• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.17.2012.tde-13062013-075841
Document
Author
Full name
Juliana Ramos Martins
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
Ribeirão Preto, 2012
Supervisor
Committee
Bitondi, Marcia Maria Gentile (President)
Baqui, Munira Muhammad Abdel
Campos, Lucio Antonio de Oliveira
Guimaraes, Margareth de Lara Capurro
Santos, Aline Mackert dos
Title in Portuguese
Genes de Hexamerinas em Apis mellifera: Busca de Funções Alternativas durante o Desenvolvimento.
Keywords in Portuguese
Apis mellifera
Corpo gorduroso
Hexamerinas
Hormônio juvenil
Metamorfose
Ovário
Testículo
Abstract in Portuguese
Introdução: Hexamerinas são proteínas de estocagem sintetizadas pelo corpo gorduroso de larvas de insetos e secretadas na hemolinfa, onde se acumulam. A função canônica das hexamerinas consiste em servir de reserva de aminoácidos e energia para a reconstrução de tecidos e órgãos durante a metamorfose. Este trabalho teve como objetivo a busca por evidências de funções alternativas das hexamerinas durante o ciclo de vida de abelhas A. mellifera. Resultados: Os perfis temporais de expressão das quatro hexamerinas (HEX 70a, HEX 70b, HEX 70c e HEX 110), verificados por meio de SDS-PAGE e western blot, corroboram sua função canônica na metamorfose. Consistente com esta função, as quatro hexamerinas foram localizadas no citoplasma das células do corpo gorduroso utilizando-se anticorpos específicos e microscopia confocal. No entanto, funções adicionais puderam ser inferidas com base nos seguintes resultados: (1) Foci das quatro hexamerinas foram localizados nos núcleos de algumas células do corpo gorduroso em metamorfose, levando à hipótese de que têm função anti-apoptótica durante este período crítico do desenvolvimento; (2) Além disso, HEX 70a e HEX 110 foram localizadas no citoplasma e núcleo de células ovarianas e testiculares, indicando função no desenvolvimento e maturação das gônadas; (3) A co-localização de um análogo de timidina (EdU) e HEX 70a nos núcleos das células dos ovaríolos, sugeriu fortemente uma função na proliferação celular. O knockdown de HEX 70a in vivo por meio de injeção de anticorpo específico prejudicou o crescimento dos ovaríolos de rainhas, reforçando a hipótese de função na proliferação celular, (4) interferiu na esclerotização da cutícula de operárias, indicando função na formação do exoesqueleto e (5) provocou a antecipação da ecdise adulta, provavelmente em resposta à ausência (ou diminuição) dos aminoácidos derivados das hexamerinas. Foram investigados também aspectos da regulação dos genes de hexamerinas. A manipulação experimental da dieta alimentar e dos títulos do hormônio juvenil (HJ) interferiram claramente na expressão dos genes de hexamerinas. A potencial ação reguladora do HJ foi reforçada pelos resultados de análises por bioinformática da região 5 UTR de cada gene de hexamerina (Martins et al., 2010) que revelaram potencial motivo de ligação à proteína Ultraspiracle (Usp), um membro do complexo receptor do HJ no DNA. Procedimentos para expressar as hexamerinas in vitro em sistema de bactérias e purificá-las estão em progresso visando a caracterização da estrutura e de interações entre as subunidades. Conclusão: Estes resultados ressaltam que as hexamerinas têm outras funções no ciclo de vida de A. mellifera, além da função já bem estabelecida de reserva de aminoácidos para a metamorfose.
Title in English
Hexamerin Genes in Apis mellifera: Alternative Functions during Development.
Keywords in English
Apis mellifera
Fat body
Hexamerins
Juvenile hormone
Metamorphosis
Ovaries
Testicle
Abstract in English
Background: Insect hexamerins are storage proteins synthesized by the larval fat body and secreted into the hemolymph, where they accumulate. The canonical function of hexamerins is to provide amino acids and energy for the reconstruction of tissues and organs during pupal-to-adult development. The aim of the current study was to search for evidence of alternative roles for the hexamerins in the life cycle of the honey bee, A. mellifera. Results: The canonical role of insect hexamerins received support from our data on the temporal expression profiles of the four honey bee hexamerin subunits (HEX 70a, HEX 70b, HEX 70c and HEX 110), as verified by SDS-PAGE and western blot using hemolymph and fat body samples. Consistent with the canonical function, the four hexamerins were localized in the cytoplasm of fat body cells, during metamorphosis, by using specific antibodies and confocal laser-scanning microscopy. However, additional functions could be inferred by the following findings: (1) The four hexamerins were also localized in the nuclei of some fat body cells, thus tentatively suggesting an anti-apoptotic role during metamorphosis; (2) Furthermore, HEX 70a and HEX 110 were localized in the cytoplasm and nucleus of ovarian and testicular cells, pointing to a role in gonad development and maturation. Co-labeling of the thymidine analog EdU and HEX 70a in the ovariole cell nuclei, strongly suggested a role in cell proliferation; HEX 70a depletion via injection of the specific antibody in queen pupae impaired ovariole growth, thus strengthening our hypothesis on a role in cell proliferation, (3) HEX 70a depletion also impaired cuticle sclerotization, indicating a function in exoskeleton formation, and (4) led to a precocious adult ecdysis, perhaps in response to the lack (or decrease) in hexamerin-derived amino acids. We also investigated aspects of the regulation of hexamerin genes. The experimental manipulation of diet consumption and juvenile hormone (JH) titer clearly interfered in the expression of hexamerin genes. Regulation by JH was also supported by a previous bioinformatics analysis of the 5 UTR region of each hexamerin gene (Martins et al., 2010), which revealed a potential binding site for Ultraspiracle (Usp), a member of the JH receptor complex in the DNA. Experiments are in progress for in vitro expression and purification of the four hexamerins aiming to further characterize their structures and interactions. Conclusion: Taken together, these results imply in novel roles for hexamerins in the life cycle of A. mellifera in addition to their well-established role as amino acids sources for metamorphosis.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2013-07-11
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2024. All rights reserved.