• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
https://doi.org/10.11606/D.17.2010.tde-01062015-172223
Documento
Autor
Nome completo
Melina Pires da Silva
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
Ribeirão Preto, 2015
Orientador
Banca examinadora
Rodrigues, Jose Antunes
Título em português
Modulação nitrérgica de canais para cátions ativados por hiperpolarização e nucleotídeo cíclico em neurônios do núcleo supraóptico
Palavras-chave em português
Canais HCN
Ocitocina
Óxido Nítrico
S-nitrosilação
Vasopressina
Resumo em português
O núcleo supraóptico (SON), uma das várias áreas hipotalâmicas envolvidas no equilíbrio hidroeletrolítico corporal, é de suma importância na complexa rede de sistemas fisiológicos que atuam na manutenção da homeostase. Este núcleo é constituído por um grupamento de neurônios magnocelulares (MNCs) responsáveis pela síntese e liberação de vasopressina e ocitocina, neuropeptídios cujos principais efeitos se fazem sobre a excreção de água e sal pelos rins. Alterações da osmolalidade plasmática implicam em mudanças funcionais intrínsecas (propriedades de membrana) e extrínsecas (sinápticas) na excitabilidade desses neurônios, com consequências para a liberação desses neuropeptídios. Além da osmolalidade, outros fatores são capazes de modular a excitabilidade dos MNCs, dentre elas o óxido nítrico (NO). Vários estudos têm mostrado que o NO desempenha um papel neuromodulador importante nesses neurônios, resultando na inibição da excitabilidade dos MNCs durante condições isotônicas e hipertônicas. Além disso, estas respostas são independentes das conexões sinápticas e envolvem a modulação de canais para cátions ativados por hiperpolarização e nucleotídeo cíclico (HCN). Entretanto, ainda é desconhecido à origem deste mensageiro neural, o envolvimento de outros tipos celulares nesta resposta, os mecanismos de sinalização utilizados pelo NO na modulação dos canais HCN, se esta modulação também ocorre em situações de aumentos de osmolaridade plasmática, e se há diferenças na modulação nitrérgica entre os fenótipos celulares. Assim, dada a importância deste núcleo para a manutenção do meio interno, elucidar os mecanismos pelo qual o NO modula os neurônios magnocelulares do SON torna-se essencial para o entendimento do controle da sua excitabilidade elétrica. Desta forma, considerando que: 1) os neurônios magnocelulares expressam a enzima para a síntese do NO em condições isotônicas e hipertônicas; 2) que os efeitos do NO parecem envolver, principalmente, a guanilato ciclase solúvel com consequente produção de cGMP; e 3) que os canais HCN são modulados por este segundo mensageiro, nós hipotetizamos que os MNCs são capazes de produzir NO independente de outros tipos celulares e do fenótipo celular, e que a modulação nitrérgica dos canais HCN envolve a produção de cGMP. Frente a isso, este projeto teve como objetivo: 1) investigar o envolvimento das células gliais na modulação nitrérgica observada nos MNCs; 2) desvendar a origem do NO; 3) estudar as vias de sinalização da modulação nitrérgica sobre os canais HCN 4) avaliar se os efeitos do NO nos canais HCN também ocorre durante estímulo hiperosmótico agudo, e 5) se há diferença na modulação do NO em relação ao fenótipo celular. Para tanto, utilizamos a eletrofisiologia celular, essencialmente a técnica de patch clamp em fatias do SON e neurônios isolados. Experimentos de fluorescência foram realizados para a detecção da atividade intracelular do NO com o intuito de elucidar a origem deste mensageiro neural. Além disso, técnicas de biologia celular e molecular também foram utilizadas para caracterizar o fenótipo da célula que se está registrando, uma vez que 3 tipos já foram descritos neste núcleo e podem responder de maneira diferente ao mesmo estímulo. Até o presente nossos resultados mostraram que: 1) A modulação nitrérgica nos MNCs não envolve células gliais, 2) O NO é produzido pelos neurônios magnocelulares durante estímulo hipertônico, e este processo é dependente das alterações da osmolalidade, mas não da atividade elétrica dos neurônios frente ao estímulo; 3) Esta modulação ocorre por um mecanismo dependente de S-nitrosilação e independentemente da formação de cGMP; 4) a modulação nitrérgica nos canais HCN não difere entre os diferentes tipos de fenótipos encontrados e também ocorre durante aumentos da osmolaridade plasmática. Frente a estes resultados podemos concluir que a excitabilidade dos neurônios magnocelulares do SON é essencialmente determinada por um efeito do NO sobre os canais HNC por um mecanismo dependente de S-nitrosilação. Desta forma, o NO apresenta-se como mais uma molécula nesse complexo mecanismo de manutenção do equilíbrio hidroeletrolítico do organismo.
Título em inglês
Nitrergic modulation of hyperpolarization-activated cyclic nucleotide-gated cation channels in magnocellular neurons form the supraoptic nucleus
Palavras-chave em inglês
HCN Channels
Nitric Oxide
Oxytocin
S-nitrosylation
Vasopressin
Resumo em inglês
The hypothalamic supraoptic nucleus (SON) plays an importante role in the complex systems network that operates to maintain the hydroelectrolytic balance of the body. The nucleus is formed by a cluster of neurons (magnocellular neurosecretory cells - MNCs) responsible for the synthesis and secretion of vasopressin and oxytocin, whose main effects are on the excretion of water and salt by the kidneys. Changes in plasma osmolality lead to intrinsic (membrane properties) and extrinsic (synaptic inputs) functional changes in these neurons, with consequences for neuropeptides release. Furthermore, besides osmolality, studies have shown that the electrical excitability of MNCs can be modulated by several factors, including nitric oxide (NO). Previous studies of our group, demonstrated that NO inhibits the excitability of MNCs during isotonic and hypertonic conditions and that this responses are independent of synaptic connections and involve the hyperpolarization-activated cyclic nucleotide-gated channels (HCN). However, some points remained unclear, such as: What is the origin of NO? Are there other cell types involved in this response? What signaling pathway does NO use to modulate HCN channels? Does NO modulate HCN channels during changes in the plasma osmolality? Are there differences in the nitrergic modulation according to cellular phenotypes? Considering that: 1) MNCs express the enzyme for nitric oxide synthesis, in isotonic and hypertonic conditions; 2) the NO effects involve, mainly, activation of guanylate cyclase with consequent increase in the cGMP production, and that 3) HCN channels are modulated by this second messenger, we hypothesize that MNCs are able to produce NO independently of other cells and cellular phenotypes, and that nitrergic modulation of HCN channels involves the guanylate cyclase activation. To answer those questions and to test our hypothesis, we used cellular electrophysiology, essentially Whole cell patch clamp using slices of the SON and isolated neurons. Fluorescence experiments were also used to detect the intracellular activity of NO in order to clarify the origin of this neuronal messenger. In addition, cellular and molecular biology approaches were also used to characterize the phenotype of recorded cells, since 3 distinct cellular types have been described in this nucleus. Our results demonstrate that: 1) NO is produced by MNCs during hypertonic stimulation, and this process is dependent on changes in osmolality, but not on the electrical activity of MNCs in response to the stimulus; 2) NO modulates the electric excitability of the neurons by acting on HCN channels and it does not differ among cellular phenotypes; and 3) the effect of NO occurs by a mechanism dependent of S-nitrosylation and independently of cGMP production. Considering these results we may conclude that electrical excitability of magnocellular neurons of the supraoptic nucleus is essentially determined by an effect of NO on Ih currents by a mechanism dependent of S-nitrosylation. Acting on HCN channels, NO is another player in the complex set of mechanisms controlling the hydroelectrolytic balance.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
TeseFinal.pdf (3.90 Mbytes)
Data de Publicação
2015-08-17
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2024. Todos os direitos reservados.