• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
Documento
Autor
Nome completo
Rafaela Costa Martins de Mello Dourado
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2017
Orientador
Banca examinadora
Montini, Alessandra de Ávila (Presidente)
Canton, Adolpho Walter Pimazoni
Nati, Lilian
Shiraishi, Guilherme de Farias
Título em português
Uso de análise de rede social como estratégia de negócio na indústria cinematográfica
Palavras-chave em português
Cinema
Faturamento
Redes Sociais
Regressão Linear
Resumo em português
Bilhões de dólares movimentam a indústria cinematográfica mundial anualmente. Por esse motivo, diversos estudos científicos têm intrigado pesquisadores e investidores que buscam prever a bilheteria de um filme. Ainda assim, os estudos preditivos pré-produção são escassos, e não existem propostas de pesquisa que utilizem atores e diretores como vínculo entre filmes. Essa é uma ideia sensata, pois, por diversas vezes, as altas bilheterias acompanham contratações de atores e diretores aclamados no universo cinematográfico. Posto isso, neste trabalho, buscou-se responder à pergunta de pesquisa: É possível prever receitas de bilheteria de cinema utilizando o relacionamento entre atores e diretores como indicador social? Através de técnicas de Social Network Analysis, que tratam da descrição de padrões de relacionamento entre membros de uma rede, e examinam como o envolvimento nessa rede ajuda a explicar comportamento e atitudes desses membros, descreveu-se uma forma inédita de utilização das métricas de SNA em um modelo de regressão linear múltipla, para estimar a bilheteria de um filme, dada a contratação de determinado diretor. A rede foi construída com informações dos atores principais e diretores de 1,144 filmes, de 2000 a 2013, e o modelo proposto validado com informações de filmes de 2014 a 2016. Apresenta-se ainda uma descrição exploratória detalhada da rede cinema, comparando atores e diretores e explorando seus relacionamentos pela análise de rede social. Como resultado, identificou-se atores e diretores líderes da rede cinema, e comunidades de atores e diretores influentes, que podem ser utilizadas para ações de marketing mais efetivas, maior notoriedade de eventos na mídia e contratações de elenco e direção. Isso para aumentar a disseminação do filme e, assim, maximizar a bilheteria para novas produções. Além disso, com um coeficiente de determinação adequado, o modelo proposto explica 67.66% da variabilidade da raiz quadrada da bilheteria, dada a contratação de determinado diretor. Dessa forma, concluiu-se que os conceitos e métricas de SNA, associados à inferência estatística, podem ser utilizados como estratégia de negócio na escolha do diretor de uma nova produção cinematográfica, visando ao sucesso pela maximização da bilheteria mundial.
Título em inglês
The use of social network as a business strategy in the movie industry
Palavras-chave em inglês
Blockbuster
Linear Regression
Movies
Social Network
Resumo em inglês
Billions of dollars mobilize the movie industry annually. Because of that, many scientific studies are bothering researchers and investigators that seek to estimate a blockbuster. Nonetheless, pre-production predictive studies are rare, and there are no research proposals that use actors and directors as links between movies. This idea is reasonable, as the hiring of celebrated actors and directories from the movie universe usually follows blockbusters. In this context, the aim if this research was to answer the following question: Is it possible to estimate blockbusters through the relationship between actors and directors and a social indicator? By means of Social Network Analysis, that deals with the description of relationship patterns between members of a network - and investigates how the engagement in this network helps to explain these members´ behaviors and attitudes - we described a new way of using the SNA metrics in a multiple linear regression model to estimate a blockbuster, based on the hiring of a specific director. The network was built with information from the main actors and directors of 1.144 movies, from 2000 to 2013, and the proposed model was validated with other movies information, from 2014 to 2016. We also present a detailed exploratory description of the movie network, comparing actors and directors, and exploring their relationships through the social network analysis. As a result, we identified actors and directors considered leaders of the movie network, as well as communities of influent actors and directors that could be used for more effective marketing actions, more visibility of media events, and hiring of cast and direction. Furthermore, with anappropriatedetermination coefficient, the proposed model explain 67.66% of the blockbuster's square root variability based on the hiring of a specific director. In this way, we concluded that the SNA concepts and metrics can be used as a business strategy in choosing the director of a new movie production, together with the statistic inference, so as to maximize the global box office success.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
CorrigidoRafaela.pdf (3.52 Mbytes)
Data de Publicação
2017-12-18
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2014. Todos os direitos reservados.