate the survival function
𝑆(𝑡). It could be done in two ways: using parametric or nonparametric approaches. Un-
der a parametric approach, in general, it is assumed a parametric continuous or discrete
distribution such as exponential, Weibull, log-normal, log-logistic, Pareto, inverse Gaus-
sian, geometric, to estimate the survival function using usual inference methods (see, for
example, Lawless, 1982; Ibrahim et al., 2005 or Collett, 2015). Under a nonparametric
approach, the most used existing estimator of the survival function is the Kaplan-Meier
estimator (Kaplan and Meier, 1958). It is defined as follows:

Definition 1.1.5.1 (Product-Limit Estimator/Kaplan-Meier Estimator) Suppose
that 𝑛 individuals have lifetimes represented by random variables 𝑇𝑖, 𝑖 = 1, . . . , 𝑛 which
are subject to right censoring and let 𝐶𝑖, 𝑖 = 1, . . . , 𝑛 be the corresponding censoring times.
Then the observed data consist of (𝑡𝑖, 𝛿𝑖), where 𝑡𝑖 = min(𝑇𝑖, 𝐶𝑖) and 𝛿𝑖 = 𝐼(𝑇𝑖 = 𝑡𝑖), 𝑖 =

1, . . . , 𝑛 with 𝐼(·) defined as the usual indicator function. Suppose that there are 𝑘(𝑘 ≤ 𝑛)

distinct ordered times 𝑦1 < . . . < 𝑦𝑘 at which death occur and

𝑑𝑗 =

𝑛∑︁
𝑖=1

𝐼(𝑡𝑖 = 𝑦𝑗, 𝛿𝑗 = 1) (2.7)

represent the number of deaths at 𝑦𝑗. Then, the product-limit estimator of 𝑆(𝑡) is defined
as,

𝑆(𝑡) =
∏︁

𝑗:𝑦𝑗≤𝑡

𝑛𝑗 − 𝑑𝑗
𝑛𝑗

(2.8)

where 𝑛𝑗 =
𝑛∑︁

𝑖=1

𝐼(𝑡𝑗 ≥ 𝑦𝑗) is the number of individuals at risk at 𝑦𝑗, which is the number

of individuals alive and uncensored just prior to 𝑡𝑗.

2.1.6 Models Diagnostics

In many practical situations, the investigators need to decide for an appropriated
regression model to be fitted by the data. If a model contains too many covariates, many
problems may arise, including the following:

∙ A multicollinearity issue can directly lead to the divergence of the computation
algorithm and yield unreasonable estimation results.

∙ A model with numerous covariates may be more difficult to interpret than a parsi-
monious model.

∙ The requirement of estimating too many parameters may decrease the efficiency of
estimates and inflate the sampling variability.
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2.1.6.1 Cox-Snell Residuals

In regression analysis, model diagnostics is usually conducted using residuals. With
the Cox model or a parametric model, one can assess the overall goodness-of-fit of the
model using the Cox-Snell residuals (Cox and Snell, 1968; Crowley and Hu, 1977; Collett,
2015) defined by

𝑟𝐶𝑖
= − log{̂︀𝑆𝑖(𝑡𝑖)} (2.9)

where ̂︀𝑆𝑖(𝑡) is the model-based estimated survival function. When the model fitted to
the observed data is overall satisfactory, the Cox-Snell residuals follow an exponential
distribution with mean equals to one. This is due to the fact that if 𝑇 follows a sur-
vival distribution 𝑆(𝑡), then the random variable − log𝑆(𝑇 ) follows a unit exponential
distribution. However, if an individual survival time is right-censored, the corresponding
Cox-Snell residual 𝑟+𝐶𝑖

is smaller than the residual evaluated at an uncensored observation
with same value 𝑡𝑖. In this way, Crowley and Hu (1977) proposed the modified Cox-Snell
based on the mean and on the median of the unit exponential distribution by assuming
that difference between 𝐻(𝑡𝑖) and 𝐻(𝑡

+
𝑖 ) also follows the unit exponential distribution.

The modified Cox-Snell residuals for censored observations is defined by,

𝑟+𝐶𝑖
= 1 − log{̂︀𝑆𝑖(𝑡𝑖)} or 𝑟+𝐶𝑖

= log(2) − log{̂︀𝑆𝑖(𝑡𝑖)} (2.10)

The procedure for using Cox—Snell residuals can be summarized as follows:

1. Use any inference procedure and find the estimates of the parameters for the selected
theoretical model.

2. Calculate the Cox-Snell residuals 𝑟𝐶𝑖
= − log{̂︀𝑆𝑖(𝑡𝑖)}, 𝑖 = 1, . . . 𝑛 where ̂︀𝑆𝑖(𝑡𝑖) is the

estimated survival function with the estimates of Step 1.

3. Apply the Kaplan—Meier method to estimate the survival function 𝑆𝑅(𝑟𝐶𝑖
) of the

Cox—Snell residuals 𝑟𝐶𝑖
’s obtained in Step 2, then using the estimate ̂︀𝑆𝑅(𝑟𝐶𝑖

),
calculate − log ̂︀𝑆𝑅(𝑟𝐶𝑖

).

4. Plot 𝑟𝐶𝑖
versus − log ̂︀𝑆𝑅(𝑟𝐶𝑖

). If the plot is closed to a straight line with unit slope
and zero intercept, the fitted model is appropriate.

2.1.6.2 Martingale Residuals

An alternative type of residual that takes censoring into account and is particularly
suited for assessing the functional forms of predictor effects is the martingale residual. The
𝑖𝑡ℎ martingale residual is defined as

̂︁𝑀𝑖 = 𝛿𝑖 − 𝑐𝑖 (2.11)
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where 𝑐𝑖 is the Cox-Snell residuals. In alternative way, 𝑀𝑖 could be expressed, for the 𝑖𝑡ℎ

subject, as
𝑀𝑖 = 𝛿𝑖 + exp{x⊤

𝑖
̂︀𝛽} log{̂︀𝑆0(𝑦𝑖)} (2.12)

where 𝛿𝑖 is the censoring indicator, 𝑦𝑖 is the observed survival time, ̂︀𝛽 is the estimated
regression coefficient, and ̂︀𝑆0(𝑡) is the estimated baseline survival function. The ̂︁𝑀𝑖 take
values in (−∞, 1] and are always negative for censored observations. In large samples, the
martingale residuals are uncorrelated and have expected value equal to zero. However,
they are not symmetrically distributed about zero.

2.1.7 Likelihood Function in Presence of Censored Data

As stated previously, the design of survival experiments in presence of censoring
needs to be carefully considered when constructing likelihood functions. A critical as-
sumption is that the lifetimes and censoring times are independent. In this section, it is
constructed the likelihood function assuming censored data for univariate and bivariate
cases.

2.1.7.1 Univariate Case

Let us assume an observation corresponding to an exact event time which provides
information on the probability that the event’s occurring at this time, which is approxi-
mately equal to the density function of 𝑇 at this time. The likelihood for various types of
censoring schemes may be written by incorporating the following components:

D: Exact lifetimes - 𝑓(𝑡)

R: Right-censored observations - 𝑆(𝐶𝑟)

L: Left-censored observations - 1 − 𝑆(𝐶𝑙)

I: Interval-censored observations - [𝑆(𝐿) − 𝑆(𝑅)]

Thus, the likelihood function based on a random sample of size n, may be constructed
using all components above together as,

𝐿 ∝
∏︁
𝑖∈𝐷

𝑓(𝑡𝑖)
∏︁
𝑖∈𝑅

𝑆(𝐶𝑟𝑖)
∏︁
𝑖∈𝐿

𝑆(𝐶𝑙𝑖)
∏︁
𝑖∈𝐼

[𝑆(𝐿𝑖) − 𝑆(𝑅𝑖)] (2.13)

For example, suppose that the 𝛿 indicates whether the lifetime T is observed
(𝛿 = 1) or not (𝛿 = 0) and assume that the observed data is given by the expression
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𝑡𝑖 = min(𝑇𝑖, 𝐶𝑖), 𝑖 = 1, 2, . . . , 𝑛 (right-censored data scheme), the likelihood function
based on a random sample of size n, is given by,

𝐿(𝜃) =
𝑛∏︁

𝑖=1

[𝑓(𝑡𝑖)]
𝛿𝑖 [𝑆(𝑡𝑖)]

1−𝛿𝑖 (2.14)

where 𝜃 is the model vector of parameters. The log-likelihood function is given by

ℓ(𝜃) =
𝑛∑︁

𝑖=1

𝛿𝑖 log 𝑓(𝑡𝑖) +
𝑛∑︁

𝑖=1

(1 − 𝛿𝑖) log𝑆(𝑡𝑖) (2.15)

On other hand, suppose that the 𝛿 indicates whether the lifetime T is observed
(𝛿 = 1) or not (𝛿 = 0) and assume that the observed data is given by the expression
𝑡𝑖 = max(𝑇𝑖, 𝐶𝑖), 𝑖 = 1, 2, . . . , 𝑛 (left-censored data scheme), the likelihood function based
on a random sample of size n, is given by,

𝐿(𝜃) =
𝑛∏︁

𝑖=1

[𝑓(𝑡𝑖)]
𝛿𝑖 [1 − 𝑆(𝑡𝑖)]

1−𝛿𝑖 (2.16)

where 𝜃 is the model vector of parameters. The log-likelihood function is given by

ℓ(𝜃) =
𝑛∑︁

𝑖=1

𝛿𝑖 log 𝑓(𝑡𝑖) +
𝑛∑︁

𝑖=1

(1 − 𝛿𝑖) log(1 − 𝑆(𝑡𝑖)) (2.17)

In both cases, the parameters could be estimated in two ways: using the maxi-
mum likelihood approach; or using a Bayesian approach. In this thesis, our focus will be
on Bayesian methods since it provides less computational instability assuming censoring
schemes, more accurate inference results not depending on asymptotically results and
most important: the incorporation of prior opinion of experts.

2.1.7.2 Bivariate Case

For the bivariate case, let us assume the right-censoring scheme. In this case,
let (𝑋11, 𝑋21), (𝑋12, 𝑋22), . . . , (𝑋1𝑛, 𝑋2𝑛) be a random sample of size 𝑛 from a bivariate
lifetime distribution and define the following indicator variables:⎧⎨⎩𝛿1𝑖 = 1 if 𝑋1𝑖 < 𝐶1𝑖 and 0, for the other part.

𝛿2𝑖 = 1 if 𝑋2𝑖 < 𝐶2𝑖 and 0, for the other part.
(2.18)

where 𝑖 = 1, 2, . . . , 𝑛; (𝐶1𝑖, 𝐶2𝑖) are the right censoring times. In this way, we have four
possible situations:

𝐶1: Both, 𝑋1𝑖 and 𝑋2𝑖, are complete observations (𝛿1𝑖 = 1, 𝛿2𝑖 = 1),

𝐶2: 𝑋1𝑖 are complete and 𝑋2𝑖 are censored (𝛿1𝑖 = 1, 𝛿2𝑖 = 0),
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𝐶3: 𝑋1𝑖 are censored and 𝑋2𝑖 are complete (𝛿1𝑖 = 0, 𝛿2𝑖 = 1),

𝐶4: Both, 𝑋1𝑖 and 𝑋2𝑖, are censored observations (𝛿1𝑖 = 0, 𝛿2𝑖 = 0).

In all cases, the observed data is given by the expressions 𝑡1𝑖 = min(𝑋1𝑖, 𝐶1𝑖), 𝑖 =

1, 2, . . . , 𝑛 and 𝑡2𝑖 = min(𝑋2𝑖, 𝐶2𝑖), 𝑖 = 1, 2, . . . , 𝑛. Thus, the likelihood function based on
a random sample of size n, is given by,

1. Discrete Case:

𝐿 ∝
∏︁
𝑖∈𝐶1

𝑃 (𝑇1𝑖 = 𝑡1𝑖, 𝑇2𝑖 = 𝑡2𝑖)
∏︁
𝑖∈𝐶2

𝑃 (𝑇1𝑖 = 𝑡1𝑖, 𝑇2𝑖 > 𝑡2𝑖)
∏︁
𝑖∈𝐶3

𝑃 (𝑇1𝑖 > 𝑡1𝑖, 𝑇2𝑖 = 𝑡2𝑖)

×
∏︁
𝑖∈𝐶4

𝑃 (𝑇1𝑖 > 𝑡1𝑖, 𝑇2𝑖 > 𝑡2𝑖) (2.19)

2. Continuous Case:

𝐿 ∝
∏︁
𝑖∈𝐶1

𝑓(𝑡1𝑖, 𝑡2𝑖)
∏︁
𝑖∈𝐶2

[︂
−𝜕𝑆(𝑡1𝑖, 𝑡2𝑖)

𝜕𝑡1𝑖

]︂ ∏︁
𝑖∈𝐶3

[︂
−𝜕𝑆(𝑡1𝑖, 𝑡2𝑖)

𝜕𝑡2𝑖

]︂ ∏︁
𝑖∈𝐶4

𝑆(𝑡1𝑖, 𝑡2𝑖)

(2.20)

Remark 1.1.7.2.1 Observe that the number of possible situations (or combinations) for

the right-censoring scheme in this case is given by
2∑︁

𝑖=0

(︂
2

𝑖

)︂
. This could be expanded for the

multivariate case by
𝑛∑︁

𝑖=0

(︂
𝑛

𝑖

)︂
, where 𝑛 is the number of lifetimes. In this case, the likeli-

hood function has 𝑛 components. For example, for three lifetimes, the number of possible
situations of the right-censoring scheme is eight and the likelihood has eight components.

2.1.8 Cure Rate Models

Another common feature of lifetime data is the presence of a cure rate. This
situation may occur in different areas, such as in cancer studies where the researchers are
interested in the proportion of cured patients and where many individuals may die due to
other causes or in the proportion of cured patients in a clinical trial among many other
applications. In these situations, we could have a fraction of individuals not expecting the
occurrence of the event of interest, that is, these individuals are not at risk (‘long-term
survivors’ or ‘cured individuals’).

Different approaches have been presented in the literature to model cure rate,
especially for univariate lifetime data, for example: Farewell (1982); De Angelis et al.
(1999); Cancho and Bolfarine (2001); Price and Manatunga (2001); Yu et al. (2004); Yin
and Ibrahim (2005); Lambert et al. (2006); Lu (2010); Othus et al. (2012); Achcar et al.
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(2012); Fernandes (2014). In the presence of two lifetimes associated to each unit, that
is, bivariate lifetimes, Wienke et al. (2003, 2006) introduced a model for a cure rate in
bivariate time-to-event data analysis. For a multivariate situation, a multivariate cure
rate model was proposed by Cancho et al. (2016).

In many medical studies, especially related to cancer treatments, an important
issue of interest to the medical researchers is the estimation of the fraction of individuals
(or patients) in the studied population who never experience the event of interest. These
individuals are not at risk with respect to the event of interest and are considered immune,
cured, non-susceptible or extremely long-term survivors. Standard survival analysis tech-
niques, for example the Cox proportional hazards (Cox, 1972) model, provides no direct
estimation for the cure rate. In this way, it would be appropriate to fit parametric lifetime
models which incorporates the cure rate.

According to Vahidpour (2016), the literature introduces two approaches for cure
models: the mixture cure rate models, also known as standard cure rate models (see, for
example, De Angelis et al., 1999; Tsodikov et al., 2003; Lambert et al., 2006), which have
been widely used for modeling survival data in presence of cure rate; and the non-mixture
cure rate models which are not so popular (see Achcar et al., 2012; Vahidpour, 2016). The
main goal of this thesis is to explore the use of mixture cure rate models in the analysis
of bivariate lifetime data assuming continuous or discrete distributions.

2.1.8.1 Mixture and Non-mixture Cure Rate Models

Let us denote by 𝑇 the event of interest. Following Maller and Zhou (1996), the
standard cure rate model (or mixture cure rate model) assuming that the probability of
the time-to-event to be greater than a specified time 𝑡 is given by the survival function,

𝑆(𝑡) = 𝜌+ (1 − 𝜌)𝑆0(𝑡) (2.21)

where 𝜌 ∈ (0, 1) is the mixing parameter which represents the proportion of “long-term
survivors”, “non-susceptible” or “cured patients”, and 𝑆0(𝑡) denotes a proper survival func-
tion for the non-cured or susceptible group in the population. Observe that if 𝑡→ ∞, then
𝑆(𝑡) → 𝜌, that is, the survival function has an asymptote at the cure rate 𝜌. The prob-
ability density and the hazard functions corresponding to (2.21) are given, respectively,
by,

𝑓(𝑡) = (1 − 𝜌)𝑓0(𝑡) (2.22)

and,

ℎ(𝑡) =
(1 − 𝜌)𝑓0(𝑡)

𝜌+ (1 − 𝜌)𝑆0(𝑡)
(2.23)

On other hand, an alternative non-mixture model has been proposed in the liter-
ature which defines an asymptote for the cumulative hazard and hence for cure rate (see,
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Tsodikov et al., 2003). In this case, the survival function for the non-mixture cure rate
model is given by,

𝑆(𝑡) = 𝜌𝐹0(𝑡) = exp{ln(𝜌)𝐹0(𝑡)} (2.24)

where 𝜌 ∈ (0, 1) is the probability of cured patients and 𝐹0(𝑡) = 1−𝑆0(𝑡) denotes a proper
distribution function for the non-cured or susceptible group in the population. The prob-
ability density and the hazard functions corresponding to (2.24) are given, respectively,
by,

𝑓(𝑡) = − ln(𝜌)𝑓0(𝑡) exp{ln(𝜌)𝐹0(𝑡)} (2.25)

and,
ℎ(𝑡) = − ln(𝜌)𝑓0(𝑡) (2.26)

2.1.8.2 Bivariate Mixture Cure Rate Model

For the bivariate case, let us denote by 𝑇1 and 𝑇2 two lifetimes associated to the
same individual. From (2.21), the marginal survival functions for 𝑇1 and 𝑇2 are given,
respectively, by,

𝑆1(𝑡) = 𝑝1 + (1 − 𝑝1)𝑆01(𝑡) and 𝑆2(𝑡) = 𝑝2 + (1 − 𝑝2)𝑆02(𝑡) (2.27)

where 𝑝𝑘 (proportion of cured patients) and 𝑆0𝑘(𝑡) (survival function for the non-cured
patients) are associated to each lifetime 𝑇𝑘, 𝑘 = 1, 2. Defining the indicators variables,

𝑉𝑘 =

⎧⎨⎩1 if the individual in the 𝑘-th event is susceptible

0 if the individual in the 𝑘-th event is cured,
(2.28)

where 𝑘 = 1, 2 and 𝜓 = 𝑐𝑜𝑣(𝑉1, 𝑉2) such that 0 ≤ 𝜓 ≤ min(𝜌1, 𝜌2) − 𝜌1𝜌2, we have,

i.) 𝜑11 = 𝑃 (𝑉1 = 1, 𝑉2 = 1) = 𝑃 (𝑉1 = 1)𝑃 (𝑉2 = 1) + 𝑐𝑜𝑣(𝑉1, 𝑉2) = (1− 𝜌1)(1− 𝜌2) +𝜓

which indicates the probability that an individual is susceptible to both events;

ii.) 𝜑10 = 𝑃 (𝑉1 = 1, 𝑉2 = 0) = 𝑃 (𝑉1 = 1)𝑃 (𝑉2 = 0)−𝑐𝑜𝑣(𝑉1, 𝑉2) = (1−𝜌1)𝜌2−𝜓 which
indicates the probability that an individual is susceptible for the first event but not
for the second event;

iii.) 𝜑01 = 𝑃 (𝑉1 = 0, 𝑉2 = 1) = 𝑃 (𝑉1 = 0)𝑃 (𝑉2 = 1)−𝑐𝑜𝑣(𝑉1, 𝑉2) = 𝜌1(1−𝜌2)−𝜓 which
indicates the probability that an individual is susceptible for the second event but
not for the first event;

iv.) 𝜑00 = 𝑃 (𝑉1 = 0, 𝑉2 = 0) = 𝑃 (𝑉1 = 0)𝑃 (𝑉2 = 0) + 𝑐𝑜𝑣(𝑉1, 𝑉2) = 𝜌1𝜌2 + 𝜓 which
indicates the probability that an individual is not susceptible to both events;
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Following Wienke et al. (2006), the joint long-term survival function for the bi-
variate lifetimes 𝑇1 and 𝑇2 is given by,

𝑆(𝑡1, 𝑡2) = 𝜑11𝑆0(𝑡1, 𝑡2) + 𝜑10𝑆10(𝑡1) + 𝜑01𝑆20(𝑡2) + 𝜑00 (2.29)

where 𝑆0(𝑡1, 𝑡2) is the joint survival function for the susceptible patients; 𝑆10(𝑡1) is the
marginal survival function for 𝑇1; 𝑆20(𝑡2) is the marginal survival function for 𝑇2 and
𝜑11 + 𝜑10 + 𝜑01 + 𝜑00 = 1.

2.2 An Introduction to Bayesian Inference

In general, the statistical inference is the process of data analysis to deduce prop-
erties of a population from a sampled data of that population. According to Ibrahim et al.
(2005), the Bayesian paradigm is based on specifying a probability model for the observed
data 𝐷, given a vector of unknown parameters 𝜃 (assuming 𝜃 is a random variable) and
provides a rational method for updating the new information using the Bayes’ rule and
prior distributions for the uncertainty about 𝜃. That is, the Bayesian paradigm is the
process of fitting a probability model to a set of data and summarizing the result by a
probability distribution on the parameters of the model and on unobserved quantities
such as predictions for new observations (for more details, see Gelman et al., 1995).

Remark 1.2.1. (Prior Distribution) A prior distribution, which is supposed to repre-
sent what is known about unknown parameters before the data is available, plays an im-
portant role in Bayesian analysis. According to Box and Tiao (2011), such a distribution
can be used to represent prior knowledge or relative ignorance. In problems of scientific
inference we would usually, were it possible, like the data “to speak for themselves”. Conse-
quently, it is usually appropriate to conduct the analysis as if a state of relative ignorance
existed previously.

According to Gelman et al. (1995), the process of Bayesian data analysis can be
idealized by dividing it into the following three steps:

1. Setting up a full probability model - a joint probability distribution for all observable
and unobservable quantities in a problem.

2. Conditioning on observed data: calculating and interpreting the appropriate poste-
rior distribution - the conditional probability distribution of the unobserved quan-
tities of ultimate interest, given the observed data.

3. Evaluating the fit of the model and the implications of the resulting posterior dis-
tribution: how well does the model fit the data, are the substantive conclusions
reasonable, and how sensitive are the results to the modeling assumptions in step
1? In response, one can alter or expand the model and repeat the three steps.
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2.2.1 Bayes Theorem

In probability theory and statistics, Bayes’ theorem is named after Reverend
Thomas Bayes, who first provided an equation that allows new evidence to update beliefs
in his work An Essay towards solving a Problem in the Doctrine of Chances published
in 1763 (for more details, see Bayes et al., 1763). In his work, the main objective was,
in a simple way, how to infer cause from effects. For that, Bayes proposed the following
system: Initial Belief × New Data → Improved Belief which nowadays this system could
be interpreted was Posterior Distribution ∝ Likelihood Function × Prior Distribution.

To fix ideas, let y = (𝑦1, . . . , 𝑦𝑛) be a vector of 𝑛 observations whose probability
distribution 𝜋(y | 𝜃) depends on the values of a vector 𝜃 = (𝜃1, . . . , 𝜃𝑘) of 𝑘 parameters.
Suppose that 𝜃 has a prior distribution given by 𝜋(𝜃). Then, the Bayes’ rule is defined by,

𝜋(𝜃 | y) =
𝜋(y, 𝜃)

𝜋(y)
=
𝜋(y | 𝜃)𝜋(𝜃)

𝜋(y)
(2.30)

where it could be seen that the expression 1/𝜋(y), which is independent from 𝜃, is a
normalizing constant of 𝜋(𝜃,y) and 𝜋(𝜃,y) is the posterior distribution which tells us
what is known about 𝜃 given knowledge of the data (see Berger, 2013).

Definition 1.2.1.1. For a fixed value of 𝑦, the function 𝐿(𝜃 | y) provides the likelihood of
each possible value of 𝜃 while 𝜋(𝜃) is called a priori distribution of 𝜃. These two sources
of information, priori and likelihood, are combined leading to the posterior distribution of
𝜃, 𝜋(𝜃 | y). Thus, the usual form of the Bayes theorem is described by,

𝜋(𝜃 | 𝑦) ∝ 𝐿(𝜃 | 𝑦)𝜋(𝜃) (2.31)

Definition 1.2.1.2. From (2.31), the normalizing constant from the posterior distribution
given in (2.30) is given by,

𝜋(y) =

∫︁
𝜋(y, 𝜃)𝑑𝜃 =

∫︁
𝜋(y | 𝜃)𝜋(𝜃)𝑑𝜃 = E𝜃[𝜋(𝑌 | 𝜃)] (2.32)

which is called predictive distribution. Thus,

∙ Before observe 𝑌 , we could check the adequacy of the priori distribution by predic-
tions via 𝜋(y).

∙ If the observed 𝑌 receives unusual predictive probability then the model must be
questioned.

According to Gelman et al. (1995), a pragmatic rationale for the use of Bayesian
methods is the inherent flexibility introduced by their incorporation of multiple levels
of randomness and the resultant ability to combine information from different sources,
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while incorporating all reasonable sources of uncertainty in inferential summaries. In other
words, Bayesian inference are conditional on probability models that invariably contain
approximations in their attempt to represent complicated real-world relationships.

2.2.2 Some Family of Prior Distributions

As stated previously, a distribution can be used to represent prior knowledge or
relative ignorance which leads to a important choice to use Bayesian methods of inference.
In this section, it is illustrated some family of prior distributions which will be assumed
in future analysis in this thesis.

2.2.2.1 Informative Prior Distributions

There are two basic interpretations that can be given to prior distributions: pop-
ulation interpretation and knowledge interpretation. According to Gelman et al. (1995);
Box and Tiao (2011), in the population interpretation, the prior distribution represents
a population of possible parameter values, from which the 𝜃 of current interest has been
drawn. In the knowledge interpretation, the guiding principle is that we must express
our knowledge (and uncertainty) about 𝜃 as if its value could be thought of as a random
realization from the prior distribution. For many problems, the prior distribution should
include all plausible values of 𝜃, but the distribution need not be realistically concentrated
around the true value, because often the information about 𝜃 contained in the data will
far outweigh any reasonable prior probability specification.

2.2.2.2 Conjugated Prior Distributions

According to Gelman et al. (1995); Ehlers (2007) and Box and Tiao (2011), from
the knowledge about 𝜃, we could define a family of densities. In this case, the a priori
distribution is represented by a functional form whose parameters must be specified ac-
cording to this knowledge. These indexing parameters of the a priori distributions family
are called hyper-parameters to distinguish them from the parameters of interest.

Definition 1.2.2.2.1. If 𝐹 = {𝜋(𝑥 | 𝜃, 𝜃 ∈ Θ} is a class of sample distributions, then a
class of distributions 𝜋 is conjugated to 𝐹 if, for all 𝜋(𝑥 | 𝜃) ∈ 𝐹 and 𝜋(𝜃) ∈ 𝜋, we have
𝜋(𝜃 | 𝑥).

Definition 1.2.2.2.2. (Conjugated Family) In order to obtain a family of conjugate
distributions, two steps are required. That is,

1.) Identifying the 𝜋 class of distributions for 𝜃 such that 𝐿(𝜃 | 𝑥) is proportional to a
class member;
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2.) Verify that 𝜋 is closed by sampling, that is, if for all distributions 𝜋1, 𝜋2 ∈ 𝜋, there
exists a constant 𝑘 such that 𝑘𝜋1𝜋2 ∈ 𝜋.

2.2.2.3 Exponential Family Prior Distributions

Probability distributions that belong to an exponential family have natural con-
jugate prior distributions. In this case, we have the following definition:

Definition 1.2.2.3.1. The family of distributions with probability density function 𝜋(𝑥 |
𝜃) belongs to the exponential family to a parameter if,

𝜋(𝑥 | 𝜃) = 𝑎(𝑥) exp[𝑢(𝑥)𝜑(𝜃) + 𝑏(𝜃)] (2.33)

In this case, the conjugate class is identified as,

𝜋(𝜃) = 𝑘(𝛼, 𝛽) exp[𝛼𝜑(𝜃) + 𝛽𝑏(𝜃)] (2.34)

and, by Bayes’ theorem, it follows that:

𝜋(𝜃 | 𝑥) = 𝑘(𝛼 + 𝑢(𝑥), 𝛽 + 1) exp{[𝛼 + 𝑢(𝑥)]𝜑(𝜃) + (𝛽 + 1)𝑏(𝜃)} (2.35)

2.2.2.4 Non-informative Prior Distributions

According to Ehlers (2007) and Box and Tiao (2011), the first non-informative
prior idea that one can have is to think of all possible values of 𝜃 as equally probable.
However, this choice of priori may bring some technical difficulties, such as:

i.) If the range of 𝜃 is unlimited, then the prior distribution is improper, that is,∫︁
𝜋(𝜃)𝑑𝜃 = ∞.

ii.) If 𝜑 = 𝑔(𝜃) is a monotonous nonlinear re-parametrization of 𝜃, then 𝜋(𝜑) is non-
uniform since, by transforming variables, we have:

𝜋(𝜑) = 𝜋(𝜃(𝜑))

⃒⃒⃒⃒
𝑑𝜃

𝑑𝜑

⃒⃒⃒⃒
∝
⃒⃒⃒⃒
𝑑𝜃

𝑑𝜑

⃒⃒⃒⃒
(2.36)

Definition 1.2.2.4.1. (Jeffreys, 1946) Let 𝑋 be a observation with probability function
𝜋(𝑥 | 𝜃). The non-informative prior distribution has probability density function described
by:

𝜋(𝜃) ∝ [𝐼(𝜃)]
1/2 (2.37)

and, if 𝜃 is a parametric vector, then 𝑃 (𝜃) ∝ | det 𝐼(𝜃)|1/2 where 𝐼(𝜃) is the expected Fisher
information. The equation (2.37) is called Jeffrey’s Prior Distribution.

In general, a non-informative prior distribution is obtained by making the scale
parameter of the conjugate distribution tend to zero and setting the other parameters in
a convenient way (for more details, see Gelman et al., 1995; Zellner, 1996; Ghosh et al.,
2007; Box and Tiao, 2011).
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2.2.3 Point Estimation Method

In a Bayesian analysis, the posterior distribution, 𝑓(𝜃 | 𝑥), plays an important role
in statistical inferential procedure. There are various ways in which it could be summa-
rized. For example, we can report our findings through point estimates. Basically, point
estimate is the process of finding an approximate value of some parameter of a population
from random samples of the population (Britney and Winkler, 1974; Bernardo and Smith,
2001; Lehmann and Casella, 2006).

Definition 1.2.3.1. (Point Estimate) Let 𝑋1, . . . , 𝑋𝑛 be a random sample from a dis-
tribution with probability (density) function 𝜋(𝑥 | 𝜃) where the value of the parameter 𝜃
is unknown. In problems of this type, the value of 𝜃 must be estimated from the values
observed in the sample.

If 𝜃 ∈ Θ, then it is reasonable that the possible values of an estimator 𝛿(𝑋) must
also belong to the parametric space Θ and, in addition, a good estimator is that 𝛿(𝑋)− 𝜃

tends to zero.

Definition 1.2.3.2. For each possible value of 𝜃 and each possible estimate 𝑎 ∈ Θ, let
𝜂(𝑎, 𝜃) be the loss function so that, the greater the distance between 𝑎 and 𝜃, the greater
the loss. In this case, the expected minimum loss a posteriori is given by:

min𝐸(𝜂(𝑎, 𝜃) | 𝑥) = min

∫︁
𝜂(𝑎, 𝜃)𝑃 (𝜃 | 𝑥)𝑑𝜃 (2.38)

assuming that 𝐸(𝜂(𝑎, 𝜃) | 𝑥) is finite and that the minimum exists.

Definition 1.2.3.3. The absolute loss function, defined as 𝜂(𝑎, 𝜃) = |𝑎 − 𝜃|, introduces
penalties that grow linearly with the estimation error, and in this case the associated Bayes
estimate is the median of the posterior distribution of 𝜃.

Definition 1.2.3.4. To further reduce the effect of large estimation errors, we consider
functions that associate a fixed loss with a committed error, regardless of its magnitude.
The function that makes this association is called loss 0-1 and is defined by:

𝜂(𝑎, 𝜃) =

⎧⎨⎩1, if |𝑎− 𝜃| > 𝜖

0, if |𝑎− 𝜃| < 𝜖
(2.39)

where 𝜖 > 0. In this case, the Bayes estimator is the mode of the posterior distribution
of 𝜃. The mode of the posterior distribution of 𝜃 is also called the generalized maximum
likelihood estimator.
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2.2.4 Interval Estimation Method

The main constraint of the point estimate is that, when we estimate a parameter
through a single numerical value, all the information present in the posterior distribution
is summarized by means of this number. Some information, such as the coefficient of
variation for the posterior mean, the measurement of Fisher’s observed information for
the posteriori mode, and the quartiles for the posterior median, determine how precise the
specification of this number is. From this restriction, it is necessary to use a measure that
associates the posterior distribution itself and a point estimate. This measure is called
the credibility interval (Box and Tiao, 2011).

Definition 1.2.4.1. (Credibility Interval) 𝐶 is a credibility interval of 100(1 − 𝛼)%

for 𝜃 if 𝑃 (𝜃 ∈ 𝐶) ≥ 1− 𝛼. The credibility intervals are also invariant under 1:1 transfor-
mations, that is, if 𝐶 = [𝑎, 𝑏] is a 100(1 − 𝛼)% credibility interval for 𝜃, then [𝜑(𝑎), 𝜑(𝑏)]

is a 100(1 − 𝛼)% credibility interval for 𝑔(𝜃).

Definition 1.2.4.2. (High Posterior Density Interval) A 100(1 − 𝛼)% 𝐶 credibility
interval for 𝜃 is a high posterior density interval if 𝐶 = {𝜃 ∈ Θ : 𝑃 (𝜃 | 𝑥) ≥ 𝑘(𝛼)} where
𝑘(𝛼) is a constant such that 𝑃 (𝜃 ∈ 𝐶) ≥ 1 − 𝛼.

2.2.5 Markov Chains

Markov chains are stochastic models which play an important role in Bayesian
analysis and other fields such as biology, finance, and industrial production. Basically,
Markov chains are used for modeling how a system moves from one state to another in
time based on a conditional probability distribution which assigns a probability to the
move into a new state, given the current state of the system (see Gilks et al., 1995; Meyn
and Tweedie, 2012; Kijima, 2013).

Definition 1.2.5.1. A stochastic process is a collection of random variables 𝑋𝑖 indexed
over some set 𝐴, i.e. {𝑋𝑖 : 𝑖 ∈ 𝐴}. If 𝐴 is a discrete set, we have a discrete stochastic
process. If 𝐴 is continuous, we have a continuous stochastic process. Let 𝑋0, 𝑋1, · · · be a
stochastic process.

Definition 1.2.5.2. (Markov Chain) A Markov chain is a sequence of random variables
such that the next state 𝑋𝑖+1 depends only on the current state 𝑋𝑖 (memoryless property),
that is,

𝑃 (𝑋𝑖+1 = 𝑦 | 𝑋𝑖 = 𝑥𝑖, · · · , 𝑋0 = 𝑥0) = 𝑃 (𝑋𝑖+1 = 𝑦 | 𝑋𝑖 = 𝑥𝑖).

Remark 1.2.5.1. The probability 𝑃𝑥𝑦 = 𝑃 (𝑋𝑖+1 = 𝑦|𝑋𝑖 = 𝑥) is called the transition
kernel. Note that

∑︀
𝑦 𝑃𝑥𝑦 = 1. The initial distribution for 𝑋0 determine the distribution

for any 𝑛-th state.
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2.2.6 Gibbs Sampling Algorithm

The Gibbs sampler was developed by Geman and Geman (1984) and could be
used to generate specific multivariate distributions (see Gelfand and Smith, 1990; Chib
and Greenberg, 1995; Achcar and Leandro, 1998). For example, let Z𝑖 = (𝑋𝑖, 𝑌𝑖)

′ be a
Markov chain, 𝑓(𝑥, 𝑦) be a given joint density, 𝑓(𝑥 | 𝑦) and 𝑓(𝑦 | 𝑥) to be conditional
densities. In this case, the Gibbs sampling algorithm is given by:

1. Generate 𝑍0 = (𝑋0, 𝑌0)
′ and set 𝑖 = 1;

2. Generate 𝑋𝑖 ∼ 𝑓(𝑥𝑖 | 𝑌𝑖−1 = 𝑦𝑖−1) and 𝑌𝑖 ∼ 𝑓(𝑦𝑖 | 𝑋𝑖 = 𝑥𝑖);

3. Set 𝑖 = 𝑖+ 1 and go to step 2.

2.2.7 Deviance Information Criterion (DIC)

The Deviance Information Criterion (DIC) is a criterion specially useful for selec-
tion models under the Bayesian approach where samples of the posterior distribution for
the parameters of the model are obtained using MCMC methods. It is similar to AIC
Akaike (1974) with two changes: replace the maximum likelihood estimate 𝜃 with pos-
terior mean 𝜃𝐵𝑎𝑦𝑒𝑠 = E(𝜃 | y) and replace 𝑘 with a data-based bias correction. The new
measure of predictive accuracy, according to Gelman et al. (1995), is,

̂︂elpdDIC = log 𝑝(y | 𝜃𝐵𝑎𝑦𝑒𝑠) − 𝑝DIC, (2.40)

where 𝑝DIC is the effective number of parameters, defined as,

𝑝DIC = 2
(︁

log 𝑝(y | 𝜃𝐵𝑎𝑦𝑒𝑠 − E𝑝𝑜𝑠𝑡(log 𝑝(y | 𝜃)
)︁
, (2.41)

where the expectation in the second term is an average of 𝜃 over its posterior distribution.
The posterior mean of 𝜃 will produce the maximum log predictive density when it happens
to be the same as the mode, and negative 𝑝DIC can be produced if posterior mean is far
from the mode (Gelman et al., 1995; Spiegelhalter et al., 2014).

Finally, the actual quantity called DIC is defined in terms of the deviance rather
than the log predictive density. Thus,

DIC = −2 log 𝑝(y | 𝜃𝐵𝑎𝑦𝑒𝑠) + 2𝑝DIC (2.42)

Smaller values of DIC indicate better models. Note that these values could be negative.
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Chapter 3

An Extension of Bivariate Models Using
Mixture Cure Rate Models

3.1 Introduction

In many applications of bivariate lifetimes data, time-dependent association mea-
sures play a vital role as it is seen in medical recurrent events, engineering component
systems, toxicology studies, cancer studies and so on. Many bivariate distributions for
continuous random variables are introduced in the literature to be used in data anal-
ysis: Gumbel (1960); Freund (1961); Marshall and Olkin (1967a,b); Downton (1970);
Hawkes (1972);Block and Basu (1974); Hougaard (1986); Sarkar (1987); Arnold and
Strauss (1988); Hanagal (2006); Hanagal and Ahmadi (2008). However, it could be ob-
served in the literature that it is not very common the use of bivariate distributions for
survival data assuming discrete data. In fact, few discrete bivariate distributions have
been introduced in the literature as the bivariate geometric distribution of Arnold (1975)
and Basu and Dhar (1995), but these discrete distributions are still not very popular in
the analysis of bivariate lifetime data.

As stated previously, a common situation in lifetime data analysis is the presence
of censored observations. This feature in bivariate case provides a great complexity due
to the dependence structure between both lifetimes and, in general, it is required the
use of parametric models which capture the dependence of the bivariate lifetimes. Many
papers related to different parametric distributions are introduced in the literature to an-
alyze bivariate lifetime data in presence of censored data: Gumbel (1960); Freund (1961);
Marshall and Olkin (1967a,b); Downton (1970); Hawkes (1972); Block and Basu (1974);
Hougaard (1986); Sarkar (1987); Arnold and Strauss (1988); Muraleedharan Nair and Un-
nikrishnan Nair (1988); Basu and Dhar (1995); Sun and Basu (1995); Dhar (2003); Dhar
and Balaji (2006); Hanagal and Ahmadi (2008); Krishna and Pundir (2009); Davarzani
et al. (2015).
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On other hand, in the presence of a cure fraction, that is, a situation that we
could have a fraction of individuals not expecting the occurrence of the event of interest
(‘individuals are not at risk’, ‘long-term survivors’ or ‘cured individuals’), the literature
has very few papers related to use of cure rate models in the bivariate lifetime data analysis
which is a motivation for the models introduced in this thesis. For the univariate case,
different approaches have been presented in the literature to model cure rate: Farewell
(1982); De Angelis et al. (1999); Cancho and Bolfarine (2001); Price and Manatunga
(2001); Yu et al. (2004); Yin and Ibrahim (2005); Lambert et al. (2006); Lu (2010); Othus
et al. (2012); Achcar et al. (2012); Fernandes (2014).

In recent years, the research on the bivariate survival models has grown rapidly,
the use of Bayesian methods of inference have been very popular, especially under MCMC
(Markov Chain Monte Carlo) simulation techniques, for a parametric estimation in pres-
ence of censored data, cure rate or covariates (see for example, Achcar and Leandro,
1998; dos Santos and Achcar, 2011). Based on that, the main goal of this chapter is to
explore the performance and introduce new bivariate cure rate models as extensions of
some bivariate models presented in the literature as, for example, the bivariate exponen-
tial models Gumbel (1960); Freund (1961); Downton (1970); Block and Basu (1974) and
bivariate geometric Arnold (1975); Basu and Dhar (1995); Krishna and Pundir (2009)
under a Bayesian approach for medical studies where the results could be of great inter-
est for the search of appropriate bivariate lifetime distributions assuming a dependence
structure.

3.2 Construction of Bivariate Survival Models

Multivariate survival data are usual in many areas of application. A special charac-
teristic of multivariate data is the presence of a dependence structure among the random
variables. This usually occurs when an individual response is reported by a vector re-
lated to the occurrence of two or more events of interest, or when different individuals
have dependent event times (see Crowder, 2012; de Oliveira et al., 2018; de Oliveira and
Achcar, 2018). The multivariate normal distribution is usually assumed for the data anal-
ysis considering the original or transformed data. One reason for this parametric model
choice is the great flexibility of the multivariate normal distribution in terms of sim-
ple mathematical properties and a readily interpretable dependence structure (see, for
example, Anderson, 1957; Stein, 1962; Šidák, 1967; Sidák et al., 1968; Baranchik, 1970;
Khursheed and Lai Saxena, 1981; Tong, 2012). However, when the underlying process gen-
erates skewed data or the occurrence of the event of interest is rare, it is needed to assume
non-normal distributions for the data analysis. In this way, the construction and study
of skewed distributions is an active recent research field in statistics (see Vaidyanathan
et al., 2016).
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As more specific examples in multivariate lifetime applications, the times to de-
terioration level, the times of infection or the times to reaction for a treatment in pairs
of lungs, kidneys, eyes or ears of humans could be given as count of the number of days,
weeks or months. In this case, the use of a univariate continuous or discrete distribution
could lead to inaccurate inference results since the dependence structure is not considered
which is a great motivation to introduce new bivariate models, especially discrete. All
these applications give motivations to introduce new and more flexible discrete bivari-
ate lifetime distributions where new models are being introduced usually showing their
mathematical properties and presenting estimation procedures. In this direction special
attention has been given on bivariate geometric distributions and bivariate Poisson dis-
tributions (see for example Kocherlakota and Kocherlakota, 1992; Kocherlakota, 1995;
Arnold, 1975; Basu and Dhar, 1995; Kumar, 2008; Kemp, 2013; Lee and Cha, 2014; Nek-
oukhou and Kundu, 2017; Kundu and Nekoukhou, 2018) as alternatives to many bivariate
continuous models introduced in the literature (see for example, Block and Basu, 1974;
Marshall and Olkin, 1967a,b; Downton, 1970; Freund, 1961; Sarkar, 1987; Arnold and
Strauss, 1988; Gumbel, 1960; Hanagal, 2006; Hanagal and Ahmadi, 2008; Hawkes, 1972;
Hougaard, 1986; Balakrishnan and Lai, 2009).

In some cases, some of these bivariate lifetime distributions could present the joint
probability mass functions or the marginal probability mass functions in a not convenient
form to be used in applications, as the two classes of discrete bivariate distributions
introduced by Lee and Cha (2014), although the motivation for this model to be quite
simple based on the minimum and maximum of two independent non-identical distributed
random variables. In this model there are difficulties to compute the estimates of the
unknown parameters, and to derive different properties (see also, Nekoukhou and Kundu,
2017). From these considerations, there is a great motivation to introduce new bivariate
lifetime distributions with simple mathematical properties and simplifications to get the
inferences of interest, the main goal of this study. Another possible justification for the
use of the bivariate lifetime discrete distributions is the simplification of the likelihood
function in presence of censored data, a common situation in lifetime data applications as
in medical or engineering studies, when compared to some existing continuous bivariate
lifetime distributions where the likelihood function in presence of censored data usually
depends on not closed analytical forms for the joint or marginal survival functions.

In the construction of bivariate probability distributions, especially for the con-
tinuous case, the literature presents many different techniques such as: the use of copula
functions, mixing and compounding; the use of trivariate reduction; the specification of a
conditional and a marginal distribution; the use of a conditionally method; the construc-
tion of discrete bivariate distributions with given marginals and correlation; the use of
sums and limits of Bernoulli trials; the use of clusters; the construction of finite bivari-
ate distributions via extreme points via convex sets; the use of generalized distributions
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methods; the use of canonical correlation coefficients and semi-groups; the use of bivari-
ate distributions generated from weight functions; the use of marginal transformations
method; the use of truncation or the use of two-stage failure risks of a two-component
parallel system method; Marshall-Olkin methods; stress and shock models; the use of the
Morgenstern family proposed by Morgenstern (1956) and the use of the bivariate depen-
dence model proposed by Roy (2004b). According to Kemp and Papageorgiou (1982), the
main problem in the construction of bivariate distributions is the impossibility to have a
standard set of criteria that can always be applied to produce a unique bivariate distri-
bution obtained from an univariate distribution which could unequivocally be called the
bivariate version. For more details about the techniques above, the reader should consult
Marshall and Olkin (1967a,b, 1985); Kocherlakota and Kocherlakota (1992); Marshall and
Olkin (1997); Lai (2006); Balakrishnan and Lai (2009).

3.2.1 Stress and Shock Models

Shock and stress models are used in reliability to describe different applications.
Shocks can refer for example to damage caused to biological organs by illness or environ-
mental causes of damage acting on a technical system; stress can refer for example to two
components which were maintained working independently and they had an overall joint
maintenance scheduled at a fixed time.

The shock model structure introduced by Marshall and Olkin (1967b) (see also
A-hameed and Proschan, 1973) assumes three independent sources of shocks presented
in the environment of a system consisting of two components such that: a shock from
source 1 destroys the component 1, it occurs at a random time 𝑊1; a shock from source 2
destroys the component 2, it occurs at a random time 𝑊2; a shock from source 3 destroys
both components, it occurs at a random time 𝑊3.

Definition 2.2.1.1. Suppose that the components of a two-component system fail after re-
ceiving an overall fatal shock. Independent Poisson processes 𝑊1(𝑡, 𝛿1),𝑊2(𝑡, 𝛿2),𝑊3(𝑡, 𝛿3)

govern the occurrence of fatal shocks. Then, we have:

∙ Events in the process 𝑊1(𝑡, 𝛿1) are fatal shocks transmitted to component 1.

∙ Events in the process 𝑊2(𝑡, 𝛿2) are fatal shocks transmitted to component 2.

∙ Events in the process 𝑊3(𝑡, 𝛿3) are fatal shocks transmitted equally and independently
to both components.

Thus if 𝑋 = min(𝑊1,𝑊3) and 𝑌 = min(𝑊2,𝑊3) denote, respectively, the lifetimes of the
first and second components, we have that the probability of the system is working until
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an overall failure (in other words, the joint sf function) is given by,

P(𝑋 > 𝑥, 𝑌 > 𝑦) = P({𝑊1(𝑥) = 0,𝑊2(𝑦) = 0,𝑊3(max(𝑥, 𝑦)) = 0})

= 𝑃 ({min(𝑊1,𝑊3) > 𝑥}, {min(𝑊2,𝑊3) > 𝑦})

= 𝑃 ({𝑊1 > 𝑥,𝑊3 > 𝑥}, {𝑊2 > 𝑦,𝑊3 > 𝑦})

= 𝑃 (𝑊1 > 𝑥,𝑊2 > 𝑦,𝑊3 > max(𝑥, 𝑦)). (3.1)

Since the random variables 𝑊𝑗, (𝑗 = 1, 2, 3) are mutually independent, we have,

P(𝑋 > 𝑥, 𝑌 > 𝑦) = 𝑃 (𝑊1 > 𝑥)𝑃 (𝑊2 > 𝑦)𝑃 (𝑊3 > 𝑧), (3.2)

where 𝑧 = max(𝑥, 𝑦). For this model, the dependence structure of the random variables 𝑋
and 𝑌 is related to the common source of shock 3.

Now, considering a generalization for more than two components series systems,
it is considered first an extension of the fatal shock model to a three-component system
given in the following definition.

Definition 2.2.1.2. Let us now consider a three-component system. In this case, we have
independent Poisson processes such that:

∙ 𝑊1(𝑡, 𝛿1), 𝑊2(𝑡, 𝛿2), 𝑊3(𝑡, 𝛿3) govern the occurrence of fatal shocks to components
1, 2, 3, respectively;

∙ 𝑊12(𝑡, 𝛿12), 𝑊13(𝑡, 𝛿13), 𝑊23(𝑡, 𝛿23) govern the occurrence of fatal shocks to the com-
ponent pairs 1 and 2, 1 and 3, 2 and 3, respectively;

∙ 𝑊123(𝑡, 𝛿123) governs the occurrence of overall fatal shock to components 1, 2, 3.

Then, 𝑋 = min(𝑊1,𝑊12,𝑊13,𝑊123), 𝑌 = min(𝑊2,𝑊12,𝑊23,𝑊123) and 𝑍 = min(𝑊3,𝑊13,
𝑊23, 𝑊123). And, the probability of the system is working until an overall failure (in other
words, the trivariate sf function) is given by,

P(𝑋 > 𝑥, 𝑌 > 𝑦, 𝑍 > 𝑧) = P({𝑊1(𝑥) = 0,𝑊2(𝑦) = 0,𝑊3(𝑧) = 0,

𝑊12(max(𝑥, 𝑦)) = 0,𝑊13(max(𝑥, 𝑧)) = 0,

𝑊23(max(𝑦, 𝑧)) = 0,𝑊123(max(𝑥, 𝑦, 𝑧)) = 0}) (3.3)

Since the random variables 𝑊𝑗,𝑊𝑖𝑗, (𝑗 = 1, 2, 3; 𝑖 = 1, 2) and 𝑊123 are mutually indepen-
dent, we have,

P(𝑋 > 𝑥, 𝑌 > 𝑦, 𝑍 > 𝑧) = 𝑃 (𝑊1 > 𝑥)𝑃 (𝑊2 > 𝑦)𝑃 (𝑊3 > 𝑧)𝑃 (𝑊12 > max(𝑥, 𝑦))

× 𝑃 (𝑊13 > max(𝑥, 𝑧))𝑃 (𝑊23 > max(𝑦, 𝑧))

× 𝑃 (𝑊123 > max(𝑥, 𝑦, 𝑧)). (3.4)
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For the n-dimensional space, similar arguments hold. In this case, the probability of the
system is working until an overall failure is given by,

P(𝑋1 > 𝑥1, . . . , 𝑋𝑛 > 𝑥𝑛) = P(𝑊1 > 𝑥1) · . . . · 𝑃 (𝑊𝑛 > 𝑥𝑛) · 𝑃 (𝑊12 > max(𝑥1, 𝑥2)) ·
· . . . · 𝑃 (𝑊123 > max(𝑥1, 𝑥2, 𝑥3)) · . . . ·
𝑃 (𝑊12...𝑛 > max(𝑥1, . . . , 𝑥𝑛)) (3.5)

For the stress model structure introduced by Marshall and Olkin (1967a), it is
supposed that a system has two components, where each one is subjected to individual
independent stresses say 𝑈1 and 𝑈2 and the system has an overall stress 𝑈3 independently
transmitted equally to both components. The observed stresses for each one of the two
components are 𝑋1 = max(𝑈1, 𝑈3) and 𝑋2 = max(𝑈2, 𝑈3). Similar arguments to shock
model holds for the joint survival function.

3.2.2 Marshall-Olkin Method

Marshall and Olkin (1997) introduced a method to obtain an extended family of
distributions including one additional parameter called univariate Marshall-Olkin family
having cumulative distribution function 𝐺(𝑥) and survival function �̄�(𝑥) given, respec-
tively, by,

𝐺(𝑥) =
𝐹 (𝑥)

𝛼 + �̄�𝐹 (𝑥)
and �̄�(𝑥) =

𝛼𝑆(𝑥)

1 − �̄�𝑆(𝑥)
(3.6)

where 𝛼 > 0, �̄� = 1 − 𝛼 and −∞ < 𝑥 < ∞. This new family of distributions has an
additional parameter 𝛼 which generalizes the baseline distribution and is related to the
dependence structure of two random variables. This family could also be extended to the
multivariate case.

Let X = (𝑋1, . . . , 𝑋𝑛) be a random vector with multivariate cumulative and sur-
vival functions given, respectively, by 𝐹 (𝑥1, . . . , 𝑥𝑛) and 𝑆(𝑥1, . . . , 𝑥𝑛), the multivariate
Marshall-Olkin family has the cumulative distribution function 𝐺(𝑥1, . . . , 𝑥𝑛) and the
survival function �̄�(𝑥1, . . . , 𝑥𝑛) given, respectively, by,

𝐺(𝑥1, . . . , 𝑥𝑛) =
𝐹 (𝑥1, . . . , 𝑥𝑛)

𝛼 + �̄�𝐹 (𝑥1, . . . , 𝑥𝑛)
and �̄�(𝑥1, . . . , 𝑥𝑛) =

𝛼𝑆(𝑥1, . . . , 𝑥𝑛)

1 − �̄�𝑆(𝑥1, . . . , 𝑥𝑛)
(3.7)

where 𝛼 > 0, �̄� = 1−𝛼 and −∞ < 𝑥𝑖 <∞. Notice that the functions obtained in (3.7) are
more flexible than the functions obtained from the product of independent distributions
and provide a great flexibility in the modeling of the dependence structure.
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3.3 New Bivariate Probability Models

3.3.1 Bivariate Discrete Generalized Rayleigh Distribution

3.3.1.1 Introduction

In this subsection it is introduced a new bivariate discrete distribution derived
from two Rayleigh distributions using a method proposed by Marshall and Olkin where
an additional parameter is introduced related to the dependence structure of two discrete
random variables 𝑋1 and 𝑋2. It is shown that this new bivariate distribution has good
statistical properties and simple mathematical expression for its correlation coefficient.
Also, it is presented usual classical and Bayesian estimators for the parameters of the
proposed model. A simulation study is carried out in order to evaluate some frequentist
properties of the proposed model.

3.3.1.2 Model Description

Let 𝑋𝑖, 𝑖 = 1, 2 be two independent discrete random variables having the Rayleigh
distribution (see Roy, 2004a) with parameters 0 < 𝜆𝑖 < 1, 𝑖 = 1, 2. Since 𝑋𝑖, 𝑖 = 1, 2 are
independent, the joint survival function of the bivariate random variable 𝑋1 and 𝑋2 is
given by,

P(𝑋1,𝑋2)(𝑋1 > 𝑥1, 𝑋2 > 𝑥2) = 𝜆
𝑥2
1

1 𝜆
𝑥2
2

2 . (3.8)

Observe that the joint survival function in (3.8) is restricted to independent life-
times and it cannot be applied directly assuming dependence structures in bivariate data.
In this way, using the Marshall-Olkin survival function given in (3.7), the new proposed
joint survival function is given by,

P(𝑋1 > 𝑥1, 𝑋2 > 𝑥2) =
𝛼𝜆

𝑥2
1

1 𝜆
𝑥2
2

2

1 − �̄�𝜆
𝑥2
1

1 𝜆
𝑥2
2

2

(3.9)

where �̄� = 1 − 𝛼 and 𝛼 > 0. Observe that (3.9) is more flexible than (3.8) and can be
applied directly to model the dependence structure for correlated bivariate lifetimes. The
joint survival function defined by (3.9) is called the discrete bivariate generalized Rayleigh
(DBGR) distribution and it discrete contour is illustrated in Figure 1.

Definition 2.3.1.2.1. Let X = (𝑋1, 𝑋2) be a discrete random vector following the joint
survival function given by (3.9) with parameters 0 < 𝜆1, 𝜆2 < 1 and 𝛼 > 0. Defining
ℎ(𝑧1, 𝑧2) = 𝜆

𝑧21
1 𝜆

𝑧22
2 , 𝑧1, 𝑧2 ∈ R+, the joint probability mass function (pmf) of the X is given

by,

P(𝑋1 = 𝑥1, 𝑋2 = 𝑥2) =
𝛼[1 − �̄�2ℎ(𝑘1, 𝑘2)] [1 − �̄�ℎ(𝑥1, 𝑥2)]

−1𝐷𝑅(𝑥1, 𝜆1)𝐷𝑅(𝑥2, 𝜆2)

[1 − �̄� ℎ(𝑥1 + 1, 𝑥2)] [1 − �̄� ℎ(𝑥1, 𝑥2 + 1)] [1 − �̄� ℎ(𝑥1 + 1, 𝑥2 + 1)]

(3.10)



Chapter 3. An Extension of Bivariate Models Using Mixture Cure Rate Models 51

2 4 6 8 10

2
4

6
8

10

S(t1, t2)

S(t1)

S
(t 2

)

0.0

0.2

0.4

0.6

0.8

2 4 6 8 10

2
4

6
8

10

S(t1, t2)

S(t1)

S
(t 2

)

0.0

0.2

0.4

0.6

0.8

2 4 6 8 10

2
4

6
8

10

S(t1, t2)

S(t1)

S
(t 2

)

0.0

0.2

0.4

0.6

0.8

2 4 6 8 10

2
4

6
8

10

S(t1, t2)

S(t1)

S
(t 2

)

0.2

0.4

0.6

0.8

2 4 6 8 10

2
4

6
8

10

S(t1, t2)

S(t1)

S
(t 2

)

0.2

0.4

0.6

0.8

2 4 6 8 10

2
4

6
8

10

S(t1, t2)

S(t1)

S
(t 2

)

0.2

0.4

0.6

0.8

Figure 1 – Discrete contour plots of the joint survival function for DBGR model assuming
different parameter values (Upper-panels: fixed values given by 𝜆1 = 𝜆2 =
0.95, and 𝛼 = 0.50 → 1.00 → 1.50. Lower-panels: fixed values given by
𝜆1 = 𝜆2 = 0.99, and 𝛼 = 0.50 → 1.00 → 1.50).

where 𝑘𝑖 =
√︀
𝑥2𝑖 + (𝑥𝑖 + 1)2, 𝑖 = 1, 2; �̄� = 1 − 𝛼 and 𝐷𝑅(𝑥𝑖, 𝜆𝑖) = 𝜆

𝑥2
𝑖

𝑖 − 𝜆
(𝑥𝑖+1)2

𝑖 , 𝑖 =

1, 2 denotes a univariate discrete Rayleigh distribution. Observe that (3.10) is a proper
joint pmf by using the fact that the series expressed by

∑︀∞
𝑥1=0

∑︀∞
𝑥2=0ℎ(𝑥1, 𝑥2) converges to

1

4
[𝜗3(0, 𝜆1) + 1][𝜗3(0, 𝜆2) + 1] for 𝑧1, 𝑧2 ∈ R+ where 𝜗𝑎(𝑥, 𝑞) is the Jacobi theta function.

3.3.1.3 Mathematical Properties

For this distribution, the marginal distributions of 𝑋1 and 𝑋2 are given by dis-
crete generalized Rayleigh (DGR) distributions with corresponding parameters (𝜆1, 𝛼)

and (𝜆2, 𝛼), respectively. Since the DGR inherits most of the properties of the continuous
model in the univariate case, these marginals have great flexibility for the hazard func-
tion, given by bathtub, increasing and increasing-decreasing-increasing shapes depending
on the parameter values. Many properties of the continuous generalized Rayleigh distri-
bution were studied by MirMostafaee et al. (2017). The marginal survival and marginal
pmf functions can be expressed by,

Pr(𝑋𝑖 > 𝑥𝑖) =
𝛼𝜆

𝑥2
𝑖

𝑖

1 − �̄�𝜆
𝑥2
𝑖

𝑖

and Pr(𝑋𝑖 = 𝑥𝑖) =
𝛼
(︁
𝜆
𝑥2
𝑖

𝑖 − 𝜆
(𝑥𝑖+1)2

𝑖

)︁
(︁

1 − �̄�𝜆
(𝑥𝑖+1)2

𝑖

)︁(︁
1 − �̄�𝜆

𝑥2
𝑖

𝑖

)︁ , 𝑖 = 1, 2.

(3.11)
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The expected value and variance for the marginal probability distributions do not
have closed forms, however it could be computed using numerical methods from the mean
and variance around the origin given by,

E[𝑋𝑖] = 𝛼

(︃
∞∑︁

𝑥𝑖=1

𝜆
𝑥2
𝑖

𝑖

1 − �̄�𝜆
𝑥2
𝑖

𝑖

)︃
and Var(𝑋𝑖) =

∞∑︁
𝑥𝑖=1

(2𝑥2𝑖 − 1)𝛼𝜆
𝑥2
𝑖

𝑖

1 − �̄�𝜆
𝑥2
𝑖

𝑖

−
(︃

∞∑︁
𝑥𝑖=1

𝛼𝜆
𝑥2
𝑖

𝑖

1 − �̄�𝜆
𝑥2
𝑖

𝑖

)︃2

(3.12)
which could be approximated using the finite series given by:

∞∑︁
𝑥=1

𝜆𝑥
2

𝑖

1 − �̄�𝜆𝑥
2

𝑖

=
∞∑︁
𝑥=1

𝑑

𝑑𝛼
log(1 − �̄�𝜆𝑥

2

𝑖 ) ≈
𝑀∑︁
𝑗=1

(−1)𝑗+1(𝛼− 1)(𝑗−1)2 𝜆𝑗
2

𝑖

1 − 𝜆𝑗
2

𝑖

. (3.13)

Now, let us assume the transformation of the random variables 𝑋1 and 𝑋2 given
by 𝑊 = min(𝑋1, 𝑋2). In this case, the cumulative function of 𝑊 is given by,

Pr(𝑊 < 𝑤) = 1 − Pr(𝑊 > 𝑤) = 1 − 𝛼𝜆𝑤
2

1 𝜆𝑤
2

2

1 − �̄�𝜆𝑤
2

1 𝜆𝑤
2

2

= 1 − 𝛼(𝜆1𝜆2)
𝑤2

1 − �̄�(𝜆1𝜆2)𝑤
2

which implies that the distribution of 𝑊 is a discrete generalized Rayleigh (DGR) distri-
butions with corresponding parameters (𝜆1𝜆2, 𝛼). The expected value and variance could
also be approximated by the finite series given in (3.13).

On other hand, for the DBGR given by (3.10), the cross factorial moment between
𝑋1 and 𝑋2 is given by,

𝜇𝑋1,𝑋2 = E[𝑋1𝑋2] =
∞∑︁

𝑥1=1

∞∑︁
𝑥2=1

𝛼𝜆
𝑥2
1

1 𝜆
𝑥2
2

2

1 − �̄�𝜆
𝑥2
1

1 𝜆
𝑥2
2

2

. (3.14)

which is a monotonic increasing function of 𝜆1, 𝜆2 and 𝛼 since,

𝜕𝜇𝑋1,𝑋2

𝜕𝛼
= 𝛼

∞∑︁
𝑥1=1

∞∑︁
𝑥2=1

(1 − 𝜆
𝑥2
1

1 𝜆
𝑥2
2

2 )𝜆
𝑥2
1

1 𝜆
𝑥2
2

2

(1 − �̄�𝜆
𝑥2
1

1 𝜆
𝑥2
2

2 )2
> 0

and,

𝜕𝜇𝑋1,𝑋2

𝜕𝜆𝑖
= 𝛼

∞∑︁
𝑥1=1

∞∑︁
𝑥2=1

𝑥2𝑖𝜆
𝑥2
𝑖−1

𝑖 𝜆
𝑥2
𝑗

𝑗

(1 − �̄�𝜆
𝑥2
𝑖

𝑖 𝜆
𝑥2
𝑗

𝑗 )2
> 0

for 𝑖, 𝑗 = 1, 2; 𝑖 ̸= 𝑗. However, the cross factorial also could be approximated using se-
ries representation of the logarithmic function. That is, suppose that 𝑀 is an integer
sufficiently large and |(𝛼− 1)𝜆𝑖𝑥

2
𝑖 | < 1, 𝑖 = 1, 2, thus we have,

𝜇𝑋1,𝑋2 =
∞∑︁

𝑥1=1

∞∑︁
𝑥2=1

𝑑

𝑑𝛼
log(1 − �̄�𝜆

𝑥2
1

1 𝜆
𝑥2
2

2 ) ≈
𝑀∑︁
𝑗=1

(𝛼− 1)(𝑗−1)2 𝜆𝑗
2

1 𝜆
𝑗2

2

(1 − 𝜆𝑗
2

1 )(1 − 𝜆𝑗
2

2 )

which is a finite series and can be determined when the parameters of the distribution
are estimated from a dataset.
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Theorem 2.3.1.3.1. (Covariance signal) Given the function

Ψ(𝛼) =
(︁

1 − �̄�𝜆
𝑥2
1

1

)︁(︁
1 − �̄�𝜆

𝑥2
2

2

)︁
− 𝛼

(︁
1 − �̄�𝜆

𝑥2
1

1 𝜆
𝑥2
2

2

)︁
(3.15)

then Ψ(𝛼) > 0 if 0 < 𝛼 < 1, Ψ(𝛼) = 1 if 𝛼 = 0 and Ψ(𝛼) < 0 if 𝛼 > 1. That is, the
covariance signal only depends on the parameter 𝛼.

Proof. Note that the Ψ(𝛼) is a continuous function on 𝛼 and its first derivative is given
by,

Ψ′(𝛼) = −
(︁

1 − 𝜆
𝑥2
1

1

)︁(︁
1 − 𝜆

𝑥2
2

2

)︁
< 0, for all 𝛼 > 0.

Note that, since Ψ(0) =
(︁

1 − 𝜆
𝑥2
1

1

)︁(︁
1 − 𝜆

𝑥2
2

2

)︁
> 0 and Ψ(1) = 0, then Ψ(𝛼) > 0 if

0 < 𝛼 < 1. On the other hand, if 𝛼 = 1 then Ψ(𝛼) = 0; if 𝛼 > 1 then Ψ(𝛼) < 0 and the
proof is complete.

From the function Ψ(𝛼) given in (3.15), the proposed model admits a very flexible
correlation coefficient 𝜌 of any sign. In fact it is observed that if Ψ(𝛼) > 0, 𝜌 > 0 and if
Ψ(𝛼) < 0, 𝜌 < 0. If Ψ(𝛼) = 0 the correlation coefficient is equal to zero. Although there is
no closed form for the expressions of the covariance and correlation coefficient this could
be computed by taking a large number of terms in the series. In Table 1, it is illustrated
a numerical experiment for the covariance and correlation coefficients for some values of
𝛼, 𝜆1 and 𝜆2 from where it could be seen the flexibility of the correlation coefficient 𝜌.

Table 1 – Theoretical dependence measures assuming a DBGR distribution.

(𝛼, 𝜆1, 𝜆2) E[𝑋1𝑋2] cov(𝑋1, 𝑋2) 𝜌

(0.2, 0.2, 0.2) 0.0084 0.0061 0.1281
(0.8, 0.2, 0.2) 0.0327 0.0046 0.0310
(0.5, 0.5, 0.5) 0.1777 0.0433 0.0980
(1.0, 0.5, 0.5) 0.3186 0.0000 0.0000
(1.2, 0.5, 0.5) 0.3676 -0.0191 -0.0267
(1.5, 0.5, 0.5) 0.4348 -0.0466 -0.0579
(1.8, 0.8, 0.8) 2.6964 -0.2225 -0.0298
(2.0, 0.8, 0.8) 2.8597 -0.2721 -0.0342

Finally, for the proposed DBGR model, the conditional distribution of 𝑋𝑗 given
𝑋𝑖, 𝑖, 𝑗 = 1, 2 and 𝑖 ̸= 𝑗 are given by,

P(𝑋𝑗 | 𝑋𝑖 = 𝑥𝑖) =
[1 − �̄�2ℎ(𝑘𝑖, 𝑘𝑗)] [1 − �̄�ℎ(𝑥𝑖, 𝑥𝑗)]

−1 [1 − �̄�(𝐷𝑅(𝑥𝑖, 𝜆𝑖) + �̄�𝜆
(𝑥𝑖+1)2

𝑖 𝜆
𝑥2
𝑖

𝑖 )]

[1 − �̄� ℎ(𝑥𝑖 + 1, 𝑥𝑗)] [1 − �̄� ℎ(𝑥𝑖, 𝑥𝑗 + 1)]

× [𝐷𝑅(𝑥𝑗, 𝜆𝑗)]

[1 − �̄� ℎ(𝑥𝑖 + 1, 𝑥𝑗 + 1)]

(3.16)

where 𝐷𝑅(𝑥𝑖, 𝜆𝑖) = 𝜆
𝑥2
𝑖

𝑖 − 𝜆
(𝑥𝑖+1)2

𝑖 , 𝑖 = 1, 2 denotes a univariate discrete Rayleigh distri-
bution.
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Proposition 2.3.1.3.1. (Special cases) Some especial cases of the DBGR are given by,

i.) If 𝜆1 = 𝜆2, the pmf of DBGR is symmetric in its arguments, that is, P(𝑋1 =

𝑥1, 𝑋2 = 𝑥2) = P(𝑋2 = 𝑥2, 𝑋1 = 𝑥1) for all 𝑥1, 𝑥2 ∈ N.

ii.) If 𝜆1 = 𝜆2 = 𝛼 = 𝜆, the pmf of DBGR is also symmetric in its arguments and
its reduced to a one parameter bivariate discrete distribution with probability mass
function given by,

𝜆𝑥1+𝑥2+1[(1 − 𝜆)2 − (1 − 𝜆)4𝜆𝑥
2
1+𝑥2

2+(𝑥1+1)2+(𝑥2+1)2 ]

(1 − 𝜆𝑥1+𝑥2+1)(1 − 𝜆𝑥1+𝑥2+2)(1 − 𝜆𝑥1+𝑥2+3)
(3.17)

iii.) If 0 < 𝛼 < 1 and 𝜆1 = 𝜆2 = 𝜆, the pmf of DBGR can be rewritten as an infinite
mixture of the product of two Rayleigh distributions.

Proof. (i) and (ii) are trivial. For (iii), the result is obtained by considering the series
representation,

(1 − 𝑏)−𝑘 =
∞∑︁
𝑗=0

Γ(𝑘 + 𝑗)

Γ(𝑗 + 1)Γ(𝑘)
𝑏𝑗, |𝑏| < 1, 𝑘 > 0 (3.18)

and noticing that P(𝑋1 > 𝑥1, 𝑋2 > 𝑥2) =
𝛼𝜆𝑥

2
1+𝑥2

2

1 − �̄�𝜆𝑥
2
1+𝑥2

2

= 𝛼𝜆𝑥
2
1+𝑥2

2

∞∑︁
𝑗=0

(�̄�𝜆𝑥
2
1+𝑥2

2)𝑗.

Definition 2.3.1.3.2. (Multivariate extension) Let 𝑋𝑖, 𝑖 = 1, . . . , 𝑛 be 𝑛 independent
discrete random variables having the Rayleigh distribution with parameters 0 < 𝜆𝑖 < 1, 𝑖 =

1, . . . , 𝑛. Since 𝑋𝑖, 𝑖 = 1, . . . , 𝑛 are independent, the multivariate survival and multivariate
pmf functions are given, respectively by,

𝑃 (𝑋1 > 𝑥1, . . . , 𝑋𝑛 > 𝑥𝑛) =
𝛼𝜆

𝑥2
1

1 . . . 𝜆
𝑥2
𝑛

𝑛

1 − �̄�𝜆
𝑥2
1

1 . . . 𝜆
𝑥2
𝑛

𝑛

(3.19)

and,

𝑃 (𝑋1 = 𝑥1, . . . , 𝑋𝑛 = 𝑥𝑛) =

𝛼

𝑛∏︁
𝑖=1

𝜆
𝑥2
𝑖

𝑖

1 − �̄�
𝑛∏︁

𝑖=1

𝜆
𝑥2
𝑖

𝑖

−
𝛼𝜆

𝑥2
1

1

𝑛∏︁
𝑖=2

𝜆
(𝑥𝑖+1)2

𝑖

1 − �̄�𝜆
𝑥2
1

1

𝑛∏︁
𝑖=2

𝜆
(𝑥𝑖+1)2

𝑖

+ . . .+

+ . . .+ (−1)𝑛
𝛼

𝑛∏︁
𝑖=1

𝜆
(𝑥𝑖+1)2

𝑖

1 − �̄�
𝑛∏︁

𝑖=1

𝜆
(𝑥𝑖+1)2

𝑖

(3.20)

For the multivariate model, the dependence between the n lifetimes is specified by
the parameter 𝛼, where if 𝛼 = 1 there is independence between the n lifetimes. The model
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adequacy could be checked by comparisons of the fitted marginal survival functions with
the empirical estimates of the marginal survival distributions since the marginal survival
functions are discrete generalized Rayleigh distributions as well. Moreover, the correlation
coefficient for the multivariate case has the same properties of the correlation coefficient
of the bivariate model, that is, it could be negative, positive or zero. Since it is needed
extensive calculations for the multivariate case, their properties will not be derived here.

3.3.1.4 Inference Methods

Now, let (𝑋11, 𝑋21), (𝑋12, 𝑋22), . . . , (𝑋1𝑛, 𝑋2𝑛) be a random sample of size 𝑛 from
a DBGR distribution. The log-likelihood function ℓ(𝜆1, 𝜆2, 𝛼) is given by:

ℓ(𝜆1, 𝜆2, 𝛼) = (𝑛1 + 𝑛2) log(𝛼) +

𝑛1∑︁
𝑠=1

𝑛2∑︁
𝑡=1

log
(︁

1 − �̄�2𝜆
𝑥2
1𝑠

1 𝜆
𝑥2
2𝑡

2 𝜆
(𝑥1𝑠+1)2

1 𝜆
(𝑥2𝑡+1)2

2

)︁
+

𝑛1∑︁
𝑠=1

log
(︁
𝜆
𝑥2
1𝑠

1 − 𝜆
(𝑥1𝑠+1)2

1

)︁
+

𝑛2∑︁
𝑡=1

log
(︁
𝜆
𝑥2
2𝑡

2 − 𝜆
(𝑥2𝑡+1)2

2

)︁
−

𝑛1∑︁
𝑠=1

𝑛2∑︁
𝑡=1

log
(︁

1 − �̄�𝜆
(𝑥1𝑠+1)2

1 𝜆
𝑥2
2𝑡

2

)︁
−

𝑛1∑︁
𝑠=1

𝑛2∑︁
𝑡=1

log
(︁

1 − �̄�𝜆
𝑥2
1𝑠

1 𝜆
(𝑥2𝑡+1)2

2

)︁
−

𝑛1∑︁
𝑠=1

𝑛2∑︁
𝑡=1

log
(︁

1 − �̄�𝜆
𝑥2
1𝑠

1 𝜆
𝑥2
2𝑡

2

)︁
−

𝑛1∑︁
𝑠=1

𝑛2∑︁
𝑡=1

log
(︁

1 − �̄�𝜆
(𝑥1𝑠+1)2

1 𝜆
(𝑥2𝑡+1)2

2

)︁
.

(3.21)

The normal equations (partial derivatives of the log–likelihood functions equating
to zero) obtained from (3.21), are not reproduced here as they cannot be solved explicitly.
They must be solved either by numerical methods as, for example, the Newton-Rapshon
optimization method or by directly maximizing the log-likelihood function. Since the
global maximum of the log–likelihood surface is not guaranteed, different initial values in
the parameter space can be considered as a seed point. From the log-likelihood, the first
derivatives of ℓ(𝜆1, 𝜆2, 𝛼) with respect to 𝜆1, 𝜆2 and 𝛼 are given, respectively by,

i.)
𝜕ℓ

𝜕𝜆1
=

𝑛1∑︁
𝑠=1

𝑛2∑︁
𝑡=1

(︁
�̄�(𝑥1𝑠 + 1)2𝜆

(𝑥1𝑠+1)2−1
1 𝜆

(𝑥2𝑡+1)2

2

)︁
(︁

1 − �̄�𝜆
(𝑥1𝑠+1)2

1 𝜆
(𝑥2𝑡+1)2

2

)︁ +

𝑛1∑︁
𝑠=1

𝑛2∑︁
𝑡=1

(︁
�̄�𝑥21𝑠𝜆

𝑥2
1𝑠−1

1 𝜆
(𝑥2𝑡+1)2

2
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(︁

1 − �̄�𝜆
𝑥2
1𝑠

1 𝜆
(𝑥2𝑡+1)2

2

)︁
+

𝑛1∑︁
𝑠=1

(︁
𝑥21𝑠𝜆

𝑥2
1𝑠−1

1 − (𝑥1𝑠 + 1)2𝜆
(𝑥1𝑠+1)2−1
1

)︁
(︁
𝜆
𝑥2
1𝑠

1 − 𝜆
(𝑥1𝑠+1)2

1

)︁ +

𝑛1∑︁
𝑠=1

𝑛2∑︁
𝑡=1

(︁
�̄�(𝑥1𝑠 + 1)2𝜆

(𝑥1𝑠+1)2−1
1 𝜆

𝑥2
2𝑡

2

)︁
(︁
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1 𝜆
𝑥2
2𝑡

2
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+

𝑛1∑︁
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𝑡=1

(︁
�̄�𝑥21𝑠𝜆

𝑥2
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2

)︁
(︁
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𝑥2
1𝑠

1 𝜆
𝑥2
2𝑡

2
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𝑠=1

𝑛2∑︁
𝑡=1

�̄�2𝑥21𝑠𝜆
𝑥2
1𝑠−1

1 𝜆
𝑥2
2𝑡

2 (𝑥1𝑠 + 1)2𝜆
(𝑥1𝑠+1)2−1
1 𝜆

(𝑥2𝑡+1)2

2(︁
1 − �̄�2𝜆

𝑥2
1𝑠

1 𝜆
𝑥2
2𝑡

2 𝜆
(𝑥1𝑠+1)2

1 𝜆
(𝑥2𝑡+1)2

2

)︁
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ii.)
𝜕ℓ

𝜕𝜆2
=

𝑛2∑︁
𝑡=1

(︁
𝑥22𝑡𝜆

𝑥2
2𝑡−1

2 − (𝑥2𝑡 + 1)2𝜆
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2
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𝜆
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2
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+
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2𝑡

2
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�̄�2𝑥22𝑡𝜆
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1 𝜆
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2 (𝑥2𝑡 + 1)2𝜆
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2(︁

1 − �̄�2𝜆
𝑥2
1𝑠

1 𝜆
𝑥2
2𝑡

2 𝜆
(𝑥1𝑠+1)2

1 𝜆
(𝑥2𝑡+1)2

2

)︁
iii.)

𝜕ℓ

𝜕𝛼
=
𝑛1 + 𝑛2

𝛼
+

𝑛1∑︁
𝑠=1

𝑛2∑︁
𝑡=1

2�̄�𝜆
𝑥2
1𝑠

1 𝜆
𝑥2
2𝑡

2 𝜆
(𝑥1𝑠+1)2

1 𝜆
(𝑥2𝑡+1)2

2(︁
1 − �̄�2𝜆

𝑥2
1𝑠

1 𝜆
𝑥2
2𝑡

2 𝜆
(𝑥1𝑠+1)2

1 𝜆
(𝑥2𝑡+1)2

2

)︁
+

𝑛1∑︁
𝑠=1

𝑛2∑︁
𝑡=1

𝜆
(𝑥1𝑠+1)2

1 𝜆
(𝑥2𝑡+1)2

2(︁
1 − �̄�𝜆

(𝑥1𝑠+1)2

1 𝜆
(𝑥2𝑡+1)2

2

)︁ +

𝑛1∑︁
𝑠=1

𝑛2∑︁
𝑡=1

𝜆
(𝑥2𝑡+1)2

2 𝜆
𝑥2
1𝑠

1(︁
1 − �̄�𝜆

(𝑥2𝑡+1)2

2 𝜆
𝑥2
1𝑠

1

)︁
+

𝑛1∑︁
𝑠=1

𝑛2∑︁
𝑡=1

𝜆
(𝑥1𝑠+1)2

1 𝜆
𝑥2
2𝑡

2(︁
1 − �̄�𝜆

(𝑥1𝑠+1)2

1 𝜆
𝑥2
2𝑡

2

)︁ +

𝑛1∑︁
𝑠=1

𝑛2∑︁
𝑡=1

𝜆
𝑥2
1𝑠

1 𝜆
𝑥2
2𝑡

2(︁
1 − �̄�𝜆

𝑥2
1𝑠

1 𝜆
𝑥2
2𝑡

2

)︁
Under standard asymptotic maximum likelihood theory, a consistent estimator for

the covariance matrix of ( ̂︀𝜆1, ̂︀𝜆2, ̂︀𝛼) is obtained by the inverse of the Fisher information of
(𝜆1, 𝜆2, 𝛼), evaluated at (𝜆1, 𝜆2, 𝛼) = ( ̂︀𝜆1, ̂︀𝜆2, ̂︀𝛼). In this case, the Fisher information could
be approximate by the second derivatives of the log-likelihood function with respect to
𝜆1, 𝜆2 and 𝛼 locally at the obtained MLE’s, that is,

𝐼0( ̂︀𝜆1, ̂︀𝜆2, ̂︀𝛼) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 𝜕2ℓ

𝜕2𝜆21
− 𝜕2ℓ

𝜕2𝜆1𝜆2
− 𝜕2ℓ

𝜕2𝜆1𝛼

− 𝜕2ℓ

𝜕2𝜆2𝜆1
− 𝜕2ℓ

𝜕2𝜆22
− 𝜕2ℓ

𝜕2𝜆2𝛼

− 𝜕2ℓ

𝜕2𝛼𝜆1
− 𝜕2ℓ

𝜕2𝛼𝜆2
− 𝜕2ℓ

𝜕2𝛼2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
̂︁𝜆1,̂︁𝜆2,̂︀𝛼

(3.22)

Hypothesis testing and confidence intervals for 𝜆1, 𝜆2 and 𝛼 could be obtained by
using the asymptotically normality of the MLEs ̂︀𝜆1, ̂︀𝜆2 and ̂︀𝛼 and the observed Fisher
information matrix 𝐼0, that is,

( ̂︀𝜆1, ̂︀𝜆2, ̂︀𝛼) ∼ 𝑁 [( ̂︀𝜆1, ̂︀𝜆2, ̂︀𝛼), 𝐼−1
0 ] (3.23)

On other hand, in many applications related to lifetime data, it is common the
presence of censored data, that could be right, left or interval censoring. In this section, let
us assume the presence of right censored data, that is, associated to each lifetime 𝑋𝑗, 𝑗 =

1, 2, there is a fixed censoring time 𝐶𝑗 and the data are given by 𝑇1 = min(𝑋1, 𝐶1) and
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𝑇2 = min(𝑋2, 𝐶2). The likelihood function for the parameters of the DBGR distribution
has the dataset classified in four regions:

∙ 𝐶1: Both, 𝑋1𝑖 and 𝑋2𝑖, are complete observations;

∙ 𝐶2: 𝑋1𝑖 are complete and 𝑋2𝑖 are censored;

∙ 𝐶3: 𝑋1𝑖 are censored and 𝑋2𝑖 are complete;

∙ 𝐶4: Both, 𝑋1𝑖 and 𝑋2𝑖, are censored observations.

Thus, the likelihood function for 𝜆1, 𝜆2 and 𝛼 based on 𝑛 bivariate observations t𝑖 =

(𝑡1𝑖, 𝑡2𝑖), 𝑖 = 1, 2, . . . , 𝑛 is given by,

𝐿(𝜆1, 𝜆2, 𝛼) =
∏︁
𝑖∈𝐶1

P(𝑇1𝑖 = 𝑡1𝑖, 𝑇2𝑖 = 𝑡2𝑖) ×
∏︁
𝑖∈𝐶2

P(𝑇1𝑖 = 𝑡1𝑖, 𝑇2𝑖 > 𝑡2𝑖)

×
∏︁
𝑖∈𝐶3

P(𝑇1𝑖 > 𝑡1𝑖, 𝑇2𝑖 = 𝑡2𝑖) ×
∏︁
𝑖∈𝐶4

P(𝑇1𝑖 > 𝑡1𝑖, 𝑇2𝑖 > 𝑡2𝑖)

(3.24)

where P(𝑇1𝑖 = 𝑡1𝑖, 𝑇2𝑖 > 𝑡2𝑖) = P(𝑇1𝑖 > 𝑡1𝑖 − 1, 𝑇2𝑖 > 𝑡2𝑖) − P(𝑇1𝑖 > 𝑡1𝑖, 𝑇2𝑖 > 𝑡2𝑖) and
P(𝑇1𝑖 > 𝑡1𝑖, 𝑇2𝑖 = 𝑡2𝑖) = P(𝑇1𝑖 > 𝑡1𝑖, 𝑇2𝑖 > 𝑡2𝑖 − 1) − P(𝑇1𝑖 > 𝑡1𝑖, 𝑇2𝑖 > 𝑡2𝑖). Let us also to
define the following indicator variables of censoring,⎧⎨⎩𝛿1𝑖 = 1 if 𝑋1𝑖 < 𝐶1𝑖 and 0, for the other part.

𝛿2𝑖 = 1 if 𝑋2𝑖 < 𝐶2𝑖 and 0, for the other part.
(3.25)

where 𝑖 = 1, 2, . . . , 𝑛; (𝐶1𝑖, 𝐶2𝑖) are the right censoring times. From equation (3.25), it is
obtained the following results for the likelihood function:

(a) For 𝛿1𝑖 = 𝛿2𝑖 = 1, it is obtained,

P(𝑇1𝑖 = 𝑡1𝑖, 𝑇2𝑖 = 𝑡2𝑖) =

{︃[︁
1 − �̄�2ℎ

(︁√︀
𝑡21𝑖 + (𝑡1𝑖 + 1)2,

√︀
𝑡22𝑖 + (𝑡2𝑖 + 1)2

)︁]︁
[1 − �̄� ℎ(𝑡1𝑖 + 1, 𝑡2𝑖)] [1 − �̄� ℎ(𝑡1𝑖, 𝑡2𝑖 + 1)]

× 𝛼𝐷𝑅(𝑡1𝑖, 𝜆1)𝐷𝑅(𝑡2𝑖, 𝜆2)

[1 − �̄� ℎ(𝑡1𝑖 + 1, 𝑡2𝑖 + 1)] [1 − �̄�ℎ(𝑡1𝑖, 𝑡2𝑖)]

}︃𝛿1𝑖𝛿2𝑖

(b) For 𝛿1𝑖 = 1, 𝛿2𝑖 = 0, it is obtained,

P(𝑇1𝑖 = 𝑡1𝑖, 𝑇2𝑖 > 𝑡2𝑖) =

{︃
𝛼ℎ(𝑡1𝑖, 𝑡2𝑖 + 1)

1 − �̄�ℎ(𝑡1𝑖, 𝑡2𝑖 + 1)
− 𝛼ℎ(𝑡1𝑖, 𝑡2𝑖)

1 − �̄�ℎ(𝑡1𝑖, 𝑡2𝑖)

}︃𝛿1𝑖(1−𝛿2𝑖)

(c) For 𝛿1𝑖 = 0, 𝛿2𝑖 = 1, it is obtained,

P(𝑇1𝑖 = 𝑡1𝑖, 𝑇2𝑖 > 𝑡2𝑖) =

{︃
𝛼ℎ(𝑡1𝑖 + 1, 𝑡2𝑖)

1 − �̄�ℎ(𝑡1𝑖 + 1, 𝑡2𝑖)
− 𝛼ℎ(𝑡1𝑖, 𝑡2𝑖)

1 − �̄�ℎ(𝑡1𝑖, 𝑡2𝑖)

}︃𝛿2𝑖(1−𝛿1𝑖)
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(d) For 𝛿1𝑖 = 0, 𝛿2𝑖 = 0, it is obtained,

P(𝑇1𝑖 = 𝑡1𝑖, 𝑇2𝑖 > 𝑡2𝑖) =

{︃
𝛼ℎ(𝑡1𝑖, 𝑡2𝑖)

1 − �̄�ℎ(𝑡1𝑖, 𝑡2𝑖)

}︃(1−𝛿2𝑖)(1−𝛿1𝑖)

3.3.1.5 A Simulation Study

This section reports the results of a simulation study carried out to assess the
performance of the MLEs of the DBGR model assuming complete data. The simulation
study was performed using the library maxLik from the R software and considering the
BFGS optimization method. To simulate observations from DBGR model, the marginal
distribution of 𝑋1 and the conditional distribution of 𝑋2 given 𝑋1 were used following
the steps:

∙ Step 1: Generate 𝑈1 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 1) and 𝑈2 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 1);

∙ Step 2: Generate a value 𝑥1 of 𝑋1 from the marginal distribution of 𝑋1 using the
inverse transformation method;

∙ Step 3: Generate a value 𝑥2 of 𝑋2 using the inverse transformation method again
based on the conditional distribution of 𝑋2 given 𝑋1 = 𝑥1;

∙ Step 4: Return 𝑋 = (𝑋1, 𝑋2).

It was performed the simulation study under three scenarios considering the follow-
ing parameter values assumed for better computational stability: (𝜆1, 𝜆2, 𝛼) = (𝜆1, 0.90,
2.00) where 𝜆1 = 0.40, 0.50, 0.70, 0.80 for the first scenario; (𝜆1, 𝜆2, 𝛼) = (0.95, 𝜆2, 2.50)

where 𝜆2 = 0.40, 0.50, 0.70, 0.80 for the second scenario; and (𝜆1, 𝜆2, 𝛼) = (0.95, 0.97, 𝛼)

where 𝛼 = 0.50, 1.00, 1.50, 2.00 for the third scenario. It was also considered the sample
sizes 𝑛 = 10, . . . , 100, each one involving 10,000 Monte Carlo replications.

For each scenario, the mean of the 10,000 estimated parameter component of
the vector of parameters (𝜆1, 𝜆2, 𝛼), the biases and the RMSE were computed using the
expressions:

𝐵𝐼𝐴𝑆(̂︀Ψ) =
1

𝑁

𝑁∑︁
𝑖=1

(̂︀Ψ𝑖 −Ψ), 𝑅𝑀𝑆𝐸(̂︀Ψ) =

⎯⎸⎸⎷ 1

𝑁

𝑁∑︁
𝑖=1

(̂︀Ψ𝑖 −Ψ)2

where 𝑁 = 10, 000 is the number of simulations and Ψ denotes each parameter 𝜆1, 𝜆2
or 𝛼. The obtained simulation results for each scenario are illustrated, respectively, in
Figures 2, 3 and 4.
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Figure 2 – The biases (upper panels) and RMSEs (lower panels) for the DBGR distri-
bution assuming (𝜆1, 𝜆2, 𝛼) = (𝜆1, 0.90, 2.00) where ∘ : 𝜆1 = 0.40;△ : 𝜆1 =
0.50; + : 𝜆1 = 0.60;× : 𝜆1 = 0.70.
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Figure 3 – The biases (upper panels) and RMSEs (lower panels) for the DBGR distri-
bution assuming (𝜆1, 𝜆2, 𝛼) = (0.95, 𝜆2, 2.50) where ∘ : 𝜆2 = 0.35;△ : 𝜆2 =
0.40; + : 𝜆2 = 0.45;× : 𝜆2 = 0.50.
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Figure 4 – The biases (upper panels) and RMSEs (lower panels) for the DBGR distri-
bution assuming (𝜆1, 𝜆2, 𝛼) = (0.95, 0.97, 𝛼) where ∘ : 𝛼 = 0.50;△ : 𝛼 =
0.75; + : 𝛼 = 1.00;× : 𝛼 = 1.25.

From the simulation results illustrated in Figures 2, 3 and 4, it is possible to
conclude that,

i.) For all considered scenarios, the biases and RMSEs tends to zero when the sample
size increases. The convergence to zero is much faster in the third scenario (𝜆1, 𝜆2
fixed);

ii.) The parameters 𝜆1 and 𝜆2 have negative biases for all considered scenarios. The
parameter 𝛼 has a positive bias for all scenarios;

iii.) The parameters 𝜆1 and 𝜆2 have small values for the biases and RMSEs; however the
parameter 𝛼 has high values for the biases and RMSEs;

iv.) The smallest values for the biases were obtained for the third scenario; the smallest
values for the RMSE were also obtained for the third scenario;

v.) From the simulations results, it is concluded that the the DBGR distribution has
better asymptotically non-biased estimation in the third scenario since 𝐸(𝜆𝑖) ≈
𝜆𝑖, 𝑖 = 1, 2 and 𝐸(𝛼) ≈ 𝛼 in this scenario; for the other scenarios, it is needed a
sample size 𝑛 > 100 to obtain the results 𝐸(𝜆𝑖) ≈ 𝜆𝑖 and 𝐸(𝛼) ≈ 𝛼;
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vi.) It is important to point out that the simulation study also could be made using
a Bayesian approach with different prior distributions for the parameters of the
DBGR distribution.

vii.) Based on these simulation results, it could be concluded that the DBGR distribution
could be used as an alternative to other existing discrete bivariate distributions (such
as the Basu-Dhar bivariate geometric distribution introduced by Basu and Dhar,
1995) to describe bivariate lifetimes with good accuracy in applications.

3.3.2 A Class of Bivariate Lindley Distributions

3.3.2.1 Introduction

The Lindley probability distribution was introduced in the literature under a
Bayesian context (see Lindley, 1958; Ghitany et al., 2008), as a counter example of fiducial
statistics. For many years, it has been used in compound processes linked to a Poisson dis-
tribution (see Sankaran, 1970). A continuous random variable 𝑋 is said to have a Lindley
distribution if its probability density function (pdf) can be written as,

𝑓𝐿(𝑥) =
𝛽2

1 + 𝛽
(1 + 𝑥)e−𝛽𝑥, (3.26)

where 𝑥 > 0 and 𝛽 > 0 is the scale parameter. The expression (3.26) also could be written
as a mixture of two distributions with components given, respectively, by an Exponential
density, 𝑓1(𝑥) = 𝛽𝑒−𝛽𝑥, and a Gamma density, 𝑓2(𝑥) = 𝑥𝛽2𝑒−𝛽𝑥. The incidence probabil-

ities of each component in the mixture are given, respectively by
𝛽

1 + 𝛽
and

1

1 + 𝛽
.

A comprehensive discussion on the mathematical properties of the Lindley dis-
tribution, such as moments, hazard function, stochastic orderings, parameter estimation,
among others is presented by Ghitany et al. (2008). The corresponding survival function
(sf) is given by,

𝑆𝐿(𝑥) =

(︂
1 +

𝛽𝑥

1 + 𝛽

)︂
e−𝛽𝑥. (3.27)

Another uniparametric distribution usually used in reliability studies with similar
form of (3.26) is the well-known Exponential distribution with pdf and sf given, respec-
tively, by,

𝑓𝐸(𝑥) = 𝛽e−𝛽𝑥 and 𝑆𝐸(𝑥) = e−𝛽𝑥. (3.28)

Although the Exponential distribution is very popular in reliability analysis, the
Lindley distribution has some mathematical properties more flexible than those of the
Exponential distribution, as for example, obtaining inference results for the stress-strength
parameter considered by Al-Mutairi et al. (2013) or the non-constant hazard rate which
is a great motivation for its use for a better approach when compared to the Exponential
distribution.
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3.3.2.2 Lindley Models Based on Shock Model

As a first model, let us assume that the random variables 𝑊1 and 𝑊2 have Lindley
distributions with parameters 𝛽1 and 𝛽2, respectively, while the random variable 𝑊3 has
an Exponential distribution with parameter 𝛽3. In order to investigate the joint sf of the
random variables 𝑋1 and 𝑋2, the following theorem presents the joint sf 𝑆(𝑥1, 𝑥2) related
to this distribution.

Theorem 3.3.2.2.1. The joint sf, 𝑆(𝑥1, 𝑥2), of 𝑋1 and 𝑋2 is given by,

𝑆(𝑥1, 𝑥2) =
(1 + 𝛽1 + 𝛽1𝑥1)(1 + 𝛽2 + 𝛽2𝑥2)

(1 + 𝛽1)(1 + 𝛽2)
exp{−𝛽1𝑥1 − 𝛽2𝑥2 − 𝛽3𝑧}, (3.29)

where 𝑧 = max(𝑥1, 𝑥2).

Proof. Since the joint sf of 𝑋1 and 𝑋2 is defined as 𝑆(𝑥1, 𝑥2) = 𝑃 (𝑋1 > 𝑥1, 𝑋2 > 𝑥2)

then,

𝑆(𝑥1, 𝑥2) = 𝑃 ({min(𝑊1,𝑊3) > 𝑥1}, {min(𝑊2,𝑊3) > 𝑥2})

= 𝑃 ({𝑊1 > 𝑥1,𝑊3 > 𝑥1}, {𝑊2 > 𝑥2,𝑊3 > 𝑥2})

= 𝑃 (𝑊1 > 𝑥1,𝑊2 > 𝑥2,𝑊3 > max(𝑥1, 𝑥2)). (3.30)

As the random variables 𝑊𝑗, (𝑗 = 1, 2, 3) are mutually independent, we get,

𝑆(𝑥1, 𝑥2) = 𝑃 (𝑊1 > 𝑥1)𝑃 (𝑊2 > 𝑥2)𝑃 (𝑊3 > 𝑧)

= 𝑆1(𝑥1)𝑆2(𝑥2)𝑆3(𝑧), (3.31)

where 𝑧 = max(𝑥1, 𝑥2). Replacing the respective sf of the Lindley and Exponential prob-
ability distributions into the above relation, one can obtain the joint sf (3.29). Hence, the
proof is complete.

Let us denote the model defined above as a bivariate Lindley distribution of type
I (BL-I). From the plots in Figure 5, we can notice that the BL-I distribution has a
continuous part and a singular part which is an expected result since this distribution is
an extension of the Marshall-Olkin bivariate Exponential distribution.

From the joint sf (3.29), the marginal sf for 𝑋𝑗(𝑗 = 1, 2) of the BL-I distribution
are directly obtained by observing that

𝑆𝑋𝑗
(𝑥𝑗) = 𝑆𝑖(𝑥𝑗)𝑆3(𝑥𝑗) =

(︂
1 +

𝛽𝑗𝑥𝑗
1 + 𝛽𝑗

)︂
e−𝛽𝑗𝑥𝑗−𝛽3𝑥𝑗 , (3.32)

and the marginal pdf of 𝑋𝑗, (𝑗 = 1, 2) are given by,

𝑓𝑋𝑗
(𝑥𝑗) =

e−(𝛽𝑗+𝛽3)𝑥𝑗

1 + 𝛽𝑗

[︀
(𝛽2

𝑗 + 𝛽3𝛽𝑗)(1 + 𝑥𝑗) + 𝛽3
]︀
. (3.33)
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Figure 5 – Contour plots of the joint survival function for BL-I model assuming different
parameter values (Upper-panels: fixed values given by 𝛽1 = 𝛽2 = 0.95, and
𝛽3 = 0.50 → 1.00 → 1.50. Lower-panels: fixed values given by 𝛽1 = 𝛽2 =
1.50, and 𝛽3 = 0.50 → 1.00 → 1.50).

The joint distribution function 𝐹 (𝑥1, 𝑥2) of 𝑋1 and 𝑋2 can be directly obtained
from the relationship given by 𝐹 (𝑥1, 𝑥2) = 1 − 𝑆𝑋1(𝑥1) − 𝑆𝑋2(𝑥2) + 𝑆(𝑥1, 𝑥2), that is,

𝐹 (𝑥1, 𝑥2) = 1 −
(︂

1 +
𝛽1𝑥1

1 + 𝛽1

)︂
e−(𝛽1+𝛽3)𝑥1 −

(︂
1 +

𝛽2𝑥2
1 + 𝛽2

)︂
e−(𝛽2+𝛽3)𝑥2

+

[︃
(1 + 𝛽1 + 𝛽1𝑥1)(1 + 𝛽2 + 𝛽2𝑥2)

(1 + 𝛽1)(1 + 𝛽2)
exp{−𝛽1𝑥1 − 𝛽2𝑥2 − 𝛽3𝑧}

]︃
. (3.34)

Theorem 3.3.2.2.2. If the joint sf, 𝑆(𝑥1, 𝑥2), of 𝑋1 and 𝑋2 is given by,

𝑆(𝑥1, 𝑥2) =
(1 + 𝛽1 + 𝛽1𝑥1)(1 + 𝛽2 + 𝛽2𝑥2)

(1 + 𝛽1)(1 + 𝛽2)
exp{−𝛽1𝑥1 − 𝛽2𝑥2 − 𝛽3𝑧}, (3.35)

where 𝑧 = max(𝑥1, 𝑥2), then the joint probability density function, 𝑓(𝑥1, 𝑥2) of 𝑋1 and 𝑋2

is given by,

𝑓(𝑥1, 𝑥2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑓1(𝑥1, 𝑥2) =

[︃
𝛽1(1 + 𝑥1)

1 + 𝛽1
𝑓𝐸(𝑥1, 𝛽1 + 𝛽3) +

𝛽3
1 + 𝛽1

𝑆𝐸(𝑥1, 𝛽1 + 𝛽3)

]︃
𝑓𝐿(𝑥2, 𝛽2)

if 𝑥1 > 𝑥2

𝑓2(𝑥1, 𝑥2) =

[︃
𝛽2(1 + 𝑥2)

1 + 𝛽2
𝑓𝐸(𝑥2, 𝛽2 + 𝛽3) +

𝛽3
1 + 𝛽2

𝑆𝐸(𝑥2, 𝛽2 + 𝛽3)

]︃
𝑓𝐿(𝑥1, 𝛽1)

if 𝑥1 < 𝑥2

𝑓3(𝑥, 𝑥) = 𝛽3e−𝛽3𝑥

{︃(︂
1 +

𝛽1𝑥

1 + 𝛽1

)︂
×
(︂

1 +
𝛽2𝑥

1 + 𝛽2

)︂
e−(𝛽1+𝛽2)𝑥

}︃
if 𝑥1 = 𝑥2 = 𝑥,

(3.36)
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where 𝑓𝐿(·), 𝑓𝐸(·) are, respectively, the pdf of the Lindley and Exponential distributions
and 𝑆𝐸(·) is the sf of the Exponential distribution.

Proof. Let us first assume that 𝑥1 > 𝑥2. In this case, the joint sf becomes,

𝑆(𝑥1, 𝑥2) =
(1 + 𝛽1 + 𝛽1𝑥1)(1 + 𝛽2 + 𝛽2𝑥2)

(1 + 𝛽1)(1 + 𝛽2)
exp{−𝛽1𝑥1 − 𝛽2𝑥2 − 𝛽3𝑥1}. (3.37)

Thus, upon differentiation, one can obtain the expression of the joint probability density
function for 𝑋1 and 𝑋2

𝑓(𝑥1, 𝑥2) =
𝜕2𝑆(𝑥1, 𝑥2)

𝜕𝑥1𝜕𝑥2
,

to be the 𝑓1(𝑥1, 𝑥2) given in (3.36). Analogously, it is obtained the expression to be
𝑓2(𝑥1, 𝑥2) when 𝑥1 < 𝑥2. However, 𝑓3(𝑥, 𝑥) cannot be derived in a similar way. In this
case, it is used the following identity,

1 =

∫︁ ∞

0

𝑓3(𝑥, 𝑥) 𝑑𝑥+

∫︁ ∞

0

∫︁ 𝑥1

0

𝑓1(𝑥1, 𝑥2) 𝑑𝑥2𝑑𝑥1

+

∫︁ ∞

0

∫︁ 𝑥2

0

𝑓2(𝑥1, 𝑥2) 𝑑𝑥1𝑑𝑥2. (3.38)

In (3.38), the double integrals are given, respectively, by,

𝐾1 =

∫︁ ∞

0

∫︁ 𝑥1

0

𝑓1(𝑥1, 𝑥2) 𝑑𝑥2𝑑𝑥1

=

∫︁ ∞

0

𝐹𝐿(𝑥1, 𝛽2)

[︃
𝛽1(1 + 𝑥1)

1 + 𝛽1
𝑓𝐸(𝑥1, 𝛽1 + 𝛽3) +

𝛽3
1 + 𝛽1

𝑆𝐸(𝑥1, 𝛽1 + 𝛽3)

]︃
𝑑𝑥1

=
𝛽1

(1 + 𝛽1)

[︃∫︁ ∞

0

𝑓𝐸(𝑥1, 𝛽1 + 𝛽3)𝐹𝐿(𝑥1, 𝛽2) 𝑑𝑥1 +

∫︁ ∞

0

𝑥1𝑓𝐸(𝑥1, 𝛽1 + 𝛽3)𝐹𝐿(𝑥1, 𝛽2) 𝑑𝑥1

]︃

+
𝛽3

(1 + 𝛽1)

∫︁ ∞

0

𝑆𝐸(𝑥1, 𝛽1 + 𝛽3)𝐹𝐿(𝑥1, 𝛽2) 𝑑𝑥1,

and,

𝐾2 =

∫︁ ∞

0

∫︁ 𝑥1

0

𝑓2(𝑥1, 𝑥2) 𝑑𝑥1𝑑𝑥2

=

∫︁ ∞

0

𝐹𝐿(𝑥2, 𝛽1)

[︃
𝛽2(1 + 𝑥2)

1 + 𝛽2
𝑓𝐸(𝑥2, 𝛽2 + 𝛽3) +

𝛽3
1 + 𝛽2

𝑆𝐸(𝑥2, 𝛽2 + 𝛽3)

]︃
𝑑𝑥2

=
𝛽2

(1 + 𝛽2)

[︃∫︁ ∞

0

𝑓𝐸(𝑥2, 𝛽2 + 𝛽3)𝐹𝐿(𝑥2, 𝛽1) 𝑑𝑥2 +

∫︁ ∞

0

𝑥2𝑓𝐸(𝑥2, 𝛽2 + 𝛽3)𝐹𝐿(𝑥2, 𝛽1) 𝑑𝑥2

]︃

+
𝛽3

(1 + 𝛽2)

∫︁ ∞

0

𝑆𝐸(𝑥2, 𝛽2 + 𝛽3)𝐹𝐿(𝑥2, 𝛽1) 𝑑𝑥2.

Using the identity,∫︁
𝑥𝑚e−𝛽𝑥𝑛

𝑑𝑥 = −Γ(𝛾, 𝛽𝑥𝑛)

𝑛𝛽𝛾
, 𝛾 =

𝑚+ 1

𝑛
, 𝛽 ̸= 0, 𝑛 ̸= 0,
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and replacing 𝐾1 and 𝐾2 into (3.38) it is obtained,

𝑓3(𝑥, 𝑥) = [1 + 𝛽1 + 𝛽1𝑥] [1 + 𝛽2 + 𝛽2𝑥] 𝜂e−𝛽𝑥,

where 𝜂 = 𝛽3/ [(1 + 𝛽1)(1 + 𝛽2)]; 𝛽 = 𝛽1 + 𝛽2 + 𝛽3. Hence, the proof is complete.

Since it was obtained the expressions for the marginal pdf and the joint pdf for both
random variables 𝑋1 and 𝑋2, the conditional probability distributions for the BL-I dis-
tribution are directly obtained using the relationship 𝑓(𝑥𝑗 | 𝑥𝑘) = 𝑓𝑋𝑗 ,𝑋𝑘

(𝑥𝑗, 𝑥𝑘)/𝑓𝑋𝑗
(𝑥𝑗),

𝑗, 𝑘 = 1, 2 and 𝑗 ̸= 𝑘. That is, the conditional distributions are given by the following
expression:

𝑓(𝑥𝑗 | 𝑥𝑘) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑓(1)(𝑥𝑗 | 𝑥𝑘) =
𝑓𝐿(𝑥𝑘, 𝛽𝑘)(1 + 𝛽𝑘)e(𝛽𝑘+𝛽3)𝑥𝑘

(𝛽2
𝑘 + 𝛽3𝛽𝑘)(1 + 𝑥𝑘) + 𝛽3

[︃
𝛽𝑗(1 + 𝑥𝑗)

1 + 𝛽𝑗
𝑓𝐸(𝑥𝑗, 𝛽𝑗 + 𝛽3)

+
𝛽3

1 + 𝛽𝑗
𝑆𝐸(𝑥𝑗, 𝛽𝑗 + 𝛽3)

]︃
if 𝑥𝑗 > 𝑥𝑘

𝑓(2)(𝑥𝑗 | 𝑥𝑘) =
𝑓𝐿(𝑥𝑗, 𝛽𝑗)(1 + 𝛽𝑗)e(𝛽𝑗+𝛽3)𝑥𝑗

(𝛽2
𝑗 + 𝛽3𝛽𝑗)(1 + 𝑥𝑗) + 𝛽3

[︃
𝛽𝑘(1 + 𝑥𝑘)

1 + 𝛽𝑘
𝑓𝐸(𝑥𝑘, 𝛽𝑘 + 𝛽3)

+
𝛽3

1 + 𝛽𝑘
𝑆𝐸(𝑥𝑘, 𝛽𝑘 + 𝛽3)

]︃
if 𝑥𝑗 < 𝑥𝑘

𝑓(3)(𝑥𝑗 | 𝑥𝑘) =
𝛽3(1 + 𝛽𝑘)e𝛽𝑘𝑥𝑗

(𝛽2
𝑘 + 𝛽3𝛽𝑘)(1 + 𝑥𝑗) + 𝛽3

{︁(︁
1 +

𝛽𝑗𝑥𝑗
1 + 𝛽𝑗

)︁(︁
1 +

𝛽𝑘𝑥𝑗
1 + 𝛽𝑘

)︁
× e−(𝛽𝑗+𝛽𝑘)𝑥𝑗

}︁
if 𝑥𝑗 = 𝑥𝑘.

(3.39)

Corollary 3.3.2.2.1. Assuming that the random variables 𝑊1 and 𝑊2 follow Lindley
probability distributions with density (3.26) and parameters 𝛽1 and 𝛽2, respectively, we
could assume any continuous probability distribution with positive domain for the latent
random variable 𝑊3. The generated bivariate distribution will be a bivariate Lindley dis-
tribution of Marshall-Olkin type. For instance, let us assume a Lindley distribution with
parameter 𝛽3 for 𝑊3. In this case, the joint sf and joint pdf for the random variables
𝑋1 = min(𝑊1,𝑊3) and 𝑋2 = min(𝑊2,𝑊3) are given, respectively, by,

𝑆(𝑥1, 𝑥2) =
(1 + 𝛽1 + 𝛽1𝑥1)(1 + 𝛽2 + 𝛽2𝑥2)(1 + 𝛽3 + 𝛽3𝑧)

(1 + 𝛽1)(1 + 𝛽2)(1 + 𝛽3)

× exp{−𝛽1𝑥1 − 𝛽2𝑥2 − 𝛽3𝑧}, (3.40)

and,

𝑓(𝑥1, 𝑥2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑓1(𝑥1, 𝑥2) = 𝑓𝐿(𝑥2, 𝛽2)[𝑓𝐿(𝑥1, 𝛽1)𝑆𝐿(𝑥1, 𝛽3) + 𝑓𝐿(𝑥1, 𝛽3)𝑆𝐿(𝑥1, 𝛽1)] if 𝑥1 > 𝑥2

𝑓2(𝑥1, 𝑥2) = 𝑓𝐿(𝑥1, 𝛽1)[𝑓𝐿(𝑥2, 𝛽2)𝑆𝐿(𝑥2, 𝛽3) + 𝑓𝐿(𝑥2, 𝛽3)𝑆𝐿(𝑥2, 𝛽2)] if 𝑥1 < 𝑥2

𝑓3(𝑥, 𝑥) = 𝑆𝐿(𝑥, 𝛽1)𝑆𝐿(𝑥, 𝛽2)𝑓𝐿(𝑥, 𝛽3) if 𝑥1 = 𝑥2 = 𝑥,

(3.41)
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where 𝑧 = max(𝑥1, 𝑥2) and 𝑓𝐿(·) and 𝑆𝐿(·) are, respectively, the pdf and the sf of a Lindley
distribution. Denote this model as a bivariate Lindley distribution of type II (BL-II).

3.3.2.3 Lindley Models Based on Stress Model

Now, let us assume that the random variables 𝑈1 and 𝑈2 have Lindley distributions
with parameters 𝛽1 and 𝛽2, respectively, while the random variable 𝑈3 has an Exponential
distribution with parameter 𝛽3. For this model, the following theorem presents the joint
sf 𝑆(𝑥1, 𝑥2) for 𝑋1 and 𝑋2.

Theorem 3.3.2.3.1. The joint sf, 𝑆(𝑥1, 𝑥2), for the random variables 𝑋1 and 𝑋2 is given
by,

𝑆(𝑥1, 𝑥2) =
(1 + 𝛽1 + 𝛽1𝑥1)(1 + 𝛽2 + 𝛽2𝑥2)

(1 + 𝛽1)(1 + 𝛽2)
exp{−𝛽1𝑥1 − 𝛽2𝑥2 − 𝛽3𝑧}, (3.42)

where 𝑧 = min(𝑥1, 𝑥2).

Proof. The proof of this theorem is analogous to the proof of Theorem 3.3.2.2.1.

Let us denote the model with joint sf (3.42) as a bivariate Lindley probability
distribution of type III (BL-III). Like the shock model, from Figure 6, it is possible to
see that the BL-III distribution also has a continuous part and a singular part which it
is also expected since it is also an extension of the Marshall-Olkin bivariate Exponential
distribution.

From the joint sf (3.42), the marginal sf for 𝑋𝑗(𝑗 = 1, 2) of the BL-II distribution
are given directly by,

𝑆𝑋𝑗
(𝑥𝑗) = 𝑆𝑗(𝑥𝑗)𝑆3(𝑥𝑗) =

(︂
1 +

𝛽𝑗𝑥𝑗
1 + 𝛽𝑗

)︂
e−𝛽𝑗𝑥𝑗−𝛽3𝑥𝑗 , (3.43)

and the marginal pdf of 𝑋𝑗, (𝑖 = 1, 2) are given by,

𝑓𝑋𝑗
(𝑥𝑗) =

e−(𝛽𝑗+𝛽3)𝑥𝑗

1 + 𝛽𝑗

[︀
(𝛽2

𝑗 + 𝛽3𝛽𝑗)(1 + 𝑥𝑗) + 𝛽3
]︀
. (3.44)

The joint cdf 𝐹 (𝑥1, 𝑥2) for the random variables𝑋1 and𝑋2 can be directly obtained
from the relationship given by 𝐹 (𝑥1, 𝑥2) = 1 − 𝑆𝑋1(𝑥1) − 𝑆𝑋2(𝑥2) + 𝑆(𝑥1, 𝑥2), that is,

𝐹 (𝑥1, 𝑥2) = 1 −
(︂

1 +
𝛽1𝑥1

1 + 𝛽1

)︂
e−(𝛽1+𝛽3)𝑥1 −

(︂
1 +

𝛽2𝑥2
1 + 𝛽2

)︂
e−(𝛽2+𝛽3)𝑥2

+

[︂
(1 + 𝛽1 + 𝛽1𝑥1)(1 + 𝛽2 + 𝛽2𝑥2)

(1 + 𝛽1)(1 + 𝛽2)
exp{−𝛽1𝑥1 − 𝛽2𝑥2 − 𝛽3𝑧}

]︂
(3.45)
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Figure 6 – Contour plots of the joint survival function for BL-III model assuming different
parameter values (Upper-panels: fixed values given by 𝛽1 = 𝛽2 = 0.95, and
𝛽3 = 0.50 → 1.00 → 1.50. Lower-panels: fixed values given by 𝛽1 = 𝛽2 =
1.50, and 𝛽3 = 0.50 → 1.00 → 1.50).

Theorem 3.3.2.3.2. From the joint sf (3.42), the joint probability density function,
𝑓(𝑥1, 𝑥2) for the random variables 𝑋1 and 𝑋2 is given by,

𝑓(𝑥1, 𝑥2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑓1(𝑥1, 𝑥2) =

[︃
𝛽2(1 + 𝑥2)

1 + 𝛽2
𝑓𝐸(𝑥2, 𝛽2 + 𝛽3) +

𝛽3
1 + 𝛽2

𝑆𝐸(𝑥2, 𝛽2 + 𝛽3)

]︃
𝑓𝐿(𝑥1, 𝛽1)

if 𝑥1 > 𝑥2

𝑓2(𝑥1, 𝑥2) =

[︃
𝛽1(1 + 𝑥1)

1 + 𝛽1
𝑓𝐸(𝑥1, 𝛽1 + 𝛽3) +

𝛽3
1 + 𝛽1

𝑆𝐸(𝑥1, 𝛽1 + 𝛽3)

]︃
𝑓𝐿(𝑥2, 𝛽2)

if 𝑥1 < 𝑥2

𝑓3(𝑥, 𝑥) = 𝛽3e−𝛽3𝑥

{︃(︂
1 +

𝛽1𝑥

1 + 𝛽1

)︂
×
(︂

1 +
𝛽2𝑥

1 + 𝛽2

)︂
e−(𝛽1+𝛽2)𝑥

}︃
if 𝑥1 = 𝑥2 = 𝑥,

(3.46)
where 𝑓𝐿(·), 𝑓𝐸(·) and 𝑆𝐸(·) are, respectively, the pdf and sf of the Lindley and Exponential
distributions.

Proof. The proof of this theorem is analogous to the proof of Theorem 3.3.2.2.2.

Since the marginal pdf and the joint pdf of the random variables 𝑋1 and 𝑋2 are
known, the conditional probability distributions for the BL-II distribution are directly
obtained using the relationship 𝑓(𝑥𝑗 | 𝑥𝑘) = 𝑓𝑋𝑗 ,𝑋𝑘

(𝑥𝑗, 𝑥𝑘)/𝑓𝑋𝑗
(𝑥𝑗), 𝑗, 𝑘 = 1, 2 and 𝑗 ̸= 𝑘.
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That is,

𝑓(𝑥𝑗 | 𝑥𝑘) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑓(1)(𝑥𝑗 | 𝑥𝑘) =
𝑓𝐿(𝑥𝑗, 𝛽𝑗)(1 + 𝛽𝑗)e(𝛽𝑗+𝛽3)𝑥𝑗

(𝛽2
𝑗 + 𝛽3𝛽𝑗)(1 + 𝑥𝑗) + 𝛽3

[︃
𝛽𝑘(1 + 𝑥𝑘)

1 + 𝛽𝑘
𝑓𝐸(𝑥𝑘, 𝛽𝑘 + 𝛽3)

+
𝛽3

1 + 𝛽𝑘
𝑆𝐸(𝑥𝑘, 𝛽𝑘 + 𝛽3)

]︃
if 𝑥𝑗 > 𝑥𝑘

𝑓(2)(𝑥𝑗 | 𝑥𝑘) =
𝑓𝐿(𝑥𝑘, 𝛽𝑘)(1 + 𝛽𝑘)e(𝛽𝑘+𝛽3)𝑥𝑘

(𝛽2
𝑘 + 𝛽3𝛽𝑘)(1 + 𝑥𝑘) + 𝛽3

[︃
𝛽𝑗(1 + 𝑥𝑗)

1 + 𝛽𝑗
𝑓𝐸(𝑥𝑗, 𝛽𝑗 + 𝛽3)

+
𝛽3

1 + 𝛽𝑗
𝑆𝐸(𝑥𝑗, 𝛽𝑗 + 𝛽3)

]︃
if 𝑥𝑗 < 𝑥𝑘

𝑓(3)(𝑥𝑗 | 𝑥𝑘) =
𝛽3(1 + 𝛽𝑘)e𝛽𝑘𝑥𝑗

(𝛽2
𝑘 + 𝛽3𝛽𝑘)(1 + 𝑥𝑗) + 𝛽3

{︁(︁
1 +

𝛽𝑗𝑥𝑗
1 + 𝛽𝑗

)︁(︁
1 +

𝛽𝑘𝑥𝑗
1 + 𝛽𝑘

)︁
× e−(𝛽𝑗+𝛽𝑘)𝑥𝑗

}︁
if 𝑥𝑗 = 𝑥𝑘.

(3.47)

Corollary 3.3.2.3.1. In the same way as it was considered for the shock model, assuming
that the the random variables 𝑈1 and 𝑈2 follow a Lindley distribution with parameters 𝛽1
and 𝛽2, it is obtained a new bivariate Lindley distribution that belongs to the new class of
bivariate Lindley distributions of Marshall-Olkin type based on a stress model assuming
any continuous probability distribution with positive domain for the latent random variable
𝑈3. For instance, let us assume a Lindley distribution with parameter 𝛽3 for 𝑈3. In this
case, the joint sf and joint pdf for the random variables 𝑋1 = max(𝑈1, 𝑈3) and 𝑋2 =

max(𝑈2, 𝑈3) are given, respectively, by,

𝑆(𝑥1, 𝑥2) =
(1 + 𝛽1 + 𝛽1𝑥1)(1 + 𝛽2 + 𝛽2𝑥2)(1 + 𝛽3 + 𝛽3𝑧)

(1 + 𝛽1)(1 + 𝛽2)(1 + 𝛽3)

× exp{−𝛽1𝑥1 − 𝛽2𝑥2 − 𝛽3𝑧}, (3.48)

and,

𝑓(𝑥1, 𝑥2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑓1(𝑥1, 𝑥2) = 𝑓𝐿(𝑥1, 𝛽1)[𝑓𝐿(𝑥2, 𝛽2)𝑆𝐿(𝑥2, 𝛽3) + 𝑓𝐿(𝑥2, 𝛽3)𝑆𝐿(𝑥2, 𝛽2)] if 𝑥1 > 𝑥2

𝑓2(𝑥1, 𝑥2) = 𝑓𝐿(𝑥2, 𝛽2)[𝑓𝐿(𝑥1, 𝛽1)𝑆𝐿(𝑥1, 𝛽3) + 𝑓𝐿(𝑥1, 𝛽3)𝑆𝐿(𝑥1, 𝛽1)] if 𝑥1 < 𝑥2

𝑓3(𝑥, 𝑥) = 𝑆𝐿(𝑥, 𝛽1)𝑆𝐿(𝑥, 𝛽2)𝑓𝐿(𝑥, 𝛽3) if 𝑥1 = 𝑥2 = 𝑥,

(3.49)
where 𝑧 = min(𝑥1, 𝑥2) and 𝑓𝐿(·) and 𝑆𝐿(·) are the pdf and the sf of a Lindley distribution.
Denote this model as a bivariate Lindley distribution of type IV (BL-IV).

3.3.2.4 Correlation Structure

In this section, we present the marginal moments for the proposed models and
the correlation structure between 𝑋1 and 𝑋2. Since the process is analogous for all the
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proposed models, without loss of generality, only the BL-I model will be considered in this
section. In this way, let us assume the BL-I model with marginal distributions given by
(3.33). In this case, the expected value and variance for the random variable 𝑋𝑗, 𝑗 = 1, 2

are given, respectively, by

E[𝑋𝑗] =
𝛽2
𝑗 + (𝛽3 + 2)𝛽𝑗 + 𝛽3

(1 + 𝛽𝑗)(𝛽𝑗 + 𝛽3)2
, (3.50)

and,

Var(𝑋𝑗) =
𝛽4
𝑗 + (2𝛽3 + 4)𝛽3

𝑗

(1 + 𝛽𝑗)2(𝛽𝑗 + 𝛽3)4
+

(𝛽2
3 + 4𝛽3)𝛽𝑗 + 𝛽2

3

(1 + 𝛽𝑗)2(𝛽𝑗 + 𝛽3)4
+

(𝛽2
3 + 6𝛽3 + 2)𝛽2

𝑗

(1 + 𝛽𝑗)2(𝛽𝑗 + 𝛽3)4
.

(3.51)

The cross factorial moment between 𝑋1 and 𝑋2 is given by,

E[𝑋1𝑋2] =
1

𝛽3𝛽2
13(1 + 𝛽1)(1 + 𝛽2)𝛽2

23

[︃
{𝛽2

2 + (𝛽3 + 2)𝛽2 + 𝛽3}𝛽5
1 + 3(𝛽2

2 + (𝛽3 + 2)𝛽2 + 𝛽3)

×
(︁
𝛽2 +

5𝛽3
3

+
2

3

)︁
𝛽4
1 + {3𝛽4

2 + (14𝛽3 + 12)𝛽3
2 + (20𝛽2

3 + 42𝛽3 + 12}𝛽2
2

+ {9𝛽3
3 + 40𝛽2

3 + 26𝛽3)𝛽2 + 9𝛽3
3 + 10𝛽2

3}𝛽3
1 + {𝛽5

2 + (8𝛽3 + 8)𝛽4
2 + (20𝛽2

3 + 42𝛽3

+ 12)𝛽3
2 + (20𝛽3

3 + 72𝛽2
3 + 50𝛽3)𝛽

2
2 + (7𝛽4

3 + 45𝛽3
3 + 56𝛽2

3)𝛽2 + 7𝛽4
3 + 16𝛽3

3}𝛽2
1

+ {𝛽3
2 + (3𝛽3 + 2)𝛽2

2 + (2𝛽2
3 + 6𝛽3)𝛽2 + 2𝛽2

3}𝛽23((𝛽3 + 2)𝛽2 + 𝛽2
3 + 5𝛽3)𝛽1

+ {𝛽3
2 + (3𝛽3 + 2)𝛽2

2 + (2𝛽2
3 + 6𝛽3)𝛽2 + 2𝛽2

3}𝛽3𝛽2
23

]︃
, (3.52)

where 𝛽13 = 𝛽1 +𝛽3, 𝛽23 = 𝛽2 +𝛽3 and 𝛽 = 𝛽1 +𝛽2 +𝛽3. Since the cross factorial moment
has a closed form, the covariance and the correlation coefficient between 𝑋1 and 𝑋2 can
be directly obtained using the relations:

Cov(𝑋1, 𝑋2) = E[𝑋1𝑋2] − E[𝑋1]E[𝑋2]

and,

𝜌 =
Cov(𝑋1, 𝑋2)

[Var(𝑋1)Var(𝑋2)]1/2

For BL distributions based on shock model, we could observe that E[𝑋1𝑋2] >

E[𝑋1]E[𝑋2], that is, 0 < 𝜌 < 1 (positive correlation); and for BL distributions based on
stress model, we could observe that E[𝑋1𝑋2] < E[𝑋1]E[𝑋2], that is, −1 < 𝜌 < 0 (negative
correlation).

3.3.2.5 Inference Methods

Now, without loss of generality, let us first derive the likelihood for the BL-II
distribution (the procedure is analogous for BL-I, BL-II and BL-IV distributions). In this
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way, suppose (𝑋11, 𝑋21), (𝑋12, 𝑋22), . . ., (𝑋1𝑛, 𝑋2𝑛) is a random sample of size 𝑛 from a
BL-II distribution and define two indicator variables given by 𝑣1𝑖 = 1 if 𝑋1𝑖 > 𝑋2𝑖 and 0
otherwise and 𝑣2𝑖 = 1 if 𝑋1𝑖 < 𝑋2𝑖 and 0 otherwise for 𝑖 = 1, 2, . . . , 𝑛. In this way, there
are three possible situations considering these indicator variables:

(𝑣1𝑖, 𝑣2𝑖) = (1, 0) if 𝑋1𝑖 > 𝑋2𝑖

(𝑣1𝑖, 𝑣2𝑖) = (0, 1) if 𝑋1𝑖 < 𝑋2𝑖

(𝑣1𝑖, 𝑣2𝑖) = (0, 0) if 𝑋1𝑖 = 𝑋2𝑖. (3.53)

Thus, from the BL-II pdf and (3.53), the likelihood function for the parameters 𝛽1, 𝛽2 and
𝛽3 assuming complete data is given by,

𝐿(𝛽) =
𝑛∏︁

𝑖=1

[𝑆𝐿(𝑥1𝑖, 𝛽1)𝑆𝐿(𝑥1𝑖, 𝛽2)𝑓𝐿(𝑥1𝑖, 𝛽3)]
(1−𝑣1𝑖)(1−𝑣2𝑖)

𝑛∏︁
𝑖=1

𝑓𝐿(𝑥2𝑖, 𝛽2)
[︀
𝑓𝐿(𝑥1𝑖, 𝛽1)

× 𝑆𝐿(𝑥1𝑖, 𝛽3) + 𝑓𝐿(𝑥1𝑖, 𝛽3)𝑆𝐿(𝑥1𝑖, 𝛽1)
]︀𝑣1𝑖(1−𝑣2𝑖)

𝑛∏︁
𝑖=1

𝑓𝐿(𝑥1𝑖, 𝛽1)
[︀
𝑓𝐿(𝑥2𝑖, 𝛽2)

× 𝑆𝐿(𝑥2𝑖, 𝛽3)𝑓𝐿(𝑥2𝑖, 𝛽3)𝑆𝐿(𝑥2𝑖, 𝛽2)
]︀𝑣2𝑖(1−𝑣1𝑖), (3.54)

where 𝑓𝐿(·) and 𝑆𝐿(·) are, respectively, the pdf and sf of the Lindley distribution.

3.3.2.6 A Simulation Study

In this section, it is presented simulated datasets of a connected two-components
series system assuming that the systems were put on the life test and the lifetimes of
the system were observed until the failures were observed. The simulated datasets were
generated from BL distributions considering the sample sizes 𝑛 = 20, 50, 100, 150, 300 and
parameter values 𝛽 = (0.10, 0.20, 0.35) using the following algorithm:

1. Generate 𝑆𝑗 ∼ 𝐿𝑖𝑛𝑑𝑙𝑒𝑦(𝛽𝑗) (𝑗 = 1, 2) and 𝑆3 ∼ 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(𝛽3) for BL-I and BL-III
distributions. And, for BL-II and BL-IV distributions, generate 𝑆𝑗 ∼ 𝐿𝑖𝑛𝑑𝑙𝑒𝑦(𝛽𝑗) (𝑗 =

1, 2, 3).

2. Define 𝑇1 = min(𝑆1, 𝑆3) and 𝑇2 = min(𝑆2, 𝑆3); return 𝑇 = (𝑇1, 𝑇2).

Remark 2.3.2.5.1 The package LindleyR (see Mazucheli et al., 2016) is used to generate
random values of the Lindley distribution.

For the analysis of the simulated datasets, it is assumed, as prior distributions,
approximately noninformative Gamma(0.01, 0.01) prior distributions for the parameters
𝛽𝑗 (𝑖 = 1, 2) and a Gamma prior distribution with hyperparameters values obtained from
the values of the sample mean 𝑇min and Var(𝑇min) (where 𝑇min and Var(𝑇min) are the
sample mean of the data and the sample variance of 𝑇min = min(𝑇1, 𝑇2), respectively) for
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the parameter 𝛽3. Figure 33 presents the plots of the empirical and the Bayesian estimates
for the reliability/survival function 𝑅(𝑡) assuming the proposed BL distributions from
which we can notice the great accuracy of the obtained Bayesian inferences for the model
parameters.

BL−I (n = 20)

t

R̂
(t

)

   0    3    6    8   11

 0
.0

 0
.2

 0
.5

 0
.8

 1
.0 R(t)

R(t) − BL−I
2.5% R(t) − BL−I
97.5% R(t) − BL−I

BL−I (n = 50)

t

R̂
(t

)

   0    3    6    9   13

 0
.0

 0
.2

 0
.5

 0
.8

 1
.0 R(t)

R(t) − BL−I
2.5% R(t) − BL−I
97.5% R(t) − BL−I

BL−I (n = 100)

t
R̂

(t
)

   0    3    6    9   13

 0
.0

 0
.2

 0
.5

 0
.8

 1
.0 R(t)

R(t) − BL−I
2.5% R(t) − BL−I
97.5% R(t) − BL−I

BL−I (n = 150)

t

R̂
(t

)

   0    3    6    9   13

 0
.0

 0
.2

 0
.5

 0
.8

 1
.0 R(t)

R(t) − BL−I
2.5% R(t) − BL−I
97.5% R(t) − BL−I

BL−I (n = 300)

t

R̂
(t

)

   0    3    6    9   13

 0
.0

 0
.2

 0
.5

 0
.8

 1
.0 R(t)

R(t) − BL−I
2.5% R(t) − BL−I
97.5% R(t) − BL−I

BL−II (n = 20)

t

R̂
(t

)

   0    3    5    8   10

 0
.0

 0
.2

 0
.5

 0
.8

 1
.0 R(t)

R(t) − BL−II
2.5% R(t) − BL−II
97.5% R(t) − BL−II

BL−II (n = 50)

t

R̂
(t

)

   0    4    8   12   17

 0
.0

 0
.2

 0
.5

 0
.8

 1
.0 R(t)

R(t) − BL−II
2.5% R(t) − BL−II
97.5% R(t) − BL−II

BL−II (n = 100)

t

R̂
(t

)

   0    4    8   12   16

 0
.0

 0
.2

 0
.5

 0
.8

 1
.0 R(t)

R(t) − BL−II
2.5% R(t) − BL−II
97.5% R(t) − BL−II

BL−II (n = 150)

t

R̂
(t

)

   0    7   14   20   27

 0
.0

 0
.2

 0
.5

 0
.8

 1
.0 R(t)

R(t) − BL−II
2.5% R(t) − BL−II
97.5% R(t) − BL−II

BL−II (n = 300)

t

R̂
(t

)

   0    5   10   15   20

 0
.0

 0
.2

 0
.5

 0
.8

 1
.0 R(t)

R(t) − BL−II
2.5% R(t) − BL−II
97.5% R(t) − BL−II

BL−III (n = 20)

t

R̂
(t

)

   0    3    6    8   11

 0
.0

 0
.2

 0
.5

 0
.8

 1
.0 R(t)

R(t) − BL−III
2.5% R(t) − BL−III
97.5% R(t) − BL−III

BL−III (n = 50)

t

R̂
(t

)

   0    3    6    9   13

 0
.0

 0
.2

 0
.5

 0
.8

 1
.0 R(t)

R(t) − BL−III
2.5% R(t) − BL−III
97.5% R(t) − BL−III

BL−III (n = 100)

t

R̂
(t

)

   0    3    6    9   13

 0
.0

 0
.2

 0
.5

 0
.8

 1
.0 R(t)

R(t) − BL−III
2.5% R(t) − BL−III
97.5% R(t) − BL−III

BL−III (n = 150)

t

R̂
(t

)

   0    3    6    9   13

 0
.0

 0
.2

 0
.5

 0
.8

 1
.0 R(t)

R(t) − BL−III
2.5% R(t) − BL−III
97.5% R(t) − BL−III

BL−III (n = 300)

t

R̂
(t

)

   0    3    6    9   13

 0
.0

 0
.2

 0
.5

 0
.8

 1
.0 R(t)

R(t) − BL−III
2.5% R(t) − BL−III
97.5% R(t) − BL−III

BL−IV (n = 20)

t

R̂
(t

)

   0    3    5    8   10

 0
.0

 0
.2

 0
.5

 0
.8

 1
.0 R(t)

R(t) − BL−IV
2.5% R(t) − BL−IV
97.5% R(t) − BL−IV

BL−IV (n = 50)

t

R̂
(t

)

   0    4    8   12   17

 0
.0

 0
.2

 0
.5

 0
.8

 1
.0 R(t)

R(t) − BL−IV
2.5% R(t) − BL−IV
97.5% R(t) − BL−IV

BL−IV (n = 100)

t

R̂
(t

)

   0    4    8   12   16

 0
.0

 0
.2

 0
.5

 0
.8

 1
.0 R(t)

R(t) − BL−IV
2.5% R(t) − BL−IV
97.5% R(t) − BL−IV

BL−IV (n = 150)

t

R̂
(t

)

   0    7   14   20   27

 0
.0

 0
.2

 0
.5

 0
.8

 1
.0 R(t)

R(t) − BL−IV
2.5% R(t) − BL−IV
97.5% R(t) − BL−IV

BL−IV (n = 300)

t

R̂
(t

)

   0    5   10   15   20

 0
.0

 0
.2

 0
.5

 0
.8

 1
.0 R(t)

R(t) − BL−IV
2.5% R(t) − BL−IV
97.5% R(t) − BL−IV

Figure 7 – The mean and 95 percent credible intervals for the reliability/survival function
assuming the BL models for each sample size (𝑛 = 20 → 300).

3.4 New Bivariate Cure Rate Models

3.4.1 Gumbel Bivariate Exponential

3.4.1.1 Standard Model

In this section, let us assume the Gumbel bivariate exponential distribution for
continuous random variables, denoted by GBE(𝜆1,𝜆2,𝜃), introduced by Gumbel (1960) in
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reliability analysis. The joint survival function for the lifetimes 𝑇1 and 𝑇2 assuming the
GBE model is given by:

𝑆0(𝑡1, 𝑡2) = exp{−𝜆1𝑡1 − 𝜆2𝑡2 − 𝜃𝜆1𝜆2𝑡1𝑡2} (3.55)

where 𝜆1, 𝜆2 > 0 and 0 < 𝜃 < 1. It is important to point out that the GBE model is one of
the first models introduced in the literature to model bivariate lifetime data and possible
the simplest known exponential bivariate distribution. This model has been applied to
many areas, including competing risks, extreme values, failure times, regional analyses of
precipitation, and reliability.

From the bivariate survival function described in Equation (3.55), the joint prob-
ability density function for the GBE distribution is given by,

𝑓0(𝑡1, 𝑡2) = [(1 − 𝜃)𝜆1𝜆2 + 𝜃𝜆21𝜆2𝑡1 + 𝜃𝜆1𝜆
2
2𝑡2 + 𝜃2𝜆21𝜆

2
2𝑡1𝑡2]𝑆(𝑡1, 𝑡2) (3.56)

where the marginal distributions for the random variables 𝑇1 and 𝑇2 are standard expo-
nential univariate distributions with parameters 𝜆1 and 𝜆2, respectively. The correlation
coefficient between 𝑇1 and 𝑇2 is given by,

𝜌 = 1 − 1

𝜃
exp

(︂
1

𝜃

)︂
𝐸𝑖

(︂
1

𝜃

)︂
(3.57)

where 𝐸𝑖(𝑥) =

∫︁ ∞

−𝑥

exp{−𝑡}
𝑡

𝑑𝑡 is the exponential integral function. Observe that, the

correlation is close to zero when 𝜃 → 0 (the case of independence between 𝑇1 and 𝑇2) and
it decreases to −0.40365 as 𝜃 increases to 1.

3.4.1.2 Cure Rate Model

Now, let us assume a GBE distribution with parameters 𝜆1, 𝜆2 and 𝜃 for the
bivariate lifetimes 𝑇1 and 𝑇2. From the GBE joint survival function and the equation
(2.29), the bivariate mixture cure rate model is given by,

𝑆(𝑡1, 𝑡2) = 𝜑11 exp{−𝜆1𝑡1 − 𝜆2𝑡2 − 𝜃𝜆1𝜆2𝑡1𝑡2} + 𝜑10 exp{−𝜆1𝑡1}
+ 𝜑01 exp{−𝜆2𝑡2} + 𝜑00 (3.58)

where 𝜆1, 𝜆2 and 0 < 𝜃 < 1. The major properties of this model as the joint pdf, con-
ditional distributions and marginal distributions could be directly obtained from the bi-
variate mixture cure rate model and will not be illustrated here.

For the likelihood-based method of inference for bivariate distributions in presence
of censored observations, the contribution of the 𝑖th observation for the likelihood function
assuming the GBE cure rate model is given by,
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i.) If 𝑖 ∈ 𝐶1,

𝑓(𝑡1𝑖, 𝑡2𝑖) = 𝜑11[(1 − 𝜃)𝜆1𝜆2 + 𝜃𝜆21𝜆2𝑡1𝑖 + 𝜃𝜆1𝜆
2
2𝑡2𝑖 + 𝜃2𝜆21𝜆

2
2𝑡1𝑖𝑡2𝑖]

× exp{−𝜆1𝑡1𝑖 − 𝜆2𝑡2𝑖 − 𝜃𝜆1𝜆2𝑡1𝑖𝑡2𝑖}

ii.) If 𝑖 ∈ 𝐶2,

−𝜕𝑆(𝑡1𝑖, 𝑡2𝑖)

𝜕𝑡1𝑖
= 𝜑11[𝜆1𝜆2𝑡2𝑖𝜃 + 𝜆1] exp{−𝜆1𝑡1𝑖 − 𝜆2𝑡2𝑖 − 𝜃𝜆1𝜆2𝑡1𝑖𝑡2𝑖}
+ 𝜑10𝜆1 exp{−𝜆1𝑡1𝑖}

iii.) If 𝑖 ∈ 𝐶3,

−𝜕𝑆(𝑡1𝑖, 𝑡2𝑖)

𝜕𝑡2𝑖
= 𝜑11[𝜆1𝜆2𝑡1𝑖𝜃 + 𝜆2] exp{−𝜆1𝑡1𝑖 − 𝜆2𝑡2𝑖 − 𝜃𝜆1𝜆2𝑡1𝑖𝑡2𝑖}
+ 𝜑01𝜆2 exp{−𝜆2𝑡2𝑖}

iv.) If 𝑖 ∈ 𝐶4,

𝑆(𝑡1𝑖, 𝑡2𝑖) = 𝜑11 exp{−𝜆1𝑡1𝑖 − 𝜆2𝑡2𝑖 − 𝜃𝜆1𝜆2𝑡1𝑖𝑡2𝑖} + 𝜑10 exp{−𝜆1𝑡1𝑖}
+ 𝜑01 exp{−𝜆2𝑡2𝑖} + 𝜑00

In Figure 8, it is illustrated the contour plots for the survival function expressed in
Equation (3.58) considering different parameter values. It is important to point out that
the contour plots could be useful for establishing relations of the values of the marginal
distributions of the joint survival function, especially in presence of cure rate.

3.4.2 Block and Basu Bivariate Exponential

3.4.2.1 Standard Model

In this section, it is assumed the Block and Basu bivariate exponential distribution
also defined for continuous random variables, denoted by BBBE(𝜆1, 𝜆2, 𝜆3), introduced
by Block and Basu (1974). The joint survival function for the BBBE distribution for the
random variables 𝑇1 and 𝑇2 is given by,

𝑆0(𝑡1, 𝑡2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜆

𝜆12
exp{−𝜆1𝑡1 − 𝜆23𝑡2} −

𝜆3
𝜆12

exp{−𝜆𝑡2} if 𝑡1 < 𝑡2

𝜆

𝜆12
exp{−𝜆13𝑡1 − 𝜆2𝑡2} −

𝜆3
𝜆12

exp{−𝜆𝑡1} if 𝑡1 ≥ 𝑡2

(3.59)

where 𝜆 = 𝜆1 + 𝜆2 + 𝜆3, 𝜆12 = 𝜆1 + 𝜆2, 𝜆13 = 𝜆1 + 𝜆3, 𝜆23 = 𝜆2 + 𝜆3 and 𝜆1, 𝜆2, 𝜆3 > 0.
From the bivariate survival function described in Equation (3.59), the joint probability
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Figure 8 – Contour plots of the joint survival function in presence of cure rate for
GBE model assuming different parameter values (Upper-panels: fixed val-
ues given by 𝜆1 = 𝜆2 = 0.75, 𝜃 = 0.10, 𝜑10 = 𝜑01 = 0.15, and 𝜑11 =
(0.60, 0.40, 0.20), 𝜑00 = (0.10, 0.30, 0.50). Lower-panels: fixed values given by
𝜆1 = 𝜆2 = 0.75, 𝜃 = 0.10, 𝜑11 = 𝜑00 = 0.15, and 𝜑10 = (0.60, 0.40, 0.20), 𝜑01 =
(0.10, 0.30, 0.50)).

density function for the BBBE distribution is given by,

𝑓0(𝑡1, 𝑡2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜆𝜆1𝜆23
𝜆12

exp{−𝜆1𝑡1 − 𝜆23𝑡2} if 𝑡1 < 𝑡2

𝜆𝜆2𝜆13
𝜆12

exp{−𝜆13𝑡1 − 𝜆2𝑡2} if 𝑡1 ≥ 𝑡2.

(3.60)

Remark 2.4.2.1.1. Observe that the marginal distributions of the joint distribution de-
fined by Equation (3.60) are not exponentials; however, if 𝜆3 = 0, 𝑇1 and 𝑇2 are inde-
pendent exponential distributions with parameters 𝜆1 and 𝜆2, respectively. In other way,
note that the marginal distributions for the lifetimes 𝑇1 and 𝑇2 could be also written as
mixtures of two exponential distributions (see, Kundu and Gupta, 2010) with densities
given, respectively, by,

𝑓01(𝑡1) =
𝜆

𝜆12
𝑓𝐸(𝑡1, 𝜆13) −

𝜆3
𝜆12

𝑓𝐸(𝑡1, 𝜆)

𝑓02(𝑡2) =
𝜆

𝜆12
𝑓𝐸(𝑡2, 𝜆23) −

𝜆3
𝜆12

𝑓𝐸(𝑡2, 𝜆) (3.61)

where 𝑓𝐸(𝑡, 𝛼) = 𝛼 exp{−𝛼𝑡} denotes an exponential density. In this case, the marginal
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survival functions are respectively given by,

𝑆01(𝑡1) =
𝜆

𝜆12
𝑆𝐸(𝑡1, 𝜆13) −

𝜆3
𝜆12

𝑆𝐸(𝑡1, 𝜆)

𝑆02(𝑡2) =
𝜆

𝜆12
𝑆𝐸(𝑡2, 𝜆23) −

𝜆3
𝜆12

𝑆𝐸(𝑡2, 𝜆) (3.62)

where 𝑆𝐸(𝑡, 𝛼) = exp{−𝛼𝑡} denotes an exponential survival function.

The correlation coefficient between the lifetimes 𝑇1 and 𝑇2 is given by,

𝜌 =
𝜆𝜆3𝜆12(1 + 𝜆21 + 𝜆22)

{𝐾(𝜆2, 𝜆1)}1/2{𝐾(𝜆1, 𝜆2)}1/2
. (3.63)

where 𝐾(𝜆𝑖, 𝜆𝑗) = 𝜆2𝜆212 + 𝜆𝑖𝜆3(2𝜆𝑗𝜆 + 𝜆𝑖𝜆3), 𝑖 ̸= 𝑗 = 1, 2. The correlation is limited
to 0 < 𝜌 ≤ 1, that is, this distribution is useful for bivariate lifetimes with positive
correlation.

3.4.2.2 Cure Rate Model

The mixture cure rate model for bivariate lifetimes 𝑇1 and 𝑇2 assuming the BBBE
distribution is given by,

𝑆(𝑡1, 𝑡2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜑11

[︂
𝜆

𝜆12
exp{−𝜆1𝑡1 − 𝜆23𝑡2} −

𝜆3
𝜆12

exp{−𝜆𝑡2}
]︂
+ 𝜑10

[︂
𝜆

𝜆12
𝑆𝐸(𝑡1, 𝜆13)−

𝜆3
𝜆12

𝑆𝐸(𝑡1, 𝜆)

]︂

+ 𝜑01

[︂
𝜆

𝜆12
𝑆𝐸(𝑡2, 𝜆23)−

𝜆3
𝜆12

𝑆𝐸(𝑡2, 𝜆)

]︂
+ 𝜑00 if 𝑡1 < 𝑡2

𝜑11

[︂
𝜆

𝜆12
exp{−𝜆13𝑡1 − 𝜆2𝑡2} −

𝜆3
𝜆12

exp{−𝜆𝑡1}
]︂
+ 𝜑10

[︂
𝜆

𝜆12
𝑆𝐸(𝑡1, 𝜆13)−

𝜆3
𝜆12

𝑆𝐸(𝑡1, 𝜆)

]︂

+ 𝜑01

[︂
𝜆

𝜆12
𝑆𝐸(𝑡2, 𝜆23)−

𝜆3
𝜆12

𝑆𝐸(𝑡2, 𝜆)

]︂
+ 𝜑00 if 𝑡1 ≥ 𝑡2

(3.64)
where 𝜆 = 𝜆1 + 𝜆2 + 𝜆3, 𝜆12 = 𝜆1 + 𝜆2, 𝜆13 = 𝜆1 + 𝜆3, 𝜆23 = 𝜆2 + 𝜆3; 𝑆𝐸(𝑡, 𝛼) is the
exponential survival function; and 𝜑11, 𝜑10, 𝜑01, 𝜑00 are defined in Equation (2.29). Thus,
the contribution of the ith observation for the likelihood function assuming the BBBE
cure rate model is given by,

i.) If 𝑖 ∈ 𝐶1,

𝑓(𝑡1𝑖, 𝑡2𝑖) =

⎧⎪⎪⎨⎪⎪⎩
𝜑11

𝜆𝜆1𝜆23

𝜆12
exp{−𝜆1𝑡1𝑖 − 𝜆23𝑡2𝑖} if 𝑡1𝑖 < 𝑡2𝑖

𝜑11
𝜆𝜆2𝜆13

𝜆12
exp{−𝜆13𝑡1𝑖 − 𝜆2𝑡2𝑖} if 𝑡1𝑖 ≥ 𝑡2𝑖



Chapter 3. An Extension of Bivariate Models Using Mixture Cure Rate Models 76

ii.) If 𝑖 ∈ 𝐶2,

−𝜕𝑆(𝑡1𝑖, 𝑡2𝑖)

𝜕𝑡1𝑖
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜑11

[︃
𝜆𝜆1

𝜆12
exp{−𝜆1𝑡1𝑖 − 𝜆23𝑡2𝑖}

]︃
+ 𝜑10

[︃
𝜆

𝜆12
𝑓𝐸(𝑡1𝑖, 𝜆13)

− 𝜆3

𝜆12
𝑓𝐸(𝑡1𝑖, 𝜆)

]︃
if 𝑡1𝑖 < 𝑡2𝑖

𝜑11

[︃
𝜆𝜆13

𝜆12
exp{−𝜆13𝑡1𝑖 − 𝜆2𝑡2𝑖} −

𝜆𝜆3

𝜆12
exp{−𝜆𝑡1𝑖}

]︃

+𝜑10

[︃
𝜆

𝜆12
𝑓𝐸(𝑡1𝑖, 𝜆13)−

𝜆3

𝜆12
𝑓𝐸(𝑡1𝑖, 𝜆)

]︃
if 𝑡1𝑖 ≥ 𝑡2𝑖

iii.) If 𝑖 ∈ 𝐶3,

−𝜕𝑆(𝑡1𝑖, 𝑡2𝑖)

𝜕𝑡2𝑖
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜑11

[︃
𝜆𝜆23

𝜆12
exp{−𝜆1𝑡1𝑖 − 𝜆23𝑡2𝑖} −

𝜆𝜆3

𝜆12
exp{−𝜆𝑡2𝑖}

]︃

+𝜑01

[︃
𝜆

𝜆12
𝑓𝐸(𝑡2𝑖, 𝜆23)−

𝜆3

𝜆12
𝑓𝐸(𝑡1𝑖, 𝜆)

]︃
if 𝑡1𝑖 < 𝑡2𝑖

𝜑11

[︃
𝜆𝜆2

𝜆12
exp{−𝜆13𝑡1𝑖 − 𝜆2𝑡2𝑖}

]︃
+ 𝜑01

[︃
𝜆

𝜆12
𝑓𝐸(𝑡2𝑖, 𝜆23)

− 𝜆3

𝜆12
𝑓𝐸(𝑡2𝑖, 𝜆)

]︃
if 𝑡1𝑖 ≥ 𝑡2𝑖

iv.) If 𝑖 ∈ 𝐶4,

𝑆(𝑡1𝑖, 𝑡2𝑖) = 𝜑10

[︂
𝜆

𝜆12
𝑆𝐸(𝑡1𝑖, 𝜆13) −

𝜆3
𝜆12

𝑆𝐸(𝑡1𝑖, 𝜆)

]︂
+ 𝜑11𝑆0(𝑡1𝑖, 𝑡2𝑖) + 𝜑00

+ 𝜑01

[︂
𝜆

𝜆12
𝑆𝐸(𝑡2𝑖, 𝜆23) −

𝜆3
𝜆12

𝑆𝐸(𝑡2𝑖, 𝜆)

]︂
where 𝑓𝐸(𝑡, 𝛼) and 𝑆𝐸(𝑡, 𝛼) are the exponential density and survival function, re-
spectively; and 𝑆0(𝑡1𝑖, 𝑡2𝑖) is given in Equation (3.59).

In Figure 9, it is illustrated the contour plots for the survival function expressed
in Equation (3.64) for different parameter values. Observe that the behavior expressed
in the contour plots for the BBBE cure rate model is quite similar to the GBE cure
rate model assuming the same proportions for the parameters of incidence of cure rate
and similar value for the parameters. This remark is important since both models have
different mathematical expressions which we can see that the GBE model is simpler than
the BBBE model in mathematical expressions.
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Figure 9 – Contour plots of the joint survival function in presence of cure rate for
BBBE model assuming different parameter values (Upper-panels: fixed val-
ues given by 𝜆1 = 𝜆2 = 0.75, 𝜆3 = 0.40, 𝜑10 = 𝜑01 = 0.15, and 𝜑11 =
(0.60, 0.40, 0.20), 𝜑00 = (0.10, 0.30, 0.50). Lower-panels: fixed values given by
𝜆1 = 𝜆2 = 0.75, 𝜆3 = 0.40, 𝜑11 = 𝜑00 = 0.15, and 𝜑10 = (0.60, 0.40, 0.20), 𝜑01 =
(0.10, 0.30, 0.50)).

3.4.3 Marshall-Olkin Bivariate Exponential

3.4.3.1 Standard Model

In this section, it is assumed the Marshall-Olkin bivariate exponential distribution,
denoted by MOBE(𝜆1, 𝜆2, 𝜆12), introduced by Marshall and Olkin (1967b) in reliability
analysis. The joint survival function for the lifetimes 𝑇1 and 𝑇2 assuming the MOBE
distribution is given by,

𝑆0(𝑡1, 𝑡2) = exp{−𝜆1𝑡1 − 𝜆2𝑡2 − 𝜆12 max(𝑡1, 𝑡2)} (3.65)

where 𝜆1, 𝜆2, 𝜆12 > 0. From the bivariate survival function described in Equation (3.65),
the joint probability density function for the MOBE distribution is given by,

𝑓0(𝑡1, 𝑡2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜆2(𝜆1 + 𝜆12)𝑆(𝑡1, 𝑡2) if 𝑡1 > 𝑡2

𝜆1(𝜆2 + 𝜆12)𝑆(𝑡1, 𝑡2) if 𝑡1 < 𝑡2

𝜆12𝑆(𝑡1, 𝑡1) if 𝑡1 = 𝑡2

(3.66)

where the marginal distributions for the random variables 𝑇1 and 𝑇2 are univariate expo-
nential distributions with survival functions given by,

𝑆01(𝑡1) = exp{−(𝜆1 + 𝜆12)𝑡1} and 𝑆02(𝑡2) = exp{−(𝜆2 + 𝜆12)𝑡2} (3.67)
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The correlation coefficient between the lifetimes 𝑇1 and 𝑇2 is given by,

𝜌 =
𝜆12

𝜆1 + 𝜆2 + 𝜆12
. (3.68)

Observe that, the correlation is limited to 0 < 𝜌 < 1, that is, this distribution is useful
for bivariate lifetimes with positive correlation.

3.4.3.2 Cure Rate Model

The mixture cure rate model for bivariate lifetimes 𝑇1 and 𝑇2 assuming the MOBE
distribution is given by,

𝑆(𝑡1, 𝑡2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜑11 exp{−(𝜆1 + 𝜆12)𝑡1 − 𝜆2𝑡2}+ 𝜑10 exp{−(𝜆1 + 𝜆12)𝑡1}+ 𝜑01 exp{−(𝜆2 + 𝜆12)𝑡2}+ 𝜑00

if 𝑡1 > 𝑡2

𝜑11 exp{−(𝜆2 + 𝜆12)𝑡2 − 𝜆1𝑡1}+ 𝜑10 exp{−(𝜆1 + 𝜆12)𝑡1}+ 𝜑01 exp{−(𝜆2 + 𝜆12)𝑡2}+ 𝜑00

if 𝑡1 < 𝑡2

𝜑11 exp{−(𝜆1 + 𝜆12 + 𝜆2)𝑡1}+ 𝜑10 exp{−(𝜆1 + 𝜆12)𝑡1}+ 𝜑01 exp{−(𝜆2 + 𝜆12)𝑡1}+ 𝜑00

if 𝑡1 = 𝑡2

(3.69)
where 𝜆1, 𝜆2, 𝜆12 > 0; and 𝜑11, 𝜑10, 𝜑01, 𝜑00 are defined in Equation (2.29). Thus, the
contribution of the ith observation for the likelihood function assuming the MOBE cure
rate model is given by,

i.) If 𝑖 ∈ 𝐶1,

𝑓(𝑡1𝑖, 𝑡2𝑖) =

⎧⎪⎨⎪⎩
𝜑11𝜆2(𝜆1 + 𝜆12)𝑆0(𝑡1𝑖, 𝑡2𝑖) if 𝑡1𝑖 > 𝑡2𝑖

𝜑11𝜆1(𝜆2 + 𝜆12)𝑆0(𝑡1𝑖, 𝑡2𝑖) if 𝑡1𝑖 < 𝑡2𝑖

𝜑11𝜆12𝑆(𝑡1𝑖, 𝑡2𝑖) if 𝑡1𝑖 = 𝑡2𝑖

ii.) If 𝑖 ∈ 𝐶2,

−𝜕𝑆(𝑡1𝑖, 𝑡2𝑖)

𝜕𝑡1𝑖
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜑11(𝜆1 + 𝜆12) exp{−(𝜆1 + 𝜆12)𝑡1𝑖 − 𝜆2𝑡2𝑖}+ 𝜑10(𝜆1 + 𝜆12) exp{−(𝜆1 + 𝜆12)𝑡1𝑖}

if 𝑡1𝑖 > 𝑡2𝑖

𝜑11𝜆1 exp{−(𝜆2 + 𝜆12)𝑡2𝑖 − 𝜆1𝑡1𝑖}+ 𝜑10(𝜆1 + 𝜆12) exp{−(𝜆1 + 𝜆12)𝑡1𝑖}

if 𝑡1𝑖 < 𝑡2𝑖

𝜑11(𝜆1 + 𝜆2 + 𝜆12) exp{−(𝜆1 + 𝜆2 + 𝜆12)𝑡1𝑖}+ 𝜑10(𝜆1 + 𝜆12) exp{−(𝜆1 + 𝜆12)𝑡1𝑖}

+𝜑01(𝜆2 + 𝜆12) exp{−(𝜆2 + 𝜆12)𝑡1𝑖} if 𝑡1𝑖 = 𝑡2𝑖

iii.) If 𝑖 ∈ 𝐶3,

−𝜕𝑆(𝑡1𝑖, 𝑡2𝑖)

𝜕𝑡2𝑖
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝜑11𝜆2 exp{−(𝜆1 + 𝜆12)𝑡1𝑖 − 𝜆2𝑡2𝑖}+ 𝜑01(𝜆2 + 𝜆12) exp{−(𝜆2 + 𝜆12)𝑡2𝑖}

if 𝑡1𝑖 > 𝑡2𝑖

𝜑11(𝜆2 + 𝜆12) exp{−(𝜆1 + 𝜆12)𝑡2𝑖 − 𝜆1𝑡1𝑖}+ 𝜑01(𝜆2 + 𝜆12) exp{−(𝜆2 + 𝜆12)𝑡2𝑖}

if 𝑡1𝑖 < 𝑡2𝑖

0 if 𝑡1𝑖 = 𝑡2𝑖
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iv.) If 𝑖 ∈ 𝐶4,

𝑆(𝑡1𝑖, 𝑡2𝑖) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜑11 exp{−(𝜆1 + 𝜆12)𝑡1𝑖 − 𝜆2𝑡2𝑖}+ 𝜑10 exp{−(𝜆1 + 𝜆12)𝑡1𝑖}+ 𝜑01 exp{−(𝜆2 + 𝜆12)𝑡2𝑖}

+ 𝜑00 if 𝑡1𝑖 > 𝑡2𝑖

𝜑11 exp{−(𝜆2 + 𝜆12)𝑡2𝑖 − 𝜆1𝑡1𝑖}+ 𝜑10 exp{−(𝜆1 + 𝜆12)𝑡1𝑖}+ 𝜑01 exp{−(𝜆2 + 𝜆12)𝑡2𝑖}

+ 𝜑00 if 𝑡1𝑖 < 𝑡2𝑖

𝜑11 exp{−(𝜆1 + 𝜆2 + 𝜆12)𝑡1𝑖}+ 𝜑10 exp{−(𝜆1 + 𝜆12)𝑡1𝑖}+ 𝜑01 exp{−(𝜆2 + 𝜆12)𝑡1𝑖}

+ 𝜑00 if 𝑡1𝑖 = 𝑡2𝑖

In Figure 10, it is illustrated the contour plots for the survival function expressed
in Equation (3.69) for different parameter values. Observe that the behavior of the MOBE
cure rate model has a singular part which is expected since its survival function depends
on a max(𝑡1, 𝑡2).
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Figure 10 – Contour plots of the joint survival function in presence of cure rate for
MOBE model assuming different parameter values (Upper-panels: fixed
values given by 𝜆1 = 𝜆2 = 0.75, 𝜆12 = 0.40, 𝜑10 = 𝜑01 = 0.15, and
𝜑11 = (0.60, 0.40, 0.20), 𝜑00 = (0.10, 0.30, 0.50). Lower-panels: fixed val-
ues given by 𝜆1 = 𝜆2 = 0.75, 𝜆12 = 0.40, 𝜑11 = 𝜑00 = 0.15, and 𝜑10 =
(0.60, 0.40, 0.20), 𝜑01 = (0.10, 0.30, 0.50)).

3.4.4 Bivariate Lindley

In this section, it is assumed the first bivariate Lindley distribution based on a
shock model with exponential distribution for 𝑊3 and denoted by BLI(𝛽1, 𝛽2, 𝛽3); and the
third bivariate Lindley distribution based a on stress model with exponential distribution
for 𝑈3 and denoted by BLIII(𝛽1, 𝛽2, 𝛽3) introduced in Section 2.3.
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3.4.4.1 Cure Rate Model Based on Shock Model

The mixture cure rate model for bivariate lifetimes 𝑇1 and 𝑇2 assuming the BLI
distribution is given by,

𝑆(𝑡1, 𝑡2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜑11

[︂
(1 + 𝛽1 + 𝛽1𝑡1)(1 + 𝛽2 + 𝛽2𝑡2)

(1 + 𝛽1)(1 + 𝛽2)
exp{−(𝛽1 + 𝛽3)𝑡1}

]︂
+ 𝜑10

[︁(︁
1 + 𝛽1𝑡1

1+𝛽1

)︁
e−𝛽1𝑡1−𝛽3𝑡1

]︁
+𝜑01

[︁(︁
1 + 𝛽2𝑡2

1+𝛽2

)︁
e−𝛽2𝑡2−𝛽3𝑡2

]︁
+ 𝜑00 if 𝑡1 > 𝑡2

𝜑11

[︂
(1 + 𝛽1 + 𝛽1𝑡1)(1 + 𝛽2 + 𝛽2𝑡2)

(1 + 𝛽1)(1 + 𝛽2)
exp{−(𝛽2 + 𝛽3)𝑡1}

]︂
+ 𝜑10

[︁(︁
1 + 𝛽1𝑡1

1+𝛽1

)︁
e−𝛽1𝑡1−𝛽3𝑡1

]︁
+𝜑01

[︁(︁
1 + 𝛽2𝑡2

1+𝛽2

)︁
e−𝛽2𝑡2−𝛽3𝑡2

]︁
+ 𝜑00 if 𝑡1 < 𝑡2

𝜑11

[︂
(1 + 𝛽1 + 𝛽1𝑡1)(1 + 𝛽2 + 𝛽2𝑡1)

(1 + 𝛽1)(1 + 𝛽2)
exp{−(𝛽1 + 𝛽2 + 𝛽3)𝑡1}

]︂
+ 𝜑10

[︁(︁
1 + 𝛽1𝑡1

1+𝛽1

)︁
e−𝛽1𝑡1−𝛽3𝑡1

]︁
+𝜑01

[︁(︁
1 + 𝛽2𝑡1

1+𝛽2

)︁
e−𝛽2𝑡1−𝛽3𝑡1

]︁
+ 𝜑00 if 𝑡1 = 𝑡2

(3.70)
where 𝛽1, 𝛽2, 𝛽3 > 0; and 𝜑11, 𝜑10, 𝜑01, 𝜑00 are defined in Equation (2.29). Thus, the con-
tribution of the ith observation for the likelihood function assuming the BLI cure rate
model could be direct obtained assuming the joint pdf:

𝑓(𝑡1, 𝑡2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜑11

[︃
𝛽1(1 + 𝑡1)

1 + 𝛽1
𝑓𝐸(𝑡1, 𝛽1 + 𝛽3) +

𝛽3

1 + 𝛽1
𝑆𝐸(𝑡1, 𝛽1 + 𝛽3)

]︃
𝑓𝐿(𝑡2, 𝛽2) if 𝑡1 > 𝑡2

𝜑11

[︃
𝛽2(1 + 𝑡2)

1 + 𝛽2
𝑓𝐸(𝑡2, 𝛽2 + 𝛽3) +

𝛽3

1 + 𝛽2
𝑆𝐸(𝑡2, 𝛽2 + 𝛽3)

]︃
𝑓𝐿(𝑡1, 𝛽1) if 𝑡1 < 𝑡2

𝜑11𝛽3e−𝛽3𝑡

{︃(︂
1 +

𝛽1𝑡

1 + 𝛽1

)︂(︂
1 +

𝛽2𝑡

1 + 𝛽2

)︂
e−(𝛽1+𝛽2)𝑡

}︃
if 𝑡1 = 𝑡2 = 𝑡,

and the likelihood function based on a random sample of size n, given by,

𝐿 ∝
∏︁
𝑖∈𝐶1

𝑓(𝑡1𝑖, 𝑡2𝑖)
∏︁
𝑖∈𝐶2

[︂
−𝜕𝑆(𝑡1𝑖, 𝑡2𝑖)

𝜕𝑡1𝑖

]︂ ∏︁
𝑖∈𝐶3

[︂
−𝜕𝑆(𝑡1𝑖, 𝑡2𝑖)

𝜕𝑡2𝑖

]︂ ∏︁
𝑖∈𝐶4

𝑆(𝑡1𝑖, 𝑡2𝑖)

3.4.4.2 Cure Rate Model Based on Stress Model

The mixture cure rate model for bivariate lifetimes 𝑇1 and 𝑇2 assuming the BLIII
distribution is given by,

𝑆(𝑡1, 𝑡2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜑11

[︂
(1 + 𝛽1 + 𝛽1𝑡1)(1 + 𝛽2 + 𝛽2𝑡2)

(1 + 𝛽1)(1 + 𝛽2)
exp{−(𝛽1 + 𝛽3)𝑡1}

]︂
+ 𝜑10

[︁(︁
1 + 𝛽1𝑡1

1+𝛽1

)︁
e−𝛽1𝑡1−𝛽3𝑡1

]︁
+𝜑01

[︁(︁
1 + 𝛽2𝑡2

1+𝛽2

)︁
e−𝛽2𝑡2−𝛽3𝑡2

]︁
+ 𝜑00 if 𝑡1 < 𝑡2

𝜑11

[︂
(1 + 𝛽1 + 𝛽1𝑡1)(1 + 𝛽2 + 𝛽2𝑡2)

(1 + 𝛽1)(1 + 𝛽2)
exp{−(𝛽2 + 𝛽3)𝑡1}

]︂
+ 𝜑10

[︁(︁
1 + 𝛽1𝑡1

1+𝛽1

)︁
e−𝛽1𝑡1−𝛽3𝑡1

]︁
+𝜑01

[︁(︁
1 + 𝛽2𝑡2

1+𝛽2

)︁
e−𝛽2𝑡2−𝛽3𝑡2

]︁
+ 𝜑00 if 𝑡1 > 𝑡2

𝜑11

[︂
(1 + 𝛽1 + 𝛽1𝑡1)(1 + 𝛽2 + 𝛽2𝑡1)

(1 + 𝛽1)(1 + 𝛽2)
exp{−(𝛽1 + 𝛽2 + 𝛽3)𝑡1}

]︂
+ 𝜑10

[︁(︁
1 + 𝛽1𝑡1

1+𝛽1

)︁
e−𝛽1𝑡1−𝛽3𝑡1

]︁
+𝜑01

[︁(︁
1 + 𝛽2𝑡1

1+𝛽2

)︁
e−𝛽2𝑡1−𝛽3𝑡1

]︁
+ 𝜑00 if 𝑡1 = 𝑡2

(3.71)
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where 𝛽1, 𝛽2, 𝛽3 > 0; and 𝜑11, 𝜑10, 𝜑01, 𝜑00 are defined in Equation (2.29). Thus, in the
same way as for the BLI cure rate model, the contribution of the ith observation for the
likelihood function assuming the BLIII cure rate model could be direct obtained assuming
the joint pdf:

𝑓(𝑡1, 𝑡2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜑11

[︃
𝛽1(1 + 𝑡1)

1 + 𝛽1
𝑓𝐸(𝑡1, 𝛽1 + 𝛽3) +

𝛽3

1 + 𝛽1
𝑆𝐸(𝑡1, 𝛽1 + 𝛽3)

]︃
𝑓𝐿(𝑡2, 𝛽2) if 𝑡1 < 𝑡2

𝜑11

[︃
𝛽2(1 + 𝑡2)

1 + 𝛽2
𝑓𝐸(𝑡2, 𝛽2 + 𝛽3) +

𝛽3

1 + 𝛽2
𝑆𝐸(𝑡2, 𝛽2 + 𝛽3)

]︃
𝑓𝐿(𝑡1, 𝛽1) if 𝑡1 > 𝑡2

𝜑11𝛽3e−𝛽3𝑡

{︃(︂
1 +

𝛽1𝑡

1 + 𝛽1

)︂(︂
1 +

𝛽2𝑡

1 + 𝛽2

)︂
e−(𝛽1+𝛽2)𝑡

}︃
if 𝑡1 = 𝑡2 = 𝑡,

and the likelihood function based on a random sample of size n, given by,

𝐿 ∝
∏︁
𝑖∈𝐶1

𝑓(𝑡1𝑖, 𝑡2𝑖)
∏︁
𝑖∈𝐶2

[︂
−𝜕𝑆(𝑡1𝑖, 𝑡2𝑖)

𝜕𝑡1𝑖

]︂ ∏︁
𝑖∈𝐶3

[︂
−𝜕𝑆(𝑡1𝑖, 𝑡2𝑖)

𝜕𝑡2𝑖

]︂ ∏︁
𝑖∈𝐶4

𝑆(𝑡1𝑖, 𝑡2𝑖)

3.4.5 Bivariate Geometric Distribution Type II

3.4.5.1 Standard Model

In this section, it is assumed the bivariate geometric distribution type II, denoted
by BG-Type II(𝜃1,𝜃2,𝜃12) proposed by Xiaoling et al. (2012) in reliability analysis. The
joint survival function for the lifetimes 𝑇1 and 𝑇2 assuming the BG-Type II distribution
is given by,

𝑃0(𝑇1 > 𝑡1, 𝑇2 > 𝑡2) = 𝜃𝑡11 𝜃
𝑡2
2 𝜃

min(𝑡1,𝑡2)
12 (3.72)

where the parameters are 0 < 𝜃1𝜃2 < 1, 0 < 𝜃12 ≤ 1 and satisfy 1 − 𝜃1 − 𝜃2 + 𝜃1𝜃2𝜃12 ≥ 0.
From (3.72), the bivariate probability mass function of the BG-Type II for two discrete
random variables 𝑇1 and 𝑇2, is given by,

𝑃0(𝑇1 = 𝑡1, 𝑇2 = 𝑡2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜃𝑡1−1
1 𝜃2

𝑡2−1𝜃𝑡1−1
12 (1 − 𝜃2)(1 − 𝜃1𝜃12) if 𝑡1 < 𝑡2

𝜃𝑡1−1
1 𝜃2

𝑡2−1𝜃𝑡2−1
12 (1 − 𝜃1)(1 − 𝜃2𝜃12) if 𝑡1 > 𝑡2

(𝜃1𝜃2𝜃12)
𝑡1−1(1 − 𝜃1𝜃2 − 𝜃1𝜃2 + 𝜃1𝜃2𝜃12) if 𝑡1 = 𝑡2

(3.73)

where 0 < 𝜃1𝜃2 < 1 and 0 < 𝜃12 ≤ 1. The marginal probability mass functions of the
BG-Type II model are, respectively, standard geometric distributions starting at one with
parameters 𝜃1 and 𝜃2.

Now, let (𝑇1, 𝑇2) be a bivariate discrete random vector with a BG-Type II distri-
bution. The correlation coefficient for the BG-Type II distribution is given by,

𝜌 = −(1 − 𝜃12)(𝜃1𝜃2)
1/2

1 − 𝜃1𝜃2𝜃12
. (3.74)

Note that, the correlation is equals to zero when 𝜃12 = 1; otherwise 0 ≤ 𝜌 ≤ 1, that is,
this distribution is useful for bivariate lifetimes with positive correlation.
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3.4.5.2 Cure Rate Model

Now, let us assume a BG-Type II distribution with parameters 𝜃1, 𝜃2 and 𝜃12 for
the bivariate lifetimes 𝑇1 and 𝑇2. From the BG-Type II joint survival function and the
equation (2.29), the bivariate mixture cure rate model is given by,

𝑃 (𝑇1 > 𝑡1, 𝑇2 > 𝑡2) = 𝜑11

[︁
𝜃𝑡11 𝜃

𝑡2
2 𝜃

min(𝑡1,𝑡2)
12

]︁
+ 𝜑10𝜃

𝑡1
1 + 𝜑01𝜃

𝑡2
2 + 𝜑00 (3.75)

In Figure 11, it is illustrated the contour plots for the survival function expressed
in Equation (3.75) for different parameter values.
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Figure 11 – Contour plots of the joint survival function in presence of cure rate for BG-
Type II model assuming different parameter values (Upper-panels: fixed
values given by 𝜃1 = 𝜃2 = 𝜃12 = 0.95, 𝜑10 = 𝜑01 = 0.15, and 𝜑11 =
(0.60, 0.40, 0.20), 𝜑00 = (0.10, 0.30, 0.50). Lower-panels: fixed values given
by 𝜃1 = 𝜃2 = 𝜃12 = 0.95, 𝜑11 = 𝜑00 = 0.15, and 𝜑10 = (0.60, 0.40, 0.20), 𝜑01 =
(0.10, 0.30, 0.50)).

For this discrete model, the contribution of the 𝑖th unit for the likelihood function
is given by,

i.) If 𝑖 ∈ 𝐶1,

𝑃 (𝑇1𝑖 = 𝑡1𝑖, 𝑇2𝑖 = 𝑡2𝑖) = 𝜑11

[︀
𝜃𝑡1𝑖−1
1 𝜃𝑡2𝑖−1

2 𝜃𝑧1𝑖12 − 𝜃𝑡1𝑖1 𝜃𝑡2𝑖−1
2 𝜃𝑧2𝑖12 − 𝜃𝑡1𝑖−1

1 𝜃𝑡2𝑖2 𝜃𝑧3𝑖12 + 𝜃𝑡1𝑖1 𝜃𝑡2𝑖2 𝜃𝑧4𝑖12

]︀
ii.) If 𝑖 ∈ 𝐶2,

𝑃 (𝑇1𝑖 = 𝑡1𝑖, 𝑇2𝑖 > 𝑡2𝑖) = 𝜑11

[︀
𝜃𝑡1𝑖−1
1 𝜃𝑡2𝑖2 𝜃𝑧3𝑖12 − 𝜃𝑡1𝑖1 𝜃𝑡2𝑖2 𝜃𝑧4𝑖12

]︀
+ 𝜑10𝜃

𝑡1𝑖−1
1 (1 − 𝜃1)
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iii.) If 𝑖 ∈ 𝐶3,

𝑃 (𝑇1𝑖 > 𝑡1𝑖, 𝑇2𝑖 = 𝑡2𝑖) = 𝜑11

[︀
𝜃𝑡1𝑖1 𝜃𝑡2𝑖−1

2 𝜃𝑧2𝑖12 − 𝜃𝑡1𝑖1 𝜃𝑡2𝑖2 𝜃𝑧4𝑖12

]︀
+ 𝜑01𝜃

𝑡2𝑖−1
2 (1 − 𝜃2)

iv.) If 𝑖 ∈ 𝐶4,

𝑃 (𝑇1𝑖 > 𝑡1𝑖, 𝑇2𝑖 > 𝑡2𝑖) = 𝜑11

[︀
𝜃𝑡1𝑖1 𝜃𝑡2𝑖2 𝜃𝑧4𝑖12

]︀
+ 𝜑10𝜃

𝑡1𝑖
1 + 𝜑01𝜃

𝑡2𝑖
2 + 𝜑00

where 𝑧1 = min(𝑡1 − 1, 𝑡2 − 1), 𝑧2 = min(𝑡1, 𝑡2 − 1), 𝑧3 = min(𝑡1 − 1, 𝑡2) e 𝑧4 =

min(𝑡1, 𝑡2).

3.4.6 Basu-Dhar Bivariate Geometric

3.4.6.1 Standard Model

In this section, it is assumed the Basu-Dhar bivariate geometric distribution de-
fined for discrete random variables, denoted by BDBG(𝜃1,𝜃2,𝜃12), proposed by Basu and
Dhar (1995) in reliability analysis. This distribution was also studied by Achcar et al.
(2016a); de Oliveira and Achcar (2018) in the presence of covariates and censored data.
The survival function is given by,

𝑃0(𝑇1 > 𝑡1, 𝑇2 > 𝑡2) = 𝜃𝑡11 𝜃
𝑡2
2 𝜃

max(𝑡1,𝑡2)
12 (3.76)

where 0 < 𝜃1, 𝜃2 < 1 and 0 < 𝜃12 ≤ 1. From (3.76), the bivariate probability mass function
of the Basu-Dhar bivariate geometric distribution, for two discrete random variables 𝑇1
and 𝑇2, is given by,

𝑃0(𝑇1 = 𝑡1, 𝑇2 = 𝑡2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜃𝑡1−1
1 (𝜃2𝜃12)

𝑡2−1𝑞1(1 − 𝜃2𝜃12) if 𝑡1 < 𝑡2

𝜃𝑡2−1
2 (𝜃1𝜃12)

𝑡1−1𝑞2(1 − 𝜃1𝜃12) if 𝑡1 > 𝑡2

(𝜃1𝜃2𝜃12)
𝑡1−1(1 − 𝜃1𝜃12 − 𝜃2𝜃12 + 𝜃1𝜃2𝜃12) if 𝑡1 = 𝑡2

(3.77)

where 0 < 𝜃1 < 1, 0 < 𝜃2 < 1, 0 < 𝜃12 ≤ 1, 𝑞1 = 1−𝜃1 and 𝑞2 = 1−𝜃2. The marginal prob-
ability mass functions of the BDBG model are respectively, given by standard geometric
distributions starting at one, that is,

𝑃01(𝑇1 = 𝑡1) = (𝜃1𝜃12)
𝑡1−1(1 − 𝜃1𝜃12)

𝑃02(𝑇2 = 𝑡2) = (𝜃2𝜃12)
𝑡2−1(1 − 𝜃2𝜃12). (3.78)

and marginal survival functions given, respectively by,

𝑃01(𝑇1 > 𝑡1) = (𝜃1𝜃12)
𝑡1−1

𝑃02(𝑇2 > 𝑡2) = (𝜃2𝜃12)
𝑡2−1 (3.79)
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Now, let (𝑇1, 𝑇2) be a bivariate discrete random vector with a BDBG distribution.
Following Li and Dhar (2013), the product moment of 𝑇1 and 𝑇2 is derived as follows:

E[𝑇1𝑇2] =
1 − 𝜃1𝜃2𝜃

2
12

(1 − 𝜃1𝜃12)(1 − 𝜃2𝜃12)(1 − 𝜃1𝜃2𝜃12)
(3.80)

From (3.80), the correlation coefficient for the BDBG distribution is given by,

𝜌 =
(1 − 𝜃12)(𝜃1𝜃2)

1/2

1 − 𝜃1𝜃2𝜃12
. (3.81)

Note that, the correlation is equals to zero when 𝜃12 = 1; otherwise 0 ≤ 𝜌 ≤ 1, that is,
this distribution is useful for bivariate lifetimes with positive correlation.

3.4.6.2 Cure Rate Model

Now, let us assume a BDBG distribution with parameters 𝜃1, 𝜃2 and 𝜃12 for the
bivariate lifetimes 𝑇1 and 𝑇2. From the BDBG joint survival function and the equation
(2.29), the bivariate mixture cure rate model is given by,

𝑃 (𝑇1 > 𝑡1, 𝑇2 > 𝑡2) = 𝜑11

[︁
𝜃𝑡11 𝜃

𝑡2
2 𝜃

max(𝑡1,𝑡2)
12

]︁
+ 𝜑10(𝜃1𝜃12)

𝑡1 + 𝜑01(𝜃2𝜃12)
𝑡2 + 𝜑00 (3.82)

In Figure 12, it is illustrated the contour plots for the survival function expressed
in Equation (3.82) for different parameter values.
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Figure 12 – Contour plots of the joint survival function in presence of cure rate for
BDBG model assuming different parameter values (Upper-panels: fixed
values given by 𝜃1 = 𝜃2 = 𝜃12 = 0.95, 𝜑10 = 𝜑01 = 0.15, and 𝜑11 =
(0.60, 0.40, 0.20), 𝜑00 = (0.10, 0.30, 0.50). Lower-panels: fixed values given
by 𝜃1 = 𝜃2 = 𝜃12 = 0.95, 𝜑11 = 𝜑00 = 0.15, and 𝜑10 = (0.60, 0.40, 0.20), 𝜑01 =
(0.10, 0.30, 0.50)).
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For this discrete model, the contribution of the 𝑖th unit for the likelihood function
is given by,

i.) If 𝑖 ∈ 𝐶1,

𝑃 (𝑇1𝑖 = 𝑡1𝑖, 𝑇2𝑖 = 𝑡2𝑖) = 𝜑11

[︀
𝜃𝑡1𝑖−1
1 𝜃𝑡2𝑖−1

2 𝜃𝑧1𝑖12 − 𝜃𝑡1𝑖1 𝜃𝑡2𝑖−1
2 𝜃𝑧2𝑖12 − 𝜃𝑡1𝑖−1

1 𝜃𝑡2𝑖2 𝜃𝑧3𝑖12 + 𝜃𝑡1𝑖1 𝜃𝑡2𝑖2 𝜃𝑧4𝑖12

]︀
ii.) If 𝑖 ∈ 𝐶2,

𝑃 (𝑇1𝑖 = 𝑡1𝑖, 𝑇2𝑖 > 𝑡2𝑖) = 𝜑11

[︀
𝜃𝑡1𝑖−1
1 𝜃𝑡2𝑖2 𝜃𝑧3𝑖12 − 𝜃𝑡1𝑖1 𝜃𝑡2𝑖2 𝜃𝑧4𝑖12

]︀
+ 𝜑10(𝜃1𝜃12)

𝑡1𝑖−1(1 − 𝜃1𝜃12)

iii.) If 𝑖 ∈ 𝐶3,

𝑃 (𝑇1𝑖 > 𝑡1𝑖, 𝑇2𝑖 = 𝑡2𝑖) = 𝜑11

[︀
𝜃𝑡1𝑖1 𝜃𝑡2𝑖−1

2 𝜃𝑧2𝑖12 − 𝜃𝑡1𝑖1 𝜃𝑡2𝑖2 𝜃𝑧4𝑖12

]︀
+ 𝜑01(𝜃2𝜃12)

𝑡2𝑖−1(1 − 𝜃2𝜃12)

iv.) If 𝑖 ∈ 𝐶4,

𝑃 (𝑇1𝑖 > 𝑡1𝑖, 𝑇2𝑖 > 𝑡2𝑖) = 𝜑11

[︀
𝜃𝑡1𝑖1 𝜃𝑡2𝑖2 𝜃𝑧4𝑖12

]︀
+ 𝜑10(𝜃1𝜃12)

𝑡1𝑖 + 𝜑01(𝜃2𝜃12)
𝑡2𝑖 + 𝜑00

where 𝑧1 = max(𝑡1 − 1, 𝑡2 − 1), 𝑧2 = max(𝑡1, 𝑡2 − 1), 𝑧3 = max(𝑡1 − 1, 𝑡2) e 𝑧4 =

max(𝑡1, 𝑡2).

3.4.7 Arnold Bivariate Geometric

3.4.7.1 Standard Model

In this section it is assumed a bivariate geometric distribution also for discrete
lifetime data denoted as ABG(𝜃1, 𝜃2) introduced by Arnold (1975). The ABG distribution
has joint survival function given by,

𝑃0(𝑇1 > 𝑡1, 𝑇2 > 𝑡2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1 − 𝜃1 − 𝜃2)

𝑡1(1 − 𝜃2)
𝑡2−𝑡1 if 𝑡1 < 𝑡2

(1 − 𝜃1 − 𝜃2)
𝑡2(1 − 𝜃1)

𝑡1−𝑡2 if 𝑡1 > 𝑡2

0 if 𝑡1 = 𝑡2

(3.83)

where 0 < 𝜃1, 𝜃2 < 1. For this model, marginal probability mass functions are respectively,
given by standard geometric distributions starting at one, that is,

𝑃01(𝑇1 = 𝑡1) = (1 − 𝜃1)
𝑡1−1𝜃1

𝑃02(𝑇2 = 𝑡2) = (1 − 𝜃2)
𝑡2−1𝜃2 (3.84)

and marginal survival functions, given respectively by,

𝑃01(𝑇1 > 𝑡1) = (1 − 𝜃1)
𝑡1−1

𝑃02(𝑇2 > 𝑡2) = (1 − 𝜃2)
𝑡2−1 (3.85)
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The correlation coefficient between 𝑇1 and 𝑇2, assuming the ABG model, is given
by,

𝜌 = − 𝜃1𝜃2
(𝜃1 + 𝜃2)[(1 − 𝜃1)(1 − 𝜃2)]1/2

(3.86)

Note that, the correlation is equals to zero when 𝜃1 = 0 or 𝜃2 = 0; otherwise −1 ≤ 𝜌 < 0,
that is, this distribution is useful for bivariate lifetimes with negative correlation.

3.4.7.2 Cure Rate Model

For likelihood-based inference methods, assuming the Arnold bivariate geometric
distribution with joint survival function given by (3.83) in the presence of censored data
and cure rate, the contribution of the 𝑖th unit for the likelihood function is given by,

i.) If 𝑖 ∈ 𝐶1,

𝑃 (𝑇1𝑖 = 𝑡1𝑖, 𝑇2𝑖 = 𝑡2𝑖) =

⎧⎨⎩𝜑11𝜃1𝜃2(1 − 𝜃1 − 𝜃2)
𝑡1𝑖−1(1 − 𝜃2)

𝑡2𝑖−𝑡1𝑖−1 if 𝑡1𝑖 < 𝑡2𝑖

𝜑11𝜃1𝜃2(1 − 𝜃1 − 𝜃2)
𝑡2𝑖−1(1 − 𝜃1)

𝑡1𝑖−𝑡2𝑖−1 if 𝑡1𝑖 > 𝑡2𝑖

ii.) If 𝑖 ∈ 𝐶2,

𝑃 (𝑇1𝑖 = 𝑡1𝑖, 𝑇2𝑖 > 𝑡2𝑖) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜑11𝜃1(1 − 𝜃1 − 𝜃2)
𝑡1𝑖−1(1 − 𝜃2)

𝑡2𝑖−𝑡1𝑖−1

+ 𝜑10𝑃01(𝑇1𝑖 = 𝑡1𝑖) 𝑡1𝑖 < 𝑡2𝑖

𝜑11𝜃1(1 − 𝜃1 − 𝜃2)
𝑡2𝑖(1 − 𝜃1)

𝑡1𝑖−𝑡2𝑖−1

+ 𝜑10𝑃01(𝑇1𝑖 = 𝑡1𝑖) 𝑡1𝑖 > 𝑡2𝑖

where 𝑃01(𝑇1𝑖 = 𝑡1𝑖) = (1 − 𝜃1)
𝑡1𝑖−1𝜃1.

iii.) If 𝑖 ∈ 𝐶3,

𝑃 (𝑇1𝑖 > 𝑡1𝑖, 𝑇2𝑖 = 𝑡2𝑖) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜑11𝜃2(1 − 𝜃1 − 𝜃2)
𝑡1𝑖(1 − 𝜃2)

𝑡2𝑖−𝑡1𝑖−1

+ 𝜑01𝑃02(𝑇2𝑖 = 𝑡2𝑖) 𝑡1𝑖 < 𝑡2𝑖

𝜑11𝜃2(1 − 𝜃1 − 𝜃2)
𝑡2𝑖−1(1 − 𝜃1)

𝑡1𝑖−𝑡2𝑖

+ 𝜑01𝑃02(𝑇2𝑖 = 𝑡2𝑖) 𝑡1𝑖 > 𝑡2𝑖

where 𝑃02(𝑇2𝑖 = 𝑡2𝑖) = (1 − 𝜃2)
𝑡2𝑖−1𝜃2.

iv.) If 𝑖 ∈ 𝐶4,

𝑃 (𝑇1𝑖 > 𝑡1𝑖, 𝑇2𝑖 > 𝑡2𝑖) = 𝜑11𝑃0(𝑇1𝑖 > 𝑡1𝑖, 𝑇2𝑖 > 𝑡2𝑖) + 𝜑10𝑃01(𝑇1𝑖 > 𝑡1𝑖)

+ 𝜑01𝑃02(𝑇2𝑖 > 𝑡2𝑖) + 𝜑00

where 𝑃0(𝑇1𝑖 > 𝑡1𝑖, 𝑇2𝑖 > 𝑡2𝑖) is given in Equation (2.27); 𝑃01(𝑇1𝑖 > 𝑡1𝑖) and 𝑃02(𝑇2𝑖 >

𝑡2𝑖) are given in Equation (2.29).
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In Figure 13, it is illustrated the contour plot of survival function probabilities of
𝑇1 and 𝑇2 assuming different parameter values and cure rate for the ABG distribution.
Observe that, in the case 𝑇1 = 𝑇2, the joint survival function values assume only the
marginal survival values since the joint survival probability is zero at 𝑇1 = 𝑇2.
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Figure 13 – Contour plots of the joint survival function in presence of cure rate for ABG
model assuming different parameter values (Upper-panels: fixed values
given by 𝜃1 = 𝜃2 = 0.10, 𝜑10 = 𝜑01 = 0.15, and 𝜑11 = (0.60, 0.40, 0.20), 𝜑00 =
(0.10, 0.30, 0.50). Lower-panels: fixed values given by 𝜃1 = 𝜃2 = 0.10, 𝜑11 =
𝜑00 = 0.15, and 𝜑10 = (0.60, 0.40, 0.20), 𝜑01 = (0.10, 0.30, 0.50)).

3.4.8 Bivariate Discrete Generalized Rayleigh Cure Rate Model

In this section, it is assumed the bivariate discrete generalized Rayleigh model
denoted by DBGR(𝜆1, 𝜆2, 𝛼) introduced in Section 2.3. The mixture cure rate model for
bivariate lifetimes 𝑇1 and 𝑇2 assuming the DBGR distribution is given by,

P(𝑇1 > 𝑡1, 𝑇2 > 𝑡2) = 𝜑11

[︃
𝛼𝜆

𝑡21
1 𝜆

𝑡22
2

1 − �̄�𝜆
𝑡21
1 𝜆

𝑡22
2

]︃
+ 𝜑10

[︃
𝛼𝜆

𝑡21
1

1 − �̄�𝜆
𝑡21
1

]︃
+ 𝜑01

[︃
𝛼𝜆

𝑡22
2

1 − �̄�𝜆
𝑡22
2

]︃
+ 𝜑00 (3.87)

where �̄� = 1 − 𝛼. Thus, the contribution of the i𝑡ℎ observation for the likelihood func-
tion assuming the DBGR cure rate model could be obtained directly from its marginal
distributions and the likelihood function based on a random sample of size n, is given by,

𝐿 ∝
∏︁
𝑖∈𝐶1

𝑃 (𝑇1𝑖 = 𝑡1𝑖, 𝑇2𝑖 = 𝑡2𝑖)
∏︁
𝑖∈𝐶2

𝑃 (𝑇1𝑖 = 𝑡1𝑖, 𝑇2𝑖 > 𝑡2𝑖)
∏︁
𝑖∈𝐶3

𝑃 (𝑇1𝑖 > 𝑡1𝑖, 𝑇2𝑖 = 𝑡2𝑖)

×
∏︁
𝑖∈𝐶4

𝑃 (𝑇1𝑖 > 𝑡1𝑖, 𝑇2𝑖 > 𝑡2𝑖)
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3.5 Summary of the Proposed Models

In Table 2, it is presented a summary for the proposed models including the corre-
lation coefficients and their ranges which is an important aspect to consider when deciding
which model is appropriate for the data analysis (see de Oliveira et al., 2018).

Table 2 – Summary of the proposed models and their correlation coefficients.

Model Type of
Model Parameters Correlation

Coefficient (𝜌)
Correlation

Range

GBE Continuous 𝜆1, 𝜆2 > 0
0 < 𝜃 < 1

1− 1

𝜆3
exp

(︂
1

𝜃

)︂
𝐸𝑖

(︂
1

𝜃

)︂
0 < 𝜌 ≤ 1

BBBE Continuous 𝜆1, 𝜆2, 𝜆3 > 0 Equation (3.63) 0 < 𝜌 ≤ 1

MOBE Continuous 𝜆1, 𝜆2, 𝜆12 > 0
𝜆12

𝜆1 + 𝜆2 + 𝜆12
0 < 𝜌 < 1

BLI Continuous 𝛽1, 𝛽2, 𝛽3 > 0 Not illustrated here 0 < 𝜌 ≤ 1

BLIII Continuous 𝛽1, 𝛽2, 𝛽3 > 0 Not illustrated here −1 ≤ 𝜌 < 0

ABG Discrete 0 < 𝜃1, 𝜃2 < 1 − 𝜃1𝜃2

(𝜃1 + 𝜃2)[(1− 𝜃1)(1− 𝜃2)]1/2
−1 ≤ 𝜌 < 0

BDBG Discrete 0 < 𝜃1, 𝜃2 < 1
0 < 𝜃12 ≤ 1

(1− 𝜃12)(𝜃1𝜃2)
1/2

1− 𝜃1𝜃2𝜃12
0 ≤ 𝜌 ≤ 1

BG-Type II Discrete 0 < 𝜃1, 𝜃2 < 1
0 < 𝜃12 ≤ 1

−(1− 𝜃12)(𝜃1𝜃2)
1/2

1− 𝜃1𝜃2𝜃12
−1 ≤ 𝜌 ≤ 0

DBGR Discrete 0 < 𝜆1, 𝜆2 < 1
𝛼 > 0

Not illustrated here −1 ≤ 𝜌 ≤ 1

From Table 2, it could be seen that the discrete models have simpler equations for
the correlation coefficients when compared to the continuous models (except for MOBE
model). However, analyzing the correlation range, it could be concluded, except for BL-
III model, that the continuous models have positive correlation and, in discrete case,
only BDBG has positive correlation. However, in terms of flexibility, the DBGR model
has positive, null and negative correlation which is the most flexible model among the
nine proposed models, but its correlation coefficient depends on a infinite sum due the
cross factorial moment presented in Section 2.3 which is one disadvantage of this model.
Moreover, the models that have only negative correlation range could be more limited
in lifetime data applications due to its negative range which could be not appropriated
for the data analysis. Finally, in terms of mathematical expressions, the MOBE model is
the most flexible model among the nine models, however, this model has a singular part
which could be a problem in the estimation process. On the other hand, the BDBG model
also has simpler expression for the correlation coefficient and no singular part which is a
great advantage to model lifetime data with positive correlation.
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Chapter 4

Modeling Long-Term Survivors in Medical
Studies Under Bayesian Approach

4.1 Introduction

Most of multivariate lifetime data are derived from studies that most of the re-
searchers are interested related to the waiting times until the ocurrence of an event of
interest. As a special case, clinical trial studies where the patients are followed-up during
a fixed period of time to assess the lifetimes efficacy of a new treatment (Vahidpour,
2016). In general, the event of interest in such studies could be death, cure, time to a
heart attack, remission time, reaction time for a treatment, deterioration time of a organ,
or adverse reaction; and the follow-up time for the study may range from few weeks to
many years. In the literature, this kind of data is called time-to-event data. However, in
some situations, the event of interest may not occur for some individuals, even after a
very long period of follow-up time. In those cases, the standard survival models cannot
accurately describe the behavior of all individuals. According to Vahidpour (2016), cure
rate models could be useful to be fitted by time-to-event data with long term survivors.

The use of cure rate models could be an useful tool that could provide invalu-
able information about the clinical trial (see, for example, Fleming and Lin, 2000; Singh
and Mukhopadhyay, 2011; Ghadimi et al., 2011). Most of the lifetime data from those
studies are often modeled using the standard nonparametric proportional hazards model
introduced by Cox (1972) which estimates the covariate effects as the log hazard ra-
tios or parametric regression models as log-additive regression models assuming standard
Weibull, log-normal or gamma probability distributions. However, the Cox proportional
hazards model, provides no direct estimation for the cure rate. Thus, as an alternative to
Cox’s models, fully parametric models such as the models introduced in Chapter 3 could
be used offering a gain that may not be obtained under the Cox’s model (see, Ghadimi
et al., 2011).
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4.2 Study 1: Pelvic Sarcoma Data

4.2.1 Introduction

According to Yazdanbod et al. (2004) and Ghadimi et al. (2011), cancer is known
as one of the major causes leading to many disorders, death, and disabilities worldwide.
According to Zali et al. (2005), it has been increasingly affecting the human population
during the past decades so that considerable amount of health care resources have been
allocated to lessen its side effects. In 2012, according to World Cancer Research Foundation
International (WCRF), there were an estimated 14.1 million cancer cases around the
world, of these 7.4 million cases were in men and 6.7 million in women(Ferlay et al., 2013).
Moreover, it is an extremely heterogeneous disease. In this way, genetic differences between
people lead to differences in susceptibility and cancers arising from the same tissue can
be stratified into subtypes of the disease based on differences in genomic measurements
(Curtis et al., 2012). Some examples related to cancer morbidity among the years could
be seen in Wingo et al. (1996); Siegel et al. (2013, 2014, 2016); Facina (2014).

The main goal of our study is to investigate long-term lifetimes and risk factors
with a special application related to the lifetimes of patients receiving a treatment for
pelvic sarcomas (part of the results of this study, were already published; see de Oliveira
et al., 2019). According to Sugarbaker (2004), sarcomas are unusual but not rare ma-
lignancies and account for only 1% of adult solid tumors. These sarcomas appear most
frequently between the fourth and sixth decades of life with a 2:1 male/female ratio and
could arise anywhere in the body with the lower extremity being the most common site.
Incidence rates are as follows: lower extremities (46%), upper extremities (13%), retroperi-
toneum, pelvis and visceral (12%), truncal sarcomas (19%), and head and neck sarcomas
(9%).

An important characteristic of the natural history of retroperitoneal and pelvic
sidewall sarcomas is how it differs significantly from the more common abdominal and
pelvic adenocarcinomas and from visceral sarcoma. These differences are important when
planning a treatment since the treatment of pelvic sarcomas are surgically difficult due to
the anatomic proximity of the pelvis to many neurovascular structures and the urinary
and intestinal tracts with poor oncological outcomes and high complications rate (see, for
example, Figure 14).

4.2.2 Material and Methods

To accomplish our main goal, it is considered a retrospective cohort study by
Puchner et al. (2017) which consists in 147 consecutive cases with surgical treatment of a
sarcoma of the pelvis observed between the years 1980 and 2012. The records included 68
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Figure 14 – Left panel: High-grade chondrosarcoma of the right sacrum, ilium, and pe-
riacetabular region, encasing the ipsilateral sacral foramina. Middle panel:
The iliacus muscle is “pushed” by a growing bone sarcoma and serves as a
barrier to direct extension of the tumor to the pelvic viscera. Right panel:
High-grade sarcoma of the left ilium “pushing” the iliacus muscle (arrows)
towards the midline (Source: Bickels et al., 2012)

.

males (46%) and 79 females (54%) with an average age of 38±20 years at time of surgery.
Also, the diagnosis was based on conclusive clinical and imaging findings and was always
confirmed by biopsy and histological analysis. As prognostic and oncological factors, there
are the patient sex, tumor grade, radiotherapy, chemotherapy, among many others in the
data set. The statistical analysis was conducted assuming a univariate Weibull distribution
under three responses (survival time, infection time and metastasis time) considering the
mixture and non-mixture approaches.

4.2.2.1 Discrete Weibull Cure Rate Models

In this section, it is assumed that the probability distribution for the lifetimes
of the suscetible population follows a discrete Weibull (DW) distribution introduced by
Nakagawa and Osaki (1975), which can be considered as a discrete analogue of the con-
tinuous Weibull distribution. The probability mass function (p.m.f.) of a DW distribution
is defined by

P (𝑇 = 𝑡 | 𝜑, 𝛽) = 𝜑𝑡𝛽 − 𝜑(𝑡+1)𝛽 , 𝑡 ∈ N0 = {0, 1, 2, . . .} (4.1)

and its corresponding survival function is given by,

𝑆(𝑡 | 𝜑, 𝛽) = Pr (𝑇 > 𝑡 | 𝜑, 𝛽) = 𝜑(𝑡+1)𝛽 (4.2)

where 𝛽 > 0 and 0 < 𝜑 < 1. Note that, when 𝛽 = 1, the DW distribution reduces to the
geometric distribution and when 𝛽 = 2, it reduces to the Rayleigh distribution introduced
by Roy (2004a). This model has been applied to many areas, including competing risks,
extreme values, failure times, regional analyses of precipitation, and reliability (see, for
example, Khan et al., 1989; Kulasekera, 1994; Roy, 2002; Murthy et al., 2004; Englehardt
and Li, 2011; Almalki and Nadarajah, 2014; Brunello and Nakano, 2015).
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Table 3 – Baseline characteristics and operative data (available in Puchner et al., 2017).

Variable n (%)

Sex

Male 68 (46%)

Female 79 (54%)

Histology

Chondrosarcoma 54 (37%)

Ewing’s sarcoma/PNET 37 (25%)

Osteosarcoma 32 (22%)

Leiomyosarcoma 4 (3%)

Sarcoma-Not other specified 4 (3%)

Hemangiopericytoma 3 (2%)

Others 13 (9%)

Grading

G3 101 (69%)

G2 38 (26%)

G1 8 (5%)

Age at time of surgery (Years; SD) 38 ± 20

Size (cm3; SD) 1023 ± 1848

Location

Ileum 110 (75%)

Ischium 9 (6%)

Pubis 28 (19%)

Periacetabular involvement 67 (46%)

Type of surgery

Resection without reconstruction 46 (31%)

Endoprosthetic reconstruction 47 (32%)

Biological reconstruction 21 (14%)

Internal hemipelvectomy and transposition of the hip 14 (10%)

External hemipelvectomy 19 (13%)

Type of resection

Type I 27 (18%)

Type III 14 (10%)

Type I/II 19 (13%)

Type I/IV 10 (7%)

Type I/II/IV 5 (3%)

Type II/III 25 (17%)

Type I/II/III 33 (22%)

Type I/II/III/IV 14 (10%)
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Using the proposed methodology introduced in Chapter 3 for the univariate case,
the mixture and non-mixture cure fraction model for the lifetime 𝑇 assuming the DW
distribution are given, respectively, by,

𝑆(𝑡 | 𝜑, 𝛽, 𝜌) = Pr (𝑇 > 𝑡 | 𝜑, 𝛽, 𝜌) = 𝜌+ (1 − 𝜌)𝜑(𝑡+1)𝛽 (4.3)

and,
𝑆(𝑡 | 𝜑, 𝛽, 𝜌) = Pr (𝑇 > 𝑡 | 𝜑, 𝛽, 𝜌) = exp

{︁
ln(𝜌)

[︁
1 − 𝜑(𝑡+1)𝛽

]︁}︁
, (4.4)

where 𝜌 ∈ (0, 1) is the cure fraction parameter.

Remark 3.4.2.1.1. Since the DW model has no closed form for the expected value and
variance, the subsequently mixture and non-mixture cure fraction models also have no
closed form for their expected values and variances. However, the expected values and the
variances could be obtained using numerical methods directly from the definition of the
𝑟-th moment given by

E (𝑇 𝑟) =
∞∑︁
𝑘=0

𝑘𝑟
{︁
𝜑log[1+( 𝑘

𝜃 )
𝛼
] − 𝜑log[1+( 𝑘+1

𝜃 )
𝛼
]
}︁

where, in particular, for 𝑟 = 1, we have E (𝑇 ) =
∞∑︁
𝑘=1

𝜑log[1+( 𝑘
𝜃 )

𝛼
] and for 𝑟 = 2 we have

E (𝑇 2) =
∞∑︁
𝑘=1

(2𝑘 − 1)𝜑log[1+( 𝑘
𝜃 )

𝛼
].

4.2.2.2 Inference and Residuals

To get the inferences of interest, let us consider the situation when the lifetime, 𝑇𝑖,
is not completely observed and may be subject to right censoring. Let 𝐶𝑖 be the censoring
time for the 𝑖th individual. From a sample of size 𝑛, it is observed 𝑇𝑖 = min {𝑇𝑖, 𝐶𝑖} and
𝛿𝑖 = 𝐼(𝑇𝑖 < 𝐶𝑖), where 𝛿𝑖 = 1 if 𝑇𝑖 is an observed lifetime and 𝛿𝑖 = 0 if it is right censored
lifetime. In this case, the log-likelihood function considering the DW distribution with
pmf defined in (4.1), can be written as

ℓ(𝛽, 𝜑 | 𝑡, 𝛿) =
𝑛∑︁

𝑖=1

𝛿𝑖 log
[︁
𝜑𝑡𝛽 − 𝜑(𝑡+1)𝛽

]︁
+

𝑛∑︁
𝑖=1

(1 − 𝛿𝑖) log
[︁
𝜑(𝑡+1)𝛽

]︁
(4.5)

where 𝑡 = (𝑡1, . . . , 𝑡𝑛)⊤ and 𝛿 = (𝛿1, . . . , 𝛿𝑛)⊤. Assuming the DW mixture model the
log-likelihood function is expressed as

ℓ(𝜃 | 𝑡, 𝛿) = 𝑟 ln(1 − 𝜌) +
𝑛∑︁

𝑖=1

𝛿𝑖 ln
[︁
𝜑𝑡𝛽𝑖 − 𝜑(𝑡𝑖+1)𝛽

]︁
+

𝑛∑︁
𝑖=1

(1 − 𝛿𝑖) ln
[︁
𝜌+ (1 − 𝜌)𝜑(𝑡𝑖+1)𝛽

]︁
(4.6)
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where 𝜃 = (𝛽, 𝜑, 𝜌)⊤ and 𝑟 =
𝑛∑︀

𝑖=1

𝛿𝑖 is the number of uncensored observations. Additionally,

considering the discrete Weibull non-mixture model, the log-likelihood function is given
by,

ℓ(𝜃 | 𝑡, 𝛿) = 𝑟 ln (− ln 𝜌) +
𝑛∑︁

𝑖=1

𝛿𝑖 ln
[︁
𝜑𝑡𝛽𝑖 − 𝜑(𝑡𝑖+1)𝛽

]︁
+ (ln 𝜌)

𝑛∑︁
𝑖=1

1 − 𝜑(𝑡𝑖+1)𝛽 . (4.7)

The maximum likelihood estimates (MLEs) ̂︀𝜃 for the unknown parameters in the
vector parameter 𝜃 are obtained by maximizing the log-likelihood functions defined in
Equations (4.5), (4.6) and (4.7) using standard optimization methods, such as Newton-
Raphson and quasi-Newton. In this study, the MLEs were obtained by the quasi-Newton
method available in the SAS/NLMIXED procedure (SAS, 2010). Under suitable regularity
conditions (see Lehmann and Casella, 1998), the asymptotic distribution of the maximum
likelihood estimator ̂︀𝜃 is a multivariate Normal distribution with mean 𝜃 and covariance
matrix Σ

(︁̂︀𝜃)︁, which can be consistently estimated by the inverse of the observed Fisher
information matrix given by

̂︀Σ(︁̂︀𝜃)︁ =

[︂
−𝜕 ℓ(𝜃 | 𝑡, 𝛿)

𝜕𝜃 𝜕𝜃⊤

]︂−1

(4.8)

evaluated at 𝜃 = ̂︀𝜃. The required second derivatives are computed numerically using the
SAS/NLMIXED procedure.

For regression analysis, it is proposed to relate the parameters 𝜑 and 𝜌 of the
mixture and non-mixture models to the vectors of explanatory variables 𝑥𝑖 and 𝑧𝑖, re-
spectively. Thus, it is assumed the the following link functions

log (− log(𝜑𝑖)) = 𝑥⊤
𝑖 𝛼 and log

(︂
𝜌𝑖

1 − 𝜌𝑖

)︂
= 𝑧⊤

𝑖 𝛿 (4.9)

where 𝛼 and 𝛿 denote the vectors of unknown regression parameters. It is noteworthy,
that the log-log link function in 𝜑 is motivated by the analytical formula for the quantile
function of the DW model (see Klakattawi et al., 2018), which facilitates the interpretation
of the coefficients. According to Klakattawi et al. (2018) the regression parameters 𝛼 can
be interpreted in relation to the logarithm of the median.

Now, since the response is discrete, in the evaluation and study of departures from
the model assumptions we propose the use of the randomized quantile residuals introduced
by Dunn and Smyth (1996), which are defined as follows,

̂︀𝑟𝑖 = Φ−1(𝑢𝑖), 𝑖 = 1, . . . , 𝑛 (4.10)

where Φ(·) is the standard normal distribution function and 𝑢𝑖 is a random value from
the uniform distribution on the interval

𝑢𝑖 =

⎧⎨⎩
[︁
𝐹 (𝑡𝑖 − 1 | ̂︀𝜃), 𝐹 (𝑡𝑖 | ̂︀𝜃)

]︁
, for 𝛿𝑖 = 1[︁

𝐹 (𝑡𝑖 | ̂︀𝜃), 1
]︁
, for 𝛿𝑖 = 0

(4.11)
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where 𝐹 (𝑡𝑖 | ̂︀𝜃) is the cumulative distribution function of mixture and non-mixture DW
models. Apart from the variability due to the estimates of the parameters these residuals
have standard normal distribution if the proposed model is is correctly specified (Dunn
and Smyth, 1996).

Hence, to check if the model assumption is adequate we can examine the half-
normal plots with simulated envelope proposed by Atkinson (1981). The simulated enve-
lope can be construct as follows:

i.) fit the model and generate a sample set of 𝑛 independent observations using the
estimated parameters of the fitted model;

ii.) fit the model from the generated sample, calculate the absolute values of the resid-
uals and arrange them in order;

iii.) repeat steps (i) and (ii) 𝐵 number of times;

iv.) consider the 𝑛 sets of the 𝐵 ordered statistics of the residuals, then for each set
calculate the quantile 𝛾/2, the median and the quantile 1 − 𝛾/2;

v.) plot these values and the ordered residuals of the original sample set versus the
expected order statistics of a half-normal distribution, which is approximated as

Φ−1

(︂
𝑖+ 𝑛− 0.125

2𝑛+ 0.5

)︂
.

According to Atkinson (1981) if the model was correctly specified then no more
than 𝛾 × 100% of the observations are expected to appear outside the envelope bands.
Additionally, if a large proportion of the observations lies outside the envelope, thus one
has evidence against the adequacy of the fitted model.

Finally, to discriminate the proposed models we can consider the Akaike Informa-
tion Criterion (AIC) (Akaike, 1974) which is given by AIC = −2 ℓ

(︁̂︀𝜃)︁ + 2 𝑝, where 𝑝
is the number of model parameters. Among all fitted models, the one with the smallest
value is commonly considered as the better model to describe the data (Rohde, 2014).

4.2.3 Results

First of all, it was assumed discrete mixture and non-mixture Weibull models for
the PS dataset without considering the presence of covariates under a Classical Approach.
The corresponding inference results are given in Table 4. From these results, it is observed
that all models, on computational aspects, did not show instability and the estimation
method converged successful. As expected, the smallest AIC values were obtained assum-
ing the mixture and non-mixture models.
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Table 4 – Inference results for the three lifetimes for the PS dataset: survival, infection
and metastasis times.

Model Par.
Survival Time Infection Time Metastasis Time

MLE 95% C.I. AIC MLE 95% C.I. AIC MLE 95% C.I. AIC

Weibull
𝜇 19.6126 (8.5066, 30.7186)

761.5373
26.0097 (7.8812, 44.1382)

311.0863
37.1204 (8.8439, 65.3968)

423.8983
𝛽 0.6181 (0.4921, 0.7442) 0.4562 (0.3025, 0.6098) 0.6229 (0.4521, 0.7936)

Mixture Weibull

𝜇 23.9595 (6.7375, 41.1815)

751.9783

7.7367 (1.4697, 14.0038)

309.0108

31.7240 (1.0969, 62.3511)

411.5414𝛽 0.9199 (0.7088, 1.1310) 0.6420 (0.4156, 0.8683) 1.0576 (0.7822, 1.3330)

𝜌 0.3663 (0.2593, 0.4734) 0.7256 (0.6009, 0.8503) 0.6261 (0.5156, 0.7367)

Non-Mixture Weibull

𝜇 41.3519 (10.2851, 72.4186)

754.2051

9.1000 (1.3374, 16.8625)

309.0300

43.4083 (-0.4776, 87.2941)

411.3725𝛽 0.9714 (0.7394, 1.2035) 0.6609 (0.4277, 0.8941) 1.1071 (0.8196, 1.3946)

𝜌 0.3632 (0.2455, 0.4809) 0.7255 (0.5993, 0.8517) 0.6246 (0.5133, 0.7359)

Moreover, the estimated proportion of cure fraction for the survival times, that
is, the proportions of people in population who will not die due to sarcoma pelvic, are
given by 36.63% and 36.32% considering the mixture and non-mixture models, respec-
tively, while from the Kaplan-Meier estimate it is approximately 37.40%. Regarding the
estimated proportion of cure fraction for the time to infection it was verified that the es-
timated proportions of cure fraction are given by 72.56% and 72.55% for the mixture and
non-mixture models, respectively, whereas from the Kaplan-Meier estimate the cure frac-
tion is 72.80%. In addition, for the time to metastasis the estimated proportions of cure
fraction are given by 62.61% and 62.46% assuming the mixture and non-mixture models,
respectively, and it is 62.20% from the Kaplan-Meier estimate. In addition, Figure 15 il-
lustrate the plots of theoretical fitted survival functions based on the maximum likelihood
estimates along with the empirical survival functions in presence of censored data using
the Kaplan-Meier method. It is observed that the DW mixture and non-mixture models
have better fit than the DW distribution with no cure rate and also captured the cure
rate with great accuracy.

   0   71  142  212  283

0
.0

0
0

.2
5

0
.5

0
0

.7
5

1
.0

0

Survival time (months)

Ŝ
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Ŝ
(t

)

Weibull
Mixture Weibull
Non−Mixture Weibull

   0   71  142  212  283

0
.0

0
0

.2
5

0
.5

0
0

.7
5

1
.0

0

Time to metastasis (months)

Ŝ
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Figure 15 – Kaplan-Meier curves and the estimated survival functions for three times:
Survival, infection and metastasis time.

Finally, it is compared in Figure 16 the empirical estimates based on the Kaplan-
Meier versus the corresponding predicted values obtained from the parametric models.
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From these plots, it is observed that the predicted values obtained from the mixture
and non-mixture models are closer to the empirical values than those obtained from the
standard discrete Weibull. Nevertheless, for the time to infection it seems that no one of
the models have a satisfactory fit.
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Figure 16 – Plots of the Kaplan-Meier estimates for the survival function versus the re-
spective predicted values obtained from the parametric models for the three
lifetimes. (Upper Panel: Survival time. Middle Panel: Infection time.
Lower Panel: Metastasis time.)

Suppose now that the medical interest is investigate possible prognostic/diag-
nose/influence factors for pelvic sarcoma. In this case, under a regression model approach,
let us consider the following covariates associated to each patient:
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→ age40𝑖: age of the patients at start of follow-up, classified as less than 40 years
(age40𝑖 = 0) versus greater or equal to 40 years (age40𝑖 = 1);

→ sex𝑖: patient gender, classified as male (sex𝑖 = 0) versus female (sex𝑖 = 0);

→ chemo𝑖: whether the patient received chemotherapy (chemo𝑖 = 1) or not (chemo𝑖 =

0);

→ radio𝑖: whether the patient received radiotherapy (radio𝑖 = 1) or not (radio𝑖 = 0);

→ grade𝑖: tumor grade of the patient classified as G3 (grade𝑖 = 1) versus G2 (grade𝑖 =

0);

→ log2volume𝑖: tumor volume (log2-transformed).

In our analysis considering regression models, it was assumed that the covariates
affect the probability of being cured and the parameter 𝜑, considering the following re-
gression structures:

log

(︂
𝜌𝑖

1 − 𝜌𝑖

)︂
= 𝛿0 + 𝛿1 age40𝑖 + 𝛿2 sex𝑖 + 𝛿3 chemo𝑖

+ 𝛿4 radio𝑖 + 𝛿5 grade𝑖 + 𝛿6 log2volume𝑖 (4.12)

and,

log (− log(𝜑𝑖)) = 𝛼0 + 𝛼1 age40𝑖 + 𝛼2 sex𝑖 + 𝛼3 chemo𝑖

+ 𝛼4 radio𝑖 + 𝛼5 grade𝑖 + 𝛼6 log2volume𝑖 (4.13)

for 𝑖 = 1, . . . , 147. The inference results for the survival time, time to infection and time
to metastasis are reported in Tables 5, 6 and 7, respectively.

From the obtained results of Table 5 it was observed that for both models (mix-
ture and non-mixture) the covariates grade (𝛿5) and tumor volume (𝛿6) affect the overall
survival to death since the zero value is not included in the 95% confidence intervals.
The significance of these covariates indicate that the probability of being “cured”, that is,
not dying due to sarcoma pelvic, depends on patient’s tumor grade and volume. Patients
who have tumor grade G3 seem to have lower chance of not dying compared to patients
with tumor grade G2. In addition, we can observe that as the tumor volume increases the
odds of not dying due to pelvic sarcoma decreases, since the parameter 𝛿6 associated to
the tumor volume has a negative sign. A difference exist regarding the significance of the
covariate age40 (𝛿1) and radio (𝛿4), because they are statistically not significants in the
mixture model. For the DW mixture model only the covariate tumor volume (𝛼6) affects
the median of the survival time, whereas in the non-mixture model the covariates age40
(𝛼1) and radio (𝛼4) are also significant at the 5% significance level.
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Table 5 – Inference results for the discrete Weibull cure rate regression models — Survival
time.

Model Parameter Mixture Non-Mixture

MLE SE 95% C.I. MLE SE 95% C.I.

Reg. Model (3.14)

𝛿0 6.2878 2.1468 (2.0431, 10.5325) 7.0469 1.8754 (3.3389, 10.7549)
𝛿1 -1.6036 0.8449 (-3.2741, 0.0669) -1.8573 0.7275 (-3.2956, -0.4189)
𝛿2 -0.3822 0.4918 (-1.3546, 0.5901) -0.2539 0.5196 (-1.2813, 0.7734)
𝛿3 0.1498 0.6348 (-1.1054, 1.4050) -0.0420 0.6864 (-1.3991, 1.3151)
𝛿4 -1.4408 0.7506 (-2.9248, 0.0433) -1.5720 0.6847 (-2.9258, -0.2181)
𝛿5 -2.2784 0.7974 (-3.8551, -0.7018) -2.4059 0.7795 (-3.9471, -0.8648)
𝛿6 -0.4533 0.1567 (-0.7632, -0.1434) -0.5113 0.1483 (-0.8046, -0.2181)

Reg. Model (3.15)

𝛼0 -0.4324 2.1326 (-4.6489, 3.7841) 1.3765 1.3332 (-1.2594, 4.0124)
𝛼1 -0.7533 0.7378 (-2.2121, 0.7054) -1.4037 0.5125 (-2.4171, -0.3904)
𝛼2 -0.5068 0.3380 (-1.1750, 0.1614) -0.5165 0.3768 (-1.2615, 0.2286)
𝛼3 -0.6700 0.4044 (-1.4695, 0.1296) -0.9122 0.5152 (-1.9309, 0.1065)
𝛼4 -0.7493 0.6431 (-2.0208, 0.5222) -1.2694 0.4968 (-2.2516, -0.2872)
𝛼5 0.2029 0.6441 (-1.0705, 1.4764) -0.4409 0.5908 (-1.6090, 0.7272)
𝛼6 -0.2206 0.1108 (-0.4397, -0.0015) -0.3697 0.1065 (-0.5802, -0.1591)
𝛽 1.1115 0.1793 (0.7569, 1.4661) 1.1596 0.1375 (0.8877, 1.4315)

MLE: maximum likelihood estimates; SE: standard error; 95% C.I.: 95% confidence interval.

Figure 17 presents the half-normal with simulated envelope considering the ran-
domized quantile residuals. It is observed, for both models, that all points lie inside the
envelopes, suggesting that there is no serious violation of the model assumptions. Addi-
tionally, it is noteworthy that the non-mixture model fits the data better than the mixture,
since the observed residuals are closer to the median line.
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Figure 17 – Half-normal plot with simulated envelope for the randomized quantile resid-
uals — Survival time.

In respect to the time to infection the results from Table 6 shows that all covariates
do not affect the probability of being cured assuming the mixture model, since the 95%
confidence intervals include the zero value. On the other hand, the covariate age40 (𝛿1)
was only statistically significant under the non-mixture model, although the upper limit
of the 95% confidence interval for 𝛿1 assuming the non-mixture model is very close to
zero, indicating some significance of the covariate age40.
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Table 6 – Inference results for the discrete Weibull cure rate regression models - Time to
infection.

Model Parameter Mixture Non-Mixture

MLE SE 95% C.I. MLE SE 95% C.I.

Reg. Model (3.14)

𝛿0 -16.4294 11.3838 (-38.9385, 6.0798) -9.5600 7.3180 (-23.9030, 4.7830)
𝛿1 -3.6810 1.9659 (-7.5682, 0.2062) -3.2156 1.6364 (-6.4229, -0.0082)
𝛿2 8.0530 4.6309 (-1.1036, 17.2096) 4.7289 2.6811 (-0.5260, 9.9837)
𝛿3 7.6546 4.7980 (-1.8324, 17.1417) 4.7702 2.9249 (-0.9625, 10.5030)
𝛿4 -3.9429 2.3855 (-8.6598, 0.7740) -3.1499 1.7926 (-6.6632, 0.3635)
𝛿5 -3.9574 2.7146 (-9.3250, 1.4102) -2.1437 1.8444 (-5.7586, 1.4712)
𝛿6 1.1875 0.7627 (-0.3206, 2.6956) 0.7942 0.5411 (-0.2664, 1.8548)

Reg. Model (3.15)

𝛼0 -8.5747 1.9547 (-12.4398, -4.7095) -11.9181 3.0884 (-17.9713, -5.8650)
𝛼1 -0.9091 0.6660 (-2.2261, 0.4079) -2.2399 1.0368 (-4.2719, -0.2079)
𝛼2 1.9000 0.8354 (0.2483, 3.5518) 3.2018 0.9450 (1.3496, 5.0540)
𝛼3 2.3371 0.8708 (0.6154, 4.0589) 3.6894 1.0830 (1.5668, 5.8120)
𝛼4 -1.4132 0.7004 (-2.7981, -0.0284) -2.5335 1.0909 (-4.6717, -0.3954)
𝛼5 -0.7874 0.7070 (-2.1855, 0.6106) -1.2127 1.0060 (-3.1844, 0.7590)
𝛼6 0.6456 0.1777 (0.2942, 0.9969) 0.9284 0.2783 (0.3830, 1.4738)
𝛽 0.3737 0.0895 (0.1968, 0.5507) 0.4387 0.1170 (0.2095, 0.6680)

MLE: maximum likelihood estimates; SE: standard error; 95% C.I.: 95% confidence interval.

A visual inspection of the half-normal plots given in Figure 18 suggests that al-
though all points lie inside the envelope, indicating that there is no serious violation of
the model assumptions, it is also observed that the DW mixture model does not fit the
data as well as the DW non-mixture model, since most of the observed residuals of the
mixture model are near to the boundary of the envelope.
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Figure 18 – Half-normal plot with simulated envelope for the randomized quantile resid-
uals - Time to infection.

The results of Table 7 related to the metastasis times indicate that the covariate
chemotherapy (𝛿3) and tumor volume are statistically significant for both the mixture
and non-mixture models. The significance of these covariates reveal that the probability
of being “cured”, depends on the patient receiving or not receiving chemotherapy, which
means that individuals who received the chemotherapy seem to have lower chance of not
present metastasis compared to individuals who do not received chemotherapy. Addition-
ally, we expected that as the tumor volume increases the odds of not presented metastasis
decreases, since the parameter 𝛿6 has negative sign.
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Table 7 – Inference results for the discrete Weibull cure rate regression models — Time
to metastasis.

Model Parameter Mixture Non-Mixture

MLE SE 95% C.I. MLE SE 95% C.I.

Reg. Model (3.14)

𝛿0 7.1233 1.9217 (3.3570, 10.8897) 6.9469 1.8971 (3.2288, 10.6651)
𝛿1 -0.3116 0.6474 (-1.5805, 0.9573) -0.2062 0.6569 (-1.4938, 1.0813)
𝛿2 -0.6215 0.5210 (-1.6425, 0.3996) -0.6769 0.5173 (-1.6908, 0.3370)
𝛿3 -1.8591 0.7426 (-3.3146, -0.4036) -1.8487 0.7351 (-3.2894, -0.4079)
𝛿4 0.3352 0.6439 (-0.9269, 1.5973) 0.4549 0.6303 (-0.7805, 1.6904)
𝛿5 -1.1753 0.9068 (-2.9526, 0.6021) -1.1484 0.8935 (-2.8996, 0.6028)
𝛿6 -0.4700 0.1669 (-0.7971, -0.1429) -0.4570 0.1645 (-0.7795, -0.1345)

Reg. Model (3.15)

𝛼0 -4.8403 1.5214 (-7.8222, -1.8584) -4.2341 1.7083 (-7.5823, -0.8858)
𝛼1 -0.2126 0.6624 (-1.5109, 1.0858) -0.0527 0.7592 (-1.5407, 1.4353)
𝛼2 -0.3770 0.4503 (-1.2596, 0.5057) -0.6333 0.5045 (-1.6221, 0.3554)
𝛼3 -2.5830 0.6866 (-3.9287, -1.2373) -2.9090 0.7692 (-4.4166, -1.4014)
𝛼4 0.9750 0.5980 (-0.1970, 2.1471) 1.2403 0.6482 (-0.0301, 2.5108)
𝛼5 3.6399 0.9562 (1.7659, 5.5140) 3.6976 1.0326 (1.6736, 5.7215)
𝛼6 -0.1645 0.1219 (-0.4035, 0.0745) -0.2751 0.1368 (-0.5433, -0.0069)
𝛽 1.7503 0.2417 (1.2766, 2.2239) 1.8718 0.2582 (1.3658, 2.3778)

MLE: maximum likelihood estimates; SE: standard error; 95% C.I.: 95% confidence interval.

The simulated envelope plots of the mixture and non-mixture models correspond-
ing to the metastasis time are shown in Figure 19. For both models, we can see that most
of the observed randomized quantile residuals are within the simulated envelope, showing
no evidence of violated model assumptions.
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Figure 19 – Half-normal plot with simulated envelope for the quantile residuals - Time to
metastasis.

Table 8 reports the AIC values considering the regression model and the model
not including the presence of covariates. From these results it is observed that the mixture
and non-mixture models have similar AIC values. Regardless the response variable it is
verified that the model with covariates presented the smallest values of AIC. However, for
the time to infection the AIC values indicated no improvement on the fit to the data, as
expected, since for this time the covariates were not significant.
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Table 8 – Values of model discrimination criteria (AIC) for mixture and non-mixture
models.

Time Mixture Non-Mixture

Without covariates With covariates Without covariates With covariates
Survival 751.9783 694.6915 754.2051 697.4294
Infection 309.0108 267.6405 309.0300 270.0043

Metastasis 411.5414 370.2743 411.3725 370.9714

4.2.4 Discussion and Remarks

The main goal of this study was the introduction of mixture and non-mixture cure
fraction models assuming a discrete Weibull distribution in place of standard existing
continuous lifetime distributions, with special application to the statistical analysis of a
dataset related to long-term oncological treatment outcomes of resection of pelvic sarco-
mas. The obtained results of this study show many advantages for the use of discrete cure
fraction models in terms of great accuracy for the obtained point and interval inferences,
great computational simplicity to get the inferences of interest under the classical ap-
proach and simple interpretations for the parameters of the models which is an important
point in medical applications. It was also observed that using regression models, the iden-
tification of important covariates was easily obtained with good accuracy assuming the
DW model due to the best simplicity of the likelihood function assuming the DW model
when compared to standard continuous Weibull cure fraction models commonly used in
the analysis of lifetime data in presence of cure fraction, censored data and covariates.
Finally, the general framework for the computer codes of the proposed modeling approach
is presented in Appendix A at the end of this thesis which could be carried out using the
OpenBugs or R softwares.

4.3 Study 2: Tobacco-Stained Fingers Data

4.3.1 Introduction

According to World Health Organization (2018), tobacco is one of the biggest
public health threats the world has ever faced, killing more than 7 million people a year.
In addition, around 80% of the 1.1 billion smokers worldwide live in low- and middle-
income countries, where the burden of tobacco-related illness and death tt is too high.
In recent decades, many studies published in the literature show the health risks for
the use of tobacco, as the studies of Wynder and Graham (1988); Peto et al. (1992);
Anthony et al. (1994); Giovino et al. (1995); Organization et al. (1997); Fiore (2000);
Initiative (2004); of Health and Services (2006); Chapman (2007); Organization and for
International Tobacco Control (2008); Tobacco et al. (2008); John et al. (2013, 2015a);
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Food et al. (2016). Moreover, according to the World Health Organization (2018), many
studies show that few people understand the specific health risks of tobacco use and
among smokers who are aware of the dangers of tobacco, where most of the smokers want
to quit. In this case, counseling and medication can more than double the chance that a
smoker who tries to quit will succeed.

According to John et al. (2013), although cigarette smoking is by far the most
common risk factor for chronic obstructive pulmonary disease, it is strongly associated
with cardiovascular disease, and is responsible for 30% of all cancer deaths. In a study by
Ezzati and Lopez (2004); Team (2011), some additional factors for tobacco-related disease
are involved in determining each individual’s susceptibility as well identifying smokers at
a higher risk of developing tobacco disease. In addition, according to John et al. (2013),
smoking has been linked to many skin conditions for more than 150 years and evidence
exists that skin involvement might be a conspicuous marker of other tobacco-related
disease. Tobacco stains on fingers are commonly seen among smokers where behavioral
and environmental factors may be important in the stain development (see Thakurdas,
1963; Mitchell and Dahlgren, 1986; Hafezi et al., 2001; John et al., 2013, 2015a). For
example, yellow-stained fingers, often observed in psychiatric units and among young
drug users (autopsy series), support a possible association between those conditions and
tar deposition as illustrated in Figure 20.

Figure 20 – Tar staining seen in a 70-year-old male smoker (Source: John et al., 2013)
.

4.3.2 Material and Methods

In our present study, it is assumed a real dataset introduced by John et al. (2015b).
This data set reports a retrospective cohort study in a population of 143 smokers screened
between March 2006 and January 2010 in a 180-bed community hospital in La Chaux-de-
Fonds, Switzerland (see Table 9). The interested reader should consult John et al. (2013)
and John et al. (2015a,b) for further details about this data set.
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Table 9 – TSF data structure (partial): A clue for smoking-related disease (full structure
and data available in John et al., 2015a,b).

Variable Description

N Patient group: tobacco-stain or controls
Sex Patient sex: male or female
Age Patient age
Time to Death (in Days) Survival time until death
Death 0 = alive, 1 = dead
Readmission Binary 0 = no readmission, 1 = readmission
Time to Readmission (Days) Time before the first readmission
Readmission Causes Reason for readmission: psychiatric, alcohol,

tobacco, cardiopulmonary, pulmonary and cancer
Follow-up Follow-up time
Weight Patient weight
Hypertension 0 = no, 1 = yes
Harmful Alcohol Use 0 = no, 1 = yes
Depression 0 = no, 1 = yes
Tobacco Years Years of tobacco use
Pack Per Day Number of packs of tobacco per day
Stain Past 0 = no, 1 = yes

For the statistical analysis, it is considered as lifetime 𝑇1 the time before the first
readmission which was censored in case of death before the closure date; and as lifetime
𝑇2 the survival time of the patient. For 𝑇1 there are 105 censored observations and 38 not
censored observations; and for 𝑇2 there are 69 censored observations and 74 not censored
observations. Both times were measured in a discrete way (number of months). The non-
parametric estimators for the means obtained from Kaplan-Meier estimators Kaplan and
Meier (1958) are given, respectively, by 31.58 months for 𝑇1 and 68.49 months for 𝑇2. More-
over, it is assumed the proposed cure rate models described in Chapter 3. In the case of BL
models, only the BL-I was considered here. For a Bayesian approach, it is assumed Beta
prior distributions with hyperparameter values (𝛼, 𝛽) = (1, 1) for the discrete model pa-
rameters; Gamma prior distributions with hyperparameter values (𝛼, 𝛽) = (0.001, 0.001)

for the continuous model parameters and also Beta prior distributions for the incidence
parameters 𝜑11, 𝜑10, 𝜑01 and 𝜑00 with hyperparameter values (𝛼𝑖, 𝛽𝑖) = (1, 1), 𝑖 = 1, 2, 3, 4.
Note that with these values for the hyperparameters, it is assumed approximately non-
informative prior distributions for the parameters of the proposed models. In Table 10, it
is presented the posterior summaries of interest.

In Table 11, it is presented the Monte Carlo estimates of DIC for each model. From
the results in Table 11, using DIC as the discrimination criteria, it could be concluded
that the BL-I model has a good fit among the continuous models and the BDBG model
has a good fit among the discrete models to the TSF data set in presence of cure rate
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Table 10 – Posterior summaries for the proposed models in presence of cure rate for the
TSF data set.

Continuous Models Discrete Models

Model Par. Post. Mean (S.D.) 95% Cred.
Interval Model Par. Post. Mean (S.D.) 95% Cred.

Interval

BBBE

𝜆1 0.0390 (0.0143) (0.0090, 0.0614)

ABG

𝜃1 0.0530 (0.0057) (0.0428, 0.0649)
𝜆2 0.0175 (0.0089) (0.0022, 0.0342) 𝜃2 0.0279 (0.0052) (0.0188, 0.0387)
𝜆3 0.0167 (0.0161) (0.0001, 0.0480) 𝜑00 0.1402 (0.0302) (0.0890, 0.2063)
𝜑00 0.1356 (0.0307) (0.0803, 0.2024) 𝜑01 0.0124 (0.0127) (0.0005, 0.0476)
𝜑01 0.0126 (0.0121) (0.0004, 0.0503) 𝜑10 0.3250 (0.0539) (0.2100, 0.4225)
𝜑10 0.3327 (0.0531) (0.2304, 0.4283) 𝜑11 0.5224 (0.0556) (0.4274, 0.6421)
𝜑11 0.5191 (0.0541) (0.4233, 0.6170)

GBE

𝜆1 0.0521 (0.0056) (0.0423, 0.0641)

BDBG

𝜃1 0.9501 (0.0053) (0.9392, 0.9595)
𝜆2 0.0260 (0.0052) (0.0168, 0.0363) 𝜃2 0.9765 (0.0054) (0.9651, 0.9867)
𝜃 0.0020 (0.0105) (0.0001, 0.0172) 𝜃12 0.9955 (0.0025) (0.9900, 0.9992)
𝜑00 0.1371 (0.0312) (0.0752, 0.2034) 𝜑00 0.1380 (0.0302) (0.0853, 0.1997)
𝜑01 0.0133 (0.0131) (0.0003, 0.0493) 𝜑01 0.0147 (0.0143) (0.0004, 0.0526)
𝜑10 0.3151 (0.0524) (0.2102, 0.4175) 𝜑10 0.3236 (0.0540) (0.1986, 0.4189)
𝜑11 0.5345 (0.0564) (0.4368, 0.6472) 𝜑11 0.5237 (0.0554) (0.4246, 0.6459)

MOBE

𝜆1 0.0521 (0.0062) (0.0413, 0.0650)

BG-Type II

𝜃1 0.9672 (0.0068) (0.9529, 0.9801)
𝜆2 0.0002 (0.0009) (0.0001, 0.0024) 𝜃2 0.9627 (0.0040) (0.9543, 0.9700)
𝜆12 0.0122 (0.0038) (0.0069, 0.0212) 𝜃12 0.9686 (0.0081) (0.9518, 0.9826)
𝜑00 0.1474 (0.0355) (0.0876, 0.2191) 𝜑00 0.1002 (0.0416) (0.0073, 0.1789)
𝜑01 0.0242 (0.0188) (0.0019, 0.0728) 𝜑01 0.0035 (0.0033) (0.0001, 0.0122)
𝜑10 0.1785 (0.1010) (0.0086, 0.3715) 𝜑10 0.4355 (0.0526) (0.3398, 0.5454)
𝜑11 0.6499 (0.1076) (0.4560, 0.8384) 𝜑11 0.4608 (0.0387) (0.3859, 0.5394)

BL-I

𝛽1 0.1009 (0.0084) (0.0857, 0.1185)

DBGR

𝛼 0.0277 (0.0144) (0.0063, 0.0608)
𝛽2 0.0084 (0.0067) (0.0006, 0.0243) 𝜆1 0.9997 (0.0002) (0.9993, 0.9999)
𝛽3 0.0158 (0.0040) (0.0094, 0.0244) 𝜆2 0.9999 (0.0001) (0.9997, 0.9999)
𝜑00 0.1604 (0.0315) (0.1035, 0.2173) 𝜑00 0.1453 (0.0297) (0.0876, 0.2036)
𝜑01 0.0198 (0.0167) (0.0018, 0.0607) 𝜑01 0.0085 (0.0085) (0.0002, 0.0321)
𝜑10 0.2809 (0.0722) (0.1119, 0.4027) 𝜑10 0.3420 (0.0415) (0.2631, 0.4307)
𝜑11 0.5389 (0.0733) (0.4281, 0.7009) 𝜑11 0.5042 (0.0420) (0.4159, 0.5793)

parameters. Overall, the BDBG is the best model to be fitted for the TSF data set.
However, the DIC criterion in medical studies could not be a good indicator to model
discrimination/selection.

Table 11 – DIC values for each model for the DRS data set assuming the presence of cure
rate parameters.

Continuous Models Discrete Models

Model DIC value Model DIC value

GBE 1703.563 ABG 1692.545
BBBE 1703.171 BDBG 1692.223
MOBE 1736.251 BG-Type II 1702.339
BL-I 1696.983 DBGR 1756.366

In this way, it also considered the marginal Kaplan-Meier and survival probability
plots as a discrimination criteria in contrast to DIC criteria. Thus, by observing the
Kaplan-Meier curves and the Kaplan-Meier estimates versus the predicted value plots
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(see, Figures 21, 22, 23 and 24) for both times 𝑇1 and 𝑇2, we could conclude that the
proposed models captured the cure rate with good accurate; the estimated credibility
bonds incorporate the non-parametric Kaplan-Meier curve and the results are quite similar
indicating that these models could be an alternative to describe and predict the time before
the first readmission and the survival time.
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ŜDBGR(t1)

ABG Cure Rate Model

t2

Ŝ
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Figure 21 – Kaplan-Meier estimators versus discrete marginal fitted survival functions for
𝑇1 (upper panels) and 𝑇2 (lower panels) for TSF dataset.
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ŜGBE(t1)

MOBE Cure Rate Model

t1

Ŝ
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Figure 22 – Kaplan-Meier estimators versus continuous marginal fitted survival functions
for 𝑇1 (upper panels) and 𝑇2 (lower panels) for TSF dataset.
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Figure 23 – Plots of the Kaplan-Meier estimates for the survival function versus the re-
spective predicted values obtained from the proposed discrete models for 𝑇1
(upper panels) and 𝑇2 (lower panels).
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Figure 24 – Plots of the Kaplan-Meier estimates for the survival function versus the re-
spective predicted values obtained from the proposed continuous models for
𝑇1 (upper panels) and 𝑇2 (lower panels).

Finally, the estimated proportions of non-susceptible patients for the time before
the first readmission (𝑇1) and for the survival time (𝑇2), are given in Table 12. The
estimated proportions of non-susceptible individuals obtained from the non-parametric
Kaplan-Meier estimator are given, respectively by 15.80% for time 𝑇1 and 48.48% for
time 𝑇2. Therefore, from the obtained inference results of this application, it could be
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concluded that the DBGR model has better fit for the cure rate under times 𝑇1 and 𝑇2.
However, as stated in Kaplan-Meier plots, the DBGR model could be worse to predict
survival probabilities if we look the times before the plateau that indicates the cure rate
incidence. In this case, the second best fitted model, the BDBG model, could provide a
better fit instead of the DBGR model.

Table 12 – The estimated proportions of non-susceptible patients for the TSF data set.

Continuous Models Discrete Models

Model 𝑇1 (𝜑00 + 𝜑01) 𝑇2 (𝜑00 + 𝜑10) Model 𝑇1 (𝜑00 + 𝜑01) 𝑇2 (𝜑00 + 𝜑10)

GBE 15.05% 45.22% AGB 15.26% 46.52%
BBBE 14.82% 46.83% BDBG 15.27% 46.16%
MOBE 17.16% 32.59% BG-Type II 10.37% 53.57%
BL-I 18.02% 44.13% DBGR 15.38% 48.73%

4.3.3 Discussion and Remarks

Our analysis of the TSF dataset illustrated a new way to predict survival and
readmission probabilities for the tobacco-stained fingers study. Based on the analysis,
the findings of the present study demonstrated, under a nonparametric approach, that
15.80% of the patients are non-susceptible to the readmission event while 48.48% of the
patients are long-term survivors. In contrast, under a parametric approach, the BDBG
model demonstrated that 15.27% of the patients are non-susceptible to readmission event
while 46.16% of the patients are long-term survivors. The DBGR model provided better
approximation for the cure rate (15.38% of the patients are non-susceptible to readmission
event while 48.73% of the patients are long-term survivors), however this model could
be worse to predict survival probabilities if we look the time before the plateau that
indicates the cure rate incidence. In general, the proposed models has a good accuracy for
the estimation of the long-term survivors. Finally, in terms of computational aspects, the
convergence was faster for discrete models even using non-informative prior distributions.
The continuous models showed some instabilities and higher number of MCMC iterations
to get the convergence. The general framework for the computer codes of the proposed
modeling approach is presented in Appendix A at the end of this thesis which could be
carried out using the OpenBugs or R softwares.

4.4 Study 3: Diabetic Retinopathy

4.4.1 Introduction

According to Retina Labs (2018) and Mayo Clinic (2018), the diabetic retinopa-
thy disease is a chronic progressive, potentially sight-threatening disease of the retinal
microvasculature associated with the prolonged hyperglycaemia. It is caused by damage
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to the blood vessels of the light-sensitive tissue at the back of the eye called the retina,
which process light and vision for the brain. Over time, diabetes damages the blood ves-
sels in the retina which could cause the retinal tissue to swell, resulting in blurred vision
(see Figure 25).

Figure 25 – An illustration of normal retina and diabetic retinopathy retina (Source:
Retina Labs, 2018).

For The National Eye Institute (Institute, 2018), diabetic retinopathy disease may
progress through four stages:

1. Mild nonproliferative retinopathy: Small areas of balloon-like swelling in the
retina’s tiny blood vessels, called microaneurysms, occur at this stage.

2. Moderate nonproliferative retinopathy: As the disease progresses, blood ves-
sels that nourish the retina may swell and distort.

3. Severe nonproliferative retinopathy: Many more blood vessels are blocked,
depriving blood supply to areas of the retina. These areas secrete growth factors
that signal the retina to grow new blood vessels.

4. Proliferative diabetic retinopathy (PDR): At this advanced stage, growth
factors secreted by the retina trigger the proliferation of new blood vessels, which
grow along the inside surface of the retina and into the vitreous gel.



Chapter 4. Modeling Long-Term Survivors in Medical Studies Under Bayesian Approach 110

According to The National Eye Institute (Institute, 2018), vision lost to diabetic
retinopathy is sometimes irreversible. However, early detection and treatment can reduce
the risk of blindness by 95 percent. It is important to point out that diabetic retinopathy
often lacks early symptoms, people diagnosticated with diabetes should get a compre-
hensive dilated eye exam at least once a year. The treatment for diabetic retinopathy is
often delayed until it starts to progress to PDR, or when diabetic macular edema occurs
(DME). As reported by The National Eye Institute research (Institute, 2018), DME can
be treated with several therapies that may be used alone or in combination:

∙ Anti-VEGF Injection Therapy: Anti-VEGF drugs are injected into the vitreous
gel to block a protein called vascular endothelial growth factor (VEGF), which can
stimulate abnormal blood vessels to grow and leak fluid. Blocking VEGF can reverse
abnormal blood vessel growth and decrease fluid in the retina.

∙ Focal/grid macular laser surgery: In focal/grid macular laser surgery, a few to
hundreds of small laser burns are made to leaking blood vessels in areas of edema
near the center of the macula. Laser burns for DME slow the leakage of fluid,
reducing swelling in the retina.

∙ Corticosteroids: Corticosteroids, either injected or implanted into the eye, may
be used alone or in combination with other drugs or laser surgery to treat DME.
The Ozurdex (dexamethasone) implant is for short-term use, while the Iluvien (flu-
ocinolone acetonide) implant is longer lasting. Both are biodegradable and release
a sustained dose of corticosteroids to suppress DME. Corticosteroid use in the eye
increases the risk of cataract and glaucoma.

4.4.2 Material and Methods

In order to illustrate the proposed methodology in Chapter 3, it is considered a
data set introduced by Huster et al. (1989) with 197 patients where 50% of the patients
where classified by the authors as “high-risk” for diabetic retinopathy. Each patient had
one eye randomized to laser treatment and the other eye received no treatment. For each
eye, the event of interest was the time from beginning of the treatment to the time when
visual acuity dropped below 2/200 (call it “blindness”). There was a built-in lag time of
approximately six months (visits were every three months). Survival times in this data
set are, therefore, the actual times to blindness in months, minus the minimum possible
time to event (6.5 months). Censoring was caused by death, dropout or end of the study.
This data set will be denoted as DRS and the data structure is presented in Table 13.
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Table 13 – A trial of laser coagulation as a treatment to delay diabetic retinopathy data
structure (available in R software).

Variable Description

ID Subject ID
Laser Type of laser used: xenon or argon
Eye Which eye was treated: right or left
Age Age at diagnosis of diabetes
Type Type of diabetes: juvenile or adult
Trt 0 = control eye, 1 = treated eye
Futime Time to loss of vision or last follow-up
Status 0 = censored, 1 = loss of vision in this eye
Risk A risk score for the eye

For the statistical analysis, it is assumed as lifetimes the time to blindness for
the eye randomized to laser treatment (𝑇1), with 143 censored observations and 54 not
censored observations, and the time to blindness for the eye randomized that not received
the treatment (𝑇2), with 96 censored observations and 101 non-censored observations.
Moreover, in Figure 26, it is presented the plots of the nonparametric Kaplan and Meier
(1958) estimator of the survival functions for both times where could be seen the incidence
of a cure rate; the nonparametric estimators for the means obtained from Kaplan-Meier
estimators are given, respectively, by 53.72 months for 𝑇1 and 43.52 months for 𝑇2.
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Ŝ
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Figure 26 – Kaplan-Meier estimators for the survival functions of 𝑇1 (time to blindness
for the treated eye) and 𝑇2 (time to blindness for the untreated eye).

4.4.2.1 Statistical Analysis in Presence of Cure Rate

As a first modeling approach for the DRS data set, it is assumed the proposed
cure rate models described in Chapter 3. In the case of BL models, only the BL-I was
considered here. For a Bayesian approach, it is assumed Beta prior distributions with
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hyperparameter values (𝛼, 𝛽) = (1, 1) for the discrete model parameters, Gamma prior
distributions with hyperparameter values (𝛼, 𝛽) = (0.001, 0.001) for the continuous model
parameters and also Beta prior distributions for the incidence parameters 𝜑11, 𝜑10, 𝜑01 and
𝜑00 with hyperparameter values (𝛼𝑖, 𝛽𝑖) = (1, 1), 𝑖 = 1, 2, 3, 4. Note that with these values
for the hyperparameters, it is assumed approximately non-informative prior distributions
for the parameters of the proposed models. In Table 14, it is presented the posterior
summaries of interest.

Table 14 – Posterior summaries for the proposed models in presence of cure rate for the
DRS data set.

Continuous Models Discrete Models

Model Par. Post. Mean (S.D.) 95% Cred.
Interval Model Par. Post. Mean (S.D.) 95% Cred.

Interval

GBE

𝜆1 0.0298 (0.0101) (0.0124, 0.0484)

ABG

𝜃1 0.0359 (0.0093) (0.0179, 0.0544)
𝜆2 0.0320 (0.0057) (0.0221, 0.0438) 𝜃2 0.0333 (0.0059) (0.0227, 0.0456)
𝜃 0.0010 (0.0041) (0.0001, 0.0142) 𝜑11 0.3162 (0.0614) (0.2179, 0.4646)
𝜑11 0.3489 (0.0903) (0.2325, 0.5916) 𝜑10 0.0478 (0.0289) (0.0033, 0.1113)
𝜑10 0.0515 (0.0343) (0.0031, 0.1193) 𝜑01 0.3490 (0.0675) (0.2039, 0.4776)
𝜑01 0.3278 (0.0892) (0.0772, 0.4633) 𝜑00 0.2870 (0.0499) (0.1826, 0.3798)
𝜑00 0.2719 (0.0526) (0.1614, 0.3647)

BBBE

𝜆1 0.0007 (0.0013) (0.0001, 0.0044)

BDBG

𝜃1 0.9724 (0.0084) (0.9549, 0.9878)
𝜆2 0.0013 (0.0023) (0.0001, 0.0080) 𝜃2 0.9711 (0.0057) (0.9596, 0.9813)
𝜆3 0.0485 (0.0085) (0.0317, 0.0629) 𝜃12 0.9937 (0.0029) (0.9871, 0.9982)
𝜑11 0.3140 (0.0634) (0.2126, 0.4496) 𝜑11 0.3155 (0.0645) (0.2158, 0.4667)
𝜑10 0.0802 (0.0281) (0.0219, 0.1365) 𝜑10 0.0598 (0.0312) (0.0066, 0.1277)
𝜑01 0.3293 (0.0465) (0.2501, 0.4226) 𝜑01 0.3388 (0.0676) (0.1955, 0.4632)
𝜑00 0.2765 (0.0551) (0.1548, 0.3782) 𝜑00 0.2858 (0.0507) (0.1794, 0.3809)

MOBE

𝜆1 0.0202 (0.0076) (0.0015, 0.0341)

BG-Type II

𝜃1 0.9546 (0.0064) (0.9418, 0.9662)
𝜆2 0.0278 (0.0058) (0.0178, 0.0393) 𝜃2 0.9619 (0.0044) (0.9525, 0.9697)
𝜆12 0.0054 (0.0026) (0.0015, 0.0108) 𝜃12 0.9463 (0.0119) (0.9215, 0.9674)
𝜑11 0.3696 (0.0889) (0.2415, 0.5718) 𝜑11 0.1742 (0.0220) (0.1327, 0.2193)
𝜑10 0.0722 (0.0438) (0.0079, 0.1787) 𝜑10 0.0893 (0.0154) (0.0625, 0.1215)
𝜑01 0.2751 (0.0860) (0.0616, 0.4142) 𝜑01 0.4216 (0.0372) (0.3511, 0.4939)
𝜑00 0.2831 (0.0562) (0.1695, 0.3743) 𝜑00 0.3150 (0.0383) (0.2442, 0.3933)

BL-I

𝛽1 0.0716 (0.0117) (0.0488, 0.0947)

DBGR

𝛼 0.2119 (0.1069) (0.0655, 0.4796)
𝛽2 0.0755 (0.0086) (0.0606, 0.0913) 𝜆1 0.9997 (0.0001) (0.9994, 0.9999)
𝛽3 0.0111 (0.0033) (0.0057, 0.0174) 𝜆2 0.9997 (0.0001) (0.9994, 0.9999)
𝜑11 0.2455 (0.0409) (0.0387, 0.3134) 𝜑11 0.4166 (0.0829) (0.2752, 0.5866)
𝜑10 0.0789 (0.0436) (0.0416, 0.1339) 𝜑10 0.0251 (0.0210) (0.0009, 0.0750)
𝜑01 0.3151 (0.0245) (0.2399, 0.4105) 𝜑01 0.2538 (0.0603) (0.1139, 0.3637)
𝜑00 0.3605 (0.0387) (0.2771, 0.4488) 𝜑00 0.3045 (0.0474) (0.2095, 0.3944)

In Table 15, it is presented the Monte Carlo estimates of DIC for each model. From
the results in Table 15, using DIC as the discrimination criteria, it could be concluded
that the BL-I model has a good fit among the continuous models and the BDBG model
has a good fit among the discrete models to the DRS data set in presence of cure rate
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parameters. Overall, the BL-I is the best model to be fitted for DRS data set. However,
the DIC criteria in medical studies might not be a good indicator to model discrimina-
tion/selection.

Table 15 – DIC values for each model for the DRS data set assuming the presence of cure
rate parameters.

Continuous Models Discrete Models

Model DIC value Model DIC value

GBE 1666.162 ABG 1657.612
BBBE 1660.827 BDBG 1649.907
MOBE 1674.111 BG-Type II 1671.265
BL-I 1595.778 DBGR 1685.621

In this way, it also considered the marginal Kaplan-Meier and survival probability
plots as a discrimination criteria in contrast to DIC criteria. In this way, looking at the
Kaplan-Meier plots (see, Figures 27 and 28) for both times 𝑇1 and 𝑇2, it is observed that
the assumed models captured the cure rate with good accuracy; the estimated credibility
bonds incorporate the nonparametric Kaplan-Meier curve and the results are quite similar
meaning that these models could be an alternative to describe and predict the time
to blindness for the treated or untreated eye for the patients diagnosed with diabetic
retinophaty considered in this study. In addition, in Figures 29 and 30, it is illustrated
the probability plots of the Kaplan-Meier estimates for the survival functions versus the
respective predicted values from the proposed models for both times 𝑇1 and 𝑇2 under a
Bayesian approach. Again, it is observed that the assumed models have a good accuracy to
predict the survival probability of the time to blindness for the treated and untreated eyes.
In conclusion, although the models are quite similar in the results, the discrete models
have better fits for the DRS once they have more parsimony in terms of computational
aspects (no terms with exponential function).

Finally, the estimated proportions of non-susceptible patients for the time to blind-
ness for the treated eye (𝑇1) and for the time to blindness for the untreated eye (𝑇2), are
given in Table 16. Under a nonparametric approach, the estimated proportions of non-
susceptible individuals for the time 𝑇1 and 𝑇2, are, respectively, 67.1% and 39.4% consid-
ering the Kaplan-Meier nonparametric estimator. Therefore, from the results of Table 16,
it could be concluded that the BL-I model has better fit for cure rate under time 𝑇1 and
the BG-Type II model has better fit for cure rate under time 𝑇2.
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Figure 27 – Kaplan-Meier estimators versus Bayesian estimated survival functions for the
marginal survival functions assuming discrete models for 𝑇1 (upper panels)
and 𝑇2 (lower panels) in presence of cure rate for the DRS data set.
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Ŝ
M

O
B

E
(t 1

)

   0   19   38   56   75

 0
.0

 0
.2

 0
.5

 0
.8

 1
.0

ŜEMP(t1)
ŜMOBE(t1)

t1

BL−I Cure Rate Model

t1

Ŝ
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Ŝ
M

O
B

E
(t 2

)

   0   19   38   56   75

 0
.0

 0
.2

 0
.5

 0
.8

 1
.0
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Figure 28 – Kaplan-Meier estimators versus Bayesian estimated survival functions for the
marginal survival functions assuming continuous models for 𝑇1 (left panel)
and 𝑇2 (right panel) in presence of cure rate for the DRS data set.

Table 16 – The estimated proportions of non-susceptible patients for the DRS data set.

Continuous Models Discrete Models

Model 𝑇1 (𝜑00 + 𝜑01) 𝑇2 (𝜑00 + 𝜑10) Model 𝑇1 (𝜑00 + 𝜑01) 𝑇2 (𝜑00 + 𝜑10)

GBE 59.97% 32.34% AGB 63.60% 33.48%
BBBE 60.58% 35.67% BDBG 62.46% 34.56%
MOBE 55.82% 35.53% BG-Type II 73.66% 40.43%
BL-I 67.56% 43.94% DBGR 55.83% 32.96%
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Figure 29 – Plots of the Kaplan-Meier estimates for the survival function versus the re-
spective predicted values obtained from the proposed discrete models for 𝑇1
(upper panels) and 𝑇2 (lower panels) for the DRS data set.
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Figure 30 – Plots of the Kaplan-Meier estimates for the survival function versus the re-
spective predicted values obtained from the proposed continuous models for
𝑇1 (upper panels) and 𝑇2 (lower panels) for the DRS data set.

4.4.2.2 Statistical Analysis in the Presence of Risk Factors

Suppose now that the medical interest is investigate possible prognostic/diag-
nose/influence factors for diabetic retinopathy disease. In our dataset considered in this
study, we have four covariates of interest: type of laser, age at diagnosis of diabetes, type
of diabetes and risk score. However, this study is limited to investigate only one of them,
type of diabetes, which is the majority issue for diabetic retinophaty disease.



Chapter 4. Modeling Long-Term Survivors in Medical Studies Under Bayesian Approach 116

Let 𝑋1 denoting the covariate type of diabetes categorized by an indicator variable
where the indicator 0 is for juvenile (age at diagnosis < 20) and the indicator 1 is for
adults. In this case, it is assumed two regression models for the parameters of the proposed
models under a Bayesian approach: the logistic regression model (discrete case) and the
linear regression model (continuous case). The assumed logistic regression model in the
discrete case is given by,

Logit Model:

⎧⎨⎩logit(𝛾1𝑖) = 𝜔10 + 𝜔11𝑋1𝑖

logit(𝛾2𝑖) = 𝜔20 + 𝜔21𝑋1𝑖

(4.14)

where logit(𝛼) = log

(︂
𝛼

1 − 𝛼

)︂
and 𝑋1 refers to age status (adult or juvenile); the assumed

linear regression model in the continuous case is given by:

Linear Model:

⎧⎨⎩𝜂1𝑖 = 𝛾1 exp(𝜔10 + 𝜔11𝑋1𝑖)

𝜂2𝑖 = 𝛾2 exp(𝜔20 + 𝜔21𝑋1𝑖)
(4.15)

For both regression models, let us assume the same prior distributions considered
in the analysis not considering the presence of covariates for the model and incidence
parameters. For both regression models given in (4.14) and (4.15), let us assume approxi-
mately normal non-informative prior distributions 𝑁(0, 100) for the regression parameters
𝜔𝑗0, 𝑗 = 1, 2 and 𝜔𝑗1, 𝑗 = 1, 2; and Gamma(0.001, 0.001) prior distributions for the param-
eters 𝛾𝑗, 𝑗 = 1, 2 in the continuous case.

The posterior summaries of interest are presented in Table 17. From the results of
Table 17, it is observed that zero is included in the 95% credible intervals for 𝜔21 for all
the models, that is, the lifetime 𝑇2 is not affected by the covariate 𝑋1 denoting the type
of diabetes. In this way, we conclude that only 𝑇1 is affected (the credible intervals do not
include zero, except for BBBE and DBGR models) by the covariate denoting the type of
diabetes where 0 = juvenile (age at diagnosis < 20) and 1 = for adults.

Moreover, in Table 18, it is presented the Monte Carlo estimates of DIC for each
model under the regression approach. From the results in Table 18 it is possible to conclude
that the DIC values in presence of covariates are very similar to the DIC values considering
only the cure rate, that is, the models not considering the presence of type of diabetes are
better fitted to the DRS data set based on DIC criteria and parsimony. However, in the
regression approach there is more information for the researcher, especially in medical
studies where the main interest is the prognostic factors as well the cure rate. In Figures
31 and 32, it is also illustrated the Kaplan-Meier plots in presence of covariate type of
diabetes from where it is concluded that that the proposed models has a quite good
accuracy (except for BBBE and DBGR models) to predict the time to blindness for each
type of diabetes.
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Table 17 – Posterior summaries for the proposed models considering the type of diabetes
for the DRS data set.

Continuous Models Discrete Models

Model Par. Post. Mean (S.D.) 95% Cred.
Interval Model Par. Post. Mean (S.D.) 95% Cred.

Interval

GBE

𝛾1 1.4276 (2.5039) (0.0024, 9.7564)

ABG

𝜔10 -3.1807 (0.3170) (-3.9122, -2.6603)
𝛾2 0.2661 (0.5125) (0.0001, 1.7654) 𝜔11 -0.8803 (0.4078) (-1.6901, -0.0864)
𝜔10 -1.9890 (2.3400) (-5.6767, 2.6334) 𝜔20 -3.6196 (0.2323) (-4.0568, -3.1627)
𝜔11 -0.8151 (0.3385) (-1.4625, -0.1998) 𝜔21 0.3500 (0.2582) (-0.1641, 0.8378)
𝜔20 1.1710 (3.7345) (-4.2742, 8.0235) 𝜑11 0.3642 (0.0699) (0.2513, 0.5269)
𝜔21 0.3499 (0.2475) (-0.1966, 0.7686) 𝜑10 0.0407 (0.0286) (0.0020, 0.1058)
𝜃 0.0004 (0.0020) (0.0001, 0.0043) 𝜑01 0.3218 (0.0765) (0.1588, 0.4649)
𝜑11 0.3943 (0.0796) (0.2722, 0.5925) 𝜑00 0.2732 (0.0514) (0.1671, 0.3680)
𝜑10 0.0384 (0.0304) (0.0013, 0.1099)
𝜑01 0.3128 (0.0877) (0.1059, 0.4501)
𝜑00 0.2544 (0.0505) (0.1480, 0.3428)

BBBE

𝛾1 0.0779 (0.2004) (0.0001, 0.7416)

BDBG

𝜔10 3.3840 (0.3508) (2.8140, 4.2069)
𝛾2 0.4321 (1.1860) (0.0001, 5.1015) 𝜔11 1.2202 (0.5361) (0.2417, 2.3442)
𝜔10 -5.2060 (3.4029) (-12.4762, 0.3028) 𝜔20 3.7675 (0.2855) (3.2224, 4.3353)
𝜔11 -1.3148 (4.2635) (-9.3880, 6.3233) 𝜔21 -0.3623 (0.3066) (-0.9727, 0.2290)
𝜔20 -6.6493 (4.5510) (-15.3456, 0.7470) 𝜃12 0.9945 (0.0025) (0.9888, 0.9983)
𝜔21 -0.0902 (4.2219) (-8.1723, 7.2838) 𝜑11 0.3643 (0.0727) (0.2500, 0.5381)
𝜆3 0.0453 (0.0083) (0.0292, 0.0607) 𝜑10 0.0541 (0.0335) (0.0038, 0.1279)
𝜑11 0.3447 (0.0765) (0.2472, 0.5555) 𝜑01 0.3124 (0.0751) (0.1472, 0.4550)
𝜑10 0.0733 (0.0267) (0.0266, 0.1301) 𝜑00 0.2692 (0.0531) (0.1582, 0.3672)
𝜑01 0.3282 (0.0538) (0.2198, 0.4262)
𝜑00 0.2539 (0.0603) (0.1130, 0.3654)

MOBE

𝛾1 0.0211 (0.0770) (0.0001, 0.2859)

BG-Type II

𝜔10 3.2945 (0.3515) (2.7289, 4.1324)
𝛾2 0.1942 (0.2149) (0.0001, 0.7299) 𝜔11 0.8763 (0.3837) (0.1250, 1.6324)
𝜔10 5.4122 (4.2759) (-2.3573, 13.1010) 𝜔20 3.6678 (0.2465) (3.1656, 4.1410)
𝜔11 -1.0697 (0.5524) (-2.3453, -0.1603) 𝜔21 -0.3601 (0.2577) (-0.8537, 0.1575)
𝜔20 -0.5578 (2.7158) (-3.5710, 5.3107) 𝜃12 0.9981 (0.0016) (0.9949, 1.0000)
𝜔21 0.3772 (0.3038) (-0.1948, 0.8964) 𝜑11 0.3626 (0.0752) (0.2461, 0.5552)
𝜆12 0.0054 (0.0025) (0.0018, 0.0110) 𝜑10 0.0500 (0.0335) (0.0028, 0.1250)
𝜑11 0.3868 (0.0868) (0.2591, 0.6188) 𝜑01 0.3280 (0.0809) (0.1456, 0.4739)
𝜑10 0.0605 (0.0380) (0.0045, 0.1501) 𝜑00 0.2594 (0.0551) (0.1424, 0.3576)
𝜑01 0.2754 (0.0850) (0.0658, 0.4139)
𝜑00 0.2773 (0.0531) (0.1697, 0.3770)

BL-I

𝛾1 1.2603 (3.0638) (0.0001, 11.2275)

DBGR

𝜔10 8.5882 (0.5270) (7.5524, 9.7509)
𝛾2 0.0562 (0.0859) (0.0001, 0.2975) 𝜔11 0.2678 (0.3873) (-0.5152, 0.9921)
𝜔10 7.1414 (9.4409) (-4.9411, 28.4038) 𝜔20 8.7585 (0.5100) (7.8421, 9.8073)
𝜔11 -0.8906 (0.4113) (-1.7344, -0.1129) 𝜔21 -0.1176 (0.4214) (-0.9561, 0.7791)
𝜔20 1.8732 (2.3053) (-1.5180, 6.7436) 𝛼 0.1489 (0.0677) (0.0403, 0.2941)
𝜔21 0.1920 (0.2317) (-0.2512, 0.6658) 𝜑11 0.4736 (0.0964) (0.3238, 0.7214)
𝜔3 0.0104 (0.0034) (0.0049, 0.0179) 𝜑10 0.0179 (0.0168) (0.0007, 0.0626)
𝜑11 0.2721 (0.0416) (0.1957, 0.3569) 𝜑01 0.2358 (0.0729) (0.0613, 0.3543)
𝜑10 0.0831 (0.0266) (0.0372, 0.1388) 𝜑00 0.2726 (0.0506) (0.1617, 0.3637)
𝜑01 0.2932 (0.0444) (0.2086, 0.3796)
𝜑00 0.3516 (0.0412) (0.2719, 0.4311)



Chapter 4. Modeling Long-Term Survivors in Medical Studies Under Bayesian Approach 118

ABG Cure Rate Model

Ŝ
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ŜEMP(t1)
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Figure 31 – Kaplan-Meier estimators versus Bayesian estimated survival functions for the
marginal survival functions assuming discrete models for 𝑇1 (upper panels)
and 𝑇2 (lower panels) assuming the type of diabetes for the DRS data set.
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ŜBBBE−Juvenile(t2)

t2

GBE Cure Rate Model

Ŝ
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Ŝ
M

O
B

E
(t 2

)

   0   19   38   56   75

 0
.0

 0
.2

 0
.5

 0
.8

 1
.0
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ŜBL−I−Adult(t2)
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Figure 32 – Kaplan-Meier estimators versus Bayesian estimated survival functions for the
marginal survival functions assuming continuous models for 𝑇1 (upper panels)
and 𝑇2 (lower panels) assuming the type of diabetes for the DRS data set.

Table 18 – DIC values for each model for the DRS data set under regression approach.

Continuous Models Discrete Models

Model DIC value Model DIC value

GBE 1659.695 ABG 1654.468
BBBE 1662.653 BDBG 1646.271
MOBE 1669.756 BG-Type II 1666.157
BL-I 1593.050 DBGR 1675.782
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4.4.3 Discussion and Remarks

Our analysis of DRS dataset illustrated a new way to predict and identify some
important in the risk factors for diabetic retinopathy disease. Based on the analysis,
the findings of the present study demonstrated, under a nonparametric approach, that
67.1% of the patients which the eye was treated are non-susceptible to blindness and
39.4% of the patients for untreated eye. In contrast, under a parametric approach, the
BL-I model demonstrated that 67.56% of the patients which the eye was treated are
non-susceptible to blindness and the BG-Type II model demonstrated that 40.43% of
the patients are non-susceptible to blindness for untreated eye. That is, the proposed
models has a good accuracy for the estimation of the long-term survivors. It is important
to point out that the proposed continuous models demonstrated similar accuracy for the
estimation of the long-term survivors compared to discrete models. However, these models
also demonstrated some computational difficulties to get inferences for the parameters of
interest. This fact may be related to the use of non-informative prior distributions for
the MCMC simulation algorithm. In this case, the results could be improved using very
informative prior distributions as well more iterations to get convergence of the MCMC
simulation algorithm.

On other hand, related to the risk factors and according to the regression results,
only the patients with treated eye had the time to blindness affected by the type of
diabetes assuming the proposed models where it could be seen that the probability of
the patients which the eye was treated that are non-susceptible to blindness is higher
for patients that were prognosticated with diabetes at adult phase as compared to the
patients that were prognosticated with diabetes at juvenile phase (age at diagnosis <
20). As a future work, we should investigate another factors as for example the age at
diagnosis that could be an important factor clinically.

In conclusion, the results emerging from this study reinforce the fact that the
search of appropriate bivariate lifetime distributions could be extremely difficult (see
BBBE model, for example) depending on the correlation structure of the lifetime data.
However, the proposed methodology could be very useful in the medical data analysis
where the interest is the estimation of the fraction of patients in the studied population
who never experience the event of interest. The results could be also extended to other
cross-over trials in clinical research; reliability analysis in engineering; risk analysis in
economics; among many others areas. Finally, the general framework for the computer
codes of the proposed modeling approach is presented in Appendix A at the end of this
thesis which could be carried out using the OpenBugs software (Spiegelhalter et al., 2007)
or R2jags (Su and Yajima, 2015) library from R software.
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Chapter 5

Extension to Other Fields of Study

5.1 Reliability Analysis

5.1.1 Introduction

A series system is a component configuration usually assumed in engineering stud-
ies, such that, if any one of the system components fails, the entire system fails. Associated
to each system component there is a response given by a random variable that could be
binary (fail/no fail) or denoting its lifetime (a positive value). In this way, the estimation
of the reliability is obtained using an inference approach based on probabilistic models
given by the probability of failure (response: fail/no fail) or by the probability 𝑃 (𝑇 > 𝑡),
where 𝑇 denotes the lifetime of the component or system and 𝑡 is a fixed value (see, for
example, Jensen and Bard, 2003).

Studies of series system reliability typically assume that the lifetimes of each com-
ponent are independent. This assumption, in general, is not reasonable in many practical
engineering situations, since it is possible that two components assembled into a system
structure may share the same load, may be subject to the same set of stresses or under the
same environment, which could lead to similar performances. In this way, when estimat-
ing the reliability of 2-component systems, it is important to consider statistical models
that support the presence of some dependence structure between the lifetimes of the com-
ponents, since it may affect the evaluation of the full reliability of the system. Different
bivariate lifetime models could be assumed for correlated lifetimes of a series system (see,
for example, Gumbel, 1960; Freund, 1961; Marshall and Olkin, 1967a,b; Downton, 1970;
Hawkes, 1972; Block and Basu, 1974; Sarkar, 1987; Arnold and Strauss, 1988).

The system’s reliability is usually derived as the product of the reliabilities for a
fixed time 𝑡 = min(𝑡𝑖) (𝑖 = 1, . . . , 𝑛). Under the independence assumption (product of the
reliabilities), considering as a special case a two-component series systems, it is assumed
two random variables 𝑇1 and 𝑇2 belonging to the same distributional family, but indexed
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by different parameters, typically in a univariate form representing the lifetime series
system, 𝑡 = min(𝑡1, 𝑡2). Any lifetime distribution could be assumed for each component of
the series system. For example, 𝑇1 and 𝑇2 could be assumed as following an Exponential
or a Weibull distribution with different parameters. A mixture of these distributions (𝑇1
follows a Weibull distribution and 𝑇2 follows an Exponential) or random field discretization
can also be considered (see Burr, 1968, 1973; Singh and Billinton, 1977; Blanchard et al.,
1990; Chao and Fu, 1991; Mori and Ellingwood, 1993; Hulting and Robinson, 1994; Zhang
and Horigome, 2001; Rausand and Arnljot, 2004; Kołowrocki, 2008; Eryilmaz and Tank,
2012; Hu and Mahadevan, 2015; Oliveira and Achcar, 2019). However, it is possible that
there is a deterioration process destroying both components at the same time. In this
case, the dependence assumption is essential requiring the use of a bivariate distribution
since the dependence is related to the deterioration process.

The novelty of the present study is the introduction of a time-dependent struc-
ture among the deterioration process using BL distributions derived from two Lindley
distributions for a 2-component series system since it could provide better accuracy for
the estimation of the full system reliability instead of assuming independent univariate
lifetime distributions for each component. Moreover, since it is a great challenge obtaining
the system’s reliability function in terms of component reliabilities, the use of a probabil-
ity distribution, especially a multivariate one, can be useful to get warranty periods and
the system failure rate.

5.1.2 Inference Methods

Usually, in studies related to reliability of 2-component series systems, it is observed
only the times of failure of the system and the indication of which component had failed.
In other words, one has the information on the complete lifetime for one component,
but for the other one, there is only partial information of its lifetime, since it possibly
continues to work. In this case, it is observed only the minimum lifetime between 𝑇1 and
𝑇2, that is, it is observed 𝑇 = min(𝑇1, 𝑇2). Let us define an indicator variable:

𝛿 =

⎧⎨⎩1 if 𝑇1 < 𝑇2

0 if 𝑇1 ≥ 𝑇2.
(5.1)

One can notice that, if 𝛿𝑖 = 1, the individual contribution for the likelihood func-
tion assuming bivariate lifetimes is given by 𝑃 (𝑇1𝑖 = 𝑡1𝑖, 𝑇2𝑖 > 𝑡2𝑖) = −𝜕𝑆(𝑡1𝑖, 𝑡2𝑖)/𝜕𝑡1𝑖

and, if 𝛿𝑖 = 0, the contribution is 𝑃 (𝑇1𝑖 > 𝑡1𝑖, 𝑇2𝑖 = 𝑡2𝑖) = −𝜕𝑆(𝑡1𝑖, 𝑡2𝑖)/𝜕𝑡2𝑖. For the
proposed models, assuming a random sample of size 𝑛 of a 2-component series system
with lifetimes 𝑇1 and 𝑇2, the likelihood function (see, e.g. Lawless, 1982) is given by

ℒ(𝛽) =
𝑛∏︁

𝑖=1

[︂
−𝜕𝑆(𝑡1𝑖, 𝑡2𝑖)

𝜕𝑡1𝑖

]︂𝛿𝑖 [︂
−𝜕𝑆(𝑡1𝑖, 𝑡2𝑖)

𝜕𝑡2𝑖

]︂1−𝛿𝑖

. (5.2)
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5.1.3 Data Applications

In this section, some applications associated to reliability and lifetime data are
considered for illustrative purposes of the usefulness of the proposed BL models. In the
first application, it is considered 50 simulated simple computer series systems consisting of
a processor and a memory. The computer works if both system components are working
correctly. Suppose that there is a latent deterioration process occurring in the system.
During a relatively short time (in hours), the deterioration progresses rapidly and makes
the system susceptible to shocks in which a random fatal shock can destroy the first
component, the second or both components. Since the fatal shock can simultaneously
destroy both components, the independence assumption could be not appropriate.

The second application is related to engine winding reliability (the dataset was
introduced in a data file of the Minitab software (Minitab, 1991) where a reliability
engineer studied the failure rates of engine windings of turbine assemblies to determine
the times at which the windings fail. At high temperatures, the windings could decompose
too fast.

5.1.3.1 Computer Series System Simulated Data (CS)

Let us consider an industrial design previously described which relates to the simple
computer series systems consisting of a processor and a memory, that is, two-component
series systems. Since the system has a deteriorating process, suppose that a shock from
source one destroys the processor (component one) occurring at a random time 𝑊1 such
that 𝑊1 ∼ 𝐿𝑖𝑛𝑑𝑙𝑒𝑦(0.5); a shock from source two destroys the memory (component two)
occurring at a random time 𝑊2 such that 𝑊2 ∼ 𝐿𝑖𝑛𝑑𝑙𝑒𝑦(0.5); and a shock from source
three destroys simultaneously the processor and the memory at a random time 𝑊3 such
that 𝑊3 ∼ 𝐿𝑖𝑛𝑑𝑙𝑒𝑦(0.5).

In this industrial design, the lifetime of the processor (in hours) is given by 𝑇1 =

min(𝑊1,𝑊3) and the lifetime of the memory (in hours) is given by 𝑇2 = min(𝑊2,𝑊3).
However, our interest is in the lifetime of the entire system. In this case, the lifetime of
the entire system is given by 𝑇 = min(𝑇1, 𝑇2) and the reliability of the system for the time
𝑡 = min(𝑡1, 𝑡2) is given by 𝑅(𝑡) = 𝑆(𝑡, 𝑡) due to the common source of shock. For a statisti-
cal analysis under a Bayesian approach, it is assumed the proposed models BL models. As
prior distributions, it is assumed approximately noninformative Gamma(0.01, 0.01) prior
distributions for the parameters 𝛽𝑗 (𝑗 = 1, 2) and an approximately informative Gamma
prior distribution with hyperparameters values 𝑛𝑇min and 𝑛Var(𝑇min) (where 𝑇min and
Var(𝑇min) are the sample mean and the sample variance of 𝑇min = min(𝑇1, 𝑇2), respec-
tively; and 𝑛 is the sample size) for 𝛽3 to avoid computational instability. The posterior
summaries of interest for the assumed models are presented in Table 20.
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Table 19 – Fifty simulated computer series system of two components.

Sys
Processor

Lifetime

Memory

Lifetime
Sys

Processor

Lifetime

Memory

Lifetime
Sys

Processor

Lifetime

Memory

Lifetime
Sys

Processor

Lifetime

Memory

Lifetime
Sys

Processor

Lifetime

Memory

Lifetime

1 1.9292 3.9291 11 1.9386 4.0043 21 1.1739 3.3857 31 0.1181 0.0884 41 0.6270 1.7289

2 3.6621 0.0026 12 2.1000 2.0513 22 1.3482 1.9705 32 5.0533 2.3238 42 0.7947 0.7947

3 3.9608 0.8323 13 0.9867 0.9867 23 3.0935 3.0935 33 1.6465 2.0197 43 0.5079 5.3535

4 2.3504 3.3364 14 0.1837 0.1837 24 2.1396 2.1548 34 0.9096 0.6214 44 2.5913 2.5913

5 1.0833 3.3059 15 1.3989 4.1268 25 1.3288 0.9689 35 1.7494 2.3643 45 2.5372 2.4923

6 2.8414 1.8438 16 2.3757 2.7953 26 0.1115 0.1115 36 0.1058 0.1058 46 1.1917 0.0801

7 0.3309 0.3309 17 3.5202 1.4095 27 0.8503 2.8578 37 0.4593 0.4593 47 1.5254 4.4088

8 2.9884 1.5961 18 2.3364 0.1624 28 0.1955 0.1955 38 0.9938 1.7689 48 1.0986 1.0986

9 0.5784 1.8795 19 0.8584 1.9556 29 0.4614 0.8584 39 5.7561 0.3212 49 1.0051 1.0051

10 0.5520 0.5520 20 4.3435 1.0001 30 3.3887 1.9796 40 6.2950 1.0495 50 1.3640 1.3640

Table 20 – Posterior summaries assuming BL models for the CS data.

Shock bivariate Lindley models Stress bivariate Lindley models

Model Par. Post. Mean Std. Dev. 95% Cred. Int. DIC Model Par. Post. Mean Std. Dev. 95% Cred. Int. DIC

BL-I

𝛽1

𝛽2

𝛽3

0.4847

0.4723

0.4182

0.0777

0.0784

0.0525

0.3545, 0.6428)

(0.3227, 0.6578)

(0.3355, 0.5376)

336.90 BL-III

𝛽1

𝛽2

𝛽3

0.0027

0.0046

0.8982

0.0096

0.0172

0.0585

(0.0001, 0.0391)

(0.0001, 0.0694)

(0.7783, 0.9954)

387.80

BL-II

𝛽1

𝛽2

𝛽3

0.4758

0.4737

0.4978

0.0733

0.0792

0.0610

(0.3415, 0.6268)

(0.3310, 0.6416)

(0.3869, 0.6298)

294.60 BL-IV

𝛽1

𝛽2

𝛽3

0.0012

0.0092

1.0149

0.0088

0.0255

0.0736

(0.0001, 0.0108)

(0.0001, 0.0937)

(0.8741, 1.1598)

316.20

From the results of Table 20, using DIC as discrimination criterion, it is observed
that the BL-II model is better fitted to the data which is expected since the generated
data follows the construction structure of the model BL-II. However, all models have
closer DIC values which lead us to the conclusion that the use of BL distributions could
be a good alternative to analyse reliability system data since it was obtained accurate
inference results (small values for standard deviations and good length for the 95% credible
intervals). However, the main goal of the study is to estimate the reliability for each
considered series systems. For instance, using the estimates of the parameters given in
Table 20, it is presented in Table 21 the Bayesian estimates of the reliabilities as well
the 95% credibility intervals for the reliability of the of the entire system for the first
ten systems given in Table 19. For comparative purposes, the product of two Lindley
distributions is also considered (independence assumption).

From the results presented in Table 21, it could be concluded that the BL-II model
is the best model to predict the reliability of the entire system with good accuracy. This
result is expected due to the system structure and it is important to point out that
the dependence assumption, in this case, is crucial for the data analysis. In fact, under
independence assumption, the reliability of many systems has a poor prediction and the
credible intervals do not contain the true value of the system reliability; on the other hand,
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all proposed models can capture the true reliability of the entire system by the credibility
intervals range. In many practical situations which a common source of shock for both
components, the entire series system reliability could be predicted using BL distributions
which are the novelty of this study.

Table 21 – The estimated reliability and the 95%credibility intervals of the first ten sim-
ulated computer series system, assuming BL models and independent Lindley
models; and the true reliabilities of the systems for the CS data given in Table
19.

Sys R𝐵𝐿−𝐼 R𝐵𝐿−𝐼𝐼 R𝐵𝐿−𝐼𝐼𝐼 R𝐵𝐿−𝐼𝑉 R𝐿 R𝑇

1
0.1879

(0.1274, 0.2487)

0.2663

(0.1810, 0.3622)

0.1777

(0.1464, 0.2228)

0.2795

(0.2167, 0.3511)

0.3476

(0.2527, 0.4546)
0.2456

2
0.9981

(0.9977, 0.9984)

0.9988

(0.9984, 0.9991)

0.9977

(0.9974, 0.9980)

0.9987

(0.9984, 0.9989)

0.9990

(0.9987, 0.9993)
0.9987

3
0.5128

(0.4403, 0.5769)

0.6144

(0.5312, 0.6936)

0.4739

(0.4365, 0.5232)

0.6098

(0.5505, 0.6702)

0.6747

(0.5970, 0.7505)
0.5982

4
0.1247

(0.0766, 0.1758)

0.1858

(0.1141, 0.2722)

0.1220

(0.0962, 0.1605)

0.2025

(0.1476, 0.2680)

0.2620

(0.1752, 0.3652)
0.1670

5
0.4116

(0.3360, 0.4804)

0.5155

(0.4235, 0.6064)

0.3785

(0.3400, 0.4303)

0.5151

(0.4496, 0.5834)

0.5865

(0.4974, 0.6761)
0.4966

6
0.2039

(0.1410, 0.2665)

0.2858

(0.1983, 0.3830)

0.1918

(0.1594, 0.2381)

0.2980

(0.2339, 0.3705)

0.3675

(0.2716, 0.4745)
0.2649

7
0.7769

(0.7344, 0.8133)

0.8408

(0.7977, 0.8792)

0.7429

(0.7193, 0.7729)

0.8336

(0.8022, 0.8642)

0.8685

(0.8305, 0.9033)
0.8332

8
0.2577

(0.1884, 0.3246)

0.3492

(0.2565, 0.4483)

0.2392

(0.2040, 0.2887)

0.3579

(0.2910, 0.4316)

0.4306

(0.3334, 0.5355)
0.3281

9
0.6357

(0.5737, 0.6894)

0.7251

(0.6582, 0.7866)

0.5950

(0.5621, 0.6375)

0.7178

(0.6698, 0.7655)

0.7707

(0.7101, 0.8278)
0.7127

10
0.6497

(0.5894, 0.7020)

0.7372

(0.6724, 0.7964)

0.6092

(0.5771, 0.6507)

0.7297

(0.6832, 0.7758)

0.7809

(0.7226, 0.8358)
0.7252

𝑅𝐿: product of two independent Lindley distribution; 𝑅𝑇 : True reliability of the entire system.

5.1.3.2 Engine Winding Reliability Dataset (EW)

The proposed BL models can also be useful for other reliability applications not
related to series systems. In this subsection, for example, it is considered an application
related to engine winding reliability. The main goal of this study is the estimation of the
failure time of engine windings of the turbine. The dataset consists of two lifetimes where
the lifetime 𝑇1 denotes the time to failure of windings that was exposed to a temperature of
80 degrees Celsius; 𝐶1 indicates whether the unit failed or survived at 80 degrees Celsius:
1 = an actual failure, or 0 = the censored unit was removed from the test before it failed;
and 𝑇2 denotes the time to failure of windings that was exposed to a temperature of 100
degrees Celsius; 𝐶2 indicates whether the unit failed or survived at 100 degrees Celsius: 1
= an actual failure, or 0 = the censored unit was removed from the test before it failed.
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For a Bayesian analysis, it is assumed the proposed BL models described in Chap-
ter 3 and approximately noninformative Gamma(0.001, 0.001) prior distributions were
assumed for the parameters 𝛽𝑗 (𝑗 = 1, 2) and an approximately noninformative U(0, 1)

for 𝛽3 to avoid computational instability. The posterior summaries of interest for the
assumed models as well for the bivariate Gumbel Exponential Gumbel (1960) and the bi-
variate Marshall-Olkin Exponential Marshall and Olkin (1967a,b) are presented in Table
22. Table 22 also present the Monte Carlo estimates of DIC. Using DIC discrimination
criterion, it is observed that model BL-II model is better fitted to the data assuming the
shock model structure and the BL-IV model is better fitted to the data assuming the
stress model structure. The obtained results lead us to the conclusion that the use of BL
distributions could be a good alternative to analyse bivariate reliability data since it was
obtained accurate inference results (small values for standard deviations and good length
for the 95% credible intervals).

Table 22 – Posterior summaries assuming BL models for the EW dataset.

Shock bivariate Lindley models Stress bivariate Lindley models

Model Par. Post. Mean Std. Dev. 95% Cred. Int. DIC Model Par. Post. Mean Std. Dev. 95% Cred. Int. DIC

BL-I

𝛽1

𝛽2

𝛽3

0.0281

0.0419

0.0009

0.0034

0.0047

0.0008

(0.0217, 0.0345)

(0.0335, 0.0496)

(0.0001, 0.0032)

652.80 BL-III

𝛽1

𝛽2

𝛽3

0.0256

0.0240

0.0174

0.0031

0.0066

0.0055

(0.0197, 0.0315)

(0.0117, 0.0384)

(0.0076, 0.0280)

642.10

BL-II

𝛽1

𝛽2

𝛽3

0.0281

0.0424

0.0048

0.0035

0.0048

0.0037

(0.0212, 0.0347)

(0.0337, 0.0525)

(0.0002, 0.0125)

647.70 BL-IV

𝛽1

𝛽2

𝛽3

0.0253

0.0192

0.0446

0.0037

0.0062

0.0070

(0.0189, 0.0332)

(0.0095, 0.0330)

(0.0314, 0.0595)

628.10

Gumbel bivariate Exponential model (Gamma(0.01,0.01) priors) Marshall-Olkin bivariate Exponential model (Gamma(0.01,0.01) priors)

GBE

𝛽1

𝛽2

𝛽3

0.0138

0.0188

0.4374

0.0025

0.0032

0.2609

(0.0093, 0.0188)

(0.0128, 0.0254)

(0.4122, 0.9653)

676.20 MOBE

𝛽1

𝛽2

𝛽3

0.0132

0.0211

0.0011

0.0028

0.0036

0.0010

(0.0086, 0.0193)

(0.0150, 0.0285)

(0.0001, 0.0034)

677.30

5.1.4 Concluding Remarks

From the different model structure approaches considered in this study to get in-
ferences of interest for a two-component series system reliability (see CS data application),
it is possible to conclude that the use of the new class of BL distributions introduced in
this paper leads to accurate inference results for the parameters of interest assuming the
system lifetime data as univariate or bivariate (despite the presence of censored data) even
using noninformative priors for the parameters of the model under a Bayesian approach.
For example, considering the EW dataset and the LC real dataset applications (despite
the nature of both applications), the use of noninformative prior provided great accurate
inference results (small values for the standard deviations) for each BL model.

On the other hand, in the CS application, it is important to point out that the
dependence structure is a crucial assumption as well the use of an informative prior dis-
tribution with hyperparameters based on sample mean and variance to get good inference



Chapter 5. Extension to Other Fields of Study 126

accuracy for the 𝑅(𝑡) of the entire system which is a great indicator that the BL models
can be applied in practical industrial situations where the series systems fails when a com-
mon source of shock destroy both components. Moreover, based on the 𝑅(𝑡) estimates,
it is possible to conclude that the use of any one of the proposed BL models may be a
good option instead using the product of two Lindley distributions considered under the
independence assumption. In addition, other probability distributions could be assumed
for the random variables 𝑊3 and 𝑈3 related to common shock and stress considering the
new class of BL models proposed in this thesis, however this issue is outside the scope of
this thesis and will be the subject of future research.

5.2 Multivariate Analysis

5.2.1 Introduction

In this section, the defining properties of the multivariate geometric distribution
are based on models in which a n-component system fails according to the occurrences of
fatal shocks to each one of the components or for all of the components. The first approach
related to this idea introduced in the literature was proposed by Marshall and Olkin
(1967b) from where the authors introduced a multivariate exponential distribution. The
results for the multivariate geometric distribution are analogous to the results obtained
using the multivariate exponential distribution introduced in the literature by Arnold
(1975).

5.2.2 Model Structure

Suppose that the components of a two-component system fail after receiving an
overall fatal shock. Independent Poisson processes 𝑈1(𝑡, 𝜃1), 𝑈2(𝑡, 𝜃2), 𝑈12(𝑡, 𝜃12) govern the
occurrence of fatal shocks. Events in the process 𝑈1(𝑡, 𝜃1) are fatal shocks transmitted to
component 1, events in the process 𝑈2(𝑡, 𝜃2) are fatal shocks transmitted to component 2,
and events in the process 𝑈12(𝑡, 𝜃12) are fatal shocks transmitted equaly and independently
to both components. Thus if 𝑋 = min(𝑈1, 𝑈12) and 𝑌 = min(𝑈2, 𝑈12) denote, respectively,
the lifes of the first and second components, we have,

∙ Assume that the probability of transmitting a fatal shock to the component 1 is
equal to 1 − 𝜃1; observe that the event 𝑋 > 𝑥 occurs if and only if there were no
fatal shocks until 𝑋 = 𝑥, that is, 𝑃 (𝑋 > 𝑥) = 𝜃𝑥1 .

∙ Assume that the probability of transmitting a fatal shock to the component 2 is
equal to 1 − 𝜃2; observe that the event 𝑌 > 𝑦 occurs if and only if there were no
fatal shocks until 𝑌 = 𝑦, that is, 𝑃 (𝑌 > 𝑦) = 𝜃𝑦2 .
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In this case, the probability of the system is working until an overall failure is given by,

P(𝑋 > 𝑥, 𝑌 > 𝑦) = 𝜃𝑥1𝜃
𝑦
2𝜃

max(𝑥,𝑦)
12 (5.3)

The probability model given by (5.3) is known in the literature as the Basu-Dhar
bivariate geometric distribution introduced by Basu and Dhar (1995). Inferences and
some computational aspects for this distribution under a Bayesian approach in presence
of censoring and covariates are introduced by Achcar et al. (2016a); de Oliveira and Achcar
(2018). An implementation of this distribution in R software is given by the library BivGeo
introduced by de Oliveira et al. (2018).

Now, considering a generalization for more than two components series systems,
it is considered first an extension of the fatal shock model to a three-component system
(Oliveira et al., 2019). Let the independent Poisson processes 𝑈1(𝑡, 𝜃1), 𝑈2(𝑡, 𝜃2), 𝑈3(𝑡, 𝜃3)

govern the occurrence of fatal shocks to components 1, 2, 3, respectively; 𝑈12(𝑡, 𝜃12),
𝑈13(𝑡, 𝜃13), 𝑈23(𝑡, 𝜃23) govern the occurrence of fatal shocks to the component pairs 1 and
2, 1 and 3, 2 and 3, respectively; and 𝑈123(𝑡, 𝜃123) governs the occurrence of overall fatal
shock to components 1, 2, 3. If 𝑋 = max(𝑈1, 𝑈12, 𝑈13, 𝑈123), 𝑌 = max(𝑈2, 𝑈12, 𝑈23, 𝑈123)

and 𝑍 = max(𝑈3, 𝑈13, 𝑈23, 𝑈123) denote, respectively, the life lengths of the first, second,
and third components, thus the probability of the system is working until an overall failure
is given by,

P(𝑋 > 𝑥, 𝑌 > 𝑦, 𝑍 > 𝑧) = P{𝑈1(𝑥) = 0, 𝑈2(𝑦) = 0, 𝑈3(𝑧) = 0, 𝑈12(max(𝑥, 𝑦)) = 0,

𝑈13(max(𝑥, 𝑧)) = 0, 𝑈23(max(𝑦, 𝑧)) = 0,

𝑈123(max(𝑥, 𝑦, 𝑧)) = 0}
= 𝜃𝑥1𝜃

𝑦
2𝜃

𝑧
3𝜃

max(𝑥,𝑦)
12 𝜃

max(𝑥,𝑧)
13 𝜃

max(𝑦,𝑧)
23 𝜃

max(𝑥,𝑦,𝑧)
123 . (5.4)

Similar arguments yield the n-dimensional geometric distribution given by,

P(𝑋1 > 𝑥1, . . . , 𝑋𝑛 > 𝑥𝑛) =
𝑛∏︁

𝑖=1

𝜃𝑥𝑖
𝑖 ·

𝑛∏︁
𝑖=1<𝑗

𝜃
max(𝑥𝑖,𝑥𝑗)
𝑖𝑗 ·

𝑛∏︁
𝑖=1<𝑗<𝑘

𝜃
max(𝑥𝑖,𝑥𝑗 ,𝑥𝑗)
𝑖𝑗𝑘 ·. . .·𝜃max(𝑥1,𝑥2,...,𝑥𝑛)

12...𝑛 ,

(5.5)
where 0 < 𝜃𝑖 < 1, 𝑖 = 1, . . . , 𝑛 and 0 < 𝜃𝑖𝑗, . . . , 𝜃12...𝑛 ≤ 1, 𝑖 = 1, . . . , 𝑛; 𝑗 = 2, . . . , 𝑛; 𝑖 < 𝑗.

Proposition 4.2.2.1. Let 𝑆 denote the set of vectors (𝑠1, . . . , 𝑠𝑛) where each 𝑠𝑗 = 0 or 1
but (𝑠1, . . . , 𝑠𝑛) ̸= (0, . . . , 0). For any vector 𝑠 ∈ 𝑆, max(𝑥𝑖, 𝑠𝑖) is the minimum of the 𝑥′𝑖𝑠
for which 𝑠𝑖 = 1. Thus,

P(𝑋1 > 𝑥1, . . . , 𝑋𝑛 > 𝑥𝑛) =
𝑛∏︁

𝑠∈𝑆

𝜃max(𝑥𝑖,𝑠𝑖)
𝑠 . (5.6)

Proof. It is obtained directly from equation (5.5).
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Proposition 4.2.2.2. The multivariate probability mass function for the random variables
𝑋𝑖, 𝑖 = 1, . . . , 𝑛 is given by,

P(𝑋1 = 𝑥1, . . . , 𝑋𝑛 = 𝑥𝑛) =
𝑛∏︁

𝑖=1

𝜃𝑥𝑖−1
𝑖

𝑛∏︁
𝑖=1<𝑗

𝜃
max(𝑥𝑖−1,𝑥𝑗−1)
𝑖𝑗

×
𝑛∏︁

𝑖=1<𝑗<𝑙

𝜃
max(𝑥𝑖−1,𝑥𝑗−1,𝑥𝑙−1)
𝑖𝑗𝑙 . . . 𝜃

max(𝑥1−1,𝑥2−1,...,𝑥𝑛−1)
12...𝑛

− 𝜃𝑥1
1

𝑛∏︁
𝑖=2

𝜃𝑥𝑖−1
𝑖

𝑛∏︁
𝑗=2

𝜃
max(𝑥1,𝑥𝑗−1)
1𝑗

×
𝑛∏︁

𝑖=2<𝑗

𝜃
max(𝑥𝑖−1,𝑥𝑗−1)
𝑖𝑗 . . . 𝜃

max(𝑥1,𝑥2−1,...,𝑥𝑛−1)
12...𝑛

...

+ (−1)𝑛
𝑛∏︁

𝑖=1

𝜃𝑥𝑖
𝑖

𝑛∏︁
𝑖=1<𝑗

𝜃
max(𝑥𝑖,𝑥𝑗)
𝑖𝑗

×
𝑛∏︁

𝑖=1<𝑗<𝑙

𝜃
max(𝑥𝑖,𝑥𝑗 ,𝑥𝑙)
𝑖𝑗𝑙 . . . 𝜃

max(𝑥1,𝑥2,...,𝑥𝑛)
12...𝑛 . (5.7)

Proof. From (5.5) and the equation below,

P(𝑋1 = 𝑥1, . . . , 𝑋𝑛 = 𝑥𝑛) = P(𝑋1 > 𝑥1 − 1, . . . , 𝑋𝑛 > 𝑥𝑛 − 1)

− P(𝑋1 > 𝑥1, . . . , 𝑋𝑛 > 𝑥𝑛 − 1) −
− . . .P(𝑋1 > 𝑥1 − 1, . . . , 𝑋𝑛 > 𝑥𝑛) + . . .+

+ (−1)𝑛P(𝑋1 > 𝑥1, . . . , 𝑋𝑛 > 𝑥𝑛)

the proof is completed.

We define the distribution given by (5.7) as the multivariate geometric distribution
(abbreviated MVG).

Proposition 4.2.2.3. The (𝑛−1)-dimensional marginals (hence 𝑘-dimensional marginals,
𝑘 = 1, 2, . . . , 𝑛 − 1) are MVG. In particular, the two-dimensional marginal distributions
are bivariate geometric distributions, so the one-dimensional marginal distributions are
geometric distributions.

Proof. For the case 𝑘 = 1, that is, one-dimensional marginals, we have for a random
variable 𝑋𝑖, 𝑖 = 1, . . . , 𝑛 that the marginal survival function can be expressed as,

P(𝑋𝑖 > 𝑥𝑖) = 𝜃𝑥𝑖
𝑖 ·

𝑛∏︁
𝑖<𝑗

𝜃𝑥𝑖
𝑖𝑗 ·

𝑛∏︁
𝑖<𝑗<𝑘

𝜃𝑥𝑖
𝑖𝑗𝑘 · . . . · 𝜃𝑥𝑖

12...𝑛 (5.8)
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where 𝑖 = 1, . . . , 𝑛; 𝑗 = 2, . . . , 𝑛; 𝑘 = 3, . . . , 𝑛; 𝑖 < 𝑗 < 𝑘. From the survival function in
(5.8), the marginal distribution of 𝑋𝑖 is given by,

P(𝑋𝑖 = 𝑥𝑖) =

(︃
𝜃𝑥𝑖
𝑖 ·

𝑛∏︁
𝑖<𝑗

𝜃𝑖𝑗 ·
𝑛∏︁

𝑖<𝑗<𝑘

𝜃𝑖𝑗𝑘 · . . . · 𝜃12...𝑛
)︃𝑥𝑖

(︃
1 − 𝜃𝑥𝑖

𝑖 ·
𝑛∏︁

𝑖<𝑗

𝜃𝑖𝑗 ·
𝑛∏︁

𝑖<𝑗<𝑘

𝜃𝑖𝑗𝑘 · . . . · 𝜃12...𝑛
)︃

(5.9)
which corresponds to a one-dimensional geometric distribution with mean and variance
given, respectively, by

E(𝑋𝑖) =
1(︁

1 − 𝜃𝑥𝑖
𝑖 ·∏︀𝑛

𝑖<𝑗 𝜃𝑖𝑗 ·
∏︀𝑛

𝑖<𝑗<𝑘 𝜃𝑖𝑗𝑘 · . . . · 𝜃12...𝑛
)︁

and

Var(𝑋𝑖) =

(︁
𝜃𝑥𝑖
𝑖 ·∏︀𝑛

𝑖<𝑗 𝜃𝑖𝑗 ·
∏︀𝑛

𝑖<𝑗<𝑘 𝜃𝑖𝑗𝑘 · . . . · 𝜃12...𝑛
)︁

(︁
1 − 𝜃𝑥𝑖

𝑖 ·∏︀𝑛
𝑖<𝑗 𝜃𝑖𝑗 ·

∏︀𝑛
𝑖<𝑗<𝑘 𝜃𝑖𝑗𝑘 · . . . · 𝜃12...𝑛

)︁2
Since similar arguments yield for the 𝑘-dimensional marginals, 𝑘 = 1, 2, . . . , 𝑛− 1,

the proof is completed.

Proposition 4.2.2.4. Assuming the transformation of the random variables 𝑇𝑖, 𝑖 = 1, . . . , 𝑛

given by 𝑇 = min(𝑇1, . . . , 𝑇𝑛), the cumulative distribution function for 𝑇 is given by:

P(𝑇 ≤ 𝑡) = 1 − P(𝑇 > 𝑡) = 1 − (𝜃1𝜃2 . . . 𝜃12𝜃13 . . . 𝜃12...𝑛−1𝜃12...𝑛)𝑡. (5.10)

which implies that 𝑇 ∼ 𝐺𝑒𝑜(𝜃1𝜃2 . . . 𝜃12𝜃13 . . . 𝜃12...𝑛−1𝜃12...𝑛) with mean E(𝑇 ) = 1/(1 −
𝜃1𝜃2 . . . 𝜃12 . . . 𝜃12...𝑛−1𝜃12...𝑛) and variance Var(𝑇 ) = 𝜃1𝜃2 . . . 𝜃12𝜃13 . . . 𝜃12...𝑛−1𝜃12...𝑛/(1 −
𝜃1𝜃2 . . . 𝜃12𝜃13 . . . 𝜃12...𝑛−1𝜃12...𝑛)2.

Proof. The proof is directly obtained in the same way as the proof of Proposition 3.

5.2.3 Likelihood Function

Let us assume a random sample of size 𝑛 of a n-component series system with
lifetimes 𝑇𝑖, 𝑖 = 1, . . . , 𝑛 related to the n-components. The log-likelihood function for the
vector of parameters 𝜃 = (𝜃1, 𝜃2, . . ., 𝜃12, . . ., 𝜃12...𝑛−1, 𝜃12...𝑛) assuming complete data is
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given by,

ℓ(𝜃) =
𝑛∑︁

𝑖=1

log

(︃
𝑛∏︁

𝑖=1

𝜃𝑥𝑖−1
𝑖

𝑛∏︁
𝑖=1<𝑗

𝜃
max(𝑥𝑖−1,𝑥𝑗−1)
𝑖𝑗

×
𝑛∏︁

𝑖=1<𝑗<𝑙

𝜃
max(𝑥𝑖−1,𝑥𝑗−1,𝑥𝑙−1)
𝑖𝑗𝑙 . . . 𝜃

max(𝑥1−1,𝑥2−1,...,𝑥𝑛−1)
12...𝑛

− 𝜃𝑥1
1

𝑛∏︁
𝑖=2

𝜃𝑥𝑖−1
𝑖

𝑛∏︁
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𝜃
max(𝑥1,𝑥𝑗−1)
1𝑗

𝑛∏︁
𝑖=2<𝑗

𝜃
max(𝑥𝑖−1,𝑥𝑗−1)
𝑖𝑗 . . . 𝜃

max(𝑥1,𝑥2−1,...,𝑥𝑛−1)
12...𝑛

...

+ (−1)𝑛
𝑛∏︁

𝑖=1

𝜃𝑥𝑖
𝑖

𝑛∏︁
𝑖=1<𝑗

𝜃
max(𝑥𝑖,𝑥𝑗)
𝑖𝑗

𝑛∏︁
𝑖=1<𝑗<𝑙

𝜃
max(𝑥𝑖,𝑥𝑗 ,𝑥𝑙)
𝑖𝑗𝑙 . . . 𝜃

max(𝑥1,𝑥2,...,𝑥𝑛)
12...𝑛

)︃
.

(5.11)

Observe that the log-likelihood expressed in (5.11) has no compact form which
implies that the MLEs and the observed information Fisher’s matrix should be obtained
using standard numeric optimization algorithms such the Newton-Raphson or the Nelder-
Mead methods. However, in this study, inferences for the system parameters are obtained
from Bayesian methods obtained using MCMC (Markov Chain Monte Carlo) methods
(see Gelfand and Smith, 1990; Chib and Greenberg, 1995) based on the squared error
loss function, 𝜂(𝛽, 𝑎) = (𝛽 − 𝑎)2 and assuming independent beta prior distributions for
each parameter in the vector parameters 𝜃 since each component of 𝜃 is restricted to the
interval (0, 1).

5.2.4 A Numerical Illustration

In this section, without loss of generality, it is presented simulated datasets of
2-components/3-components or 4-components series system as an application for the pro-
posed methodology. The results holds in a similar way for the n-components series sys-
tem. In this way, it is assumed that 𝑛 series systems of 2-components/3-components or
4-components were put on the life test and the lifetimes of the systems are observed
until the occurrence of failure. In the statistical analysis, it is assumed a Bayesian anal-
ysis considering the likelihood function assuming the multivariate lifetimes from a MVG
distribution from the 2-components/3-components and 4-components series system. In
this case, the dependence assumption are considered. In practical engineering studies, we
usually only have the univariate data and the independence assumption.

The simulated datasets were generated from a MVG distribution considering the
sample sizes 𝑛 = 20, 50, 100, 150, 300 and parameters values given in Table 23. The
generation algorithm for the n-components series system is given by the steps:

∙ Generate 𝑈𝑖 ∼ 𝐺𝑒𝑜(1 − 𝜃𝑖), 𝑖 = 1, . . . , 𝑛.
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∙ Generate 𝑈𝑖𝑗 ∼ 𝐺𝑒𝑜(1 − 𝜃𝑖𝑗), 𝑖 = 1, . . . , 𝑛; 𝑗 = 2, . . . , 𝑛 and 𝑖 < 𝑗.

∙ Generate 𝑈𝑖𝑗𝑘 ∼ 𝐺𝑒𝑜(1− 𝜃𝑖𝑗𝑘), 𝑖 = 1, . . . , 𝑛; 𝑗 = 2, . . . , 𝑛; 𝑘 = 3, . . . , 𝑛 and 𝑖 < 𝑗 < 𝑘.
...

∙ Generate 𝑈12...𝑛 ∼ 𝐺𝑒𝑜(1 − 𝜃12...𝑛).

∙ Define 𝑇1 = min(𝑈1, 𝑈1𝑗, 𝑈1𝑗𝑘 . . . , 𝑈12...𝑛), 𝑇2 = min(𝑈2, 𝑈12, 𝑈12𝑘, . . ., 𝑈2𝑗, 𝑈2𝑗𝑘, . . .,
𝑈12...𝑛), . . ., 𝑇𝑛 = min(𝑈𝑛, 𝑈1𝑛, 𝑈2𝑛, . . . , 𝑈12𝑛, . . . , 𝑈12...𝑛).

∙ Return T = (𝑇1, . . . , 𝑇𝑛).

Table 23 – True parameter values for the considered series system for the simulated
datasets.

Components

Param. n = 2 n = 3 n = 4

𝜃1 0.90 0.90 0.90
𝜃2 0.90 0.90 0.90
𝜃3 — 0.90 0.90
𝜃4 — — 0.90
𝜃12 0.95 0.95 0.95
𝜃13 — 0.95 0.95
𝜃14 — — 0.95
𝜃23 — 0.95 0.95
𝜃24 — — 0.95
𝜃34 — — 0.95
𝜃123 — 0.97 0.97
𝜃124 — — 0.97
𝜃134 — — 0.97
𝜃234 — — 0.97
𝜃1234 — — 0.98

As a statistical analysis of the simulated datasets, it is assumed the observed
lifetimes as multivariate lifetimes and a MVG distribution described in Section 5.2.2.
In this analysis, it is presented the Bayesian Monte Carlo estimators for the reliability
function 𝑅(𝑡) for 2-components/3-components/4-components series system. The posterior
summaries of interest will be not presented here due to the number of parameters of the
considered series system. However, the results are summarized in Figures 33 and 34 in
which it is presented the plots of the empirical estimated reliability functions and the
Bayesian estimates for the reliability functions R(t) and the probability plots for the
considered model assuming the observed data as multivariate lifetimes. In Figure 33, it is
also presented the 95% credible intervals for the estimated reliability functions assuming
the MVG distribution.
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Figure 33 – The mean and 95 percent credible intervals for the reliability functions for
the MVG model assuming the multivariate lifetimes of each considered series
system (top to bottom: 2-components → 4-components) for each sample size
(left to right: 𝑛 = 20 → 300).

Based on this simulation data, the reliability function for the entire system can also
be estimated. For the specified time, 𝑡 = 1, the true reliability value is obtained in each
case by 𝑅(1) = 0.7695 (2-components), 𝑅(1) = 0.6063 (3-components) and 𝑅(1) = 0.4184

(4-components). The estimated Bayesian estimators based on the simulated Gibbs samples
for 𝑅(1) are presented in Table 24 for each sample size assuming the MVG model and
assuming the independence structure.

Table 24 – Bayes estimators for 𝑅(1) for each simulated dataset for each series system
under dependence and independence assumption.

Dependence Assumption Independence Assumption
Sample 2-comp. 3-comp. 4-comp. Sample 2-comp. 3-comp. 4-comp.

20 0.7319 0.5076 0.2912 20 0.7008 0.4387 0.2026
50 0.7822 0.5707 0.3466 50 0.7410 0.4813 0.1762
100 0.7776 0.5450 0.3748 100 0.7413 0.4597 0.2236
150 0.7652 0.5841 0.3960 150 0.7237 0.4700 0.2132
300 0.7687 0.5994 0.4161 300 0.7281 0.4927 0.2227

From the obtained results of Table 24, it is observed that for large sample sizes
the Bayesian estimators for the reliability function at 𝑡 = 1 are more accurate, especially
under the dependence assumption. In this case, there is a great indication that using the
multivariate lifetimes of the n-component system it is possible to get inference results
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Figure 34 – PP-plots for the reliability functions for the MVG model assuming the
multivariate lifetimes of each considered series system (top to bottom: 2-
components → 4-components) for each sample size (left to right: 𝑛 = 20 →
300).

with great accuracy assuming the MVG distribution instead of the product of geometric
distributions (independence assumption). In Figure 35, it is presented the posterior distri-
bution for the reliability function at 𝑡 = 1 estimated assuming the MVG distribution from
where it is possible to conclude that the posterior distribution converges asymptotically
to the normal distribution as expected.

5.2.5 Applications to Real Data

In order to illustrate our proposed methodology, in this section it is presented two
real dataset applications assuming a special case, named trivariate geometric distribution,
of the discrete MVG distribution introduced in this study. Classical and Bayesian meth-
ods were used to get the inferences of interest. Under a Classical approach the BFGS
optimization method, available in the maxLik library of R software, was considered to
obtain the maximum likelihood estimates (MLEs), whereas under a Bayesian approach
the R2jags library from the R software was used to obtain the posterior summaries of
interest.



Chapter 5. Extension to Other Fields of Study 134

0.60 0.65 0.70 0.75 0.80 0.85

0
2

4
6

8
1

0
π(

R
(t 0

)| 
x)

R̂(t0)
0.70 0.75 0.80 0.85

0
5

1
0

1
5

π(
R

(t 0
)| 

x)

R̂(t0)
0.72 0.74 0.76 0.78 0.80 0.82 0.84

0
5

1
0

1
5

2
0

2
5

π(
R

(t 0
)| 

x)

R̂(t0)
0.72 0.74 0.76 0.78 0.80 0.82

0
5

1
0

1
5

2
0

2
5

3
0

π(
R

(t 0
)| 

x)

R̂(t0)
0.74 0.75 0.76 0.77 0.78 0.79 0.80

0
1

0
2

0
3

0
4

0
π(

R
(t 0

)| 
x)

R̂(t0)

0.3 0.4 0.5 0.6 0.7

0
2

4
6

8
π(

R
(t 0

)| 
x)

R̂(t0)
0.45 0.50 0.55 0.60 0.65 0.70

0
2

4
6

8
1

0
1

2
π(

R
(t 0

)| 
x)

R̂(t0)
0.45 0.50 0.55 0.60 0.65

0
5

1
0

1
5

π(
R

(t 0
)| 

x)

R̂(t0)
0.55 0.60 0.65

0
5

1
0

1
5

2
0

π(
R

(t 0
)| 

x)

R̂(t0)
0.56 0.58 0.60 0.62 0.64

0
5

1
0

1
5

2
0

2
5

3
0

π(
R

(t 0
)| 

x)

R̂(t0)

0.15 0.20 0.25 0.30 0.35 0.40 0.45

0
2

4
6

8
π(

R
(t 0

)| 
x)

R̂(t0)
0.20 0.25 0.30 0.35 0.40 0.45 0.50

0
2

4
6

8
1

0
π(

R
(t 0

)| 
x)

R̂(t0)
0.30 0.35 0.40 0.45

0
5

1
0

1
5

π(
R

(t 0
)| 

x)

R̂(t0)
0.30 0.35 0.40 0.45

0
5

1
0

1
5

π(
R

(t 0
)| 

x)
R̂(t0)

0.36 0.38 0.40 0.42 0.44 0.46 0.48

0
5

1
0

1
5

2
0

2
5

π(
R

(t 0
)| 

x)

R̂(t0)

Figure 35 – Posterior density function for the reliability function at 𝑡 = 1 for the MVG
model assuming the multivariate lifetimes of each considered series system
(top to bottom: 2-components → 4-components) for each sample size (left to
right: 𝑛 = 20 → 300).

5.2.5.1 Automatic Blood Pressure Measuring Machine

As a first application, let us assume a real data set introduced by Bland and
Altman (1999). This data set consists of systolic blood pressure measurements made
simultaneously by two observers (J and R) and an automatic blood pressure measuring
machine (S), each making three observations in quick succession (dataset in Table 25).

Table 25 – Automatic blood pressure measuring machine three measures.

𝑋1: Measure 1

122 121 95 127 140 139 122 130 119 126 107 123 131 123 127
142 104 117 139 143 181 149 173 160 158 139 153 138 228 190
103 131 131 126 121 97 116 215 141 153 113 109 145 192 112
152 141 206 151 112 162 117 119 136 112 120 117 194 167 173
228 77 154 154 145 200 188 149 136 128 204 184 163 93 178
202 162 227 133 202 158 124 114 137 121

𝑋2: Measure 2

128 127 94 127 131 142 112 129 122 113 113 125 129 126 119
133 116 113 127 155 170 156 170 155 152 144 150 144 228 183
99 131 123 129 114 94 121 201 133 143 107 105 102 178 116

144 141 188 147 125 165 118 131 116 115 118 118 191 160 161
218 89 156 155 154 180 147 217 132 125 222 187 160 88 181
199 166 227 127 190 121 149 118 135 123

𝑋3: Measure 3

124 128 98 135 124 136 112 135 122 111 111 125 122 114 126
137 115 112 113 133 166 140 154 170 154 141 154 131 226 184
106 124 124 125 125 96 127 207 146 138 102 97 137 171 116
147 137 166 136 124 189 109 124 113 104 132 115 196 161 154
189 101 141 148 166 179 139 192 133 142 224 192 152 88 181
195 148 219 126 213 134 137 126 134 128
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For the statistical analysis, it is assumed as lifetimes the first measure 𝑋1, the
second measure 𝑋2 and the third measure 𝑋3. Since the dataset do not include censored
observations, the MLE’s were calculated using the maxLik function from the R software
using the moments estimates as initial values for the optimization BFGS method. In ad-
dition, under a Bayesian approach, it was assumed Beta(1,1) prior distributions for the
parameters 𝜃1, 𝜃2, 𝜃3, 𝜃12, 𝜃13, 𝜃23 and 𝜃123. Monte Carlo Bayesian estimates were obtained
using MCMC (Markov Chain Monte Carlo) simulation methods (see Table 26). Conver-
gence of the MCMC algorithm was verified from traceplots of the simulated samples.

Table 26 – Maximum likelihood and Bayesian estimates for the automatic blood pressure
measuring machine dataset.

Parameter Classical approach Bayesian approach
MLE (S.E) 95% Conf. Int. Bayes (S.D.) 95% Cred. Int.

𝜃1 0.9931 (0.0010) (0.9911, 0.9952) 0.9948 (0.0008) (0.9929, 0.9960)
𝜃2 0.9952 (0.0007) (0.9938, 0.9968) 0.9953 (0.0007) (0.9939, 0.9964)
𝜃3 0.9934 (0.0009) (0.9917, 0.9951) 0.9942 (0.0008) (0.9926, 0.9957)
𝜃12 0.9989 (0.0008) (0.9973, 1.0000) 0.9985 (0.0008) (0.9971, 0.9997)
𝜃13 1.0000 (0.0011) (0.9977, 1.0000) 0.9996 (0.0003) (0.9986, 1.0000)
𝜃23 0.9983 (0.0008) (0.9968, 1.0000) 0.9984 (0.0007) (0.9969, 0.9994)
𝜃123 0.9982 (0.0010) (0.9962, 1.0000) 0.9987 (0.0007) (0.9970, 0.9999)

From the results of Table 26, despite the results assuming both inference ap-
proaches are quite similar to estimate the model parameters, the obtained Bayesian in-
ference results are in general better when compared to the obtained classical inference
results. Figure 36 presents the plots of the marginal posterior densities from which it
could be seen the convergence of the proposed model.
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Figure 36 – Posterior density plots for each parameter assuming the MVG distribution
for the automatic blood pressure measuring machine dataset.
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5.2.5.2 Rats Litter-Matched Study of the Tumorigenesis

As a second application, let us assume a real data set introduced by Mantel et al.
(1977). This dataset reports the results of a litter-matched study of the tumorigenesis of a
drug and have the presence of censored times. In the experiment, female rats were chosen
from fifty distinct litters, and one rat of each litter was randomly selected and given
the drug. For each litter, two rats were selected as controls receiving placebo. Possible
dependences between litter mates in their times to development of tumors may be due to
common genetic backgrounds shared by siblings which is an indication for the use of a
trivariate parametric model. The dataset is given in Table 27.

Table 27 – 50 litters of rats on tumorigenesis of a drug study

Litter 𝑇1 𝑇2 𝑇3 𝛿1 𝛿2 𝛿3 Litter 𝑇1 𝑇2 𝑇3 𝛿1 𝛿2 𝛿3 Litter 𝑇1 𝑇2 𝑇3 𝛿1 𝛿2 𝛿3

1 101 104 49 0 0 1 18 104 104 74 0 0 0 35 45 104 79 1 0 0
2 104 104 102 0 0 0 19 81 104 69 0 0 0 36 94 104 104 1 0 0
3 104 104 104 0 0 0 20 67 104 68 1 0 1 37 104 104 104 0 0 0
4 77 97 79 0 0 0 21 104 104 104 0 0 0 38 104 101 94 0 1 0
5 89 104 104 0 0 0 22 104 104 104 0 0 0 39 76 84 78 0 1 1
6 88 104 96 1 0 1 23 104 83 40 0 0 1 40 80 80 76 1 1 0
7 104 94 77 1 0 1 24 87 104 104 0 0 0 41 72 104 95 1 0 0
8 96 104 104 1 0 0 25 104 104 104 0 0 0 42 73 104 66 1 0 1
9 82 104 77 0 0 0 26 89 104 104 0 0 0 43 92 104 102 1 0 1
10 70 104 77 1 0 0 27 78 104 104 0 0 0 44 104 98 78 0 0 0
11 89 91 90 1 0 0 28 104 81 64 0 1 1 45 55 104 104 0 0 0
12 91 92 70 0 0 0 29 86 94 55 1 0 1 46 49 83 77 0 0 0
13 39 50 45 1 1 0 30 34 104 54 1 0 1 47 89 104 104 1 0 0
14 103 91 69 1 0 0 31 76 87 74 0 0 0 48 88 99 79 0 0 0
15 93 104 103 0 0 0 32 103 84 73 1 1 1 49 103 104 91 1 0 0
16 85 104 72 0 0 0 33 102 104 80 1 0 0 50 104 104 79 0 0 1
17 104 104 63 0 0 0 34 80 104 73 1 0 0

𝑇1 : treated rat, 𝑇2, 𝑇3 : control rats; 𝛿1, 𝛿2, 𝛿3 : censoring (1: non-censored, 0: censored)

Due to the great complexity of the likelihood function for 𝜃 in the censored case,
only a Bayesian approach was used to get inferences of interest assuming TG distribution.
Thus, under a Bayesian analysis, it was assumed Beta(1,1) prior distributions for the
parameters 𝜃1, 𝜃2, 𝜃3, 𝜃12, 𝜃13, 𝜃23 and 𝜃123, and the use of MCMC simulation methods to
get the Monte Carlo Bayesian estimates. The obtained posterior summaries of interest are
presented in Table 28 and Figure 37 presents the plots of the marginal posterior densities
for each parameter.

Table 28 – Posterior summaries for the litters of rats on tumorigenesis dataset.

Parameter Posterior Mean Standard Deviation 95% Credibility Interval

𝜃1 0.9955 0.0011 (0.9932, 0.9973)
𝜃2 0.9994 0.0005 (0.9982, 0.9999)
𝜃3 0.9968 0.0009 (0.9948, 0.9983)
𝜃12 0.9996 0.0004 (0.9986, 1.0000)
𝜃13 0.9995 0.0005 (0.9982, 1.0000)
𝜃23 0.9994 0.0005 (0.9982, 1.0000)
𝜃123 0.9996 0.0004 (0.9987, 1.0000)
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Figure 37 – Posterior density plots for each parameter assuming the TG distribution for
the litters of rats on tumorigenesis dataset.

5.2.6 Concluding Remarks

In this study, it was introduced a new multivariate distribution obtained from a
generalization of the bivariate Basu-Dhar geometric distribution introduced by Basu and
Dhar (1995). Mathematical properties, inferences under classical and Bayesian approaches
were introduced for the multivariate lifetimes in presence or not of right censored data. It
was observed in this study that the mathematical expression for the likelihood function is
relatively simple not requiring sophisticated computational expertize to get the inferences
of interest especially under a Bayesian approach. Moreover, in all applications presented
in this study, it was observed that the classical inference approach, in general, is not an
appropriate inference method to get accurate inferences of interest for the MVG distri-
bution due to the great computational instabilities. However, in censored case, the MVG
showed some instability in the estimates of some parameters under a Bayesian approach
using the MCMC simulation methodology. This fact may be related to the number of
simulated samples, the final Gibbs sample or the presence autocorrelation of the Markov
chains. Despite this fact, the MVG distribution could be a good alternative to be fitted
to multivariate lifetime datasets with great accuracy, especially for complete data.
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Chapter 6

General Conclusion

The search of appropriate probability distributions for data analysis still is a great
problem in most studies, especially in medical area due the complexity of the data struc-
ture. In this thesis, it was presented some techniques to model survival medical data as
well reliability data common in the engineering scenario. In a first approach, a bivari-
ate discrete generalized Rayleigh (DBGR) distribution was proposed as a new model,
obtained using the Marshall and Olkin (1997) method to add a new parameter to the
survival function of the discrete Rayleigh distribution proposed by Roy (2004a) in order
to have a more flexible joint survival function as an alternative to existing discrete models
as the popular bivariate geometric distributions introduced by Arnold (see Arnold, 1975)
and by Basu-Dhar (see Basu and Dhar, 1995). Some properties of this new distribution
were also discussed in this study and an extension to multivariate case was provided. An
extensive simulation study was performed to verify the effectiveness of the maximum like-
lihood estimation method assuming different fixed values for the parameters of the model
and different sample sizes. The results obtained from Monte Carlo studies showed that
the biases and RMSEs of the DBGR distribution are asymptotically non-biased and tends
to zero when the sample size increases even assuming negative values for 𝜆𝑖, 𝑖 = 1, 2 in
some scenarios. The model showed small computational costs to get the inference results
as compared to many existing bivariate parametric lifetime distributions introduced in
the literature or bivariate models derived from copula functions for continuous bivariate
lifetime data (see, for example, Achcar et al., 2016b).

In a second approach, it was proposed a class of bivariate Lindley distributions
based on stress and shock models. This class of models worked very well when applied to
data of medical studies considered here even if they are more appropriate to reliability
analysis. In fact, from the different model structure approaches considered in this study
to get inferences of interest for a two-component series system reliability (see the com-
puter system data application), it is possible to conclude that the use of the new class
of BL distributions introduced in this thesis leads to accurate inference results for the
parameters of interest assuming the system lifetime data as univariate or bivariate (de-
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spite the presence of censored data) even using noninformative priors for the parameters
of the model under a Bayesian approach. In special case, considering the EW dataset
applications, the use of noninformative prior provided accurate inference results (small
values for standard deviation) for each BL model. In addition, it is important to point out
that the dependence structure is a crucial assumption as well the use of an informative
prior distribution with hyperparameters based on sample mean and variance to get good
inference accuracy for the 𝑅(𝑡) of the entire system which is a great indicator that the
BL models can be applied in practical industrial situations where the series systems fails
when a common source of shock destroy both components. Moreover, based on the 𝑅(𝑡)

estimates, it is possible to conclude that the use of any of the proposed BL models may be
a good alternative in the data analysis instead of the common use of product of two Lind-
ley distributions considered under the independence assumption. Finally, based on the
simulation study, it could be seen that the proposed models provide a better estimation
for the reliability of the entire system when there are many two-component series systems
put on test for a determined product as for example, computer systems depending on
the processor and memory to work. This result could be of great interest of engineering
studies or other areas of interest.

Finally, in a third approach, the extension of some models using cure rate models
was presented as an alternative to the traditional models as the Cox model in the analysis
of time-to-event data. The obtained results of this study showed many advantages for
the use of cure fraction models in terms of great accuracy for the obtained point and
interval inferences, great computational simplicity to get the inferences of interest under
classical and Bayesian approaches and with simple interpretations for the parameters of
the models which is an important point in medical applications.

In conclusion, the results emerging from this study reinforce the fact that the search
of appropriate bivariate lifetime distributions could be extremely difficult depending on
the correlation structure of the lifetime data. However, the proposed methodology could
be very useful in the medical data analysis where the interest is the estimation of the
fraction of patients in the studied population who never experience the event of interest.
In addition, the identification of important covariates was also easily obtained assuming
the proposed models even using non-informative priors for the parameters of the model,
under a Bayesian approach. The results could be also extended to other cross-over trials
in clinical research; reliability analysis in engineering; risk analysis in economics; among
many others areas. For reproducible research, the general framework for the computer
codes of the proposed modeling approach is presented in Appendix A at the end of this
thesis which could be carried out using the OpenBugs software (Spiegelhalter et al., 2007)
or R2jags (Su and Yajima, 2015) library from R software.
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Appendix A. Models Programming Codes

## Dis c r e t e Weibull − Mixture Cure Rate Model

dDWEIBULLmix <− f unc t i on (y , mu, sigma , nu , l og = FALSE)
{

s t o p i f n o t ( y > 0 , mu > 0 , mu < 1 , sigma > 0 , nu > 0 , nu < 1)
i f ( l og )
{

pdf <− l og (1 − nu) + log (mu ^ (y ^ sigma ) − mu ^ ( ( y + 1) ^ sigma ) )
}
e l s e
{

pdf <− (1 − nu) * (mu ^ (y ^ sigma ) − mu ^ ( ( y + 1) ^ sigma ) )
}
re turn ( pdf )

}

pDWEIBULLmix <− f unc t i on (q , mu, sigma , nu , lower . t a i l = TRUE, log . p =
FALSE)

{
s t o p i f n o t ( q > 0 , mu > 0 , mu < 1 , sigma > 0 , nu > 0 , nu < 1)
i f ( lower . t a i l )
{

cd f <− 1 − (nu + (1 − nu) * (mu ^ (q + 1) ^ sigma ) )
}
e l s e
{

cd f <− nu + (1 − nu) * (mu ^ (q + 1) ^ sigma )
}
i f ( l og . p) re turn ( l og ( cd f ) ) e l s e re turn ( cd f )

}
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## Di s c r e t e Weibull − Non−mixture Cure Rate Model

dDWEIBULLnmix <− f unc t i on (y , mu, sigma , nu , l og = FALSE)
{

s t o p i f n o t ( y > 0 , mu > 0 , mu < 1 , sigma > 0 , nu > 0 , nu < 1)
i f ( l og )
{

pdf <− l og (− l og (nu) ) + (y + 1) ^ sigma * l og (mu) + sigma * log1p (y ) +
log ( sigma ) − log1p (y ) + log (− l og (mu) ) + log (nu) − l og (nu) * mu ^ (y
+ 1) ^ sigma

}
e l s e
{

pdf <− l og (nu) * mu ^ (y + 1) ^ sigma * ( y + 1) ^ sigma * sigma / (y +
1) * l og (mu) * exp ( l og (nu) * (1 − mu ^ (y + 1) ^ sigma ) )

}
re turn ( pdf )

}

pDWEIBULLnmix <− f unc t i on (q , mu, sigma , nu , lower . t a i l = TRUE, log . p =
FALSE)

{
s t o p i f n o t ( q > 0 , mu > 0 , mu < 1 , sigma > 0 , nu > 0 , nu < 1)
i f ( lower . t a i l )
{

cd f <− 1 − exp ( l og (nu) * (1 − (mu ^ (q + 1) ^ sigma ) ) )
}
e l s e
{

cd f <− exp ( l og (nu) * (1 − (mu ^ (q + 1) ^ sigma ) ) )
}
i f ( l og . p) re turn ( l og ( cd f ) ) e l s e re turn ( cd f )

}

## Block and Basu B iva r i a t e Exponent ia l D i s t r i bu t i on

model . j a g s . bbe <− f unc t i on ( )
{

lambda12 <− lambda1 + lambda2
lambda13 <− lambda1 + lambda3
lambda23 <− lambda2 + lambda3
lambda <− lambda1 + lambda2 + lambda3

eta <− g* (min ( rho1 , rho2 ) − rho1* rho2 )
phi01 <− rho1*(1−rho2 ) − eta
phi10 <− (1−rho1 ) * rho2 − eta
phi11 <− (1−rho1 ) *(1−rho2 ) + eta
phi00 <− rho1 * rho2 + eta
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alpha1 <− lambda * lambda1/lambda12
alpha2 <− lambda * lambda13/lambda12
alpha3 <− lambda3 * lambda/lambda12
alpha4 <− lambda * lambda23/lambda12
alpha5 <− lambda * lambda2/lambda12
alpha6 <− lambda3/lambda12
alpha7 <− lambda/lambda12

f o r ( i in 1 : n)
{

phi [ i ] <− −l og (L [ i ] )
z e r o s [ i ] ~dpo i s ( phi [ i ] )

aux1 [ i ] <− exp(−lambda1 * t1 [ i ] − lambda23 * t2 [ i ] )
aux2 [ i ] <− exp(−lambda13 * t1 [ i ] − lambda2 * t2 [ i ] )

F1 [ i ] <− phi11 * lambda23 * alpha1 * aux1 [ i ]
F2 [ i ] <− phi11 * lambda2 * alpha2 * aux2 [ i ]

aux3 [ i ] <− lambda13 * exp(−lambda13 * t1 [ i ] )
aux4 [ i ] <− lambda * exp(−lambda * t1 [ i ] )
aux5 [ i ] <− alpha7 * aux3 [ i ] − alpha6 * aux4 [ i ]
aux6 [ i ] <− alpha2 * aux2 [ i ] − alpha3 * exp(−lambda * t1 [ i ] )

dS1t1 [ i ] <− phi11 * alpha1 * aux1 [ i ] + phi10 * aux5 [ i ]
dS2t1 [ i ] <− phi11 * aux6 [ i ] + phi10 * aux5 [ i ]

aux7 [ i ] <− alpha4 * aux1 [ i ] − alpha3 * exp(−lambda * t2 [ i ] )
aux8 [ i ] <− lambda23 * exp(−lambda23 * t2 [ i ] )
aux9 [ i ] <− lambda * exp(−lambda * t2 [ i ] )
aux10 [ i ] <− alpha7 * aux8 [ i ] − alpha6 * aux9 [ i ]

dS1t2 [ i ] <− phi11 * aux7 [ i ] + phi01 * aux10 [ i ]
dS2t2 [ i ] <− phi11 * alpha5 * aux2 [ i ] + phi01 * aux10 [ i ]

aux33 [ i ] <− exp(−lambda13 * t1 [ i ] )
aux44 [ i ] <− exp(−lambda * t1 [ i ] )
aux55 [ i ] <− alpha7 * aux33 [ i ] − alpha6 * aux44 [ i ]

aux88 [ i ] <− exp(−lambda23 * t2 [ i ] )
aux99 [ i ] <− exp(−lambda * t2 [ i ] )
aux100 [ i ] <− alpha7 * aux88 [ i ] − alpha6 * aux99 [ i ]

aux11 [ i ] <− alpha7 * aux1 [ i ] − alpha6 * aux99 [ i ]
aux12 [ i ] <− alpha7 * aux2 [ i ] − alpha6 * aux44 [ i ]
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S1 [ i ] <− phi11 * aux11 [ i ] + phi10 * aux55 [ i ] + phi01 * aux100 [ i
] + phi00

S2 [ i ] <− phi11 * aux12 [ i ] + phi10 * aux55 [ i ] + phi01 * aux100 [ i
] + phi00

## Log−Likehoood
L1 [ i ] <− v . bbe [ i ] * c1 [ i ] * c2 [ i ] * l og (F1 [ i ] ) + (1 − v . bbe [ i ] )

* c1 [ i ] * c2 [ i ] * l og (F2 [ i ] )
L2 [ i ] <− v . bbe [ i ] * c1 [ i ] * (1−c2 [ i ] ) * l og ( dS1t1 [ i ] ) + (1 − v .

bbe [ i ] ) * c1 [ i ] * (1 − c2 [ i ] ) * l og ( dS2t1 [ i ] )
L3 [ i ] <− v . bbe [ i ] * (1 − c1 [ i ] ) * c2 [ i ] * l og ( dS1t2 [ i ] ) + (1−v .

bbe [ i ] ) * (1 − c1 [ i ] ) * c2 [ i ] * l og ( dS2t2 [ i ] )
L4 [ i ] <− v . bbe [ i ] * (1 − c1 [ i ] ) * (1 − c2 [ i ] ) * l og ( S1 [ i ] ) + (1

− v . bbe [ i ] ) * (1 − c1 [ i ] ) * (1 − c2 [ i ] ) * l og ( S2 [ i ] )

L [ i ] <− exp (L1 [ i ] + L2 [ i ] + L3 [ i ] + L4 [ i ] )
}

## Pr i o r s
lambda1~dgamma(0 . 0 0 1 , 0 . 0 0 1 )
lambda2~dgamma(0 . 0 0 1 , 0 . 0 0 1 )
lambda3~dgamma(0 . 0 0 1 , 0 . 0 0 1 )
rho1~dbeta (1 , 1 )
rho2~dbeta (1 , 1 )
g~dbeta (1 , 1 )
}

## Gumbel B iva r i a t e Exponent ia l D i s t r i bu t i on

model . j a g s . gum <− f unc t i on ( )
{

eta <− g* (min ( rho1 , rho2 ) − rho1* rho2 )
phi01 <− rho1*(1−rho2 ) − eta
phi10 <− (1−rho1 ) * rho2 − eta
phi11 <− (1−rho1 ) *(1−rho2 ) + eta
phi00 <− rho1 * rho2 + eta

eta1 <− (1 − theta ) * lambda1 * lambda2
eta2 <− theta * lambda1^2 * lambda2
eta3 <− theta * lambda2^2 * lambda1
eta4 <− theta^2 * lambda1^2 * lambda2^2
eta5 <− lambda1 * lambda2 * theta

f o r ( i in 1 : n)
{

phi [ i ] <− −l og (L [ i ] )
z e r o s [ i ] ~dpo i s ( phi [ i ] )
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S [ i ] <− exp(−( lambda1 * t1 [ i ] + lambda2 * t2 [ i ] + eta5 * t1 [ i ]
* t2 [ i ] ) )

S1 [ i ] <− phi11 * S [ i ] + phi10 * exp(−lambda1 * t1 [ i ] ) + phi01 *
exp(−lambda2 * t2 [ i ] ) + phi00

F [ i ] <− phi11 * ( eta1 + eta2 * t1 [ i ] + eta3 * t2 [ i ] + eta4 *
t1 [ i ] * t2 [ i ] ) * S [ i ]

dSt1 [ i ] <− phi11 * ( lambda1* lambda2* t2 [ i ] * theta+lambda1 ) * S [ i ] +
phi10 * lambda1 * exp(−lambda1 * t1 [ i ] )

dSt2 [ i ] <− phi11 * ( lambda1* lambda2* t1 [ i ] * theta+lambda2 ) * S [ i ] +
phi01 * lambda2 * exp(−lambda2 * t2 [ i ] )

## Log−Likehoood
L1 [ i ] <− c1 [ i ] * c2 [ i ] * l og (F [ i ] )
L2 [ i ] <− c1 [ i ] * (1−c2 [ i ] ) * l og ( dSt1 [ i ] )
L3 [ i ] <− (1 − c1 [ i ] ) * c2 [ i ] * l og ( dSt2 [ i ] )
L4 [ i ] <− (1 − c1 [ i ] ) * (1 − c2 [ i ] ) * l og ( S1 [ i ] )
L [ i ] <− exp (L1 [ i ] + L2 [ i ] + L3 [ i ] + L4 [ i ] )

}

## Pr i o r s
lambda1~dgamma(0 . 0 0 1 , 0 . 0 0 1 )
lambda2~dgamma(0 . 0 0 1 , 0 . 0 0 1 )
theta~dgamma(0 . 0 0 1 , 0 . 0 0 1 )
rho1~dbeta (1 , 1 )
rho2~dbeta (1 , 1 )
g~dbeta (1 , 1 )
}

## Marshall−Olkin B iva r i a t e Exponent ia l D i s t r i bu t i on

model . j a g s . mobe <− f unc t i on ( )
{

eta <− g* (min ( rho1 , rho2 ) − rho1* rho2 )
phi01 <− rho1*(1−rho2 ) − eta
phi10 <− (1−rho1 ) * rho2 − eta
phi11 <− (1−rho1 ) *(1−rho2 ) + eta
phi00 <− rho1 * rho2 + eta

f o r ( i in 1 : n)
{

phi [ i ] <− −l og (L [ i ] )
z e r o s [ i ] ~dpo i s ( phi [ i ] )
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S1 [ i ] <− exp(−( lambda1 + lambda12 ) * t1 [ i ] − lambda2 * t2 [ i ] )
S2 [ i ] <− exp(−( lambda2 + lambda12 ) * t2 [ i ] − lambda1 * t1 [ i ] )
S3 [ i ] <− exp(−( lambda1 + lambda2 + lambda12 ) * t1 [ i ] )

F1 [ i ] <− ( lambda1 + lambda12 ) * exp(−( lambda1 + lambda12 ) * t1 [
i ] )

F2 [ i ] <− ( lambda2 + lambda12 ) * exp(−( lambda2 + lambda12 ) * t2 [
i ] )

F3 [ i ] <− ( lambda2 + lambda12 ) * exp(−( lambda2 + lambda12 ) * t1 [
i ] )

SS1 [ i ] <− exp(−( lambda1 + lambda12 ) * t1 [ i ] )
SS2 [ i ] <− exp(−( lambda2 + lambda12 ) * t2 [ i ] )
SS3 [ i ] <− exp(−( lambda2 + lambda12 ) * t1 [ i ] )

A1 [ i ] <− phi11 * lambda2 * ( lambda1 + lambda12 ) * S1 [ i ]
A2 [ i ] <− phi11 * lambda1 * ( lambda2 + lambda12 ) * S2 [ i ]
A3 [ i ] <− phi11 * lambda12 * S3 [ i ]

B1 [ i ] <− phi11 * ( lambda1 + lambda12 ) * S1 [ i ] + phi10 *F1 [ i ]
B2 [ i ] <− phi11 * lambda1 * S2 [ i ] + phi10 *F1 [ i ]
B3 [ i ] <− phi11 * ( lambda1+lambda2+lambda12 ) *S3 [ i ] + phi10 *F1 [ i ] +

phi01 *F3 [ i ]

C1 [ i ] <− phi11 * lambda2 * S1 [ i ] + phi01 *F2 [ i ]
C2 [ i ] <− phi11 * ( lambda2 + lambda12 ) * S2 [ i ] + phi01 *F2 [ i ]

D1 [ i ] <− phi11 *S1 [ i ] + phi10 *SS1 [ i ] + phi01 *SS2 [ i ] + phi00
D2 [ i ] <− phi11 *S2 [ i ] + phi10 *SS1 [ i ] + phi01 *SS2 [ i ] + phi00
D3 [ i ] <− phi11 *S3 [ i ] + phi10 *SS1 [ i ] + phi01 *SS3 [ i ] + phi00

## Log−Likehoood
L1 [ i ] <− v1 . mobe [ i ] * (1 − v2 . mobe [ i ] ) * c1 [ i ] * c2 [ i ] * l og (A1 [ i

] )
L2 [ i ] <− v2 . mobe [ i ] * (1 − v1 . mobe [ i ] ) * c1 [ i ] * c2 [ i ] * l og (A2 [ i

] )
L3 [ i ] <− (1 − v1 . mobe [ i ] ) * (1 − v2 . mobe [ i ] ) * c1 [ i ] * c2 [ i ] *

l og (A3 [ i ] )
L4 [ i ] <− L1 [ i ] + L2 [ i ] + L3 [ i ]

L5 [ i ] <− v1 . mobe [ i ] * (1 − v2 . mobe [ i ] ) * c1 [ i ] * (1 − c2 [ i ] ) *
l og (B1 [ i ] )

L6 [ i ] <− v2 . mobe [ i ] * (1 − v1 . mobe [ i ] ) * c1 [ i ] * (1 − c2 [ i ] ) *
l og (B2 [ i ] )

L7 [ i ] <− (1 − v1 . mobe [ i ] ) * (1 − v2 . mobe [ i ] ) * c1 [ i ] * (1 − c2 [ i
] ) * l og (B3 [ i ] )

L8 [ i ] <− L5 [ i ] + L6 [ i ] + L7 [ i ]
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L9 [ i ] <− v1 . mobe [ i ] * (1 − v2 . mobe [ i ] ) * (1 − c1 [ i ] ) * c2 [ i ] *
l og (C1 [ i ] )

L10 [ i ] <− v2 . mobe [ i ] * (1 − v1 . mobe [ i ] ) * (1 − c1 [ i ] ) * c2 [ i ] *
l og (C2 [ i ] )

L11 [ i ] <− L9 [ i ] + L10 [ i ]

L12 [ i ] <− v1 . mobe [ i ] * (1 − v2 . mobe [ i ] ) * (1 − c1 [ i ] ) * (1 − c2 [ i
] ) * l og (D1 [ i ] )

L13 [ i ] <− v2 . mobe [ i ] * (1 − v1 . mobe [ i ] ) * (1 − c1 [ i ] ) * (1 − c2 [ i
] ) * l og (D2 [ i ] )

L14 [ i ] <− (1 − v1 . mobe [ i ] ) * (1 − v2 . mobe [ i ] ) * (1 − c1 [ i ] ) * (1 −
c2 [ i ] ) * l og (D3 [ i ] )

L15 [ i ] <− L12 [ i ] + L13 [ i ] + L14 [ i ]

L [ i ] <− exp (L4 [ i ] + L8 [ i ] + L11 [ i ] + L15 [ i ] )
}

## Pr i o r s
lambda1~dgamma(0 . 0 0 1 , 0 . 0 0 1 )
lambda2~dgamma(0 . 0 0 1 , 0 . 0 0 1 )
lambda12~dgamma(0 . 0 0 1 , 0 . 0 0 1 )
rho1~dbeta (1 , 1 )
rho2~dbeta (1 , 1 )
g~dbeta (1 , 1 )
}

## Biva r i a t e Lindley D i s t r i bu t i on Type I − BL−I

model . j a g s . b l1 <− f unc t i on ( )
{

eta <− g* (min ( rho1 , rho2 ) − rho1* rho2 )
phi01 <− rho1*(1−rho2 ) − eta
phi10 <− (1−rho1 ) * rho2 − eta
phi11 <− (1−rho1 ) *(1−rho2 ) + eta
phi00 <− rho1 * rho2 + eta

f o r ( i in 1 : n)
{

phi [ i ] <− −l og (L [ i ] )
z e r o s [ i ] ~dpo i s ( phi [ i ] )

f l 1 [ i ] <− beta1^2/ (1 + beta1 ) * (1 + t1 [ i ] ) * exp(−beta1 * t1 [ i
] )

f l 2 [ i ] <− beta2^2/ (1 + beta2 ) * (1 + t2 [ i ] ) * exp(−beta2 * t2 [ i
] )

f l 3 [ i ] <− beta3^2/ (1 + beta3 ) * (1 + t1 [ i ] ) * exp(−beta3 * t1 [ i
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] )
f l 4 [ i ] <− beta3^2/ (1 + beta3 ) * (1 + t2 [ i ] ) * exp(−beta3 * t2 [ i

] )
f l 5 [ i ] <− beta2^2/ (1 + beta2 ) * (1 + t1 [ i ] ) * exp(−beta2 * t1 [ i

] )

f e 1 [ i ] <− ( beta1 + beta3 ) * exp(−( beta1 + beta3 ) * t1 [ i ] )
f e 2 [ i ] <− ( beta2 + beta3 ) * exp(−( beta2 + beta3 ) * t2 [ i ] )
f e 3 [ i ] <− beta3 * exp(−beta3 * t1 [ i ] )
f e 4 [ i ] <− beta3 * exp(−beta3 * t2 [ i ] )

se1 [ i ] <− exp(−( beta1 + beta3 ) * t1 [ i ] )
se2 [ i ] <− exp(−( beta2 + beta3 ) * t2 [ i ] )
se3 [ i ] <− exp(−( beta3 ) * t1 [ i ] )
se4 [ i ] <− exp(−( beta3 ) * t2 [ i ] )

s l 1 [ i ] <− (1 + beta1 + beta1 * t1 [ i ] ) / (1 + beta1 ) * exp(−beta1 *
t1 [ i ] )

s l 2 [ i ] <− (1 + beta2 + beta2 * t2 [ i ] ) / (1 + beta2 ) * exp(−beta2 *
t2 [ i ] )

s l 3 [ i ] <− (1 + beta2 + beta2 * t1 [ i ] ) / (1 + beta2 ) * exp(−beta2 *
t1 [ i ] )

M1[ i ] <− (1 + ( beta1 * t1 [ i ] ) / (1 + beta1 ) ) * exp(−beta1 * t1 [ i ] −
beta3 * t1 [ i ] )

M2[ i ] <− (1 + ( beta2 * t2 [ i ] ) / (1 + beta2 ) ) * exp(−beta2 * t2 [ i ] −
beta3 * t2 [ i ] )

A1 [ i ] <− phi11 * ( f l 2 [ i ] * ( beta1 * (1 + t1 [ i ] ) / (1 + beta1 ) *
f e 1 [ i ] + beta3 / (1 + beta1 ) * se1 [ i ] ) )

A2 [ i ] <− phi11 * ( f l 1 [ i ] * ( beta2 * (1 + t2 [ i ] ) / (1 + beta2 ) *
f e 2 [ i ] + beta3 / (1 + beta2 ) * se2 [ i ] ) )

A3 [ i ] <− phi11 * ( f e 3 [ i ] * s l 1 [ i ] * s l 3 [ i ] )

B1 [ i ] <− phi11 * ( f l 1 [ i ] * s l 2 [ i ] * se3 [ i ] + s l 1 [ i ] * s l 2 [ i ] *
f e 3 [ i ] ) + phi10 * ( f l 1 [ i ] * se3 [ i ] + f e3 [ i ] * s l 1 [ i ] )

B2 [ i ] <− phi11 * ( f l 1 [ i ] * s l 2 [ i ] * se4 [ i ] ) + phi10 * ( f l 1 [ i ] *
se3 [ i ] + f e3 [ i ] * s l 1 [ i ] )

B3 [ i ] <− phi11 * ( f l 1 [ i ] * s l 3 [ i ] * se1 [ i ] + s l 1 [ i ] * ( f l 3 [ i ] *
se1 [ i ] + f e1 [ i ] * s l 3 [ i ] ) ) + phi10 * ( f l 1 [ i ] * se3 [ i ] + f e3 [ i ] *

s l 1 [ i ] ) + phi01 * ( f l 5 [ i ] * se3 [ i ] + f e3 [ i ] * s l 3 [ i ] )

C1 [ i ] <− phi11 * ( s l 1 [ i ] * f l 2 [ i ] * se3 [ i ] ) + phi01 * ( f l 2 [ i ] *
se4 [ i ] + f e4 [ i ] * s l 2 [ i ] )

C2 [ i ] <− phi11 * ( f l 2 [ i ] * s l 1 [ i ] * se4 [ i ] + s l 1 [ i ] * s l 2 [ i ] *
f e 4 [ i ] ) + phi01 * ( f l 2 [ i ] * se4 [ i ] + f e4 [ i ] * s l 2 [ i ] )
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D1 [ i ] <− phi11 * s l 1 [ i ] * s l 2 [ i ] * se3 [ i ] + phi10 * M1[ i ] +
phi01 * M2[ i ] + phi00

D2 [ i ] <− phi11 * s l 1 [ i ] * s l 2 [ i ] * se4 [ i ] + phi10 * M1[ i ] +
phi01 * M2[ i ] + phi00

D3 [ i ] <− phi11 * s l 1 [ i ] * s l 3 [ i ] * se3 [ i ] + phi10 * M1[ i ] +
phi01 * M2[ i ] + phi00

## Log−Likehoood
P1 [ i ] <− v1 . b l1 [ i ] * (1 − v2 . b l1 [ i ] ) * c1 [ i ] * c2 [ i ] * l og (A1 [ i ] )

+ v2 . b l1 [ i ] * (1 − v1 . b l1 [ i ] ) * c1 [ i ] * c2 [ i ] * l og (A2 [ i ] ) + (1 − v1 .
b l1 [ i ] ) * (1 − v2 . b l1 [ i ] ) * c1 [ i ] * c2 [ i ] * l og (A3 [ i ] )

P2 [ i ] <− v1 . b l1 [ i ] * (1 − v2 . b l1 [ i ] ) * c1 [ i ] * (1 − c2 [ i ] ) * l og
( (B1 [ i ] ) ) + v2 . b l1 [ i ] * (1 − v1 . b l1 [ i ] ) * c1 [ i ] * (1 − c2 [ i ] ) * l og ( (
B2 [ i ] ) ) + (1 − v1 . b l1 [ i ] ) * (1 − v2 . b l1 [ i ] ) * c1 [ i ] * (1 − c2 [ i ] ) *
l og ( (B3 [ i ] ) )

P3 [ i ] <− v1 . b l1 [ i ] * (1 − v2 . b l1 [ i ] ) * (1 − c1 [ i ] ) * c2 [ i ] * l og
( (C1 [ i ] ) ) + v2 . b l1 [ i ] * (1 − v1 . b l1 [ i ] ) * (1 − c1 [ i ] ) * c2 [ i ] * l og ( (
C2 [ i ] ) )

P4 [ i ] <− v1 . b l1 [ i ] * (1 − v2 . b l1 [ i ] ) * (1 − c1 [ i ] ) * (1 − c2 [ i ] )
* l og ( (D1 [ i ] ) ) + v2 . b l1 [ i ] * (1 − v1 . b l1 [ i ] ) * (1 − c1 [ i ] ) * (1 − c2 [ i
] ) * l og ( (D2 [ i ] ) ) + (1 − v1 . b l1 [ i ] ) * (1 − v2 . b l1 [ i ] ) * (1 − c1 [ i ] ) *
(1 − c2 [ i ] ) * l og ( (D3 [ i ] ) )

L [ i ] <− exp (P1 [ i ] + P2 [ i ] + P3 [ i ] + P4 [ i ] )
}

## Pr i o r s
beta1~dgamma(0 . 0 0 1 , 0 . 0 0 1 )
beta2~dgamma(0 . 0 0 1 , 0 . 0 0 1 )
beta3~dgamma(0 . 0 0 1 , 0 . 0 0 1 )
rho1~dbeta (1 , 1 )
rho2~dbeta (1 , 1 )
g~dbeta (1 , 1 )
}

## Arnold B iva r i a t e Geometric D i s t r i bu t i on

model . j a g s . arn <− f unc t i on ( )
{

gamma1 <− 1 − theta1 − theta2
gamma2 <− 1 − theta1
gamma3 <− 1 − theta2

eta <− g* (min ( rho1 , rho2 ) − rho1* rho2 )
phi01 <− rho1*(1−rho2 ) − eta
phi10 <− (1−rho1 ) * rho2 − eta
phi11 <− (1−rho1 ) *(1−rho2 ) + eta
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phi00 <− rho1 * rho2 + eta

f o r ( i in 1 : n)
{

phi [ i ] <− −l og (L [ i ] )
z e r o s [ i ] ~dpo i s ( phi [ i ] )

a1 [ i ] <− gamma1^( t1 [ i ] − 1)
a2 [ i ] <− gamma3^( t2 [ i ] − t1 [ i ] − 1)
a3 [ i ] <− gamma1^( t2 [ i ] − 1)
a4 [ i ] <− gamma2^( t1 [ i ] − t2 [ i ] − 1)

P1 [ i ] <− phi11 * theta1 * theta2 * a1 [ i ] * a2 [ i ]
P2 [ i ] <− phi11 * theta1 * theta2 * a3 [ i ] * a4 [ i ]

a5 [ i ] <− gamma1^( t2 [ i ] )
a6 [ i ] <− gamma2^( t1 [ i ] − t2 [ i ] − 1)

S1 [ i ] <− phi11 * theta1 * a1 [ i ] * a2 [ i ] + phi10 * theta1 * (1 −
theta1 ) ^( t1 [ i ] − 1)

S2 [ i ] <− phi11 * theta1 * a5 [ i ] * a6 [ i ] + phi10 * theta1 * (1 −
theta1 ) ^( t1 [ i ] − 1)

a7 [ i ] <− gamma1^t1 [ i ]
a8 [ i ] <− gamma3^( t2 [ i ] − t1 [ i ] − 1)
a9 [ i ] <− gamma2^( t1 [ i ] − t2 [ i ] )

R1 [ i ] <− phi11 * theta2 * a8 [ i ] * a7 [ i ] + phi01 * theta2 * (1 −
theta2 ) ^( t2 [ i ] − 1)

R2 [ i ] <− phi11 * theta2 * a9 [ i ] * a3 [ i ] + phi01 * theta2 * (1 −
theta2 ) ^( t2 [ i ] − 1)

a10 [ i ] <− gamma3^( t2 [ i ] − t1 [ i ] )

U1 [ i ] <− phi11 * a10 [ i ] * a7 [ i ] + phi10 * (1 − theta1 )^t1 [ i ] +
phi01 * (1 − theta2 )^t2 [ i ] + phi00

U2 [ i ] <− phi11 * a9 [ i ] * a5 [ i ] + phi10 * (1 − theta1 )^t1 [ i ] +
phi01 * (1 − theta2 )^t2 [ i ] + phi00

## Log−Like l ihood
L1 [ i ] <− v . arn [ i ] * c1 [ i ] * c2 [ i ] * l og (P1 [ i ] ) + (1 − v . arn [ i ] ) *

c1 [ i ] * c2 [ i ] * l og (P2 [ i ] )
L2 [ i ] <− v . arn [ i ] * c1 [ i ] * (1 − c2 [ i ] ) * l og ( S1 [ i ] ) + (1 − v . arn

[ i ] ) * c1 [ i ] * (1 − c2 [ i ] ) * l og ( S2 [ i ] )
L3 [ i ] <− v . arn [ i ] * (1 − c1 [ i ] ) * c2 [ i ] * l og (R1 [ i ] ) + (1 − v . arn

[ i ] ) * (1 − c1 [ i ] ) * c2 [ i ] * l og (R2 [ i ] )
L4 [ i ] <− v . arn [ i ] * (1 − c1 [ i ] ) * (1 − c2 [ i ] ) * l og (U1 [ i ] ) + (1 −
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v . arn [ i ] ) * (1 − c1 [ i ] ) * (1 − c2 [ i ] ) * l og (U2 [ i ] )
L [ i ] <− exp (L1 [ i ] + L2 [ i ] + L3 [ i ] + L4 [ i ] )

}

## Pr i o r s
theta1~dbeta (1 , 1 )
theta2~dbeta (1 , 1 )
rho1~dbeta (1 , 1 )
rho2~dbeta (1 , 1 )
g~dbeta (1 , 1 )
}

## Basu−Dhar B iva r i a t e Geometric D i s t r i bu t i on

model . j a g s . bd <− f unc t i on ( )
{

eta <− g* (min ( rho1 , rho2 ) − rho1* rho2 )
phi01 <− rho1*(1−rho2 ) − eta
phi10 <− (1−rho1 ) * rho2 − eta
phi11 <− (1−rho1 ) *(1−rho2 ) + eta
phi00 <− rho1 * rho2 + eta

f o r ( i in 1 : n)
{

phi [ i ] <− −l og (L [ i ] )
z e r o s [ i ] ~dpo i s ( phi [ i ] )

z1 [ i ] <− max( t1 [ i ] − 1 , t2 [ i ] − 1)
z2 [ i ] <− max( t1 [ i ] , t2 [ i ] − 1)
z3 [ i ] <− max( t1 [ i ] − 1 , t2 [ i ] )
z4 [ i ] <− max( t1 [ i ] , t2 [ i ] )

A[ i ] <− p1^( t1 [ i ] − 1) * p2^( t2 [ i ] − 1) * p12^( z1 [ i ] )
B[ i ] <− p1^( t1 [ i ] ) * p2^( t2 [ i ] − 1) * p12^( z2 [ i ] )
C[ i ] <− p1^( t1 [ i ] − 1) * p2^( t2 [ i ] ) * p12^( z3 [ i ] )
D[ i ] <− p1^( t1 [ i ] ) * p2^( t2 [ i ] ) * p12^( z4 [ i ] )

A1 [ i ] <− (A[ i ] − B[ i ] − C[ i ] + D[ i ] ) * phi11
B1 [ i ] <− (C[ i ] − D[ i ] ) * phi11 + phi10 * ( p1 * p12 ) ^( t1 [ i ] − 1) *

(1 − p1*p12 )
C1 [ i ] <− (B[ i ] − D[ i ] ) * phi11 + phi01 * ( p2 * p12 ) ^( t2 [ i ] − 1) *

(1 − p2*p12 )
D1 [ i ] <− phi11 * D[ i ] + phi10 * ( p1 * p12 ) ^( t1 [ i ] ) + phi01 * ( p2

* p12 ) ^( t2 [ i ] ) + phi00

## Log−Likehoood
E[ i ] <− c1 [ i ] * c2 [ i ] * l og (A1 [ i ] )
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K[ i ] <− c1 [ i ] * (1 − c2 [ i ] ) * l og (B1 [ i ] )
G[ i ] <− c2 [ i ] * (1 − c1 [ i ] ) * l og (C1 [ i ] )
H[ i ] <− (1 − c1 [ i ] ) * (1 − c2 [ i ] ) * l og (D1 [ i ] )
L [ i ] <− exp (E[ i ] + K[ i ] + G[ i ] + H[ i ] )

}

## Pr i o r s
p1~dbeta (1 , 1 )
p2~dbeta (1 , 1 )
p12~dbeta (1 , 1 )
rho1~dbeta (1 , 1 )
rho2~dbeta (1 , 1 )
g~dbeta (1 , 1 )
}

## Biva r i a t e Geometric D i s t r i bu t i on Type−I I

model . j a g s . bgI I <− f unc t i on ( )
{

eta <− g* (min ( rho1 , rho2 ) − rho1* rho2 )
phi01 <− rho1*(1−rho2 ) − eta
phi10 <− (1−rho1 ) * rho2 − eta
phi11 <− (1−rho1 ) *(1−rho2 ) + eta
phi00 <− rho1 * rho2 + eta

f o r ( i in 1 : n)
{

phi [ i ] <− −l og (L [ i ] )
z e r o s [ i ] ~dpo i s ( phi [ i ] )

z1 [ i ] <− min( t1 [ i ] + 1 , t2 [ i ] + 1)
z2 [ i ] <− min( t1 [ i ] , t2 [ i ] + 1)
z3 [ i ] <− min( t1 [ i ] + 1 , t2 [ i ] )
z4 [ i ] <− min( t1 [ i ] , t2 [ i ] )

A[ i ] <− p1^( t1 [ i ] + 1) * p2^( t2 [ i ] + 1) * p12^( z1 [ i ] )
B[ i ] <− p1^( t1 [ i ] ) * p2^( t2 [ i ] + 1) * p12^( z2 [ i ] )
C[ i ] <− p1^( t1 [ i ] + 1) * p2^( t2 [ i ] ) * p12^( z3 [ i ] )
D[ i ] <− p1^( t1 [ i ] ) * p2^( t2 [ i ] ) * p12^( z4 [ i ] )

A1 [ i ] <− (A[ i ] − B[ i ] − C[ i ] + D[ i ] ) * phi11
B1 [ i ] <− (C[ i ] − D[ i ] ) * phi11 + phi10 * ( p1 ) ^( t1 [ i ] − 1) * (1 −

p1 )
C1 [ i ] <− (B[ i ] − D[ i ] ) * phi11 + phi01 * ( p2 ) ^( t2 [ i ] − 1) * (1 −

p2 )
D1 [ i ] <− phi11 * D[ i ] + phi10 * ( p1 ) ^( t1 [ i ] ) + phi01 * ( p2 ) ^( t2 [ i

] ) + phi00
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## Log−Likehoood
E[ i ] <− c1 [ i ] * c2 [ i ] * l og ( abs (A1 [ i ] ) )
K[ i ] <− c1 [ i ] * (1 − c2 [ i ] ) * l og ( abs (B1 [ i ] ) )
G[ i ] <− c2 [ i ] * (1 − c1 [ i ] ) * l og ( abs (C1 [ i ] ) )
H[ i ] <− (1 − c1 [ i ] ) * (1 − c2 [ i ] ) * l og (D1 [ i ] )
L [ i ] <− exp (E[ i ] + K[ i ] + G[ i ] + H[ i ] )

}

## Pr i o r s
p1~dbeta (1 , 1 )
p2~dbeta (1 , 1 )
p12~dbeta (1 , 1 )
rho1~dbeta (1 , 1 )
rho2~dbeta (1 , 1 )
g~dbeta (1 , 1 )
}

## Di s c r e t e B iva r i a t e Genera l i zed Rayle igh

model . j a g s . dgr <− f unc t i on ( )
{

zeta <− g* (min ( rho1 , rho2 ) − rho1* rho2 )
phi01 <− rho1*(1−rho2 ) − ze ta
phi10 <− (1−rho1 ) * rho2 − ze ta
phi11 <− (1−rho1 ) *(1−rho2 ) + zeta
phi00 <− rho1 * rho2 + zeta

eta <− 1 − alpha

f o r ( i in 1 : n)
{

phi [ i ] <− −l og (L [ i ] )
z e r o s [ i ] ~dpo i s ( phi [ i ] )

A1 [ i ] <− lambda1^( t1 [ i ]^2 + ( t1 [ i ] + 1) ^2)
A2 [ i ] <− lambda2^( t2 [ i ]^2 + ( t2 [ i ] + 1) ^2)
A3 [ i ] <− lambda1^(( t1 [ i ] + 1) ^2)
A4 [ i ] <− lambda2^(( t2 [ i ] + 1) ^2)
A5 [ i ] <− lambda1^( t1 [ i ]^2)
A6 [ i ] <− lambda2^( t2 [ i ]^2)

# Log−Like l ihood
L1 [ i ] <− 1 − eta^2 * A1 [ i ] * A2 [ i ]
L2 [ i ] <− A5 [ i ] − A3 [ i ]
L3 [ i ] <− A6 [ i ] − A4 [ i ]
L4 [ i ] <− 1 − eta * A5 [ i ] * A6 [ i ]
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L5 [ i ] <− 1 − eta * A3 [ i ] * A6 [ i ]
L6 [ i ] <− 1 − eta * A5 [ i ] * A4 [ i ]
L7 [ i ] <− 1 − eta * A3 [ i ] * A4 [ i ]
L8 [ i ] <− alpha * A5 [ i ] * A4 [ i ]
L9 [ i ] <− alpha * A3 [ i ] * A6 [ i ]
L10 [ i ] <− alpha * A5 [ i ] * A6 [ i ]

LL1 [ i ] <− ( ( L1 [ i ] * L2 [ i ] * L3 [ i ] * alpha ) / (L4 [ i ] * L5 [ i ] * L6 [
i ] * L7 [ i ] ) ) * phi11

LL2 [ i ] <− phi11 * (L8 [ i ] /L6 [ i ] − L10 [ i ] /L4 [ i ] ) + phi10 * ( ( alpha
* (A5 [ i ] − A3 [ i ] ) ) / ( (1 − eta * A3 [ i ] ) * (1 − eta * A5 [ i ] ) ) )

LL3 [ i ] <− phi11 * (L9 [ i ] /L5 [ i ] − L10 [ i ] /L4 [ i ] ) + phi01 * ( ( alpha
* (A6 [ i ] − A4 [ i ] ) ) / ( (1 − eta * A4 [ i ] ) * (1 − eta * A6 [ i ] ) ) )

LL4 [ i ] <− L10 [ i ] /L4 [ i ] * phi11 + phi10 * ( ( alpha * A5 [ i ] ) / (1 −
eta * A5 [ i ] ) ) + phi01 * ( ( alpha * A6 [ i ] ) / (1 − eta * A6 [ i ] ) ) + phi00

C1 [ i ] <− c1 [ i ] * c2 [ i ] * l og ( (LL1 [ i ] ) )
C2 [ i ] <− c1 [ i ] * (1 − c2 [ i ] ) * l og ( (LL2 [ i ] ) )
C3 [ i ] <− (1 − c1 [ i ] ) * c2 [ i ] * l og ( (LL3 [ i ] ) )
C4 [ i ] <− (1 − c1 [ i ] ) * (1 − c2 [ i ] ) * l og ( (LL4 [ i ] ) )

L [ i ] <− exp (C1 [ i ] + C2 [ i ] + C3 [ i ] + C4 [ i ] )
}

# Pr i o r s
lambda1~dbeta (1 , 1 )
lambda2~dbeta (1 , 1 )
alpha~duni f ( 0 , 1 )
rho1~dbeta (1 , 1 )
rho2~dbeta (1 , 1 )
g~dbeta (1 , 1 )
}

# Tr i va r i a t e Geometric D i s t r i bu t i on − Spe c i a l Case o f MVG Di s t r i bu t i on

model . j a g s . tg <− f unc t i on ( )
{

f o r ( i in 1 : n)
{

phi [ i ] <− −l og (L [ i ] )
z e r o s [ i ] ~dpo i s ( phi [ i ] )

# Max between t i ’ s
b1 [ i ] <− max( t1 [ i ] , t2 [ i ] )
b2 [ i ] <− max( t1 [ i ] , t3 [ i ] )
b3 [ i ] <− max( t2 [ i ] , t3 [ i ] )
b4 [ i ] <− max( t1 [ i ] − 1 , t2 [ i ] )
b5 [ i ] <− max( t1 [ i ] − 1 , t3 [ i ] )



Chapter 6. General Conclusion 154

b6 [ i ] <− max( t2 [ i ] − 1 , t3 [ i ] )
b7 [ i ] <− max( t1 [ i ] , t2 [ i ] − 1)
b8 [ i ] <− max( t1 [ i ] , t3 [ i ] − 1)
b9 [ i ] <− max( t2 [ i ] , t3 [ i ] − 1)
b10 [ i ] <− max( t1 [ i ] − 1 , t2 [ i ] − 1)
b11 [ i ] <− max( t1 [ i ] − 1 , t3 [ i ] − 1)
b12 [ i ] <− max( t2 [ i ] − 1 , t3 [ i ] − 1)
b13 [ i ] <− max( t1 [ i ] , max( t2 [ i ] , t3 [ i ] ) )
b14 [ i ] <− max( t1 [ i ] − 1 , max( t2 [ i ] , t3 [ i ] ) )
b15 [ i ] <− max( t1 [ i ] − 1 , max( t2 [ i ] − 1 , t3 [ i ] ) )
b16 [ i ] <− max( t1 [ i ] − 1 , max( t2 [ i ] , t3 [ i ] − 1) )
b17 [ i ] <− max( t1 [ i ] − 1 , max( t2 [ i ] − 1 , t3 [ i ] − 1) )
b18 [ i ] <− max( t1 [ i ] , max( t2 [ i ] − 1 , t3 [ i ] ) )
b19 [ i ] <− max( t1 [ i ] , max( t2 [ i ] − 1 , t3 [ i ] − 1) )
b20 [ i ] <− max( t1 [ i ] , max( t2 [ i ] , t3 [ i ] − 1) )

# Like l ihood aux i l i a r y par t s
P1 [ i ] <− p1^( t1 [ i ] − 1) * p2^( t2 [ i ] − 1) * p3^( t3 [ i ] − 1)
P2 [ i ] <− p1^( t1 [ i ] − 1) * p2^( t2 [ i ] − 1) * p3^( t3 [ i ] )
P3 [ i ] <− p1^( t1 [ i ] − 1) * p2^( t2 [ i ] ) * p3^( t3 [ i ] − 1)
P4 [ i ] <− p1^( t1 [ i ] ) * p2^( t2 [ i ] − 1) * p3^( t3 [ i ] − 1)
P5 [ i ] <− p1^( t1 [ i ] − 1) * p2^( t2 [ i ] ) * p3^( t3 [ i ] )
P6 [ i ] <− p1^( t1 [ i ] ) * p2^( t2 [ i ] − 1) * p3^( t3 [ i ] )
P7 [ i ] <− p1^( t1 [ i ] ) * p2^( t2 [ i ] ) * p3^( t3 [ i ] − 1)
P8 [ i ] <− p1^( t1 [ i ] ) * p2^( t2 [ i ] ) * p3^( t3 [ i ] )

Q1 [ i ] <− p12^(b10 [ i ] ) * p13^(b11 [ i ] ) * p23^(b12 [ i ] ) * p123^(
b17 [ i ] )

Q2 [ i ] <− p12^(b10 [ i ] ) * p13^(b5 [ i ] ) * p23^(b6 [ i ] ) * p123^(
b15 [ i ] )

Q3 [ i ] <− p12^(b4 [ i ] ) * p13^(b11 [ i ] ) * p23^(b9 [ i ] ) * p123^(
b16 [ i ] )

Q4 [ i ] <− p12^(b7 [ i ] ) * p13^(b8 [ i ] ) * p23^(b12 [ i ] ) * p123^(
b19 [ i ] )

Q5 [ i ] <− p12^(b4 [ i ] ) * p13^(b5 [ i ] ) * p23^(b3 [ i ] ) * p123^(
b14 [ i ] )

Q6 [ i ] <− p12^(b7 [ i ] ) * p13^(b2 [ i ] ) * p23^(b6 [ i ] ) * p123^(
b18 [ i ] )

Q7 [ i ] <− p12^(b1 [ i ] ) * p13^(b8 [ i ] ) * p23^(b9 [ i ] ) * p123^(
b20 [ i ] )

Q8 [ i ] <− p12^(b1 [ i ] ) * p13^(b2 [ i ] ) * p23^(b3 [ i ] ) * p123^(
b13 [ i ] )

# Like l i hood f i n a l
K1 [ i ] <− P1 [ i ] * Q1[ i ]
K2 [ i ] <− P2 [ i ] * Q2[ i ]
K3 [ i ] <− P3 [ i ] * Q3[ i ]
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K4 [ i ] <− P4 [ i ] * Q4[ i ]
K5 [ i ] <− P5 [ i ] * Q5[ i ]
K6 [ i ] <− P6 [ i ] * Q6[ i ]
K7 [ i ] <− P7 [ i ] * Q7[ i ]
K8 [ i ] <− P8 [ i ] * Q8[ i ]

L1 [ i ] <− K1[ i ]
L2 [ i ] <− K2[ i ] + K3 [ i ] + K4 [ i ]
L3 [ i ] <− K5[ i ] + K6 [ i ] + K7 [ i ]
L4 [ i ] <− K8[ i ]
L5 [ i ] <− L1 [ i ] − L2 [ i ] + L3 [ i ] − L4 [ i ]

L [ i ] <− exp ( l og (L5 [ i ] ) )
}

# Pr i o r s
p1~dbeta (1 , 1 )
p2~dbeta (1 , 1 )
p3~dbeta (1 , 1 )
p12~dbeta (1 , 1 )
p13~dbeta (1 , 1 )
p23~dbeta (1 , 1 )
p123~dbeta (1 , 1 )
}

## MVG Di s t r i bu t i on − 2−Components S e r i e System

model . j a g s . mvg2 <− f unc t i on ( )
{

f o r ( i in 1 : n)
{

phi [ i ] <− −l og (L [ i ] )
z e r o s [ i ] ~dpo i s ( phi [ i ] )

z1 [ i ] <− max( t1 [ i ] − 1 , t2 [ i ] − 1)
z2 [ i ] <− max( t1 [ i ] , t2 [ i ] − 1)
z3 [ i ] <− max( t1 [ i ] − 1 , t2 [ i ] )
z4 [ i ] <− max( t1 [ i ] , t2 [ i ] )

A[ i ] <− pow( theta1 , t1 [ i ] − 1) * pow( theta2 , t2 [ i ] − 1) * pow(
theta12 , z1 [ i ] )

B[ i ] <− pow( theta1 , t1 [ i ] ) * pow( theta2 , t2 [ i ] − 1) * pow(
theta12 , z2 [ i ] )

C[ i ] <− pow( theta1 , t1 [ i ] − 1) * pow( theta2 , t2 [ i ] ) * pow(
theta12 , z3 [ i ] )

D[ i ] <− pow( theta1 , t1 [ i ] ) * pow( theta2 , t2 [ i ] ) * pow(
theta12 , z4 [ i ] )
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E[ i ] <− l og (A[ i ] − B[ i ] − C[ i ] + D[ i ] )

L [ i ] <− exp (E[ i ] )

t [ i ] <− min( t1 [ i ] , t2 [ i ] )
Sys [ i ] <− theta1^t [ i ] * theta2^t [ i ] * theta12^t [ i ]

}
# Pr i o r s
theta1~dbeta (1 , 1 )
theta2~dbeta (1 , 1 )
theta12~dbeta (1 , 1 )
}

## MVG Di s t r i bu t i on − 3−Components S e r i e System

model . j a g s . mvg3 <− f unc t i on ( )
{

f o r ( i in 1 : n)
{

phi [ i ] <− −l og (L [ i ] )
z e r o s [ i ] ~dpo i s ( phi [ i ] )

# Min between t i ’ s

b1 [ i ] <− max( t1 [ i ] , t2 [ i ] )
b2 [ i ] <− max( t1 [ i ] , t3 [ i ] )
b3 [ i ] <− max( t2 [ i ] , t3 [ i ] )
b4 [ i ] <− max( t1 [ i ] − 1 , t2 [ i ] )
b5 [ i ] <− max( t1 [ i ] − 1 , t3 [ i ] )
b6 [ i ] <− max( t2 [ i ] − 1 , t3 [ i ] )
b7 [ i ] <− max( t1 [ i ] , t2 [ i ] − 1)
b8 [ i ] <− max( t1 [ i ] , t3 [ i ] − 1)
b9 [ i ] <− max( t2 [ i ] , t3 [ i ] − 1)
b10 [ i ] <− max( t1 [ i ] − 1 , t2 [ i ] − 1)
b11 [ i ] <− max( t1 [ i ] − 1 , t3 [ i ] − 1)
b12 [ i ] <− max( t2 [ i ] − 1 , t3 [ i ] − 1)
b13 [ i ] <− max( t1 [ i ] , max( t2 [ i ] , t3 [ i ] ) )
b14 [ i ] <− max( t1 [ i ] − 1 , max( t2 [ i ] , t3 [ i ] ) )
b15 [ i ] <− max( t1 [ i ] − 1 , max( t2 [ i ] − 1 , t3 [ i ] ) )
b16 [ i ] <− max( t1 [ i ] − 1 , max( t2 [ i ] , t3 [ i ] − 1) )
b17 [ i ] <− max( t1 [ i ] − 1 , max( t2 [ i ] − 1 , t3 [ i ] − 1) )
b18 [ i ] <− max( t1 [ i ] , max( t2 [ i ] − 1 , t3 [ i ] ) )
b19 [ i ] <− max( t1 [ i ] , max( t2 [ i ] − 1 , t3 [ i ] − 1) )
b20 [ i ] <− max( t1 [ i ] , max( t2 [ i ] , t3 [ i ] − 1) )

# Like l ihood Aux i l i a ry Parts
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P1 [ i ] <− theta1 ^( t1 [ i ] − 1) * theta2 ^( t2 [ i ] − 1) * theta3 ^( t3 [ i
] − 1)

P2 [ i ] <− theta1 ^( t1 [ i ] − 1) * theta2 ^( t2 [ i ] − 1) * theta3 ^( t3 [ i
] )

P3 [ i ] <− theta1 ^( t1 [ i ] − 1) * theta2 ^( t2 [ i ] ) * theta3 ^( t3 [ i
] − 1)

P4 [ i ] <− theta1 ^( t1 [ i ] ) * theta2 ^( t2 [ i ] − 1) * theta3 ^( t3 [ i
] − 1)

P5 [ i ] <− theta1 ^( t1 [ i ] − 1) * theta2 ^( t2 [ i ] ) * theta3 ^( t3 [ i
] )

P6 [ i ] <− theta1 ^( t1 [ i ] ) * theta2 ^( t2 [ i ] − 1) * theta3 ^( t3 [ i
] )

P7 [ i ] <− theta1 ^( t1 [ i ] ) * theta2 ^( t2 [ i ] ) * theta3 ^( t3 [ i
] − 1)

P8 [ i ] <− theta1 ^( t1 [ i ] ) * theta2 ^( t2 [ i ] ) * theta3 ^( t3 [ i
] )

Q1 [ i ] <− theta12 ^(b10 [ i ] ) * theta13 ^(b11 [ i ] ) * theta23 ^(b12 [ i ] )
* theta123 ^(b17 [ i ] )

Q2 [ i ] <− theta12 ^(b10 [ i ] ) * theta13 ^(b5 [ i ] ) * theta23 ^(b6 [ i ] )
* theta123 ^(b15 [ i ] )

Q3 [ i ] <− theta12 ^(b4 [ i ] ) * theta13 ^(b11 [ i ] ) * theta23 ^(b9 [ i ] )
* theta123 ^(b16 [ i ] )

Q4 [ i ] <− theta12 ^(b7 [ i ] ) * theta13 ^(b8 [ i ] ) * theta23 ^(b12 [ i ] )
* theta123 ^(b19 [ i ] )

Q5 [ i ] <− theta12 ^(b4 [ i ] ) * theta13 ^(b5 [ i ] ) * theta23 ^(b3 [ i ] )
* theta123 ^(b14 [ i ] )

Q6 [ i ] <− theta12 ^(b7 [ i ] ) * theta13 ^(b2 [ i ] ) * theta23 ^(b6 [ i ] )
* theta123 ^(b18 [ i ] )

Q7 [ i ] <− theta12 ^(b1 [ i ] ) * theta13 ^(b8 [ i ] ) * theta23 ^(b9 [ i ] )
* theta123 ^(b20 [ i ] )

Q8 [ i ] <− theta12 ^(b1 [ i ] ) * theta13 ^(b2 [ i ] ) * theta23 ^(b3 [ i ] )
* theta123 ^(b13 [ i ] )

K1 [ i ] <− P1 [ i ] * Q1[ i ]
K2 [ i ] <− P2 [ i ] * Q2[ i ]
K3 [ i ] <− P3 [ i ] * Q3[ i ]
K4 [ i ] <− P4 [ i ] * Q4[ i ]
K5 [ i ] <− P5 [ i ] * Q5[ i ]
K6 [ i ] <− P6 [ i ] * Q6[ i ]
K7 [ i ] <− P7 [ i ] * Q7[ i ]
K8 [ i ] <− P8 [ i ] * Q8[ i ]

L1 [ i ] <− K1[ i ]
L2 [ i ] <− K2[ i ] + K3 [ i ] + K4 [ i ]
L3 [ i ] <− K5[ i ] + K6 [ i ] + K7 [ i ]
L4 [ i ] <− K8[ i ]
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L5 [ i ] <− abs (L1 [ i ] − L2 [ i ] + L3 [ i ] − L4 [ i ] )

# Like l i hood Fina l

L [ i ] <− exp ( l og (L5 [ i ] ) )

# S e r i e s System

t [ i ] <− min( t1 [ i ] , t2 [ i ] , t3 [ i ] )
Sys [ i ] <− ( theta1 * theta2 * theta3 * theta12 * theta13 * theta23

* theta123 )^t [ i ]
}

# Pr i o r s
theta1~dbeta (1 , 1 )
theta2~dbeta (1 , 1 )
theta3~dbeta (1 , 1 )
theta12~dbeta (1 , 1 )
theta13~dbeta (1 , 1 )
theta23~dbeta (1 , 1 )
theta123~dbeta (1 , 1 )
}

## MVG Di s t r i bu t i on − 4−Components S e r i e System

model . j a g s . mvg4 <− f unc t i on ( )
{

f o r ( i in 1 : n)
{

phi [ i ] <− −l og (L [ i ] )
z e r o s [ i ] ~dpo i s ( phi [ i ] )

# Max between t i ’ s

b1 . 1 [ i ] <− max( t1 [ i ] − 1 , t2 [ i ] − 1)
b2 . 1 [ i ] <− max( t1 [ i ] − 1 , t3 [ i ] − 1)
b3 . 1 [ i ] <− max( t1 [ i ] − 1 , t4 [ i ] − 1)
b4 . 1 [ i ] <− max( t2 [ i ] − 1 , t3 [ i ] − 1)
b5 . 1 [ i ] <− max( t2 [ i ] − 1 , t4 [ i ] − 1)
b6 . 1 [ i ] <− max( t3 [ i ] − 1 , t4 [ i ] − 1)
b7 . 1 [ i ] <− max( t1 [ i ] − 1 , t2 [ i ] − 1 , t3 [ i ] − 1)
b8 . 1 [ i ] <− max( t1 [ i ] − 1 , t2 [ i ] − 1 , t4 [ i ] − 1)
b9 . 1 [ i ] <− max( t1 [ i ] − 1 , t3 [ i ] − 1 , t4 [ i ] − 1)
b10 . 1 [ i ] <− max( t2 [ i ] − 1 , t3 [ i ] − 1 , t4 [ i ] − 1)
b11 . 1 [ i ] <− max( t1 [ i ] − 1 , t2 [ i ] − 1 , t3 [ i ] − 1 , t4 [ i ] − 1)

b1 . 2 [ i ] <− max( t1 [ i ] , t2 [ i ] − 1)
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b2 . 2 [ i ] <− max( t1 [ i ] , t3 [ i ] − 1)
b3 . 2 [ i ] <− max( t1 [ i ] , t4 [ i ] − 1)
b4 . 2 [ i ] <− max( t2 [ i ] − 1 , t3 [ i ] − 1)
b5 . 2 [ i ] <− max( t2 [ i ] − 1 , t4 [ i ] − 1)
b6 . 2 [ i ] <− max( t3 [ i ] − 1 , t4 [ i ] − 1)
b7 . 2 [ i ] <− max( t1 [ i ] , t2 [ i ] − 1 , t3 [ i ] − 1)
b8 . 2 [ i ] <− max( t1 [ i ] , t2 [ i ] − 1 , t4 [ i ] − 1)
b9 . 2 [ i ] <− max( t1 [ i ] , t3 [ i ] − 1 , t4 [ i ] − 1)
b10 . 2 [ i ] <− max( t2 [ i ] − 1 , t3 [ i ] − 1 , t4 [ i ] − 1)
b11 . 2 [ i ] <− max( t1 [ i ] , t2 [ i ] − 1 , t3 [ i ] − 1 , t4 [ i ] − 1)

b1 . 3 [ i ] <− max( t1 [ i ] − 1 , t2 [ i ] )
b2 . 3 [ i ] <− max( t1 [ i ] − 1 , t3 [ i ] − 1)
b3 . 3 [ i ] <− max( t1 [ i ] − 1 , t4 [ i ] − 1)
b4 . 3 [ i ] <− max( t2 [ i ] , t3 [ i ] − 1)
b5 . 3 [ i ] <− max( t2 [ i ] , t4 [ i ] − 1)
b6 . 3 [ i ] <− max( t3 [ i ] − 1 , t4 [ i ] − 1)
b7 . 3 [ i ] <− max( t1 [ i ] − 1 , t2 [ i ] , t3 [ i ] − 1)
b8 . 3 [ i ] <− max( t1 [ i ] − 1 , t2 [ i ] , t4 [ i ] − 1)
b9 . 3 [ i ] <− max( t1 [ i ] − 1 , t3 [ i ] − 1 , t4 [ i ] − 1)
b10 . 3 [ i ] <− max( t2 [ i ] , t3 [ i ] − 1 , t4 [ i ] − 1)
b11 . 3 [ i ] <− max( t1 [ i ] − 1 , t2 [ i ] , t3 [ i ] − 1 , t4 [ i ] − 1)

b1 . 4 [ i ] <− max( t1 [ i ] − 1 , t2 [ i ] − 1)
b2 . 4 [ i ] <− max( t1 [ i ] − 1 , t3 [ i ] )
b3 . 4 [ i ] <− max( t1 [ i ] − 1 , t4 [ i ] − 1)
b4 . 4 [ i ] <− max( t2 [ i ] − 1 , t3 [ i ] )
b5 . 4 [ i ] <− max( t2 [ i ] − 1 , t4 [ i ] − 1)
b6 . 4 [ i ] <− max( t3 [ i ] , t4 [ i ] − 1)
b7 . 4 [ i ] <− max( t1 [ i ] − 1 , t2 [ i ] − 1 , t3 [ i ] )
b8 . 4 [ i ] <− max( t1 [ i ] − 1 , t2 [ i ] − 1 , t4 [ i ] − 1)
b9 . 4 [ i ] <− max( t1 [ i ] − 1 , t3 [ i ] , t4 [ i ] − 1)
b10 . 4 [ i ] <− max( t2 [ i ] − 1 , t3 [ i ] , t4 [ i ] − 1)
b11 . 4 [ i ] <− max( t1 [ i ] − 1 , t2 [ i ] − 1 , t3 [ i ] , t4 [ i ] − 1)

b1 . 5 [ i ] <− max( t1 [ i ] − 1 , t2 [ i ] − 1)
b2 . 5 [ i ] <− max( t1 [ i ] − 1 , t3 [ i ] − 1)
b3 . 5 [ i ] <− max( t1 [ i ] − 1 , t4 [ i ] )
b4 . 5 [ i ] <− max( t2 [ i ] − 1 , t3 [ i ] − 1)
b5 . 5 [ i ] <− max( t2 [ i ] − 1 , t4 [ i ] )
b6 . 5 [ i ] <− max( t3 [ i ] − 1 , t4 [ i ] )
b7 . 5 [ i ] <− max( t1 [ i ] − 1 , t2 [ i ] − 1 , t3 [ i ] − 1)
b8 . 5 [ i ] <− max( t1 [ i ] − 1 , t2 [ i ] − 1 , t4 [ i ] )
b9 . 5 [ i ] <− max( t1 [ i ] − 1 , t3 [ i ] − 1 , t4 [ i ] )
b10 . 5 [ i ] <− max( t2 [ i ] − 1 , t3 [ i ] − 1 , t4 [ i ] )
b11 . 5 [ i ] <− max( t1 [ i ] − 1 , t2 [ i ] − 1 , t3 [ i ] − 1 , t4 [ i ] )



Chapter 6. General Conclusion 160

b1 . 6 [ i ] <− max( t1 [ i ] , t2 [ i ] )
b2 . 6 [ i ] <− max( t1 [ i ] , t3 [ i ] − 1)
b3 . 6 [ i ] <− max( t1 [ i ] , t4 [ i ] − 1)
b4 . 6 [ i ] <− max( t2 [ i ] , t3 [ i ] − 1)
b5 . 6 [ i ] <− max( t2 [ i ] , t4 [ i ] − 1)
b6 . 6 [ i ] <− max( t3 [ i ] − 1 , t4 [ i ] − 1)
b7 . 6 [ i ] <− max( t1 [ i ] , t2 [ i ] , t3 [ i ] − 1)
b8 . 6 [ i ] <− max( t1 [ i ] , t2 [ i ] , t4 [ i ] − 1)
b9 . 6 [ i ] <− max( t1 [ i ] , t3 [ i ] − 1 , t4 [ i ] − 1)
b10 . 6 [ i ] <− max( t2 [ i ] , t3 [ i ] − 1 , t4 [ i ] − 1)
b11 . 6 [ i ] <− max( t1 [ i ] , t2 [ i ] , t3 [ i ] − 1 , t4 [ i ] − 1)

b1 . 7 [ i ] <− max( t1 [ i ] , t2 [ i ] − 1)
b2 . 7 [ i ] <− max( t1 [ i ] , t3 [ i ] )
b3 . 7 [ i ] <− max( t1 [ i ] , t4 [ i ] − 1)
b4 . 7 [ i ] <− max( t2 [ i ] − 1 , t3 [ i ] )
b5 . 7 [ i ] <− max( t2 [ i ] − 1 , t4 [ i ] − 1)
b6 . 7 [ i ] <− max( t3 [ i ] , t4 [ i ] − 1)
b7 . 7 [ i ] <− max( t1 [ i ] , t2 [ i ] − 1 , t3 [ i ] )
b8 . 7 [ i ] <− max( t1 [ i ] , t2 [ i ] − 1 , t4 [ i ] − 1)
b9 . 7 [ i ] <− max( t1 [ i ] , t3 [ i ] , t4 [ i ] − 1)
b10 . 7 [ i ] <− max( t2 [ i ] − 1 , t3 [ i ] , t4 [ i ] − 1)
b11 . 7 [ i ] <− max( t1 [ i ] , t2 [ i ] − 1 , t3 [ i ] , t4 [ i ] − 1)

b1 . 8 [ i ] <− max( t1 [ i ] , t2 [ i ] − 1)
b2 . 8 [ i ] <− max( t1 [ i ] , t3 [ i ] − 1)
b3 . 8 [ i ] <− max( t1 [ i ] , t4 [ i ] )
b4 . 8 [ i ] <− max( t2 [ i ] − 1 , t3 [ i ] − 1)
b5 . 8 [ i ] <− max( t2 [ i ] − 1 , t4 [ i ] )
b6 . 8 [ i ] <− max( t3 [ i ] − 1 , t4 [ i ] )
b7 . 8 [ i ] <− max( t1 [ i ] , t2 [ i ] − 1 , t3 [ i ] − 1)
b8 . 8 [ i ] <− max( t1 [ i ] , t2 [ i ] − 1 , t4 [ i ] )
b9 . 8 [ i ] <− max( t1 [ i ] , t3 [ i ] − 1 , t4 [ i ] )
b10 . 8 [ i ] <− max( t2 [ i ] − 1 , t3 [ i ] − 1 , t4 [ i ] )
b11 . 8 [ i ] <− max( t1 [ i ] , t2 [ i ] − 1 , t3 [ i ] − 1 , t4 [ i ] )

b1 . 9 [ i ] <− max( t1 [ i ] − 1 , t2 [ i ] )
b2 . 9 [ i ] <− max( t1 [ i ] − 1 , t3 [ i ] )
b3 . 9 [ i ] <− max( t1 [ i ] − 1 , t4 [ i ] − 1)
b4 . 9 [ i ] <− max( t2 [ i ] , t3 [ i ] )
b5 . 9 [ i ] <− max( t2 [ i ] , t4 [ i ] − 1)
b6 . 9 [ i ] <− max( t3 [ i ] , t4 [ i ] − 1)
b7 . 9 [ i ] <− max( t1 [ i ] − 1 , t2 [ i ] , t3 [ i ] )
b8 . 9 [ i ] <− max( t1 [ i ] − 1 , t2 [ i ] , t4 [ i ] − 1)
b9 . 9 [ i ] <− max( t1 [ i ] − 1 , t3 [ i ] , t4 [ i ] − 1)
b10 . 9 [ i ] <− max( t2 [ i ] , t3 [ i ] , t4 [ i ] − 1)
b11 . 9 [ i ] <− max( t1 [ i ] − 1 , t2 [ i ] , t3 [ i ] , t4 [ i ] − 1)
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b1 . 1 0 [ i ] <− max( t1 [ i ] − 1 , t2 [ i ] )
b2 . 1 0 [ i ] <− max( t1 [ i ] − 1 , t3 [ i ] − 1)
b3 . 1 0 [ i ] <− max( t1 [ i ] − 1 , t4 [ i ] )
b4 . 1 0 [ i ] <− max( t2 [ i ] , t3 [ i ] − 1)
b5 . 1 0 [ i ] <− max( t2 [ i ] , t4 [ i ] )
b6 . 1 0 [ i ] <− max( t3 [ i ] − 1 , t4 [ i ] )
b7 . 1 0 [ i ] <− max( t1 [ i ] − 1 , t2 [ i ] , t3 [ i ] − 1)
b8 . 1 0 [ i ] <− max( t1 [ i ] − 1 , t2 [ i ] , t4 [ i ] )
b9 . 1 0 [ i ] <− max( t1 [ i ] − 1 , t3 [ i ] − 1 , t4 [ i ] )
b10 . 1 0 [ i ] <− max( t2 [ i ] , t3 [ i ] − 1 , t4 [ i ] )
b11 . 1 0 [ i ] <− max( t1 [ i ] − 1 , t2 [ i ] , t3 [ i ] − 1 , t4 [ i ] )

b1 . 1 1 [ i ] <− max( t1 [ i ] − 1 , t2 [ i ] − 1)
b2 . 1 1 [ i ] <− max( t1 [ i ] − 1 , t3 [ i ] )
b3 . 1 1 [ i ] <− max( t1 [ i ] − 1 , t4 [ i ] )
b4 . 1 1 [ i ] <− max( t2 [ i ] − 1 , t3 [ i ] )
b5 . 1 1 [ i ] <− max( t2 [ i ] − 1 , t4 [ i ] )
b6 . 1 1 [ i ] <− max( t3 [ i ] , t4 [ i ] )
b7 . 1 1 [ i ] <− max( t1 [ i ] − 1 , t2 [ i ] − 1 , t3 [ i ] )
b8 . 1 1 [ i ] <− max( t1 [ i ] − 1 , t2 [ i ] − 1 , t4 [ i ] )
b9 . 1 1 [ i ] <− max( t1 [ i ] − 1 , t3 [ i ] , t4 [ i ] )
b10 . 1 1 [ i ] <− max( t2 [ i ] − 1 , t3 [ i ] , t4 [ i ] )
b11 . 1 1 [ i ] <− max( t1 [ i ] − 1 , t2 [ i ] − 1 , t3 [ i ] , t4 [ i ] )

b1 . 1 2 [ i ] <− max( t1 [ i ] , t2 [ i ] )
b2 . 1 2 [ i ] <− max( t1 [ i ] , t3 [ i ] )
b3 . 1 2 [ i ] <− max( t1 [ i ] , t4 [ i ] − 1)
b4 . 1 2 [ i ] <− max( t2 [ i ] , t3 [ i ] )
b5 . 1 2 [ i ] <− max( t2 [ i ] , t4 [ i ] − 1)
b6 . 1 2 [ i ] <− max( t3 [ i ] , t4 [ i ] − 1)
b7 . 1 2 [ i ] <− max( t1 [ i ] , t2 [ i ] , t3 [ i ] )
b8 . 1 2 [ i ] <− max( t1 [ i ] , t2 [ i ] , t4 [ i ] − 1)
b9 . 1 2 [ i ] <− max( t1 [ i ] , t3 [ i ] , t4 [ i ] − 1)
b10 . 1 2 [ i ] <− max( t2 [ i ] , t3 [ i ] , t4 [ i ] − 1)
b11 . 1 2 [ i ] <− max( t1 [ i ] , t2 [ i ] , t3 [ i ] , t4 [ i ] − 1)

b1 . 1 3 [ i ] <− max( t1 [ i ] , t2 [ i ] )
b2 . 1 3 [ i ] <− max( t1 [ i ] , t3 [ i ] − 1)
b3 . 1 3 [ i ] <− max( t1 [ i ] , t4 [ i ] )
b4 . 1 3 [ i ] <− max( t2 [ i ] , t3 [ i ] − 1)
b5 . 1 3 [ i ] <− max( t2 [ i ] , t4 [ i ] )
b6 . 1 3 [ i ] <− max( t3 [ i ] − 1 , t4 [ i ] )
b7 . 1 3 [ i ] <− max( t1 [ i ] , t2 [ i ] , t3 [ i ] − 1)
b8 . 1 3 [ i ] <− max( t1 [ i ] , t2 [ i ] , t4 [ i ] )
b9 . 1 3 [ i ] <− max( t1 [ i ] , t3 [ i ] − 1 , t4 [ i ] )
b10 . 1 3 [ i ] <− max( t2 [ i ] , t3 [ i ] − 1 , t4 [ i ] )
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b11 . 1 3 [ i ] <− max( t1 [ i ] , t2 [ i ] , t3 [ i ] − 1 , t4 [ i ] )

b1 . 1 4 [ i ] <− max( t1 [ i ] , t2 [ i ] − 1)
b2 . 1 4 [ i ] <− max( t1 [ i ] , t3 [ i ] )
b3 . 1 4 [ i ] <− max( t1 [ i ] , t4 [ i ] )
b4 . 1 4 [ i ] <− max( t2 [ i ] − 1 , t3 [ i ] )
b5 . 1 4 [ i ] <− max( t2 [ i ] − 1 , t4 [ i ] )
b6 . 1 4 [ i ] <− max( t3 [ i ] , t4 [ i ] )
b7 . 1 4 [ i ] <− max( t1 [ i ] , t2 [ i ] − 1 , t3 [ i ] )
b8 . 1 4 [ i ] <− max( t1 [ i ] , t2 [ i ] − 1 , t4 [ i ] )
b9 . 1 4 [ i ] <− max( t1 [ i ] , t3 [ i ] , t4 [ i ] )
b10 . 1 4 [ i ] <− max( t2 [ i ] − 1 , t3 [ i ] , t4 [ i ] )
b11 . 1 4 [ i ] <− max( t1 [ i ] , t2 [ i ] − 1 , t3 [ i ] , t4 [ i ] )

b1 . 1 5 [ i ] <− max( t1 [ i ] − 1 , t2 [ i ] )
b2 . 1 5 [ i ] <− max( t1 [ i ] − 1 , t3 [ i ] )
b3 . 1 5 [ i ] <− max( t1 [ i ] − 1 , t4 [ i ] )
b4 . 1 5 [ i ] <− max( t2 [ i ] , t3 [ i ] )
b5 . 1 5 [ i ] <− max( t2 [ i ] , t4 [ i ] )
b6 . 1 5 [ i ] <− max( t3 [ i ] , t4 [ i ] )
b7 . 1 5 [ i ] <− max( t1 [ i ] − 1 , t2 [ i ] , t3 [ i ] )
b8 . 1 5 [ i ] <− max( t1 [ i ] − 1 , t2 [ i ] , t4 [ i ] )
b9 . 1 5 [ i ] <− max( t1 [ i ] − 1 , t3 [ i ] , t4 [ i ] )
b10 . 1 5 [ i ] <− max( t2 [ i ] , t3 [ i ] , t4 [ i ] )
b11 . 1 5 [ i ] <− max( t1 [ i ] − 1 , t2 [ i ] , t3 [ i ] , t4 [ i ] )

b1 . 1 6 [ i ] <− max( t1 [ i ] , t2 [ i ] )
b2 . 1 6 [ i ] <− max( t1 [ i ] , t3 [ i ] )
b3 . 1 6 [ i ] <− max( t1 [ i ] , t4 [ i ] )
b4 . 1 6 [ i ] <− max( t2 [ i ] , t3 [ i ] )
b5 . 1 6 [ i ] <− max( t2 [ i ] , t4 [ i ] )
b6 . 1 6 [ i ] <− max( t3 [ i ] , t4 [ i ] )
b7 . 1 6 [ i ] <− max( t1 [ i ] , t2 [ i ] , t3 [ i ] )
b8 . 1 6 [ i ] <− max( t1 [ i ] , t2 [ i ] , t4 [ i ] )
b9 . 1 6 [ i ] <− max( t1 [ i ] , t3 [ i ] , t4 [ i ] )
b10 . 1 6 [ i ] <− max( t2 [ i ] , t3 [ i ] , t4 [ i ] )
b11 . 1 6 [ i ] <− max( t1 [ i ] , t2 [ i ] , t3 [ i ] , t4 [ i ] )

# Like l i hood Aux i l i a ry Parts ( Part 1)

P1 [ i ] <− theta1 ^( t1 [ i ] − 1) * theta2 ^( t2 [ i ] − 1) * theta3 ^( t3 [ i
] − 1) * theta4 ^( t4 [ i ] − 1)

P2 [ i ] <− theta1 ^( t1 [ i ] ) * theta2 ^( t2 [ i ] − 1) * theta3 ^( t3 [ i
] − 1) * theta4 ^( t4 [ i ] − 1)

P3 [ i ] <− theta1 ^( t1 [ i ] − 1) * theta2 ^( t2 [ i ] ) * theta3 ^( t3 [ i
] − 1) * theta4 ^( t4 [ i ] − 1)

P4 [ i ] <− theta1 ^( t1 [ i ] − 1) * theta2 ^( t2 [ i ] − 1) * theta3 ^( t3 [ i
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] ) * theta4 ^( t4 [ i ] − 1)
P5 [ i ] <− theta1 ^( t1 [ i ] − 1) * theta2 ^( t2 [ i ] − 1) * theta3 ^( t3 [ i

] − 1) * theta4 ^( t4 [ i ] )
P6 [ i ] <− theta1 ^( t1 [ i ] ) * theta2 ^( t2 [ i ] ) * theta3 ^( t3 [ i

] − 1) * theta4 ^( t4 [ i ] − 1)
P7 [ i ] <− theta1 ^( t1 [ i ] ) * theta2 ^( t2 [ i ] − 1) * theta3 ^( t3 [ i

] ) * theta4 ^( t4 [ i ] − 1)
P8 [ i ] <− theta1 ^( t1 [ i ] ) * theta2 ^( t2 [ i ] − 1) * theta3 ^( t3 [ i

] − 1) * theta4 ^( t4 [ i ] )
P9 [ i ] <− theta1 ^( t1 [ i ] − 1) * theta2 ^( t2 [ i ] ) * theta3 ^( t3 [ i

] ) * theta4 ^( t4 [ i ] − 1)
P10 [ i ] <− theta1 ^( t1 [ i ] − 1) * theta2 ^( t2 [ i ] ) * theta3 ^( t3 [ i

] − 1) * theta4 ^( t4 [ i ] )
P11 [ i ] <− theta1 ^( t1 [ i ] − 1) * theta2 ^( t2 [ i ] − 1) * theta3 ^( t3 [ i

] ) * theta4 ^( t4 [ i ] )
P12 [ i ] <− theta1 ^( t1 [ i ] ) * theta2 ^( t2 [ i ] ) * theta3 ^( t3 [ i

] ) * theta4 ^( t4 [ i ] − 1)
P13 [ i ] <− theta1 ^( t1 [ i ] ) * theta2 ^( t2 [ i ] ) * theta3 ^( t3 [ i

] − 1) * theta4 ^( t4 [ i ] )
P14 [ i ] <− theta1 ^( t1 [ i ] ) * theta2 ^( t2 [ i ] − 1) * theta3 ^( t3 [ i

] ) * theta4 ^( t4 [ i ] )
P15 [ i ] <− theta1 ^( t1 [ i ] − 1) * theta2 ^( t2 [ i ] ) * theta3 ^( t3 [ i

] ) * theta4 ^( t4 [ i ] )
P16 [ i ] <− theta1 ^( t1 [ i ] ) * theta2 ^( t2 [ i ] ) * theta3 ^( t3 [ i

] ) * theta4 ^( t4 [ i ] )

# Like l i hood Aux i l i a ry Parts ( Part 2)

Q1 [ i ] <− theta12 ^(b1 . 1 [ i ] ) * theta13 ^(b2 . 1 [ i ] ) * theta14 ^(b3 . 1 [ i
] ) * theta23 ^(b4 . 1 [ i ] ) * theta24 ^(b5 . 1 [ i ] ) * theta34 ^(b6 . 1 [ i ] )

Q2 [ i ] <− theta12 ^(b1 . 2 [ i ] ) * theta13 ^(b2 . 2 [ i ] ) * theta14 ^(b3 . 2 [ i
] ) * theta23 ^(b4 . 2 [ i ] ) * theta24 ^(b5 . 2 [ i ] ) * theta34 ^(b6 . 2 [ i ] )

Q3 [ i ] <− theta12 ^(b1 . 3 [ i ] ) * theta13 ^(b2 . 3 [ i ] ) * theta14 ^(b3 . 3 [ i
] ) * theta23 ^(b4 . 3 [ i ] ) * theta24 ^(b5 . 3 [ i ] ) * theta34 ^(b6 . 3 [ i ] )

Q4 [ i ] <− theta12 ^(b1 . 4 [ i ] ) * theta13 ^(b2 . 4 [ i ] ) * theta14 ^(b3 . 4 [ i
] ) * theta23 ^(b4 . 4 [ i ] ) * theta24 ^(b5 . 4 [ i ] ) * theta34 ^(b6 . 4 [ i ] )

Q5 [ i ] <− theta12 ^(b1 . 5 [ i ] ) * theta13 ^(b2 . 5 [ i ] ) * theta14 ^(b3 . 5 [ i
] ) * theta23 ^(b4 . 5 [ i ] ) * theta24 ^(b5 . 5 [ i ] ) * theta34 ^(b6 . 5 [ i ] )

Q6 [ i ] <− theta12 ^(b1 . 6 [ i ] ) * theta13 ^(b2 . 6 [ i ] ) * theta14 ^(b3 . 6 [ i
] ) * theta23 ^(b4 . 6 [ i ] ) * theta24 ^(b5 . 6 [ i ] ) * theta34 ^(b6 . 6 [ i ] )

Q7 [ i ] <− theta12 ^(b1 . 7 [ i ] ) * theta13 ^(b2 . 7 [ i ] ) * theta14 ^(b3 . 7 [ i
] ) * theta23 ^(b4 . 7 [ i ] ) * theta24 ^(b5 . 7 [ i ] ) * theta34 ^(b6 . 7 [ i ] )

Q8 [ i ] <− theta12 ^(b1 . 8 [ i ] ) * theta13 ^(b2 . 8 [ i ] ) * theta14 ^(b3 . 8 [ i
] ) * theta23 ^(b4 . 8 [ i ] ) * theta24 ^(b5 . 8 [ i ] ) * theta34 ^(b6 . 8 [ i ] )

Q9 [ i ] <− theta12 ^(b1 . 9 [ i ] ) * theta13 ^(b2 . 9 [ i ] ) * theta14 ^(b3 . 9 [ i
] ) * theta23 ^(b4 . 9 [ i ] ) * theta24 ^(b5 . 9 [ i ] ) * theta34 ^(b6 . 9 [ i ] )

Q10 [ i ] <− theta12 ^(b1 . 1 0 [ i ] ) * theta13 ^(b2 . 1 0 [ i ] ) * theta14 ^(b3
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. 1 0 [ i ] ) * theta23 ^(b4 . 1 0 [ i ] ) * theta24 ^(b5 . 1 0 [ i ] ) * theta34 ^(b6

. 1 0 [ i ] )
Q11 [ i ] <− theta12 ^(b1 . 1 1 [ i ] ) * theta13 ^(b2 . 1 1 [ i ] ) * theta14 ^(b3

. 1 1 [ i ] ) * theta23 ^(b4 . 1 1 [ i ] ) * theta24 ^(b5 . 1 1 [ i ] ) * theta34 ^(b6

. 1 1 [ i ] )
Q12 [ i ] <− theta12 ^(b1 . 1 2 [ i ] ) * theta13 ^(b2 . 1 2 [ i ] ) * theta14 ^(b3

. 1 2 [ i ] ) * theta23 ^(b4 . 1 2 [ i ] ) * theta24 ^(b5 . 1 2 [ i ] ) * theta34 ^(b6

. 1 2 [ i ] )
Q13 [ i ] <− theta12 ^(b1 . 1 3 [ i ] ) * theta13 ^(b2 . 1 3 [ i ] ) * theta14 ^(b3

. 1 3 [ i ] ) * theta23 ^(b4 . 1 3 [ i ] ) * theta24 ^(b5 . 1 3 [ i ] ) * theta34 ^(b6

. 1 3 [ i ] )
Q14 [ i ] <− theta12 ^(b1 . 1 4 [ i ] ) * theta13 ^(b2 . 1 4 [ i ] ) * theta14 ^(b3

. 1 4 [ i ] ) * theta23 ^(b4 . 1 4 [ i ] ) * theta24 ^(b5 . 1 4 [ i ] ) * theta34 ^(b6

. 1 4 [ i ] )
Q15 [ i ] <− theta12 ^(b1 . 1 5 [ i ] ) * theta13 ^(b2 . 1 5 [ i ] ) * theta14 ^(b3

. 1 5 [ i ] ) * theta23 ^(b4 . 1 5 [ i ] ) * theta24 ^(b5 . 1 5 [ i ] ) * theta34 ^(b6

. 1 5 [ i ] )
Q16 [ i ] <− theta12 ^(b1 . 1 6 [ i ] ) * theta13 ^(b2 . 1 6 [ i ] ) * theta14 ^(b3

. 1 6 [ i ] ) * theta23 ^(b4 . 1 6 [ i ] ) * theta24 ^(b5 . 1 6 [ i ] ) * theta34 ^(b6

. 1 6 [ i ] )

# Like l i hood Aux i l i a ry Parts ( Part 3)

R1 [ i ] <− theta123 ^(b7 . 1 [ i ] ) * theta124 ^(b8 . 1 [ i ] ) * theta134 ^(b9
. 1 [ i ] ) * theta234 ^(b10 . 1 [ i ] ) * theta1234 ^(b11 . 1 [ i ] )

R2 [ i ] <− theta123 ^(b7 . 2 [ i ] ) * theta124 ^(b8 . 2 [ i ] ) * theta134 ^(b9
. 2 [ i ] ) * theta234 ^(b10 . 2 [ i ] ) * theta1234 ^(b11 . 2 [ i ] )

R3 [ i ] <− theta123 ^(b7 . 3 [ i ] ) * theta124 ^(b8 . 3 [ i ] ) * theta134 ^(b9
. 3 [ i ] ) * theta234 ^(b10 . 3 [ i ] ) * theta1234 ^(b11 . 3 [ i ] )

R4 [ i ] <− theta123 ^(b7 . 4 [ i ] ) * theta124 ^(b8 . 4 [ i ] ) * theta134 ^(b9
. 4 [ i ] ) * theta234 ^(b10 . 4 [ i ] ) * theta1234 ^(b11 . 4 [ i ] )

R5 [ i ] <− theta123 ^(b7 . 5 [ i ] ) * theta124 ^(b8 . 5 [ i ] ) * theta134 ^(b9
. 5 [ i ] ) * theta234 ^(b10 . 5 [ i ] ) * theta1234 ^(b11 . 5 [ i ] )

R6 [ i ] <− theta123 ^(b7 . 6 [ i ] ) * theta124 ^(b8 . 6 [ i ] ) * theta134 ^(b9
. 6 [ i ] ) * theta234 ^(b10 . 6 [ i ] ) * theta1234 ^(b11 . 6 [ i ] )

R7 [ i ] <− theta123 ^(b7 . 7 [ i ] ) * theta124 ^(b8 . 7 [ i ] ) * theta134 ^(b9
. 7 [ i ] ) * theta234 ^(b10 . 7 [ i ] ) * theta1234 ^(b11 . 7 [ i ] )

R8 [ i ] <− theta123 ^(b7 . 8 [ i ] ) * theta124 ^(b8 . 8 [ i ] ) * theta134 ^(b9
. 8 [ i ] ) * theta234 ^(b10 . 8 [ i ] ) * theta1234 ^(b11 . 8 [ i ] )

R9 [ i ] <− theta123 ^(b7 . 9 [ i ] ) * theta124 ^(b8 . 9 [ i ] ) * theta134 ^(b9
. 9 [ i ] ) * theta234 ^(b10 . 9 [ i ] ) * theta1234 ^(b11 . 9 [ i ] )

R10 [ i ] <− theta123 ^(b7 . 1 0 [ i ] ) * theta124 ^(b8 . 1 0 [ i ] ) * theta134 ^(
b9 . 1 0 [ i ] ) * theta234 ^(b10 . 1 0 [ i ] ) * theta1234 ^(b11 . 1 0 [ i ] )

R11 [ i ] <− theta123 ^(b7 . 1 1 [ i ] ) * theta124 ^(b8 . 1 1 [ i ] ) * theta134 ^(
b9 . 1 1 [ i ] ) * theta234 ^(b10 . 1 1 [ i ] ) * theta1234 ^(b11 . 1 1 [ i ] )

R12 [ i ] <− theta123 ^(b7 . 1 2 [ i ] ) * theta124 ^(b8 . 1 2 [ i ] ) * theta134 ^(
b9 . 1 2 [ i ] ) * theta234 ^(b10 . 1 2 [ i ] ) * theta1234 ^(b11 . 1 2 [ i ] )
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R13 [ i ] <− theta123 ^(b7 . 1 3 [ i ] ) * theta124 ^(b8 . 1 3 [ i ] ) * theta134 ^(
b9 . 1 3 [ i ] ) * theta234 ^(b10 . 1 3 [ i ] ) * theta1234 ^(b11 . 1 3 [ i ] )

R14 [ i ] <− theta123 ^(b7 . 1 4 [ i ] ) * theta124 ^(b8 . 1 4 [ i ] ) * theta134 ^(
b9 . 1 4 [ i ] ) * theta234 ^(b10 . 1 4 [ i ] ) * theta1234 ^(b11 . 1 4 [ i ] )

R15 [ i ] <− theta123 ^(b7 . 1 5 [ i ] ) * theta124 ^(b8 . 1 5 [ i ] ) * theta134 ^(
b9 . 1 5 [ i ] ) * theta234 ^(b10 . 1 5 [ i ] ) * theta1234 ^(b11 . 1 5 [ i ] )

R16 [ i ] <− theta123 ^(b7 . 1 6 [ i ] ) * theta124 ^(b8 . 1 6 [ i ] ) * theta134 ^(
b9 . 1 6 [ i ] ) * theta234 ^(b10 . 1 6 [ i ] ) * theta1234 ^(b11 . 1 6 [ i ] )

# Like l i hood Aux i l i a ry Parts ( Part 4)

K1 [ i ] <− P1 [ i ] * Q1[ i ] * R1 [ i ]
K2 [ i ] <− P2 [ i ] * Q2[ i ] * R2 [ i ]
K3 [ i ] <− P3 [ i ] * Q3[ i ] * R3 [ i ]
K4 [ i ] <− P4 [ i ] * Q4[ i ] * R4 [ i ]
K5 [ i ] <− P5 [ i ] * Q5[ i ] * R5 [ i ]
K6 [ i ] <− P6 [ i ] * Q6[ i ] * R6 [ i ]
K7 [ i ] <− P7 [ i ] * Q7[ i ] * R7 [ i ]
K8 [ i ] <− P8 [ i ] * Q8[ i ] * R8 [ i ]
K9 [ i ] <− P9 [ i ] * Q9[ i ] * R9 [ i ]
K10 [ i ] <− P10 [ i ] * Q10 [ i ] * R10 [ i ]
K11 [ i ] <− P11 [ i ] * Q11 [ i ] * R11 [ i ]
K12 [ i ] <− P12 [ i ] * Q12 [ i ] * R12 [ i ]
K13 [ i ] <− P13 [ i ] * Q13 [ i ] * R13 [ i ]
K14 [ i ] <− P14 [ i ] * Q14 [ i ] * R14 [ i ]
K15 [ i ] <− P15 [ i ] * Q15 [ i ] * R15 [ i ]
K16 [ i ] <− P16 [ i ] * Q16 [ i ] * R16 [ i ]

L1 [ i ] <− K1[ i ]
L2 [ i ] <− K2[ i ] + K3 [ i ] + K4 [ i ] + K5 [ i ]
L3 [ i ] <− K6[ i ] + K7 [ i ] + K8 [ i ] + K9 [ i ] + K10 [ i ] + K11 [ i ]
L4 [ i ] <− K12 [ i ] + K13 [ i ] + K14 [ i ] + K15 [ i ]
L5 [ i ] <− K16 [ i ]
L6 [ i ] <− abs (L1 [ i ] − L2 [ i ] + L3 [ i ] − L4 [ i ] + L5 [ i ] )

# Like l i hood Fina l

L [ i ] <− exp ( l og (L6 [ i ] ) )

# S e r i e s System

t [ i ] <− min( t1 [ i ] , t2 [ i ] , t3 [ i ] , t4 [ i ] )
Sys [ i ] <− ( theta1 * theta2 * theta3 * theta4 * theta12 * theta13

* theta14 * theta23 * theta24 * theta34 * theta123 * theta124 *
theta134 * theta234 * theta1234 )^t [ i ]

}
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# Pr i o r s
theta1~dbeta (1 , 1 )
theta2~dbeta (1 , 1 )
theta3~dbeta (1 , 1 )
theta4~dbeta (1 , 1 )
theta12~dbeta (1 , 1 )
theta13~dbeta (1 , 1 )
theta14~dbeta (1 , 1 )
theta23~dbeta (1 , 1 )
theta24~dbeta (1 , 1 )
theta34~dbeta (1 , 1 )
theta123~dbeta (1 , 1 )
theta124~dbeta (1 , 1 )
theta134~dbeta (1 , 1 )
theta234~dbeta (1 , 1 )
theta1234~dbeta (1 , 1 )
}
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ABSTRACT
The modeling and analysis of lifetime data in which the main end-
points are the times when an event of interest occurs is of great
interest in medical studies. In these studies, it is common that two
or more lifetimes associated with the same unit such as the times to
deterioration levels or the times to reaction to a treatment in pairs of
organs like lungs, kidneys, eyes or ears. In medical applications, it is
also possible that a cure rate is present and needed to be modeled
with lifetime data with long-term survivors. This paper presented a
comparative study under a Bayesian approach among some existing
continuous and discrete bivariate distributions such as the bivariate
exponential distributions and the bivariate geometric distributions
in presence of cure rate, censored data and covariates. In presence
of lifetimes related to cured patients, it is assumed standard mixture
cure rate models in the data analysis. The posterior summaries of
interest are obtained using Markov Chain Monte Carlo methods. To
illustrate the proposed methodology two real medical data sets are
considered.
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1. Introduction

In many medical studies, especially related to cancer treatments, an important issue of
interest to the medical researchers is the estimation of the fraction of individuals (or
patients) in the studied population who never experience the event of interest. These indi-
viduals are not at risk with respect to the event of interest and they are considered immune,
cured, non-susceptible or extremely long-term survivors. Different approaches have been
presented in the literature to model cure rate, especially for univariate lifetime data (see,
e.g. [2,9,13,22,23,25,26,35,36]). In the presence of two lifetimes associated to each unit, that
is, bivariate lifetimes, Wienke et al. [33,34] introduced a model for a cure rate in bivariate
time-to-event data analysis.

The cure rate models became popular since the standard survival analysis techniques,
for example the Cox proportional hazards [11] model, provide no direct estimation for the
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Abstract
Purpose – The purpose of this paper is to provide a new method to estimate the reliability of series
system by using a discrete bivariate distribution. This problem is of great interest in industrial and
engineering applications.
Design/methodology/approach – The authors considered the Basu–Dhar bivariate geometric distribution
and a Bayesian approach with application to a simulated data set and an engineering data set.
Findings – From the obtained results of this study, the authors observe that the discrete Basu–Dhar
bivariate probability distribution could be a good alternative in the analysis of series system structures with
accurate inference results for the reliability of the system under a Bayesian approach.
Originality/value – System reliability studies usually assume independent lifetimes for the components
(series, parallel or complex system structures) in the estimation of the reliability of the system. This
assumption in general is not reasonable in many engineering applications, since it is possible that the
presence of some dependence structure between the lifetimes of the components could affect the evaluation of
the reliability of the system.
Keywords Engineering, Reliability analysis, Basu–Dhar, Bayesian analysis, Dependent lifetimes,
Series systems
Paper type Research paper

1. Introduction
A series system is a component configuration usually assumed in engineering studies, such
that, if any one of the system components fails, the entire system fails. Associated to each
system component, there is a response given by a random variable that could be binary (fail/
no fail) or denoting its lifetime (a positive value). Independence is usually assumed among
these random variables, an assumption that is not always realistic in applications. Figure 1
illustrates a series system (see, e.g. Romeu, 2004).

According to Jensen and Bard (2003), the estimation of the reliability is obtained using an
inference approach based on probabilistic models. The reliability could be given by the
probability of fail (response: fail/no fail) or by the probability P (TWt), where T denotes the
lifetime of the component or system and t is a fixed value. Many different probability
models are introduced in the literature to capture the dependence among the components
(see, e.g. Henley and Kumamoto, 1981; Kolowrocki, 2008; Singh and Billinton, 1977; Chao and
Fu, 1991; Hulting and Robinson, 1994; Rausand and Arnljot, 2004; Usher, 1996; Eryilmaz,
2011; Achcar and Moala, 2015; Mukherjee and Saran, 1984; Tang et al., 2013; Eryilmaz and
Tank, 2012; Aven and Jensen, 1999). Many physical and non-physical systems (e.g. bridges,
car engines, air-conditioning systems, biological and ecological systems, chains of command
in civilian or military organizations, quality control systems in manufacturing plants, among
many others) may be viewed as assemblies of many interacting components (series systems,
parallel systems, k-out-of m systems or complex systems).

The main goal of this paper is to explore the performance of the Basu–Dhar bivariate
geometric distribution (see Basu and Dhar, 1995) in the estimation of the reliability of
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Abstract
Different cure fraction models have been used in the analysis of lifetime data in pres-
ence of cured patients. This paper considers mixture and nonmixture models based
on discrete Weibull distribution to model recurrent event data in presence of a cure
fraction. The novelty of this study is the use of a discrete lifetime distribution in place
of usual existing continuous lifetime distributions for lifetime data in presence of cured
fraction, censored data, and covariates. In the verification of the fit of the proposed
model it is proposed the use of randomized quantile residuals. An extensive simulation
study is considered to evaluate the properties of the estimates of the parameters related
to the proposed model. As an illustration of the proposed methodology, it is consid-
ered an application considering a medical dataset related to lifetimes in a retrospective
cohort study conducted by Puchner et al. (2017) that consists of 147 consecutive cases
with surgical treatment of a sarcoma of the pelvis between the years of 1980 and 2012.
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1 INTRODUCTION

In many medical studies, an issue of great interest in medical research is the estimation of the fraction of patients in the studied
population who never experience the event of interest. These patients are not at risk with respect to the event of interest and
are considered immune, cured, nonsusceptible, or extremely long-term survivors. Standard survival analysis techniques, as for
example, the Cox proportional hazards (Cox, 1972) model, provide no direct estimation for the cure fraction that is a motivation
for the use of mixture and nonmixture cure fraction models.

According to Vahidpour (2016), in the literature it is presented different models to be fitted by data in presence of cure fraction
with great emphasis on the mixture cure fraction models, also known as standard cure fraction models (see, e.g., De Angelis,
Capocaccia, Hakulinen, Soderman, & Verdecchia, 1999; Lambert, Thompson, Weston, & Dickman, 2006), which have been
widely used for modeling survival data in presence of cure fraction and the nonmixture cure fraction models that are not very
popular (see Achcar, Coelho-Barros, & Mazucheli, 2012; Tsodikov, Ibrahim, & Yakovlev, 2003; Vahidpour, 2016). Different
approaches have been presented in the literature to model cure fraction for univariate lifetime data: (see, e.g., Achcar et al., 2012;
Cancho & Bolfarine, 2001; De Angelis et al., 1999; Farewell, 1982; Lambert et al., 2006; Lu, 2010; Othus et al., 2012; Price &
Manatunga, 2001; Yin & Ibrahim, 2005; Yu, Tiwari, Cronin, & Feuer, 2004, among many other studies).

Let us denote by 𝑇 a positive random variable related to the the time until the event. Following Maller and Zhou (1996), the
standard fraction model (or mixture cure fraction model) assumes that the probability of the time-to-event to be greater than a
specified time 𝑡 (the survival function) is given by
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ABSTRACT
In this paper, it is introduced a new parametric distribution to be
used in multivariate lifetime data analysis as an alternative for the
use of some existing multivariate parametric models as the popular
multivariate normal distribution the most widely used model
assumed in the analysis of continuous multivariate data analysis.
Although the normal multivariate distribution has univariate mar-
ginal normal probability distributions and simple interpretations for
all their parameters, it may not be well fitted by many data sets,
especially in survival data applications, usually considering logarithm
transformed data. In addition, in many cases the use of parametric
multivariate discrete models could be more appropriate for the data
analysis. In this paper, it is introduced a generalization of the bivari-
ate Basu-Dhar geometric distribution to a trivariate case applied to
count data. Some properties of this trivariate geometric distribution,
including their marginal probability distributions, the order statistics
distributions, the probability generating function and some simula-
tion studies are presented. It is also presented some discussion on
an extension of the trivariate case for the multivariate case. Classical
and Bayesian inferences are presented assuming censored or uncen-
sored observations. To illustrate the proposed methodology, two
applications with real lifetime data are considered as examples.
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1. Introduction

In many applications of lifetime data analysis, usually there is the presence of two or more
lifetimes associated to each unit, as for example in medical recurrent events. In these situa-
tions, especially in medical or engineering applications, the researchers usually assume inde-
pendent lifetimes using standard parametric probability distributions like the exponential,
Weibull or log-normal probability distributions or non-parametric set-ups like the product-
limit Kaplan and Meier (1958) non-parametric estimator for the survival function or the
proportional hazards regression model proposed by Cox (1972) in presence of censored
data and covariates, but in general, the lifetime of one component can influence the life-
times of the other components. In this way, it is needed statistical models which capture
the dependence structure among the lifetimes associated to each unit where it is common
the use of a continuous random variable modeling approach.
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