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Resumo

Neste trabalho propomos um novo método para a medição do padrão de avaliação dos

professores, fundamentado na Teoria de Resposta ao Item. Investigamos, com base no

novo método, a relação entre o padrão de avaliação do professor e o aprendizado do

aluno. Nós simulamos os potenciais resultados de uma política de aprovação de alunos

baseada exclusivamente em um teste padronizado (Saresp), que implicaria em um padrão

de avaliação único para cada série e disciplina, em substituição à política atual em que os

professores são responsáveis pela definição sobre a aprovação de seus alunos. Estimamos

os padrões de avaliação ótimos sob esta política, do ponto de vista da maximização do

aprendizado dos alunos, e comparamos estes valores com os padrões de avaliação estimados

para cada professor. Nossas estimativas indicam que os professores utilizam atualmente

padrões de avaliação que são, em média, mais lenientes do que o padrão de avaliação ótimo

estimado para a nova política.

Palavras-chaves: rendimento escolar, teoria de resposta ao item, avaliação da aprendiza-

gem, econometria.





Abstract

We propose a new method for measuring teacher grading standards that is based on

the Item Response Theory framework, and investigate the relationship between teacher

grading standards and student learning in São Paulo State public schools in light of this

new approach. We simulate a policy in which student achievement in a standardized

examination (Saresp) is used as the passing grade criterion, setting a unique grading

standard for each grade and subject that would substitute the current teacher-defined

grading. We estimate the optimal standards that maximize student achievement under

this policy, and compare them with the standards estimated for each individual teacher.

Our estimates indicate that teachers currently apply standards that are, on average, more

lenient than the optimal policy standards.

Key-words: school achievement, item response theory, standardized exams, econometrics.
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1 Introduction
The impact of teachers’ observable characteristics on the learning trajectories of

students is a recurring theme in the economics of education literature. Several studies have

uncovered empirical associations between teacher variables such as age, gender, experience,

and the possession of professional degrees on student learning (Chetty, Friedman and

Rockoff (2011), Darling-Hammond (2010), Hanushek and Rivkin (2006), Bettinger and

Long (2010)). But a main obstacle faced by this literature remains - that many important

characteristics of teachers are, in fact, unobservable to the researcher.

It has also been shown by the recent empirical literature in quasi-experimental

settings that the provision of performance feedback to students influences achievement.

Using data on high-school students in the Basque Country, Azmat and Iriberri (2010)

find that the provision of feedback information leads to an average 5% increase in student

scores. Similar conclusions are drawn by Bandiera, Larcinese and Rasul (2012), based on

student records in a leading university in the United Kingdom. They estimate that the

provision of feedback increases student performance by 13% on average. Moreover, the

authors show how feedback works as an incentive mechanism that elicits heterogeneous

responses across students. Their results indicate that while high-achieving students apply

more effort when they receive feedback, low achieving students tend not to change effort

levels.

The combined results of those two strands in the literature raise the point that an

important unobserved characteristic of teachers is the method and rigor of evaluation used

in the classroom, as well as the method of disclosure of achievement to students. While

several choices involved in teaching are imposed as an external decision by the state-level

authority and are fairly verifiable - such as curriculum and classes schedules - grading is

mostly an unverifiable action and arguably constitutes the major incentive tool to be used

in the classroom at the instructor’s discretion.

In that direction, a small literature has started to shed light in the importance

of grading patterns to student learning, focusing on whether higher grading standards
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improve student outcomes (Haz, 2012, Figlio and Lucas, 2004, Betts and Grogger, 2003,

and Betts, 1997). As described in more detail in the next section, this literature has focused

on a univariate measure of teacher grading patterns based on the difference between mean

achievement of students in the classroom and in external evaluations.

We propose a new method to quantify teachers’ grading patterns that differs slightly

from this literature. Our new strategy relies on an established solution to an analogous

problem faced by the Test Theory literature: the measurement of scoring patterns of items

in multiple choice tests. Test Theory has tackled the issue of item scoring characterization

with Item Response Theory (IRT) models.

In light of this new approach, we analyze a rich database of public schools from

the state of São Paulo in Brazil to investigate the impact of teacher grading patterns

on student learning trajectories. We shed light on possible policy implications, including

the simulation of a policy that centralizes student grading, by substituting a central

standardized examination for the current teacher-based grading. Our contribution to the

literature is twofold: (i) we are the first paper to analyze the relationship between student

effort and teacher grading patterns for the Brazilian case, and (ii) we argue that through

a more interpretable modelling of the relationship between student effort and teacher

grading patterns, our new approach allows for more precise policy recommendations.

Nevertheless, several caveats should be noted and we recommend that our results

be interpreted with caution. First, our analysis is restricted to the cognitive dimension

of student abilities and focuses only on the maximization of mean test scores. Several

other objectives should be taken into account in any policy decision such as noncognitive

abilities, retention rates and distributional effects, to name a few. Second, we find evidence

that our empirical approach may suffer from endogeneity problems which may lead to

biased estimates. As a result, we suggest that our study be interpreted only as a starting

point to further discussion about how to improve grading in Brazil and point out to some

possible directions for future research.

The remainder of this paper is organized as follows. Chapter 2 reviews the previous
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literature on grading patterns. Chapter 3 presents the databases used in this study. Chapter

4 presents a theoretical framework. Chapter 5 describes the empirical strategy. Chapter

6 presents the results. Chapter 7 presents counterfactual scenarios and discusses policy

implications. Chapter 8 discusses the relationship between our results and the previous

literature, and Chapter 9 concludes.
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2 Previous literature on teacher grading patterns and

student effort

The major obstacle to the investigation of the impact of grading patterns on

student learning is that grading patterns are not directly observable to the researcher. It

is necessary, thus, to recur to an indirect form of measurement. Albeit with some minor

variations, the existing literature shares a common method for measuring grading patterns

(Haz, 2012, Figlio and Lucas, 2004, Betts and Grogger, 2003, and Betts, 1997). Their main

strategy is to compare the average scores of students in school with their scores in external

standardized exams. With minor variations, in those studies the grading patterns are

computed as the teacher fixed-effects coefficients in a regression of student standardized

scores (𝑠𝑐𝑜𝑟𝑒) on classroom marks (𝑐𝑙𝑎𝑠𝑠_𝑚𝑎𝑟𝑘)1. This empirical procedure leads to the

following estimation equation:

𝑠𝑐𝑜𝑟𝑒𝑖 =
𝑁𝑡𝑒𝑎𝑐ℎ𝑒𝑟𝑠∑︁

𝑗=1
[𝛼𝑗𝑡𝑒𝑎𝑐ℎ𝑒𝑟𝑖𝑗] + 𝛽𝑐𝑙𝑎𝑠𝑠_𝑚𝑎𝑟𝑘𝑖 + 𝜖𝑖𝑗 (2.1)

Where 𝑖 indexes students, 𝑗 indexes teachers, 𝑡𝑒𝑎𝑐ℎ𝑒𝑟𝑖𝑗 are teacher dummy variables

and 𝛼𝑗 are teacher grading pattern coefficients. In this definition, the higher the value

of a teacher grading pattern, the more rigorous he is in assigning marks to his students.

The intuition behind the estimation is that the teacher-fixed effect can be interpreted as a

shift in students 𝑠𝑐𝑜𝑟𝑒, given his classroom mark. A large positive fixed effect for teacher

𝑗, thus indicates that his students are expected to present higher standardized scores for

any given classroom mark.

To investigate the relationship between grading patterns and student effort, the

existing literature also resorts to a common framework with minor variations. It consists

of a linear regression of students score gains in standardized exams on teacher grading

1 In order to avoid confusion, we use the term 𝑐𝑙𝑎𝑠𝑠𝑟𝑜𝑜𝑚 𝑚𝑎𝑟𝑘 or 𝑚𝑎𝑟𝑘 to refer to grades obtained
by students in the school, as assigned by their teachers, and save the term 𝑔𝑟𝑎𝑑𝑒 for references to
curriculum years (1𝑠𝑡 grade, 2𝑛𝑑 grade, and so forth). Student achievement in standardized external
exams is referred to as 𝑠𝑐𝑜𝑟𝑒.



18

standards, as described in the following equation:

Δ𝑠𝑐𝑜𝑟𝑒𝑖,𝑡 = 𝛽𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑗,𝑡 + 𝜙𝑍𝑠,𝑡 + 𝜀𝑖𝑗,𝑠,𝑡 (2.2)

Where 𝑖 indexes students, 𝑗 teachers, 𝑠 schools and 𝑡 time, 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑗,𝑡 is the

grading standard faced by the student (i.e. coefficients 𝛼𝑗 estimated in equation 1), and

𝑍𝑠,𝑡 is a vector of controls for school observable characteristics.

In the first known empirical study on the subject, Betts (1997) analyzed school-level

grading patterns. Using data from the Longitudinal Study of American Youth (LSAY),

he found higher grading standards to be associated with higher average achievement.

Furthermore, he finds grading standards to have larger effects among high-achieving

students.

Also measuring grading patterns at the school level, Betts and Grogger (2003) use

data from the High School and Beyond survey to point out to likewise conclusions - higher

grading patterns are associated with higher student scores, and larger effects are present

among high achievers.

Figlio and Lucas (2004) were the first to measure grading standards at the teacher

level. Analyzing data from a large school district in Florida, they also find higher grading

standards to be associated with larger student score gains and larger effects among

high-achieving students.

Haz (2012) estimates grading standards at the subject-school level, using a national

database of 4𝑡ℎ graders in Chile. As in Figlio and Lucas (2004), she finds higher grading

standards to be positively associated with student score gains. In her study, though, larger

gains are found among students at the bottom of the distribution of baseline scores. A

main empirical advancement in Haz (2012) is that she corrects for the endogeneity in

equation (2.2) by using past standards as an instrument to current standards.2

2 Equation (2.2) is endogenous because the current 𝑠𝑐𝑜𝑟𝑒 appears on both sides of the equation. On
the left-hand side 𝑠𝑐𝑜𝑟𝑒𝑖,𝑡 composes the measurement of student achievement gain, Δ𝑠𝑐𝑜𝑟𝑒𝑖,𝑡. On the
right-hand side, it takes part in the calculation of 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑠𝑖𝑗,𝑡. This endogeneity results on a positive
bias on the estimation of 𝛽. Note that the effect of a random positive shock in 𝑠𝑐𝑜𝑟𝑒𝑖,𝑡 is positive
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for both Δ𝑠𝑐𝑜𝑟𝑒𝑖,𝑡 and 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑠𝑖𝑗,𝑡. Conversely, the effect of a negative random shock in 𝑠𝑐𝑜𝑟𝑒𝑖,𝑡 is
negative for both Δ𝑠𝑐𝑜𝑟𝑒𝑖,𝑡 and 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑠𝑖𝑗,𝑡. Measurement error in 𝑠𝑐𝑜𝑟𝑒𝑖,𝑡 thus forces a positive
association between Δ𝑠𝑐𝑜𝑟𝑒𝑖,𝑡 and 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑠𝑖𝑗,𝑡, biasing 𝛽 upwards.
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3 Data
This research makes use of three databases: (i) administrative records of student

achievement in school (marks assigned by teachers); (ii) a standardized and blindly corrected

examination administered by the state-level authority (Saresp); and (iii) administrative

records of teacher-classroom assignments1. The databases cover the years between 2008

and 2011.

Students’ administrative records include marks assigned by teachers and attendance

records for all students enrolled in the schools directly administered by São Paulo State

Secretary of Education. Marks are subject-specific, assigned quarterly and summarized in

a final mark that represents overall achievement through the year2.

The standardized tests database consists of a statewide assessment, the São Paulo’s

Performance Evaluation System (Sistema de Avaliação de Rendimento Escolar do Estado

de São Paulo – Saresp). The Saresp examination covers math, language and science3, and is

taken by students in the public system of education in grades 2 and 4 (elementary school),

6 and 8 (middle school), and 11 (high school). Student scores are calculated separately

for each subject available using the Three Parameter Logistic Model of Item Response

Theory, with the same scale of the nationwide exam Prova Brasil, which was set to have

mean 250 and standard deviation 50 for the population in 8𝑡ℎ grade that took this exam

in in 1997. The scale used in Saresp is invariant from 4𝑡ℎ to 11𝑡ℎ grades, which allows

scores to be comparable not only across years but also across most grades. The exam is

also accompanied by a comprehensive socioeconomic survey. The scale is mapped into a

set of learning standards for each grade and classified into proficiency levels, which are

reproduced in Appendix A.

The teachers’ administrative database consists of unique codes to identify assign-

ments of teachers to classes. Teacher codes are consistent longitudinally, allowing for the

1 All databases were shared with Prof. Marcos Rangel by São Paulo’s Secretary of Education, under
cooperation and confidentiality agreements.

2 Only the final marks are used in this study.
3 Only math and language are used in this study.
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Table 1 – Descriptive statistics

Variable Full Sample Regression Sample Difference
Mean sd N Mean sd N Mean p-value

Panel A. 6𝑡ℎ grade
Math - Score 212.68 (39.08) 150,956 214.80 (38.38) 6,032 2.21 0.00
Math - Mark 5.91 (1.68) 151,567 5.70 (1.75) 6,032 -0.22 0.00
Language - Score 208.13 (42.33) 150,867 207.99 (41.94) 6,032 -0.16 0.78
Language - Mark 6.13 (1.66) 151,567 5.91 (1.71) 6,032 -0.22 0.00

Panel B. 8𝑡ℎ grade
Math - Score 246.46 (41.23) 146,515 246.69 (40.88) 11,275 0.26 0.52
Math - Mark 5.77 (1.75) 147,392 5.71 (1.82) 11,275 -0.06 0.00
Language - Score 231.77 (44.90) 146,623 233.29 (45.79) 11,275 1.64 0.00
Language - Mark 5.99 (1.70) 147,381 5.94 (1.75) 11,275 -0.06 0.00

Panel C. 11𝑡ℎ grade
Math - Score 270.22 (43.40) 99,810 270.31 (43.43) 1,121 0.09 0.94
Math - Mark 6.12 (1.55) 100,848 5.71 (1.68) 1,121 -0.41 0.00
Language - Score 269.47 (45.80) 100,167 266.76 (47.73) 1,121 -2.74 0.05
Language - Mark 6.30 (1.46) 100,830 5.83 (1.50) 1,121 -0.48 0.00

Note: All variables are presented in levels. 𝑆𝑐𝑜𝑟𝑒 refers to the Saresp examination, and is
measured using IRT. 𝑀𝑎𝑟𝑘 refers to final yearly classroom marks assigned by teachers, on a
scale 0-10.

yearly identification of teacher-student assignment.

Summary statistics for our full dataset and our main sample of interest are shown

in Table 1. The sample of interest is restricted to students for whom we have information

on all variables necessary for our final estimations4. Even though several variables show

a significant difference in means, the magnitudes of the differences are small in terms

of standard deviations of the full sample. The largest relative differences are present in

language and math marks, with respective sample differences of .33 and .27 standard

deviations in 11𝑡ℎ and .13 and .13 standard deviations in 6𝑡ℎ grade. For all other variables,

mean differences between the full and restricted samples are smaller than .05 standard

deviations.

4 Grade, score, lagged score, teacher and classroom mark for both math and language.
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4 Theoretical framework

4.1 Measuring teacher grading patterns with IRT

We propose a new approach to quantifying teacher grading patterns that differs

slightly from the framework used in the previous literature. Our approach draws from

the test measurement theory, which has established Item Response Theory modelling

as a standard method for measuring grading patterns of items. The core underlying

assumption of IRT is that the probability of a student correctly answering a given item

of an examination is a monotone and increasing function of his (latent) ability level.

Each item is thus characterized by a particular function that maps latent ability levels of

students into probabilities of correctly answering the item, called the Item Characteristic

Curve (ICC). Therefore, the characterization an item’s scoring pattern amounts to the

complete specification of its ICC (Baker, 1992). For example, if an item 𝑘 assigns a lower

probability of correctly answering than item 𝑙 for all possible levels of latent abilities,

than item 𝑘 is unequivocally more 𝑑𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡 than item 𝑙. We transpose this idea to the

measurement of teacher grading patterns – so we model the probability of scoring above a

threshold in the classroom marks as a monotone function of student ability.

Thus, in order to quantify teacher grading patterns under the IRT framework,

a first necessary step is to dichotomize marks, for example, into pass/fail or high/low

achievement1. The highest category is then interpreted analogously to a “correct answer”,

or a “success” in a standard IRT model. As a result, the characterization of a teacher’s

grading pattern amounts to the complete specification of his ICC. A second step is to

choose the functional form of the ICC. We adopt the Two-Parameter Logistic Model

1 Some IRT models allow for polytomous responses, but we focus on dichotomous models for the sake
of simplicity.
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(2PLM)2.

𝑃 (𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑖|𝜃𝑖; 𝑎𝑗; 𝑏𝑗) = 1
1 + 𝑒−𝑎𝑗(𝜃𝑖−𝑏𝑗) (4.1)

As the name suggests, in this model the ICC of each teacher 𝑗 is fully characterized

by two parameters, which we describe using the conventional notation in the literature

and the pass/fail dichotomization example. Parameter 𝑏, called 𝑑𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦 (or location)

provides a measurement of the overall difficulty imposed by the teacher. More precisely, 𝑏

is the latent ability level required for a student to have exactly 50% chance of receiving a

passing grade from his teacher. Parameter 𝑎, called 𝑠𝑙𝑜𝑝𝑒, defines the rate of transformation

of latent abilities into probabilities of receiving a passing grade, and is directly proportional

to the steepness of the ICC at point 𝑏. Figure 1 illustrates a general 2PLM characteristic

curve.

Figure 1 – Item Characteristic Curve (ICC)

In standard IRT models it is usual to jointly estimate item parameters and student
2 The Saresp examination uses tre Three Parameter Model (3PLM), which is the most common model

used in multiple choice exams. The 3PLM includes a term called "guessing parameter" which is
interpreted as the minimum probability of correctly answering the item. The inclusion of this term is
anchored in the idea that even students with very low ability levels have a non-zero probability of
assigning a correct answer by pure guess, since the number of possible answers is finite. We argue that
the same reasoning does not apply for teacher grading patterns and thus opt for the 2PLM, which is
equivalent to setting the "guessing parameter" to zero in the 3PLM.
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abilities using a Maximum-Expectation algorithm (Schilling and Bock, 2005, Bock and

Aitkin, 1981)3. But if reliable estimates of student abilities are available and only the item

parameters are left to be estimated, a simple maximum likelihood estimation can be run

separately for each item.

4.2 Student behavior

We assume students derive different utility levels from obtaining a 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 or 𝑓𝑎𝑖𝑙

grade in the classroom, and that studying is costly4.

𝑣(𝑒𝑖) =

⎧⎪⎪⎨⎪⎪⎩
𝑢(𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑖) − 𝑐(𝑒𝑖), if 𝑐𝑙𝑎𝑠𝑠_𝑚𝑎𝑟𝑘𝑖 ≥ 𝑘

𝑢(𝑓𝑎𝑖𝑙𝑖) − 𝑐(𝑒𝑖), if 𝑐𝑙𝑎𝑠𝑠_𝑚𝑎𝑟𝑘𝑖 < 𝑘
(4.2)

Where 𝑢(𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑖) − 𝑢(𝑓𝑎𝑖𝑙𝑖) > 0, 𝑒𝑖 ≥ 0 and 𝑐(𝑒𝑖) is a continuous and twice

differentiable function, with 𝑐′(𝑒𝑖) > 0 and 𝑐′′(𝑒𝑖) < 0. Using an affine transformation to

normalize 𝑢(𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑖) = 1 and 𝑢(𝑓𝑎𝑖𝑙𝑖) = 0, and assuming students are risk-neutral, utility

is given by5:

𝑈(𝑒𝑖) = 𝑃𝑗(𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑖𝑗|𝜃𝑖) − 𝑐(𝑒𝑖) s.t. 𝜃𝑖 = 𝜃0𝑖 + 𝑒𝑖 (4.3)

Where 𝑃𝑗(𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑖𝑗|𝜃𝑖) is a teacher-specific function that maps effort and baseline

scores (𝜃𝑖) into probabilities of obtaining 𝑠𝑢𝑐𝑐𝑒𝑠𝑠. Taking advantage of the IRT framework

used to model teacher grading patterns, the probability of success is given by the 2PLM

characteristic curve set by each teacher, represented in equation (4.4). We use a quadratic

polynomial form to characterize the convexity of the cost function, as expressed in equation

3 There are several other methods for the estimation of IRT models. See Wirth and Edwards (2007) for
a comprehensive review.

4 Our model draws, in part, from Haz (2012).
5 The affine transformation is given by 𝑈(𝑒𝑖) = (𝑣(𝑒𝑖) − 𝑢(𝑓𝑎𝑖𝑙𝑖))/(𝑢(𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑖) − 𝑢(𝑓𝑎𝑖𝑙𝑖))
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(4.5).

𝑃𝑗(𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑖𝑗|𝜃𝑖) = 1
1 + 𝑒−𝑎𝑗(𝜃𝑖−𝑏𝑗) (4.4)

𝑐(𝑒𝑖) = 𝛾

2 (𝑒𝑖)2 (4.5)

Substituting equations (4.4) and (4.5) in (4.3) and framing the student decision on

his choice of score 𝜃 leads to the following individual maximization problem:

𝜃1 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃

[︂ 1
1 + 𝑒−𝑎(𝜃−𝑏) − 𝛾

2 (𝜃 − 𝜃0)2
]︂

s.t. 𝜃𝑖 ≥ 𝜃0𝑖 (4.6)

with first and second-order conditions:

FOC: 𝑎𝑒−𝑎(𝜃−𝑏)

(1 + 𝑒−𝑎(𝜃−𝑏))2 − 𝛾(𝜃 − 𝜃0) = 0 (4.7)

SOC: 2𝑎𝑒−2𝑎(𝜃−𝑏) − 𝑎2𝑒−𝑎(𝜃−𝑏)(1 + 𝑒−𝑎(𝜃−𝑏))2

(1 + 𝑒−𝑎(𝜃−𝑏))4 − 𝛾 < 0 (4.8)

Note that the student’s optimal choice of effort is always positive, or, equivalently

𝜃𝑖 > 𝜃0𝑖. This results from the fact that the marginal cost 𝑐′(𝜃) is zero at 𝜃𝑖 = 𝜃0𝑖, while

the marginal gain in utility from the increase in the probability of success, 𝑃 ′
𝑗(𝜃) is positive

at this (and any) point. Thus, there exists 𝜃1 > 𝜃0𝑖 such that 𝑈(𝜃1) > 𝑈(𝜃0𝑖).

Figure 2 illustrates the choice of the optimal score gain (or analogously, effort) for

students with different baseline scores. As exemplified in Panel 1, students with scores far

below the difficulty parameter (𝑏) will exert very low effort, because 𝑃 ′
𝑗(𝜃) is very low for

values of 𝜃 around the student initial level of ability (note that 𝑙𝑖𝑚𝜃→−∞𝑃 ′
𝑗(𝜃) = 0)). Those

are the students that will start the year with a low probability of 𝑠𝑢𝑐𝑐𝑒𝑠𝑠, and will not try

to increase it by much because “the bar is set too high” for them. Conversely, students
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with scores far above the difficulty parameter (𝑏) will also chose to exert very low effort,

because 𝑃 ′
𝑗(𝜃) is also very low at their baseline scores (note that 𝑙𝑖𝑚𝜃→+∞𝑃 ′

𝑗(𝜃) = 0). This

is the case of students that already begin the year with a probability of 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 that is

close to 1, letting almost no room for gains from exerting effort.

Students with baseline scores closer to the difficulty parameter will be the ones

who will exert lager effort, since they will be able to benefit from the section where the

payoff 𝑃 ′
𝑗(𝜃) is the highest. Panel 3 illustrates this situation.

We show a more ambiguous case in Panel 2, in which there are two local maxima,

with fairly different effort levels. Which of them will be the global maximum will depend

on the parameters of the problem. What is most important to stress is that there exists a

baseline score 𝜃0 for which both local maxima will lead to the same utility, so that the

student will be indifferent between exerting a low and a high level of effort. This is the

case in which “the bar is barely reachable”. Thus, there will be a discrete increase in the

level of effort chosen by students with baseline scores 𝜃0 < 𝜃0 in comparison to students

with baseline scores 𝜃0 > 𝜃0.
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Figure 2 – Student Maximization Problem
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5 Empirical strategy

5.1 Teacher grading patterns

As described in Section 4.1, our measure of grading patterns requires classroom

marks to be dichotomized into two categories (success/fail). We estimate grading patterns

for every possible threshold, starting at the passing mark (below/above or equal 5) and

going up to the highest available mark (below/equal 10) and analyze which of them

provides the best fit to the data. For each threshold 𝑘, the ICC of teacher 𝑗 is thus given

by the 2PLM:

𝑃 (𝑐𝑙𝑎𝑠𝑠_𝑔𝑟𝑎𝑑𝑒 ≥ 𝑘|𝑠𝑎𝑟𝑒𝑠𝑝; 𝑎𝑗𝑘, 𝑏𝑗𝑘) = 1
1 + 𝑒−𝑎𝑗𝑘(𝑠𝑎𝑟𝑒𝑠𝑝−𝑏𝑗𝑘) (5.1)

A key fact to understanding the estimation procedure adopted is that we use

student latent ability values that were already estimated externally to the context of

the study. Those latent ability values are the very students’ scores provided in their

Saresp examinations, which, as we have mentioned, are calculated using IRT. With known

student abilities, estimation of teacher ICC parameters amounts to maximizing a simple

likelihood function, in which the likelihood associated with each observation is given by

the probability of occurrence of the student’s outcome (success/fail), conditionally on his

latent ability. Furthermore, the two parameters of each teacher will only appear in the

individual likelihoods associated with his respective students, allowing for the maximization

procedure to be run separately for each teacher (and threshold).

Thus, we estimate teacher grading parameters through the maximization of the

following log-likelihood for each teacher 𝑗 and threshold 𝑘:

(𝑎𝑗𝑘, 𝑏𝑗𝑘) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎,𝑏

∑︁
𝑖∈𝑁𝑗

{𝑌𝑖
1

1 + 𝑒−𝑎𝑗𝑘(𝑠𝑎𝑟𝑒𝑠𝑝𝑖−𝑏𝑗𝑘) + (1 − 𝑌𝑖)(1 − 1
1 + 𝑒−𝑎𝑗𝑘(𝑠𝑎𝑟𝑒𝑠𝑝𝑖−𝑏𝑗𝑘) )}

(5.2)
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where:

⎧⎪⎪⎨⎪⎪⎩
𝑌𝑖 = 1, if 𝑐𝑙𝑎𝑠𝑠_𝑚𝑎𝑟𝑘𝑖 ≥ 𝑘

𝑌𝑖 = 0, if 𝑐𝑙𝑎𝑠𝑠_𝑚𝑎𝑟𝑘𝑖 < 𝑘

This is numerically equivalent to running one logit regression for each teacher and

threshold, in which the running variable is the latent ability of her students (Saresp scores),

and the dependent variable is the dichotomous success/fail variable.

5.2 Student behavior

Since we have estimated teacher grading patterns (𝑎𝑗 and 𝑏𝑗) and observe both

baseline scores (𝑠𝑎𝑟𝑒𝑠𝑝𝑗,𝑡−2) and current scores (𝑠𝑎𝑟𝑒𝑠𝑝𝑗,𝑡), the student cost coefficient 𝛾 is

the only unknown parameter left to be estimated in order to fully characterize the student

decision problem in equation (4.6). This parameter has a very specific interpretation: it is

the rate of growth of the marginal cost of studying (measured in gains in the probability

𝑠𝑢𝑐𝑐𝑒𝑠𝑠), in terms of acquired ability (measured in the Saresp scale). Moreover, the

underlying theoretical framework informs us that 𝛾 should be positive. We estimate 𝛾

using a non-linear least squares estimation framework.

Consider the student maximization problem in equation (4.6). Even though the

problem admits no closed-form solution for 𝜃1, we can define a function (to be estimated

numerically) that maps student input variables 𝜃0, 𝑎𝑖𝑗, 𝑏𝑖𝑗 and the parameter 𝛾 into the

chosen level of ability 𝜃:

𝑓(𝜃0, 𝑎𝑖𝑗, 𝑏𝑖𝑗, 𝛾) = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃

[︂ 1
1 + 𝑒−𝑎𝑖𝑗(𝜃−𝑏𝑖𝑗) − 𝛾

2 (𝜃 − 𝜃0)2
]︂

s.t. 𝜃 ≥ 𝜃0 (5.3)
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The non-linear least squares estimator for 𝛾 can then be defined as:

𝛾 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛾

[︃∑︁
𝑖∈𝑁

(𝑓(𝜃0, 𝑎𝑖𝑗, 𝑏𝑖𝑗, 𝛾) − 𝜃1)2
]︃

(5.4)

Substituting (5.3) in (5.4) and writing the equation in terms of our data, we arrive

at the following NLS estimation:

𝛾 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛾

{︃∑︁
𝑖∈𝑁

{𝑎𝑟𝑔𝑚𝑎𝑥𝜃

[︂ 1
1 + 𝑒−𝑎𝑖𝑗(𝜃−𝑏𝑖𝑗) − 𝛾

2 (𝜃 − 𝜃0)2
]︂

− 𝑠𝑎𝑟𝑒𝑠𝑝𝑖,𝑡}2
}︃

(5.5)

which we estimate numerically using brute-force algorithms for both the inner

maximization of the student utility and the outer minimization of squared residuals1.

1 The decision of which range to use for the inner maximization is straightforward: we use the range
assumed by Saresp scores in our full database. In the case of 𝛾, even though there is no theoretical
argument to define a closed interval in which it should be contained, empirically it becomes evident
that for sufficiently large values of 𝛾, student’s change in optimal response tends to zero. That is, the
cost of effort becomes so high that the student’s optimal choice is numerically equivalent to zero, and
variations cease to be captured in the inner student maximization.
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6 Results

6.1 Teacher grading patterns

Tables 2 and 3 present descriptive statistics for parameters 𝑎 and 𝑏 estimated

from equation (5.2). The fact that our standardized score is measured on a common

scale for all grades in the data allows us to run a validity check of our measured grading

standards: in theory, as students advance to further grades in school, teachers are expected

to require increasing levels of knowledge from students in order to reward them with a

given classroom mark. Taking the pass/fail dichotomization as an example (≥ 5), teachers

are expected to require an increasing level of knowledge in order to reward students with

a passing grade, which should be reflected as higher estimated 𝑏 parameters for higher

grades. We show in Table 3 that the estimated standards follow this pattern – that is, for

every dichotomization (from ≥ 5 to ≥ 10), the median value of 𝑏 across teachers increases

as students move up to higher grades.

The only exception to this is the threshold 5 (passing grade) for 11𝑡ℎ grade, which

is lower than that of 8𝑡ℎ grade for both math and language. This may be related to the fact

that 11𝑡ℎ grade is the last in secondary school. As such, passing 11𝑡ℎ grade leads to the

attainment of an important labor market signal which is a formal and informal reference

in hiring. Secondary degree completion is required, for example, in the vast majority of

civil servant positions. As a result, teachers may be reluctant to retain students.

When we compare the estimates of 𝑏 with proficiency levels defined by Saresp

(reproduced in Appendix A), a general pattern emerges that median coefficients for the

passing grade (≥ 5) are always lower than the below basic reference score. This implies

that there are students with ability level below basic who have more than 50% chance of

receiving a passing grade. This is especially pronounced in 11𝑡ℎ grade, in which the median

𝑏 (166.1 for math and 144.2 for language) is more than two standard deviations below the

below basic threshold (275 and 250, respectively).

As for the highest dichotomization of grades (threshold 10), the median 𝑏 coefficient
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is in general very close to the advanced threshold. This suggests that students who are

considered advanced in Saresp tend to also be rewarded with the highest possible mark in

their classrooms.

Another general pattern is that the slope parameter 𝑎 increases for higher thresholds,

in any given grade and subject. At first, this could indicate that teachers may interpret

increases in the Saresp scale differently at different points of the scale. As we have pointed

out, higher thresholds are associated with higher 𝑏 parameters, so when we compare 𝑎

coefficients across different thresholds we are actually comparing the rate of transformation

of Saresp scores into classroom grades at different points of the scale. The pattern would

then imply that teachers’ scales are, in general, more granular for higher levels of ability.

If this were the case, we would expect 𝑎 to also be increasing in grades, because the 𝑏

parameter is also increasing in grades for any given threshold. The data shows a different

pattern, though, with 𝑎 decreasing in higher grades. A second possible explanation – which

we are not able to asses from the available data - is that for lower thresholds, teachers

take more into account factors external to the cognitive ability level measured in Saresp

such as class participation and group work.

6.2 Student behavior

We estimate equation (5.5) by NLS for each possible threshold, separately by grade

and subject. Results are show in table 4. Consistently with the theoretical model, estimates

of the cost parameter 𝛾 are positive for all thresholds and grades.

As in the case of parameter 𝑎, we observe a pattern of increasing values of 𝛾 for

higher thresholds, for any given grade and subject. That raises the same possibility that

have explored for 𝑎 – that the scale of Saresp may be “compressed” for in the higher end of

the measurement spectrum, in this case not by teachers but by students. That would mean

that, in general, acquiring one ability point at the higher end of the distribution would

be more costly than at the lower end of the distribution. If this were the case, we should

expect 𝛾 to increase in higher grades, holding the threshold fixed. When we compare the
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Table 2 – Estimates of teacher’s grading parameters a (slope)

Math Language
Median Mean sd N Median Mean sd N

Panel A. 6𝑡ℎ grade
Threshold
≥ 5 0.034 0.119 0.470 57,599 0.035 0.200 0.699 48,946
≥ 6 0.035 0.042 0.026 83,169 0.034 0.041 0.027 74,403
≥ 7 0.039 0.069 0.204 83,096 0.036 0.051 0.092 74,504
≥ 8 0.047 0.335 1.022 76,552 0.039 0.243 0.803 69,314
≥ 9 0.057 0.895 1.945 55,898 0.045 0.679 1.614 49,431
≥ 10 0.074 1.265 2.213 24,096 0.051 1.073 2.031 19,911

Panel B. 8𝑡ℎ grade
Threshold
≥ 5 0.028 0.050 0.148 60,215 0.030 0.133 0.519 54,284
≥ 6 0.028 0.032 0.019 80,733 0.028 0.033 0.020 72,432
≥ 7 0.031 0.038 0.028 80,743 0.030 0.037 0.027 72,464
≥ 8 0.038 0.256 0.814 74,254 0.035 0.173 0.603 67,085
≥ 9 0.046 0.702 1.576 55,400 0.043 0.640 1.530 47,592
≥ 10 0.061 1.063 1.849 25,853 0.054 0.929 1.756 18,787

Panel C. 11𝑡ℎ grade
Threshold
≥ 5 0.022 0.035 0.060 21,823 0.022 0.046 0.159 16,859
≥ 6 0.020 0.022 0.013 44,237 0.019 0.023 0.015 37,615
≥ 7 0.022 0.026 0.016 45,092 0.022 0.026 0.017 39,818
≥ 8 0.026 0.084 0.305 41,306 0.028 0.080 0.316 35,665
≥ 9 0.035 0.449 1.116 29,558 0.037 0.459 1.258 23,628
≥ 10 0.048 0.868 1.561 13,585 0.044 0.777 1.667 8,707

Note: Estimates are run separately for each teacher, grade and threshold. Sample size N
refers to the number of students.

values of 𝛾 across grades, though, we find that the parameter assumes its lowest values in

8𝑡ℎ in general, not in 11𝑡ℎ grade.
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Table 3 – Estimates of teacher’s grading parameters b (difficulty)

Math Language
Median Mean sd N Median Mean sd N

Panel A. 6𝑡ℎ grade
Threshold
≥ 5 152.9 140.1 57.1 57,599 140.6 127.8 58.0 48,946
≥ 6 210.6 208.9 28.8 83,169 192.9 191.1 30.3 74,403
≥ 7 240.5 241.1 26.8 83,096 228.7 229.2 29.1 74,504
≥ 8 264.1 268.0 30.7 76,552 259.2 263.7 35.7 69,314
≥ 9 282.1 287.7 34.2 55,898 283.4 291.1 43.3 49,431
≥ 10 293.7 298.5 32.3 24,096 294.7 304.7 46.3 19,911

Panel B. 8𝑡ℎ grade
Threshold
≥ 5 177.4 159.5 70.0 60,215 154.1 137.2 66.8 54,284
≥ 6 251.3 250.3 35.3 80,733 220.4 218.4 35.9 72,432
≥ 7 283.9 285.8 34.7 80,743 261.1 262.9 35.9 72,464
≥ 8 308.1 314.1 40.6 74,254 293.5 299.3 42.3 67,085
≥ 9 325.4 332.1 39.7 55,400 314.9 323.7 45.2 47,592
≥ 10 339.9 347.5 44.2 25,853 326.1 334.2 41.1 18,787

Panel C. 11𝑡ℎ grade
Threshold
≥ 5 166.1 120.9 128.8 21,823 144.2 114.6 106.8 16,859
≥ 6 261.1 256.1 66.6 44,237 238.0 229.7 68.2 37,615
≥ 7 308.8 312.1 56.3 45,092 297.5 296.4 55.0 39,818
≥ 8 343.6 352.2 57.6 41,306 338.1 344.0 57.0 35,665
≥ 9 361.6 378.3 65.5 29,558 356.7 373.0 63.6 23,628
≥ 10 372.6 381.6 53.6 13,585 367.6 379.2 55.0 8,707

Note: Estimates are run separately for each teacher, grade and threshold. Sample size N
refers to the number of students.
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Table 4 – Non-linear Least Squares estimates of students’ gamma parameters (cost)

Threshold ≥ 5 ≥ 6 ≥ 7 ≥ 8 ≥ 9 =10

Panel A. 6𝑡ℎ grade
Gamma - Math 0.00034 0.00113 0.32768 1.31072 0.0051 0.1800
R2 0.22 0.07 0.06 0.08 0.15 0.22

Gamma - Language 0.00027 0.00061 0.00128 0.02048 0.0410 0.5700
R2 0.35 0.21 0.19 0.18 0.25 0.25

N 6,032 9,992 9,410 8,295 4,333 880

Panel B. 8𝑡ℎ grade
Gamma - Math 0.00014 0.00028 0.00043 0.00075 0.0013 0.0200
R2 0.20 -0.17 -0.31 -0.32 -0.30 -0.19

Gamma - Language 0.00024 0.00043 0.00064 0.00184 0.0029 0.0200
R2 0.42 0.34 0.30 0.27 0.29 0.31

N 11,275 18,806 18,979 16,835 10,108 2,744

Panel C. 11𝑡ℎ grade
Gamma - Math 0.00016 0.00048 0.00171 0.00236 0.0051 0.9100
R2 0.19 0.04 -0.02 0.05 0.09 0.19

Gamma - Language 0.00012 0.00026 0.00032 0.00073 0.0015 1.3107
R2 0.34 0.23 0.13 0.09 0.09 0.19

N 1,121 3,617 3,843 3,127 1,663 434
Note: Gamma parameters were estimated separately for each threshold, grade and subject.
Samples are the same across subjects, given threshold and grade.
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7 Counterfactual analysis

7.1 Optimal grading standards for some reference classrooms

Consider the decision problem of a teacher who wants to choose his grading

parameters in order to maximize the mean achievement of his 𝑁𝑗 students in the Saresp

examination. Students have a common cost parameter 𝛾 and individual baseline abilities

𝜃0𝑖, which are all observable to the teacher:

(𝑎*
𝑗 , 𝑏*

𝑗) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎,𝑏

∑︁
𝑖∈𝑁𝑗

𝜃1𝑗 s.t. 𝑎𝑒−𝑎(𝜃1𝑗−𝑏)

(1 + 𝑒−𝑎(𝜃1𝑗−𝑏))2 = 𝛾(𝜃1𝑖 − 𝜃0𝑖) (7.1)

We study the solution to (7.1) for simulated classroom settings that aim to represent

general patterns of 6𝑡ℎ grade language classrooms. Results are shown in Table 5 and

illustrated in Figure 3. We set the classroom size to 30 and test 9 combinations of mean

and variance of baseline scores, using the parameter 𝛾 estimated for 6𝑡ℎ grade language.

The classroom mean increases from row 1 to rows 2 and 3 - we add 50 and 100 points1

on each subsequent row, and set row 2 to match the mean of 6𝑡ℎ graders in language. As

for variances, we start with a constant distribution (column 1), on which we perform two

mean preserving spreads, the first with the imposition of a uniform distribution of range

150 (column 2), and the second with the imposition of a uniform distribution of range 300

(column 3)2.

As expected, increases in the mean baseline scores lead the optimal 𝑏 parameter

to increase by the same amount, while the optimal 𝑎 remains unchanged. Increases in

variance, on the other hand, imply a lower optimal 𝑏. This results from the fact that

students optimal choice of effort is asymmetrical in relation to the distance between their

baseline score and 𝑏. Students with baseline scores below 𝑏 exert more effort than students

with scores above 𝑏, for any given distance. Thus, when we perform a mean preserving

1 The standard deviation of 6th grade language scores in our full sample is 42.33.
2 This implies standard deviations of 46 and 91, respectively, which are respectively approximate to 1.1

and 2.2 standard deviations of 6th grade language scores in our full sample.
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Table 5 – Mean Student Achievement Under Different Class Setting an Grading
Parameters

mean(𝜃0) = 158 mean(𝜃0) = 208 mean(𝜃0) = 308
mean(𝜃1) a b mean(𝜃1) a b mean(𝜃1) a b

sd(𝜃0) = 0 242 0.66 237 292 0.5 286 392 0.59 387
sd(𝜃0) = 46 185 0.49 197 233 0.62 254 333 0.41 367
sd(𝜃0) = 91 187 0.33 197 225 0.42 197 321 0.24 262

spread in the classroom distribution of baseline scores, the loss in effort from students that

shift further from 𝑏 is larger for students below 𝑏 than for students above 𝑏. As a result, it

is optimal for the teacher to lower the chosen difficulty parameter.

Our analysis of the optimal grading pattern for different classroom settings leads

thus to two conclusions. First, holding classroom variance of baselines scores fixed, grading

standards should be set higher for higher average baseline scores. Second, holding classroom

average baseline scores fixed, grading standards should be set lower in classrooms with

higher baseline score variance.

Figure 3 – Mean Student Achievement Under Different Class Setting an Grading
Parameters
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7.2 Optimal unique grading standards and policy discussion

Consider the decision problem of a policy maker who wants to choose a unique

grading pattern to be used by all teachers that maximizes the mean achievement of all 𝑁

students in Saresp. Students share a common cost parameter 𝛾 and individual baseline

abilities 𝜃0𝑖, which are all observable to the policy maker:

(𝑎*
𝑗 , 𝑏*

𝑗) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎,𝑏

∑︁
𝑗∈𝐽

∑︁
𝑖∈𝑁𝑗

𝜃1𝑗 s.t. 𝑎𝑒−𝑎(𝜃1𝑗−𝑏)

(1 + 𝑒−𝑎(𝜃1𝑗−𝑏))2 = 𝛾(𝜃1𝑖 − 𝜃0𝑖) (7.2)

It is important to emphasize that this problem characterizes a policy that substi-

tutes Saresp for the current grading pattern. That is, it simulates a situation in which

Saresp would be used as the passing grade criterion, replacing students classroom marks.

Alternatively, it can be interpreted as the upper-bound estimate of the expected results of

merely disclosing Saresp scores to students.

Interestingly, there is no unambiguous theoretical prediction as to whether the

optimal unique standard policy should lead to higher average achievement than the current

teacher autonomy policy. On one hand, setting a unique standard could guarantee that

the (unique) optimal standard is implemented in every classroom. This could lead to an

improvement in effort of several students who may currently be assigned to a teacher

whose standards are sub-optimal. On the other hand, setting a unique standard is a very

strong restriction in comparison to the teacher-defined current grading policy, in which

several different standards can be used to effectively adapt for the optimal setting at each

classroom. This loss in degrees of freedom could lead to an overall decrease in student

effort if teachers are currently applying grading standards that do not depart much from

the optimum.

We solve the problem numerically3 for the passing grade threshold, using our

estimates of 𝛾 for each grade and subject, and our data on student baseline levels of ability.

Results are shown in Table 6 and illustrated in Figure 4.
3 We use a brute-force algorithm with a range that is larger than range of estimated teachers’ a and b

parameters.
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Figure 4 – Mean Student Achievement Under Unique Standards Policy

Our estimates of the impact of the new policy in mean student achievement are

positive for all grades and subjects. The implied increases in mean scores ranges are fairly

large, ranging from .28 (11 points in 6𝑡ℎ grade math) to .99 (43 points in 11𝑡ℎ grade

language) standard deviations of the respective grade and subject full sample scores.

All estimated 𝑎* coefficients are fairly higher than the range of median estimates

for teacher parameters across grades. In fact, the estimated coefficients are high enough to

virtually lead to a perfect separation of students below the thresholds, who would have

probability close zero of receiving a passing grade, and students above the thresholds, who
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Table 6 – Mean Student Achievement Under Unique Standards Policy

a b mean(𝜃0) mean(𝜃1) mean(𝜃0)
Math
6𝑡ℎ grade 1.54 244 202 215 226
8𝑡ℎ grade 0.85 288 215 247 273
11𝑡ℎ grade 1.54 315 253 270 303

Language
6𝑡ℎ grade 1.31 244 191 208 221
8𝑡ℎ grade 1.85 271 216 233 248
11𝑡ℎ grade 1.69 315 242 267 303

would have probability of passing close to one.

Estimates for 𝑏* are significantly higher than the estimates of teacher grading

patterns - for all grades and subjects, 𝑏* is more than one standard deviation above the

correspondent median teachers. In all cases, our estimates of passing-grade 𝑏* are closer to

teachers median values of thresholds 7 and 8 – in fact, for all grades and subjects 𝑏* is

between the correspondent median b for thresholds 7 and 8 of estimated for teachers.

As discussed in Section 6.1, a main motivation for teachers to implement passing

grade patterns with 𝑏 coefficients that are sub-optimal may be the reduction of retention

rates. If this is the case, we should expect the observed grading patterns to be further

from the optimum in grades 8𝑡ℎ and 11𝑡ℎ than in 6𝑡ℎ, because São Paulo State public

schools were under a policy of automatic approval for students in this grade. We have

also pointed out that stakes involved in graduation in 11𝑡ℎ are arguably the highest across

the three grades we analyze, suggesting that the 𝑏 should be the furthest from 𝑏* in this

grade. Our results match this description. Math median teacher estimates are found to be

further from 𝑏* as we move from 6𝑡ℎ to 8𝑡ℎ and 11𝑡ℎ grades (91.1, 110.6 and 148.9 points,

respectively), as well as language estimates (103.4 , 116.9 and 170.8, respectively).

This pattern raises the point that retention rates are an important dimension

related to grading, and should be taken into account in actual policy-making. We suggest

this as an important venue to be explored in future studies.

The policy simulation exercise makes it clear that the focus of our analysis is
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restricted to average student achievement on cognitive math and language standardized

tests, with the assumption that this is the only dimension taken into account in the

policy maker’s objective function. Teacher’s current grading patterns may in fact take

several other cognitive and noncognitive dimensions into account, providing a richer set

of incentives that is not captured by our model. Future research may shed light into this

relationship and help analyse other dimensions of grading from a policy perspective.
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8 Relation to the previous literature
We now replicate the empirical strategy used in the previous literature with our

data. Teacher grading patterns are estimated by taking the difference in mean student

achievement in standardized test scores and in the classroom, which is one of the variations

of equation (2.1) used in the literature. Imposing 𝛽 = 1 in equation (2.1), estimates of

grading patterns simplify to:

𝑠𝑐𝑜𝑟𝑒𝑖 =
𝑁𝑡𝑒𝑎𝑐ℎ𝑒𝑟𝑠∑︁

𝑗=1
[𝛼𝑗𝑡𝑒𝑎𝑐ℎ𝑒𝑟𝑖𝑗] + 𝑐𝑙𝑎𝑠𝑠_𝑚𝑎𝑟𝑘𝑖 + 𝜀𝑖𝑗 (8.1)

We then analyze the relationship between grading standards with the same linear

regression specification used in previous studies. Two different dependent variables are

tested: current scores (equation (8.2)) and gains in scores (equation (8.3)).

𝑠𝑎𝑟𝑒𝑠𝑝𝑗,𝑡 = 𝛼 + 𝛽𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑠𝑘,𝑡 + 𝜀𝑗,𝑡 (8.2)

Δ𝑠𝑎𝑟𝑒𝑠𝑝𝑗,𝑡,𝑡−2 = 𝛼 + 𝛽𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑠𝑘,𝑡 + 𝜀𝑗,𝑡 (8.3)

We also replicate the identification strategy of Haz (2012), using lagged standards

as instruments for current standards. Estimates are presented in Table 7. Columns (1) and

(2) show results for Math for equations (8.2) and (8.3), respectively, while columns (3) and

(4) introduce lagged standards as instruments for current standards. Columns (5-8) mirror

columns (1-4) for language.

The estimated coefficients that do not control for both sorting (student fixed-

effects) and endogeneity (instrumental variables) are universally positive, indicating that

higher rigor in grading is associated with increases in student scores. As we introduce

controls for student fixed-effects and instrumental variables, though, the effect is reduced,

indicating that sorting and endogeneity are important and should be controlled for. In the
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Table 7 – Regressions of Scores on Teacher Grading Patterns

Math Language
OLS IV OLS IV

(1) (2) (3) (4) (5) (6) (7) (8)
Panel A. 6𝑡ℎ grade
Standards 0.458*** 0.152*** 0.316*** 0.052 0.407*** 0.0558* 0.309*** -0.0781

(0.0316) (0.0271) (0.0514) (0.0409) (0.0392) (0.0314) (0.0519) (0.0446)

N 6,032 6,032 4,685 4,685 6,032 6,032 4,474 4,474
R-squared 0.040 0.007 0.038 0.003 0.029 0.001 0.031 0.00

Panel B. 8𝑡ℎ grade
Standards 0.527*** 0.151*** 0.429*** 0.000 0.457*** 0.0974*** 0.348*** -0.003

(0.0275) (0.0211) (0.0407) (0.0320) (0.0294) (0.0212) (0.0437) (0.0293)

N 11,275 11,275 9,235 9,235 11,275 11,275 8,750 8,750
R-squared 0.045 0.005 0.043 0.000 0.032 0.002 0.028 0.00

Panel C. 11𝑡ℎ grade
Standards 0.396*** 0.0498 0.309*** -0.052 0.450*** 0.159*** 0.295*** 0.152**

(0.0635) (0.0545) (0.0750) (0.0706) (0.0594) (0.0453) (0.0804) (0.0692)

N 1,121 1,121 1,024 1,024 1,121 1,121 1,015 1,015
R-squared 0.033 0.001 0.029 0.00 0.062 0.011 0.044 0.012

Student FE yes yes yes yes

Note: Standard-errors are clustered at teacher level. *** significant at 1%.

specification that controls for both sorting and endogeneity estimates are inconclusive at

the 5% significance level.

In our policy simulation we are able to control for sorting, since we use student

score gains to account for student fixed-effects. On the other hand, we are not able to

control for endogeneity issues. This raises an important caveat to our study. Our results

may be subject to the same positive bias found in our replication of the models used by

the previous literature, and thus should be interpreted with caution.
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9 Conclusion
In this study we have proposed the use a of new method for measuring teacher

grading patterns based on the IRT framework, which is widely used in test theory but

to our best knowledge has not yet been applied to teacher grading. We argue that this

method allows for a more interpretable measurement of grading patterns.

Comparing our estimates of teacher grading patterns with standards published

by São Paulo state-level education authority, we find that the median teacher tends to

reward students who are graded at the highest category of the Saresp scale (excellent)

with the highest possible classroom mark (10). This matching in scales on the higher end

of the ability scope is reassuring, especially when we take into account that teachers do not

observe student’s Saresp scores. This matching is not replicated, however, in the lower end

of the ability scope. We find that the median teacher has a high probability of assigning

passing grade scores for students below the lowest category in the Saresp scale (below

basic).

We simulate a policy in which the Saresp scores is used as the passing grade

criterion, setting unique grading standards for each grade and subject that would substitute

the current teacher-defined grading. The estimated effects of the policy are fairly high,

suggesting an increase in mean scores that ranges from .28 to .99 standard deviations across

the grades and subjects analyzed. Our optimal difficulty parameters (𝑏) are significantly

above the parameters estimated for the median teacher, which implies that retention rates

would be increased under the new policy.

Together, our policy simulation and the comparison of estimated grading patterns

with the official Saresp scale suggest that teachers value a distributional dimension in

their choices of grading parameters, in particular with respect to retention, at the expense

of the maximization of average scores. We do not intend to judge the adequacy of this

choice, and restrict our analysis to the measurement of only one side of the tradeoff - the

impact of grading on average scores. We suggest the investigation of the impact of grading

patterns on retention as an important venue to be explored in future studies.
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We emphasize a number of caveats and recommend that our results be interpreted

with caution. First, our analysis is methodologically restricted to the cognitive dimension

of student abilities and focuses only on the maximization of mean test scores, thus ignoring

several other objectives that should be taken into account in any policy decision. Second,

our empirical approach may suffer from endogeneity problems that may lead to biased

estimates. As as a result, we suggest that our study be interpreted only as a starting point

for further discussion about how to improve grading in Brazil.
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Appendix A
Table 8 – Proficiency level classification on Saresp scale

Panel A. Proficiency Level Thresholds

Language Math
Proficiency
Level 6𝑡ℎ grade 8𝑡ℎ grade 11𝑡ℎ grade 6𝑡ℎ grade 8𝑡ℎ grade 11𝑡ℎ grade

Below basic <175 <200 <250 <200 <225 <275
Basic 175 to <225 200 to <275 250 to <300 200 to <250 225 to <300 275 to <350
Adequate 225 to <275 275 to <325 300 to <375 250 to <300 300 to <350 350 to <400
Advanced ≥ 275 ≥ 325 ≥ 375 ≥ 300 ≥ 350 ≥ 400

Panel B. Description of Proficiency Levels

Classification Proficiency
Level Description

Insufficient Below basic Students demonstrate insuficient proficiency on content, competencies
and abilities desirable for their current grade/year.

Sufficient Basic
Students demonstrate minimal proficiency of content, competencies
and abilities, but have the structures required to interact with the
curriculum of the subsequent grade/year.

Adequate Students demonstrate full proficiency of content, competencies and
abilities desirable for their current grade/year.

Advanced Advanced Students demonstrate proficiency on content, competencies and abilities
above the required level for their current grade/year.
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