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RESUMO 

Processamento de imagens em profundidade para melhora do desempenho de matrizes 

suínas por meio da detecção precoce de claudicação e de alterações no escore de condição 

corporal 

A observação, o controle e a manutenção das condições físicas de matrizes suínas em níveis 
aceitáveis são fundamentais para manter o bem-estar animal e a produção em padrões adequados. A 
claudicação causa dor e dificuldade de locomoção e, no entanto, é uma desordem comum em matrizes 
suínas que, além do impacto negativo no bem-estar, gera, também, grandes impactos na produção, 
uma vez que os animais que demonstram esse problema, apresentam um menor número de leitões 
nascidos vivos, menor número de partos por ano e são removidas do rebanho a uma idade mais 
jovem do que a ideal. Sabe-se, ainda, que, durante a gestação, cada matriz deve receber uma 
quantidade de ração diferenciada de acordo com sua condição corporal. Animais abaixo do peso 
apresentam deficiência nutricional e menor número de leitões nascidos por ninhada. Já as matrizes 
com excesso de peso apresentam um desenvolvimento anormal das glândulas mamárias, reduzindo a 
quantidade de leite produzida durante a lactação, acarretando em perdas econômicas. Tanto a detecção 
da claudicação quanto a classificação da condição corporal são feitos por meios subjetivos e 
dependentes da opinião pessoal do tratador, o que pode gerar divergências entre as classificações 
dadas por cada indivíduo. Destaca-se, portanto, a importância do reconhecimento precoce de animais 
que apresentam condições físicas fora dos padrões exigidos, visando a prevenção de perdas produtivas 
causadas tanto pelo agravamento das condições apresentadas quanto pelo grande impacto no bem-
estar dos animais. Tendo-se isso em vista, o presente trabalho visou obter três características (escore 
de condição corporal, massa corporal e espessura de toucinho) por meio de imagens em profundidade, 
que se mostraram eficazes na obtenção dessas características em outros animais (suínos machos não-
castrados e vacas leiteiras). Além disso, buscou-se desenvolver um método para a detecção precoce de 
claudicação em matrizes suínas, utilizando-se a abordagem da cinemática dos animais, que vem dando 
bons resultados e cujas dificuldades têm potencial para serem sanadas por meio do uso de imagens em 
profundidade em vez do método de marcadores reflexivos utilizado atualmente.  Para predizer a 
condição corporal, uma regressão linear múltipla foi obtida usando o menor eixo da elipse ajustada ao 
redor do corpo da matriz suína, a largura dos ombros e o ângulo da curvatura da última costela.  Para 
predizer a espessura de toucinho, foi realizada uma regressão linear múltipla usando a altura curvatura 
da última da costela, o perímetro do corpo da matriz, o maior eixo da elipse ajustada, o comprimento 
do focinho à cauda e o escore predito da condição corporal.  Foi possível obter a massa corporal com 
uma regressão linear simples usando o volume projetado do corpo das matrizes.  Para detecção de 
claudicação, três modelos apresentaram a melhor precisão (76,9%): análise discriminante linear, 1 
vizinho mais próximo e 10 vizinhos mais próximos.  As variáveis de entrada utilizadas nos modelos 
foram obtidas a partir de vídeos em profundidade (número, tempo e comprimento de passos para 
cada uma das quatro regiões analisadas-ombros esquerdo e direito e quadris esquerdo e direito; tempo 
total de caminhada e número de máximos locais para a região da cabeça).  Como resultado desses 
estudos, observou-se que câmeras em profundidade podem ser utilizadas na automação de medidas de 
peso, condição corporal, espessura de toucinho e claudicação de matrizes suínas. 

Palavras-chave: Zootecnia de precisão; Bem-estar; Tempo de voo, Dimensões 
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ABSTRACT 

Depth images’ processing to improve the performance of sows through early detection of 

lameness and changes in body condition score 

The observation, control and the maintenance of the physical condition of sows in 
acceptable levels are critical to maintain the animal welfare and production in appropriate standards.  
Lameness causes pain making locomotion difficult.  However, lameness is a common disorder in sows 
that causes negative impacts in both welfare and production.  Since the animals that demonstrate this 
problem, have a smaller number of born-alive piglets, fewer gestation per year and are removed from 
the herd at a younger age than the ideal.  In addition, it is industry practice to limit feed sows to ensure 
that they remain at an ideal condition score.  It is known that, during gestation, each sow should 
receive a different amount of food according to its body condition.  Underweight animals have 
nutritional deficiency and lower number of piglets per litter. On the other hand, overweight sows have 
an abnormal development of mammary glands, reducing the amount of milk produced during 
lactation, causing economic losses.  However, moving sows to group gestation makes it difficult to 
monitor condition score in gestating sows.  Both the detection of lameness and the classification of 
body condition are currently assessed using subjective methods, which is time consuming and difficult 
to accurately complete.  Therefore, the early recognition of animals that present physical condition 
outside the standards is important to prevent production losses caused by both the aggravation of the 
conditions presented and the impact on the animals’ welfare.  The objective of this project is to obtain 
three characteristics (body condition score, mass and backfat thickness) through depth images, that 
proved to be effective on the acquisition of these features in other animals (boars and cows).  The 
second objective is to develop a method for early detection of lameness using the kinematic approach, 
that has been generating good results and which difficulties have the potential to be reduced by using 
depth images instead of the method of reflective markers currently used.  To predict body condition, a 
multiple linear regression was obtained using the minor axis of the ellipse fitted around sow’s body, 
the width at shoulders, and the angle, of the last rib’s curvature.  To predict backfat, a multiple linear 
regression was performed using the height of last rib’s curvature, the perimeter of sow’s body, the 
major axis of the ellipse fitted around sow’s body, the length from snout to rump, and the predicted 
body condition score.  It was possible to obtain the body mass with a simple linear regression using 
the projected volume of the sows’ body.  For lameness detection, three models presented the best 
accuracy (76.9%): linear discriminant analysis, fine 1-nearest neighbor, and weighted 10-nearest 
neighbors.  The input variables used on the models were obtained from depth videos (number, time, 
and length of steps for each of the four regions analyzed - left and right shoulders and left and right 
hips; total walk time; and number of local maxima for head region). As a result of these studies, it has 
been demonstrated that a depth camera can be used to automate the weight, condition score, backfat 
thickness, and lameness acquisition/detection in gestating and lactating sows. 

Keywords: Precision livestock farming; Well-being; Time-of-flight; Dimensions 
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1 INTRODUCTION 

The observation, control and maintenance of the physical condition of sows in acceptable levels are 

critical to maintain the animal welfare and production in appropriate standards.  The animal welfare includes its 

physical and mental state.  In December of 1979, it was proposed in the United Kingdom, during the Farm Animal 

Welfare Council, that the welfare of an animal should be considered in terms of "five freedoms".  These freedoms 

define ideal states rather than acceptable welfare standards (Table 1).  Sometimes, a single problem can affect more 

than one of those freedoms. 

 

Table 1. The five freedoms and their provisions.  Adapted from UK Government Web Archive. 

Freedom Provision 

Freedom from hunger, thirst and malnutrition 
Ready access to fresh water and a diet to maintain 
full health and vigor 

Freedom from discomfort 
Appropriate environment including shelter and a 
comfortable resting area 

Freedom from pain, injury or disease Prevention or rapid diagnosis and treatment 

Freedom to express normal behavior 
Sufficient space, proper facilities and company of the 
animal's own kind 

Freedom from fear and distress 
Conditions and treatment which avoid mental 
suffering 

 
The animal welfare assessment protocol for pigs, Welfare Quality® (WELFARE QUALITY®, 2009), 

states that good health, one of the principles of the animal welfare, is composed of three criteria: absence of injury, 

absence of disease and absence of pain induced by manager (Table 2).  It is proposed to evaluate the first criterion 

on sows by verifying the presence of lameness.  This is done visually, rating the animals in three levels: level 0 

(normal gait, or the animal with difficulty on walking, but still using all four legs), level 1 (sow severely lame with 

asymmetric walking) and level 2 (animal cannot support any weight on affected limb, or cannot walk). 

The good feeding, another principle proposed by the Welfare Quality®, is composed of two criteria: 

absence of prolonged hunger and absence of prolonged thirst.  The first criterion must be assessed, in sows, by 

measuring the body condition of the animals.  This is done visually and by touch, classifying the body condition in 

three levels: level 0 (sow in good condition, with well-developed muscles on the bone), level 1 (thin sow, with bones 

easily felt; or sow visually obese) and 2 (very thin sow, with the hips and backbone prominent). 

For the quantification of these two principles, both the detection of lameness and the classification of 

body condition are done by subjective methods, dependent on the opinion of the handler, which can generate 

differences between ratings given by different people.  Lameness causes pain and difficulty of locomotion (Anil, Anil, 

& Deen, 2009) and, however, it is a common disorder in sows that causes negative impacts on both welfare and 

production, since the animals that demonstrate this problem, have a smaller number of born-alive piglets, fewer 

gestations per year and are removed from the herd at a younger age than the ideal (Anil et al., 2009). 

It is known that, during pregnancy, each sow should receive a different amount of food according to its 

body condition.  Underweight animals present nutritional deficiency, fewer piglets born per litter, and those that are 

born, can present also nutritional deficiencies and smaller body mass (Eissen, Kanis, & Kemp, 2000).  Overweight 

sows are usually larger than the space provided in the pen, which leads to stress for the animal and may cause death 

of piglets by crushing.  In addition, overweight sows have an abnormal development of mammary glands, reducing 
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the amount of milk produced during lactation.  Sows that are obese during pregnancy tend to reduce the amount of 

food ingested during lactation, which also reduces the amount of milk produced (Eissen et al., 2000). 

 

Table 2. Evaluation of sows Welfare.  Adapted from Welfare Quality® (2009). 

Welfare Principles Welfare Criteria Measurements 

Good feeding 
1 Absence of prolonged hunger Body condition score 

2 Absence of prolonged thirst Water supply 

Good housing 

3 Comfort around resting 
Bursitis, shoulder sores, absence of manure 
on the body 

4 Thermal comfort Painting, huddling 

5 Ease of movement Space allowance, farrowing crates 

Good Health 

6 Absence of injuries 
Lameness, wounds on the body, vulva 
lesions 

7 Absence of disease 

Mortality, coughing, sneezing, pumping, 
rectal prolapse, scouring, constipation, 
metritis, mastitis, uterine prolapse, skin 
condition, ruptures and hernias, local 
infections 

8 
Absence of pain induced by 
management procedures 

Nose ringing and tail docking 

Appropriate 
behavior 

9 Expression of social behaviors Social behavior 

10 Expression of other behaviors Stereotypies, exploratory behavior 

11 Good human-animal relationship Fear of humans 

12 Positive emotional state Qualitative Behavior Assessment (QBA) 

 

Therefore, the early recognition of animals that present physical condition outside the ideal condition is 

important to prevent production losses caused by both the aggravation of the conditions presented and the impact 

on the animals’ welfare.  Some authors have been using ratings like those proposed by the Welfare Quality® to 

assess body condition of sows over the years (Charette, Bigras-Poulin, & Martineau, 1996; Esbenshade, Britt, 

Armstrong, Toelle, & Stanislaw, 1986; M. T. Knauer & Baitinger, 2015; Mark Knauer, Stalder, Baas, Johnson, & 

Karriker, 2012; Maes, Janssens, Delputte, Lammertyn, & De Kruif, 2004; Salak-Johnson, Niekamp, Rodriguez-Zas, 

Ellis, & Curtis, 2007) (Patience & Thacker, 1989). In most of the cases, this classification is done using a scale from 1 

to 5, ranging from very thin to obese. The classification proposed by Patience & Thacker (1989) is the most used and 

estimates the fat reserves of the animal through both visual assessment and the pressing of the pelvic girdle of the 

animal, using the fingers (Table 3). 

The most common method to quantify lameness is also the visual score.  The scoring systems proposed 

by Main, Clegg, Spatz, & Green (2000) and by the Welfare Quality® are the most used.  That method consists in 

classifying the gait of the animals on a scale from 0 to 5, ranging from an animal that shows no lameness (score of 0) 

to an animal that can't stand up (score of 5). 

As alternatives to these subjective methods of classification, various methods have been proposed to 

obtain a more objective measure. For lameness, kinetics and kinematics have been widely used in horses and cows 

and they began to be used in pigs. The kinetics aims to relate the movement of the bodies with their causes and 

considers the dynamic forces and acceleration. The footprint was analyzed in many species to study locomotion 

disorders.  One of the possibilities of kinetic is to study simultaneously the positioning of the four legs and quantify 

parameters that cannot be measured with kinematics, such as slips when walking, trodden angles and the area of 

limbs in contact with the floor (Nalon, Conte, Maes, Tuyttens, & Devillers, 2013).  The use of a hallway with floor 

covered in clay has been tested for acquiring the footprints of sows (Grégoire, Bergeron, D’Allaire, Meunier-Salaün, 
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& Devillers, 2013), but it has not been possible to establish a relationship between the footprint pattern and the level 

of lameness, perhaps because of the floor type used. 

Kinematic analysis quantifies the characteristics of the animal’s gait in the form of measures related with 

time, distance and angles that describe the movements of the body segments and the joint angles.  This analysis is 

made using reflective markers in predetermined locations on the body of the animal and video recording of the gait.  

With this technique, several parameters can be analyzed simultaneously by an auto-tracking software, however, some 

problems have been associated with it, mainly related with the placing of markers and their movement with the walk, 

the difficulty in finding joints or bones located behind muscle and fat where these markers will be positioned, and 

repeatability of positioning (Nalon et al., 2013). Despite the problems, this method has been effective showing 

(Grégoire et al., 2013) that lame sows have lower walking speed, spend less time standing during a period of 24 hours 

and tend to step more often during the time following the feeding. 

 

Table 3. Body condition score of sows. Adapted from Patience & Thacker (1986). 

Body condition Score 

     
1 2 3 4 5 

Too thin Skinny Ideal Overweight Obese 

Prominent hip 
bones and spine 

Hip bones and 
spine easily felt 

without applying 
pressure. 

Hip bones and spine 
felt only with palm 

pressure application. 

Hip bones and spine 
cannot be felt. 

Hip bones and spine 
thickly covered with fat. 

 

At the end of the 90’s, it was noted (Charette et al., 1996) the need for evaluation of body condition of 

sows using not just subjective methods of classification, but also more objective values, as body mass, the thickness 

of subcutaneous fat and dimensions of the animal, taking into consideration the parity of the animals.  This type of 

classification, covering a larger number of variables, was adopted more recently (Sell-Kubiak, 2015) and expanded, 

using also the duration of the sow’s gestation as a factor to be considered, proposing a classification of the sow’s 

body condition throughout gestation and lactation, and obtaining measures of body mass and backfat thickness at 

the time of insemination, after birth and after weaning. 

To reduce the errors with the body condition scoring, one should try to reduce the variation generated by 

the classification done by different managers.  A way of doing that was proposed by Knauer & Baitinger, 2015, who 

developed a caliper that quantifies the angularity from the spinous process to the transverse process of a sow’s back 

and concluded that this instrument can be used as a tool to standardize this classification. 
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Another way to standardize this measurement would be to automate the process by analyzing images 

generated by depth cameras. This method has already been used for dairy cows (Kuzuhara et al., 2015), obtaining a 

correlation of 74% between the predicted and actual body condition score.  This can indicate the possibility of using 

this method for sows.  In addition to the body condition classification by scores, one can also combine it with data 

of backfat thickness, body mass, parity and dimensions of sows to obtain a new classification regarding the body 

condition of these animals as soon as these parameters have been proved to be effective in the body characterization 

of sows (Charette et al., 1996; Sell-Kubiak, 2015). 

The most used method for acquiring the backfat thickness (De Rensis, Gherpelli, Superchi, & Kirkwood, 

2005; Kim et al., 2016; M. T. Knauer & Baitinger, 2015; Maes et al., 2004; Magowan & McCann, 2006) is obtaining it 

through ultrasonic probes.  One problem with this approach is the difficulty of applying it on an industrial scale, 

since this assessment should be manually done for each animal.  Noticing this difficulty in the production of dairy 

cows, Weber et al., 2014 proposed the use of a depth camera for prediction of the animals’ backfat, obtaining a 

correlation of 96% with the fat thickness measured with ultrasonic probes.  This indicates the possibility of using this 

method on sows to predict their backfat. 

Weighing is a time consuming and stressful practice for both the animal and the handler.  Taking this into 

account, several authors (Frost et al., 1997; Kashiha et al., 2014; Kongsro, 2014; Schofield, 1990; Schofield, 1999; Wu 

et al., 2004) have been using pigs’ dimensions data for predicting animal’s mass.  To replace the scale by an indirect 

method, both the convenience and the accuracy of the method to be used should be considered.  Different methods 

of obtaining pigs’ mass have been tested by many authors (Philips & Dawson, 1936; Zagaroza, 2009).  The use of 

calipers and tape is shown to be effective to this end, but the need to restrict the animals to obtain the data, makes 

this process impracticable on an industrial scale and equivalent to the process of weighing itself.  With that, the use 

of images to obtain pigs’ dimensions would be interesting because of its non-invasive approach. 

The potential of using images for calculating dimensions was noted by other authors (Kashiha et al., 2014; 

Schofield, 1990; Schofield, 1999; Wang, Yang, Winter, & Walker, 2008; Wu et al., 2004), which correlated the 

animals’ area obtained through images with their mass and developed prediction equations.  In general, these authors 

point to the fact that to extract the pigs’ dimensions, their skin and hair colors must be distinct from the 

environment color.  Dark, stained or dirty animals hinder the automation of this approach.  In addition to the color 

of the animal, the presence of adequate light is critical for this application.  Kashiha et al. (2014) found great lighting 

values within the range of 40 to 150 lux.  To avoid this problem, it was developed (Wu et al., 2004) an image capture 

system with six high-resolution cameras (3032 × 2028 pixels) and three flash units to obtain the 3-D forms of live 

pigs.  However, the excess equipment and the high costs involved make it difficult to use this type of image 

capturing on an industrial scale. 

A different approach has been used (I.C.F.S. Condotta, Brown-Brandl, Silva-Miranda, & Stinn, 2018; 

Kongsro, 2014; Pezzuolo, Guarino, Sartori, González, & Marinello, 2018), applying depth cameras to obtain pigs’ 

mass (grow-finish pigs).  This information is obtained from the correlation between the body volume generated from 

the depth images and the mass of the animal.  This approach reduces concerns about calibration and lighting, in 

addition to providing the animal’s height. 

These depth cameras have been used in many areas, such as 3D mapping and reconstruction  (Izadi et al., 

2011, Jia et al., 2012), indoor robotics (Correa et al., 2012; Ganganath & Leung, 2012; Benavidez & Jamshidi, 2011), 

object detection and recognition (Hernández-López et al., 2012) and recognition of gestures (Chang et al., 2011 (a); 

Chang et al., 2011 (b), Hondori et al., 2012).  A commercial sensor that is being used (I.C.F.S. Condotta et al., 2018; 
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Kongsro, 2014; Kulikov et al., 2014; Lao et al., 2016; Lee, Kim, Lim, & Ahn, 2016; Pezzuolo et al., 2018; Stavrakakis 

et al., 2015; Zhu, Ren, Barclay, McCormack, & Thomson, 2015), as an alternative to expensive laser scanners  

(Khoshelham & Elberink, 2012) and stands out for its low cost, reliability and measurement speed (Smisek et al., 

2015) is the Microsoft Kinect sensor.  The version 1 (Figure 1) of this sensor uses structured light technology, which 

is the process of projecting a known pattern into a scene or object and obtaining depth values according to its 

reflection pattern.  For that, the emitter projects a beam of light in the near infrared region and the infrared camera is 

triggered to obtain the infrared image, which contains the pattern of dots of reflected light in the scene.  Another 

commercial sensor that also uses the structured light technology and is being applied (H. Guo et al., 2017; Y. Guo, 

Zhu, Jiao, & Chen, 2014; Kuzuhara et al., 2015) in the animal area is the Xtion® Pro, from Asus (Figure 2). 

 
Figure 1. Microsoft Kinect sensor v.1 components. 

 

 

 

 

 

 

Figure 2. Asus Xtion® Pro sensor components. 
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Figure 3. Microsoft Kinect sensor v.2 components. 

 

According to the technical specifications provided by Microsoft, the version 2 of the Kinect sensor 

(Figure 3) is composed by an RGB camera, three infrared (IR) emitters, an infrared depth sensor and four multi-array 

microphones, and presents less problems with capturing images in widely lit environments when compared to the 

first version of the sensor.  Three image outputs are provided by Kinect: (1) RGB image with 1920 x 1080 pixels, (2) 

IR image with 512 x 424 pixels, and (3) depth image with 512 x 424 pixels, in addition to the possibility of audio 

capture.  Parallel to the depth image, a numerical map is generated, which is the main raw data provided by the 

sensor, containing the distances, in mm, between the sensor and each pixel that makes up the image.  For generating 

the depth image, this second version of the sensor uses the time-of-flight technology, which is based on the principle 

that, “knowing the speed of light, the distance to be measured is proportional to the time required by the active 

lighting source to travel from the emitter to the target"(Lachat, Macher, Mittet, Landes, & Grussenmeyer, 2015). 

The present work aimed to obtain three characteristics (body condition score, body mass and backfat 

thickness) of sows using a commercially available depth camera, that proved to be effective in obtaining these 

characteristics in other animals (dairy cows).  In addition, with the same sensor, a method for early detection of 

lameness in sows was developed, using the kinematic of animal’s approach, that has been giving good results and 

which difficulties have the potential to be overcame using a depth camera instead of the method of reflective 

markers currently used.  
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2 MAIN RESULTS AND DISCUSSION 

This thesis was divided into three papers that will be sent for publication this year.  The first paper will be 

sent for publication on the Computers and Electronics in Agriculture journal and covers a study of the current 

available depth sensing technologies and evaluate its use on precision animal management applications.  The second 

and third papers will be both send for publication on the Biosystems Engineering journal.  The second paper covers 

the body condition characterization of sows through depth images, and the third paper covers the detection of 

lameness on sows also through depth images. 

On the first paper unit transformation equations were developed.  These equations make it possible to 

determine the actual dimensions of an object (length, area and volume), in metric units, from its dimensions in the 

image, in pixels, based on the distance between the object and the sensor, that can be easily obtained with depth 

cameras.  These equations are an advantage on animal applications that use computer vison because they eliminate 

the need for the presence of an object with pre-determined dimensions on the image.  This facilitate the images 

analysis and the automation of the process. 

These equations developed were used on the third chapter of this thesis to obtain dimensions of animals 

in metric units.  Also, one of the conclusions of this first paper was that the time-of-flight technology is the best to 

be used for indoor applications and the combination of stereo vision with structured light is the best for outdoor 

applications.  With that in mind, Kinect v.2 camera was selected to be used on both the second and third papers, as it 

is a low-cost depth camera that uses the time-of-flight technology. 

On the second paper, body condition, backfat and weight were assessed using a depth camera.  For that, a 

multiple linear regression was obtained using the minor axis of the ellipse fitted around sow’s body, the width at 

shoulders, and the angle, of the last rib’s curvature to predict body condition.  To predict backfat, a multiple linear 

regression was performed using the height of last rib’s curvature, the perimeter of sow’s body, the major axis of the 

ellipse fitted around sow’s body, the length from snout to rump, and the predicted body condition score.  It was 

possible to obtain the body mass with a simple linear regression using the projected volume of the sows’ body. 

As for the third paper, lameness was assessed on sows using one of the three models: linear discriminant 

analysis, fine 1-nearest neighbor, and weighted 10-nearest neighbors; and input variables obtained from depth videos 

(number, time, and length of steps for each of the four regions analyzed - left and right shoulders and left and right 

hips; total walk time; and number of local maxima for head region). 

For both papers that assessed the physical conditions of sows, the errors obtained were in acceptable 

levels (7.7% for body condition scoring, 16.1% for backfat, 3.8% for weight, and 33.1% for lameness classification) 

when compared with the literature.  These works indicate that automation through image processing could be 

possible.  The next steps would be to try to reduce the errors found.  One problem with this is the difficulty in 

correctly identifying subjectively score data as a standard to be used as a comparison.  An alternative would be to 

develop a completely new physical condition classification system based on image processing, that would take into 

consideration the way that dimensions and behavior of individual animals change over time, rather than try to predict 

the current indicators of good physical condition (e.g. body condition score, backfat, weight , and lameness 

presence).  This could aid producers to take better and faster management decisions, with a reduced stress level for 

both workers and animals, improving animal well-being and maximizing the profitability of swine production. 
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3 EVALUATION OF LOW-COST DEPTH CAMERAS FOR PRECISION LIVESTOCK 

FARMING APPLICATIONS 

Abstract 
Low-cost depth-cameras have been used in many agricultural applications.  These cameras use one or a 

more of these three technologies: structured light (SL), time-of-flight (ToF), and stereovision (SV).  The objectives 
were to 1) evaluate different technologies for depth sensing, including measuring, accuracy, and repeatability of 
distance data, and 2) to compare these parameters at different positions within the image, and 3) determine each 
camera’s usefulness in indoor and outdoor settings.  Then, cameras were tested in a swine facility.  Five different 
cameras were used: (1) Microsoft Kinect v.1 (SL), (2) Microsoft Kinect v.2 (ToF), (3) Intel® RealSense™ Depth 
Camera D435 (SL, SV), (4) ZED Stereo Camera (StereoLabs; SV), and (5) CamBoard Pico Flexx (PMD 
Technologies, ToF).  Results indicate that there were significant differences for all cameras (P<0.05), except for ToF 
cameras (Kinect v.2 and Flexx).  All cameras showed an increase in the standard deviation as the distance between 
camera and object increased; however, the Intel RealSense camera had a larger increase.  Time-of-flight cameras had 
the smallest error between different sizes of objects.  All cameras showed some distortion at the edges of the images, 
and ToF cameras had non-readable zones on the corners of the images.  In conclusion, understanding the errors 
associated with each type of technology is important for capturing useful data.  It was concluded that the ToF 
technology is the best to be used for indoor applications and the combination of SV with SL is the best for outdoor 
applications. 
 
Keywords: Depth image, Time-of-flight, Stereo vision, Structured light 
 

3.1 Introduction 

Low-cost depth cameras have been used as an alternative to expensive laser scanners (Khoshelham & 

Elberink, 2012)  in various areas, such as mapping and 3D reconstruction (Izadi, Kim, & Hilliges, 2011), indoor 

robotics (Benavidez, 2011; Correa et al., 2012; Ganganath & Leung, 2012), objects’ detection and recognition 

(Hernández-López et al., 2012), and gesture recognition (Chang, Chen, & Huang, 2011; Chang, Wang, & Chen, 

2011).  Most of these areas were originally approached using standard digital image processing and analyzing, but 

problems with this approach, such as lighting, color distinction and excess of equipment, led to the use of depth 

cameras. 

There are several technologies used for depth acquisition.  Stereo vision was the first one used to acquire 

information on the objects’ geometry.  The structured light (SL) technology was introduced to overcome some of the 

problems with the stereovision and, after that, the time-of flight cameras started being used. 

Depth images provided by these cameras are composed of a numeric map containing the distances, most 

commonly in metric units, between the sensor and each pixel that makes up the image.  Depth cameras have been 

used in a variety of agricultural applications (Condotta et al., 2018; Guo et al., 2017; Hao & Shengli, 2014; Kongsro, 

2014; Kulikov et al., 2014; Lao et al., 2016; Lee, Jin, Park, & Chung, 2016; Stavrakakis et al., 2015; Wang et al., 2018; 

Zhu, Ren, Barclay, McCormack, & Thomson, 2015).  The advantages that have been noted include low cost, 

reliability and speed of measurement.  However, some problems that have been noted are occlusion, (difficulty of 

acquiring reliable data on environments with excess of light, preventing its use for outdoors applications), shape 

distortion; motion blur, and noise.  These issues are related to the technology used.  Understanding the limitations of 

each type of depth camera technology will provide a basis for the technology selection and the development of 

research involving its use. 

Khoshelham & Elberink (2012) examined the accuracy and precision of the depth data provided by a 

Kinect sensor v.1 and provided an explanation of various errors.  The random error of measurements fluctuated 
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between a few millimeters to 4 cm; this error tended to increase with distance between sensor and object and.  In 

addition, the errors in the distance data originated from three sources: (1) calibration errors, (2) configuration of the 

measuring area (improper lighting, or image geometry), and (3) smooth or bright surfaces.  While lighting is generally 

not a problem with these depth cameras for indoor applications, intense lighting can generate low contrast in the 

infrared image and, therefore, result in gaps on the depth image.  These gaps can also occur when the distance from 

the object to the sensor is outside of the operating range, or when the orientation of the object surface is such that 

the emitter does not illuminate some areas, or the camera fails to capture information.  Surfaces that are too bright or 

smooth are very reflective and can also prevent measurement. 

Generally, depth cameras’ error is low (Dutta, 2012); however, the standard deviation of the distance data 

increases with increasing distance between sensor and object and is greater on the corners of the image.  In addition, 

depth data has been reported to be unusable or inaccurate on the object edges because, in these areas, the depth map 

is obtained through interpolation of the projections of the reflected infrared light on two different regions, the edge 

and the background (Gottfried, Fehr, & Garbe, 2011).  For studies capturing specific distance data that use more 

than one depth camera there is a need to know the relative differences between the cameras and its captured data. 

 

3.1.1 Technologies’ principles 

There is a variety of commercial depth cameras that have being used on agricultural applications (Table 1).  

Currently, Kinect (v.1 and v.2) and Xtion PRO Live are not available on market.  Technology used by these depth 

cameras can be divided into 3 different principles: stereovision (SV), structured light (SL), and Time-of-flight (ToF).  

To form the depth image, SV cameras use two RGB cameras to acquire images from the same scene at slightly 

different positions.  The 3-dimensional position of a point on the scene is calculated by triangulation between 

corresponding points on both images(Berkovic & Shafir, 2012; Keselman, Woodfill, Grunnet-Jepsen, & Bhowmik, 

2017).  Structured light cameras form the depth image by using the IR emitter to project a beam of light that is 

divided into multiple beams when reflected on the objects, forming a pattern of points which are captured by the IR 

camera.  This pattern is compared with a standard of predetermined distance from the camera.  The distance from 

each pixel to the camera is calculated by triangulation (Andersen et al., 2012; Berkovic & Shafir, 2012; Sarbolandi, 

Lefloch, & Kolb, 2015; Zhang, 2018).  The time-of-flight (ToF) cameras use a technology that is based on measuring 

the time that the light emitted by the IR emitter requires to travel to a scene and back to the camera.  The IR light is 

then captured by the IR camera, and, using speed of light, it is possible to calculate the distance traveled (Sarbolandi 

et al., 2015). 

 

Table 1. Comparison of commercial depth cameras. 

Camera Principle 
Measuring 
Range (m) 

Depth 
Resolution 

RGB Max 
Resolution 

Frame Rate 
(FPS) 

FoV 
(HxV) 

Price 
(US$) 

Kinect v.1 SL 0.4 – 3.5 640 x 480 640 x 480 15/30 57º x 43º 250 
Xtion PRO SL 0.8 – 3.5 640 x 480 1280 x 1024 30/60 58º x 45º 140 

Xtion 2 SL 0.8 – 3.5 640 x 480 2592 x 1944 30 74º x 52º 236 

Kinect v.2 ToF 0.5 – 4.5 512 x 424 1920 x 1080 15/30 70º x 60º 140 
Pico Flexx ToF 0.1 – 4.0 224 x 171 - 45 62º x 45º 390 

Pico Monstar ToF 0.5 – 6.0 352 x 287 - 60 100º x 85º 1930 
ZED SV 0.5 - 20 2208 x 621 2208 x 621 15/30/60/100 90º x 60º 450 

RealSense D415 SL+SV 0.16 – 10 1280 x 720 1920 x 1080 90 63º x 40º 150 
RealSense D435 SL+SV 0.11 - 10 1280 x 720 1920 x 1080 90 85º x 58º 180 
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3.1.2 Objectives 

The objective of this study was to evaluate different technologies for depth sensing, including (1) measure 

the accuracy and repeatability of distance data, (2)  measure the accuracy and repeatability of dimensions data relative 

to positions within the image and distance from the camera, (3) develop unit transformation equations for each 

camera, (4) determine the maximum useful distance and the associated errors for each camera in indoor and outdoor 

settings, (5) test each camera to evaluate its usefulness in collecting phenotypic data of livestock. 

 

3.2 Materials and Methods 

The work was composed of four experiments.  For all experiments, five different types of cameras were 

used: (1) Microsoft Kinect v.1 (Figure 1a), (2) Microsoft Kinect v.2 (Figure 1b), (3) Intel® RealSense™ Depth 

Camera D435 (Figure 1c), (4) ZED Stereo Camera (StereoLabs) (Fig. 1d), and (5) CamBoard Pico Flexx (PMD 

Technologies) (Figure 1e).  These cameras represent different technologies currently being used on agricultural 

research (ToF, SV combined with SL, SL, ToF and SV, respectively).  Because Microsoft Kinect v.2 has being 

discontinued and, at the same time, is one of the most used depth cameras in agricultural research, another low-cost 

ToF camera was tested along with this camera. 

Two types of programs were developed: (1) image acquisition programs and (2) image processing 

programs.  For image acquisition, different programing environments were used for each camera.  For CamBoard 

Pico Flexx and the Kinect cameras v.1 and v.2, a numerical computing software (MATLAB, R2018a) on a Windows 

computer was used.  For Intel® RealSense™ camera, a C++ program was developed on an UP-Core board with an 

Ubuntu kernel using Intel® RealSense™ SDK, and, for ZED camera, a C++ program was developed on a NVIDIA 

Jetson TX2 board, also with an Ubuntu kernel, using ZED SDK.  All the image processing programs were 

developed on a Windows computer using MATLAB, R2018a. 
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Figure 1. Components of commercial depth cameras being used in this study (out of scale). (a) Microsoft Kinect v.1, (b) 
Microsoft Kinect v.2, (c) Intel® RealSense™ Depth Camera D435, (d) ZED Stereo camera (StereoLabs) and (e) CamBoard 
Pico Flexx (PMD Technologies). 

 

The livestock experiment was conducted in a grow-finish building at the USDA-ARS Meat Animal 

Research Center (USMARC) in Clay Center, Nebraska (-98.13° W, 42.52° N).  Digital RGB color images, depth 

images, and masses were collected on a population of grow-finish pigs at three different time-points.  All animal 

procedures were approved by the USMARC IACUC and followed recognized guidelines for animal use and care 

(FASS, 2010). 

 

3.2.1 Distance accuracy and repeatability 

A total of three depth cameras of each of the test types of cameras were compared for repeatability 

between sensors.  Each camera was used to collect images of a wall at five distances (from 1.0 to 3.0 meters, every 

0.5 m) (Figure 2).  Five depth images and five RBG images (except for Pico Flexx) from each camera were collected. 
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Figure 2. Positioning of the components of the experiment: (a) table with depth cameras and computer for data acquisition and 
(b) markings on the floor (0.5 m from each other) to capture images of the wall at different distances (from 0.5m to 3.0 m). 

Depth images were processed with an algorithm developed to extract a fixed area of 11 X 11 pixels at the 

center of the wall.  These points were recorded and, then, the average and the standard deviation were calculated. 

To evaluate the repeatability of the depth data provided by the cameras, a multiple linear regression model 

was developed in Excel® software, using dummy variables (Draper & Smith, 1998), which included the effects of all 

the cameras in the equation.  This model was compared with a reduced model (simple linear regression) that did not 

include the individual effects of each camera. 

This comparison was made by using the Efroymson’s algorithm (“stepwise” regression) (Efroymson, 

1960) for comparing two regression models, with null hypothesis given the reduced model equivalent to the global 

model and with alternative hypothesis, considering the models non-equivalent.  The test statistic is given in eq. (1). 

 

𝐹(𝑛, 𝑑) =
(𝑆𝑆𝑟−𝑆𝑆𝑔) (𝐷𝐹𝑟−𝐷𝐹𝑔)⁄

𝑆𝑆𝑔 𝐷𝐹𝑔⁄
        (1) 

 

where: 

 𝑆𝑆𝑟= sum of the squares of the residue of the reduced model; 

 𝑆𝑆𝑔= sum of the squares of the residue of the global model; 

 𝐷𝐹𝑟= degrees of freedom of the residue of the global model; 

 𝐷𝐹𝑔= degrees of freedom of the residue of the reduced model. 

 

3.2.2 Dimension accuracy and repeatability 

Three cameras of each type were used.  Three sizes of poster board squares (10, 20, 30 cm²) were 

recorded at five distances (1.0 to 3.0 m; every 0.5 m) and four different positions on the image (center, edge on the 

horizontal axis, edge on the vertical axis, and corner; Figure 3).  A total of five depth and RGB images (except 

CamBoard Pico Flexx) from each of the three replicates of the 5 types of cameras was collected. 

 



26 

 

 

Figure 3. Positions used for images acquisition: (a) center of image, (b) edge on the horizontal axis of image, (c) edge on the 
vertical axis of image and (d) corner of image. 

 

The data was analyzed to obtain three different parameters: length, area, and projected volume of the 

squares.  The length of the square (in pixels) was obtained both for the RGB image (except for CamBoard Pico 

Flexx) and the depth image.  For the RGB images, a manual measure process was performed, using the Image 

Viewer application from MATLAB R218a.  An algorithm for pre-processing the depth image was developed, 

following the steps shown on Figure 4. 

After the pre-processing step, the dimensions of the foam board square were automatically acquired.  To 

measure both the length and the area of the square, the image was first transformed into binary.  The maximum sum 

of the columns on the image was collected as being the length in pixels and, then, the total sum of the image was 

acquired, obtaining the area of the square, in pixels. 

To measure the projected volume (cube) of the square being analyzed (e.g. a cube of 10 x 10 x 10 cm for 

the 10 x 10 cm square), the pre-processed image was used to obtain values of the third dimension of the square.  

This was performed by subtracting the image from the theoretical distance from the base of the cube to the camera 

(Figure 5).  After obtaining the values of depth for each pixel of the theoretical cube, these values were added to 

obtain the volume of the cube, in pixel cm. 

The length ratio, in pixel cm-1, was calculated dividing the length, in pixels, obtained for both RGB (when 

available) and depth images, by the actual length of the foam board square (either 10, 20 or 30 cm).  Furthermore, 

the area ratio, in px cm-2, was also calculated by dividing the area obtained on the depth image (in pixels) by the 

actual area of the squares (either 100, 400 or 900 cm²). 

These ratios were analyzed using the General Linear Procedure (proc GLM) of SAS software, testing the 

effects of the use of different positions (center, edge on the horizontal axis of the image, edge on the vertical axis of 

the image and corner) and different sizes (10 x 10 cm, 20 x 20 cm and 30 x 30 cm) of foam board squares used.  

Then, regression models were generated for length ratio (px cm-1) versus distance, and for area ratio (px cm-2) versus 

distance. 

Unit transformation equations were developed in order to eliminate the need for the presence of an 

object with predetermined size to acquire dimensions on an image, as has been used by several authors (Philips & 

Dawson, 1936; Zaragoza, 2009).  To obtain these equations, the metric unit (either cm or cm²) from the regression 

models developed was isolated. 
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Figure 4. Algorithm for the selection of the foam board square in the image. 
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Figure 5. Top-view diagram of the positioning of the depth cameras and the object being analyzed for the calculation of the 
volume of the theoretical cube with the same size of the square being analyzed. 

 

3.2.3 Maximum useful distance 

Five depth and RGB (except CamBoard Pico Flexx-only depth images were collected) images of foam 

board squares were collected at distances ranging from 1.0 to 20.0 m, every 1.0 m, both indoors and outdoors.  For 

distances 1.0- 10.0 m, a 30 by 30 cm square was used, while a 60 by 60 cm square was used from 11.0 – 20.0 cm.  

The squares were placed at the center of the image with a tripod (Figure 6). 

The foam board square on each image was selected using the algorithm shown on Fig. 4.  The values of 

distance from camera to square were averaged.  The residuals between actual distance and camera-provided distance 

were calculated and a regression model of residuals versus actual distance was calculated when possible (e.g. when 

the square was within the acquisition range of the camera).  The maximum distance of useful data (image with no 

missing regions and reliable distance date) for each camera was recorded. 

 

 

Figure 6. Outdoor (a) and Indoor (b) data collection. 
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3.2.4 Animal phenotypic data evaluation 

Top-view images on fifteen grow-finish pigs randomly sampled at three nominal ages: 8, 12, and 16 weeks 

old (five animals at each age).  A balance of barrows and gilts (Landrace and Yorkshire cross) during each 

measurement period was evaluated.  A total of five depth and RGB (except CamBoard Pico Flexx) images from each 

type of camera was collected.  The cameras were mounted on a bracket above the scale and images were collected as 

the animals were being weighed (Figure 7).  Weights and pigs’ identification numbers were manually recorded. 

 

 

Figure 7. Mass and images were captured on individual pigs using a standard swine scale (b) and five different depth cameras.  

The cameras were mounted to the wall directly above the center of the scale (a). 

 

The images were processed and analyzed using methods proposed by Condotta et al. (2018a) and 

Condotta et al. (2018b) to acquire the pig’s projected volume (px cm) (Figure 8).  The unit was transformed (from px 

cm to cm³) using equations developed on the second experiment.  Linear regressions of mass (kg) versus volume 

(cm³) were generated for each of the cameras used. 

 

 

Figure 8. (a) Top-view image of pig without head and tail regions.  (b) Projected volume of the animal. 
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3.3 Results and Discussion 

3.3.1 Distance accuracy and repeatability 

The average values of distance obtained for the region of the wall in the picture, as well as their respective 

standard deviations are shown in Table 2.  The result of the Efroymson’s algorithm showed that the behavior of 

different cameras of the same type is the same for cameras that use the time-of-flight (ToF) principle, CamBoard 

Pico Flexx (P = 0.18710) and Microsoft Kinect v.2 (P = 0.70697), but different for the other types of cameras, 

Intel® RealSense™ D435 (P = 0.2538), Microsoft Kinect v.1 (P = 0.00002) and ZED Stereo Camera (P = 0.00007).  

From Table 2 it can be notice that there is an increase in the standard deviation with increasing distance from sensor 

to wall (Figure 9), corroborating with the data obtained by Khoshelham & Elberink (2012). 

 

Table 2. Average distances (m) and standard deviation (m) obtained by five depth cameras, for the five analyzed distances with 
their respective standard deviations.  One hundred and twenty-one points were used for each image to gather each value, and 

three cameras of each type were used. 

 Distances from sensor to wall (m) 

Camera 1.00 1.50 2.00 2.50 3.00 P-value 

CamBoard Pico 
Flexx 

0.99 ± 0.001 1.48 ± 0.002 1.99 ± 0.003 2.50 ± 0.004 3.00 ± 0.006 0.18710 

Intel® 
RealSense™ 

D435 
0.99 ± 0.002 1.47 ± 0.012 1.97 ± 0.022 2.46 ± 0.035 2.97 ± 0.036 0.02538 

Microsoft Kinect 
v.1 

0.99 ± 0.002 1.49 ± 0.003 1.99 ± 0.006 2.49 ± 0.008 3.00 ± 0.013 0.00002 

Microsoft Kinect 
v.2 

1.00 ± 0.001 1.50 ± 0.001 2.01 ± 0.001 2.51 ± 0.002 3.01 ± 0.003 0.70697 

ZED Stereo 
Camera 

0.99 ± 0.001 1.48 ± 0.001 1.99 ± 0.002 2.48 ± 0.004 2.99 ± 0.003 0.00007 

 

For Intel RealSense camera it was observed a higher standard deviation when compared with the other 

cameras.  This is probably due to the lack of consistency between cameras, as soon as the standard errors between 

the three cameras varied from 0.002 to 0.004 at 1.00 m, from 0 to 0.37 at 1.50 m, from 0 to 0.044 at 2.00 m, from 0 

to 0.62 at 2.50 m, and from 0.024 to 0.046 at 3.00 m with no visible best camera, however,  one cameras was 

consistently the poorest performing.  The second set of testing data was collected on the worst performing camera to 

ensure the errors were not acquisition errors, but the values were similar to the first acquisition.  Even when not 

using the worst out of the three cameras, the average errors of the two other cameras were still close to the average 

of all three cameras together and, therefore, this did not interfere on the discussion of the results. 
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Figure 9. Curves of standard deviation (m) of distance data obtained for five depth cameras (CamBoard Pico Flexx, Intel® 
RealSense™ D435, Microsoft Kinect v.1, Microsoft Kinect v.2, ZED Stereo Camera) versus the distance between sensor 

and wall (m). 

 

3.3.2 Dimension accuracy and repeatability 

Unit transformation equations were developed from regression models between the area (px cm-2) and 

length (px cm-1) ratios and the distance (m) from the camera to the foam board square.  To transform px to cm, the 

equations are on the form shown by eq. (2), and, to transform px to cm², the equations are on the form shown by eq. 

(3).  Equations for transformation from depth images and from color images (when available) were developed.  

Table 3 contains the coefficients of these equations for depth images and Table 4, for color images. 

 

𝑙𝑐𝑚 = 𝑙𝑝𝑥 × 𝑎 × 𝑍𝑏          (2) 

where: 

 𝑙𝑐𝑚= length, in cm; 

 𝑙𝑝𝑥 = length, in pixels; 

 𝑍 = Distance from depth camera to object being measured (m); 

 𝑎 = coefficient; 

 𝑏 = coefficient. 

 

There is also the possibility of using the data provided on the depth map to calculate the volume of 

objects.  This approach also raises the need for conversion of units, since the volume is calculated by the sum of the 

distance data from object to its support surface ('height of the object') for the whole object area.  As the distance 

data provided by the sensors are in cm and the area of the object is given in number of pixels, the volume is retrieved 

in an unwanted unit (px cm).  Another problem is the fact that the area of the object in the image varies with its 

distance from the sensor.  This generates the need for correction of the value obtained to perform any comparison 

between volumes.  In other words, for the same object, different values of volumes, lengths and areas can be 

acquired if the distance from the sensor varies.  As what changes to the calculation of the volume is the area of the 

object and not its depth (distance between the square and the wall), this value can be adjusted using eq. (3), obtained 

for correcting the area. 
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𝑆𝑐𝑚² = 𝑆𝑝𝑥 × 𝑎 × 𝑍𝑏          (3) 

where: 

 𝑆𝑐𝑚² = area, in cm²; 

 𝑆𝑝𝑥 = area, in pixels; 

 𝑍 = Distance from depth camera to object being measured (m); 

 𝑎 = coefficient; 

 𝑏 = coefficient. 

 

Testing the effects of using different sizes of foam board squares on the length (px cm-1) and area (px cm-

2) ratios, showed (Table 5) difference for the 10 cm x 10 cm square for all cameras, except for the acquisition of the 

area ratio with CamBoard Pico Flexx (PMD Technologies).  That could be explained by the fact that very small 

objects are more impacted from edge deformation effect, as indicated by Gottfried et al. (2011).  Microsoft Kinect 

v.1 showed difference between all sizes of squares used for both length ratio and area ratio, and ZED Stereo Camera 

(StereoLabs) showed differences between all sizes of square used when measuring length ratio.  This could indicate 

that a square of 20 x 20 cm is still too small for these cameras and suffer from edge effect. 

 

Table 3. Coefficients a and b for unit transformation equations from px to cm (length) and from px to cm² (area) on depth 

images provided by five depth cameras. 

 Length coefficients1 

R² 
Area coefficients2 

R² 
Camera a b a b 

CamBoard Pico Flexx 0.513 0.915 0.993 0.264 1.914 0.998 
Intel® RealSense™ D435 0.141 0.875 0.912 0.023 2.004 0.853 

Microsoft Kinect v.1 0.165 0.914 0.980 0.029 1.899 0.988 
Microsoft Kinect v.2 0.273 0.915 0.996 0.076 1.928 0.977 
ZED Stereo Camera 0.063 0.967 0.972 0.005 1.966 0.973 

1 𝑙𝑒𝑛𝑔𝑡ℎ𝑐𝑚 = 𝑙𝑒𝑛𝑔𝑡ℎ𝑝𝑥 × 𝑎 × (𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑐𝑎𝑚𝑒𝑟𝑎)𝑏 
2 𝑎𝑟𝑒𝑎𝑐𝑚2 = 𝑎𝑟𝑒𝑎𝑝𝑥 × 𝑎 × (𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑐𝑎𝑚𝑒𝑟𝑎)𝑏  

 

The test of the effect of the objects’ positions in the image (center, edge on the horizontal axis, edge on 

the vertical axis, and corner) on the length (px cm-1) and area (px cm-2) ratios showed (Table 6) a different behavior 

for each type of camera used.  For the ToF cameras (CamBoard Pico Flexx and Microsoft Kinect v.2), all positions 

present different length ratios.  The area ratio for CamBoard Pico Flexx camera is the same between positions 1 and 

3 (center and edge on vertical axis) and between positions 2 and 4 (edge on horizontal axis and corner).  The area 

ratio for Microsoft Kinect v.2 is the same between positions 1 and 2, and between 1 and 4; position 3 (edge on 

vertical axis) differs from the others. 

 

Table 4. Coefficients a and b for unit transformation equations from px to cm (length) on RGB images provided by four depth 
cameras. 

 Length coefficients1 

R² 
Camera A b 

Intel® RealSense™ D435 0.168 1.001 0.990 
Microsoft Kinect v.1 0.199 0.966 0.985 
Microsoft Kinect v.2 0.096 0.999 0.989 
ZED Stereo Camera 0.070 0.999 0.979 

1 𝑙𝑒𝑛𝑔𝑡ℎ𝑐𝑚 = 𝑙𝑒𝑛𝑔𝑡ℎ𝑝𝑥 × 𝑎 × (𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑐𝑎𝑚𝑒𝑟𝑎)𝑏 
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Table 5. Averages and standard errors obtained for length ratio (px cm-1) and area ratio (px cm-2), for the three sizes of square 
used (10 x 10 cm, 20 x 20 cm and 30 x 30 cm) and five depth cameras. 

Camera Square Size (cm) Length Ratio (px cm-1) Area Ratio (px cm-2) 

CamBoard Pico Flexx 
10 x 10 1.20 ± 0.01a 1.54 ± 0.02 
20 x 20 1.17 ± 0.01b 1.54 ± 0.02 
30 x 30 1.17 ± 0.01b 1.55 ± 0.02 

Intel® RealSense™ D435 
10 x 10 4.84 ± 0.06a 21.58 ± 0.39a 

20 x 20 4.24 ± 0.06b 17.65 ± 0.39b 

30 x 30 4.11 ± 0.06b 16.85 ± 0.39b 

Microsoft Kinect v.1* 

10 x 10 3.92 ± 0.17a 15.08 ± 0.14a 

20 x 20 3.61 ± 0.17b 13.84 ± 0.14b 

30 x 30 3.50 ± 0.17c 13.16 ± 0.14c 

Microsoft Kinect v.2* 

10 x 10 2.33 ± 0.15a 5.56 ± 0.05a 

20 x 20 2.19 ± 0.15b 5.25 ± 0.05b 

30 x 30 2.15 ± 0.15b 5.11 ± 0.05b 

ZED Stereo Camera 
10 x 10 9.87 ± 0.07a 90.50 ± 1.77a 

20 x 20 9.34 ± 0.07b 85.43 ± 1.77b 

30 x 30 9.04 ± 0.07c 83.18 ± 1.77b 

a, b, c Rows for each column, with different superscripts are significantly different (p<0.05). 
* Microsoft Kinect v.1 showed significant interaction between position and size of the foam board square for length ratio.  
Microsoft Kinect v.2 showed significant interaction between position and size of the foam board square for both area ratio and 
length ratio. ZED Stereo Camera showed significant interaction between camera and size of the foam board square for length 
ratio. 

 

For acquiring length ratio with Intel® RealSense™ D435, position 1 (center) differs from the others, 

position 3 (edge on vertical axis) has the same effect as positions 2 (edge on horizontal axis) and 4 (corner).  The 

effect of positions on the area ratio for this camera was the same presented by Microsoft Kinect v.1 for both length 

and area ratios, positions 1 and 2 have the same behavior and positions 3 and 4 have the same behavior. 

Dutta (2012), showed that the standard deviation of the distance data increase on the corners of the 

image.  Thus, the ideal for data comparison of length and area of objects acquired with depth cameras is positioning 

them at a fixed region of the image, preferably in the center.  If offsets need to be made, the ideal is to make them on 

the horizontal direction of the image for Intel® RealSense™ D435 and Microsoft Kinect v.1, and on the vertical 

direction of the image for CamBoard Pico Flexx (PMD Technologies) and Microsoft Kinect v.2; in which the 

differences are smaller, reducing distortion of values and enabling data comparison.  ZED Stereo Camera 

(StereoLabs) did not present any effect of positions on the length and area ratios acquisition and, thus, the objects 

can be positioned in any place on the image.  CamBoard Pico Flexx (PMD Technologies), Intel® RealSense™ D435, 

and Microsoft Kinect v.2 showed no significant effect (p<0.05) on the length ratio (px cm-1) and on the area ratio 

(px cm-2) when using different cameras to acquire those dimensions (Table 7). 

Microsoft Kinect v.1 camera showed significant interaction between position and size of the foam board 

square for length ratio (Figure 10a).  Microsoft Kinect v.2 showed significant interaction between position and size 

of the foam board square for both area ratio (Figure 10d) and length ratio (Figure 10c).  ZED Stereo Camera showed 

significant interaction (Figure 10b) between camera and size of the foam board square for length ratio.  For both 

Kinect cameras, it appears that the source of interaction is the 10 x 10 cm foam board square and for the ZED 

camera it appears that the source is the 30 x 30 cm square. 
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Table 6. Averages and standard errors obtained for length ratio (px cm-1) and area ratio (px cm-2), for the four positions on image 
(1 – center, 2 - edge on the horizontal axis, 3 - edge on the vertical axis, 4- corner) and five depth cameras. 

Camera Position Length Ratio (px cm-1) Area Ratio (px cm-2) 

CamBoard Pico Flexx 

1 1.21 ± 0.01a 1.69 ± 0.03a 

2 1.08 ± 0.01b 1.41 ± 0.03b 

3 1.28 ± 0.01c 1.68 ± 0.03a 

4 1.14 ± 0.01d 1.40 ± 0.03b 

Intel® RealSense™ D435 

1 4.16 ± 0.07a 16.98 ± 0.45a 

2 4.38 ± 0.07b 17.85 ± 0.45a 

3 4.46 ± 0.07bc 19.60 ± 0.45b 

4 4.58 ± 0.07c 20.34 ± 0.45b 

Microsoft Kinect v.1* 

1 3.56 ± 0.02a 13.44 ± 0.17a 

2 3.61 ± 0.02a 13.82 ± 0.17a 

3 3.78 ± 0.02b 14.48 ± 0.17b 

4 3.76 ± 0.02b 14.37 ± 0.17b 

Microsoft Kinect v.2* 

1 2.14 ± 0.02a 5.13 ± 0.06ab 

2 2.09 ± 0.02b 5.03 ± 0.06a 

3 2.42 ± 0.02c 5.86 ± 0.06c 

4 2.27 ± 0.02d 5.21 ± 0.06b 

ZED Stereo Camera 

1 9.35 ± 3.89 86.70 ± 75.07 
2 9.28 ± 3.77 82.41 ± 67.40 
3 9.46 ± 3.64 86.81 ± 67.09 
4 9.59 ± 3.93 89.56 ± 73.07 

a, b, c, d Rows for each column of each camera section, with different superscripts are significantly different (p<0.05). 
* Microsoft Kinect v.1 showed significant interaction between position and size of the foam board square for length ratio.  
Microsoft Kinect v.2 showed significant interaction between position and size of the foam board square for both area ratio and 
length ratio. 

 

Table 7. Averages and standard errors obtained for length ratio (px cm-1) and area ratio (px cm-2), for the three sizes of square 
used (10 x 10 cm, 20 x 20 cm and 30 x 30 cm) and fifteen depth cameras (three of each type). 

Camera 
Camera 

# 
Length Ratio (px cm-1) Area Ratio (px cm-2) 

CamBoard Pico Flexx 
1 1.18 ± 0.01 1.55 ± 0.02 

2 1.18 ± 0.01 1.55 ± 0.02 

3 1.18 ± 0.01 1.53 ± 0.02 

Intel® RealSense™ D435 
1 4.44 ± 0.06 19.29 ± 0.40 

2 4.44 ± 0.06 18.82 ± 0.40 

3 4.30 ± 0.06 17.96 ± 0.40 

Microsoft Kinect v.1 
1 3.65 ± 0.02a 13.79 ± 0.14a 

2 3.66 ± 0.02a 13.99 ± 0.14ab 

3 3.72 ± 0.02b 14.30 ± 0.14b 

Microsoft Kinect v.2 
1 2.22 ± 0.01 5.29 ± 0.05 

2 2.23 ± 0.01 5.31 ± 0.05 

3 2.23 ± 0.01 5.32 ± 0.05 

ZED Stereo Camera* 

1 9.84 ± 0.07a 94.89 ± 1.77a 

2 9.41 ± 0.07b 87.97 ± 1.77b 

3 9.01 ± 0.07c 76.24 ± 1.77c 

a, b, c Rows for each column, with different superscripts are significantly different (p<0.05). 
* ZED Stereo Camera showed significant interaction between camera and size of the foam board square for length ratio. 
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Figure 10. Significant interaction of (a) size and position (Microsoft Kinect v.1) affecting length ratio; (b) size and camera (ZED 
Stereo Camera) affecting length ratio; and size and position (Microsoft Kinect v.2) affecting both (c) length ratio and (d) area 
ratio. 

 

Figure 11 shows examples of area and length of a 30 x 30 cm foam board square acquired with the five 

different cameras used in this study and with units corrected using eq. (2) and (3) developed. 

 

 

Figure 11. Predicted area and length of foam squares recorded with five depth cameras (CamBoard Pico Flexx, Intel® 
RealSense™ D435, Microsoft Kinect v.1, Microsoft Kinect v.2, and ZED Stereo Camera). 
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3.3.3 Maximum useful distance  

Average distance from camera to the foam board square (m) was plotted against actual distance (Figures 

12a, 13a, 14a, 15a, and 16a) for both indoors and outdoors.  Table 8 shows the maximum distance of useful distance 

data on both environments and classifies the usability of the data for performing measurements outdoors. 

The cameras that use stereo vision (Intel® RealSense™ and ZED Stereo Camera) could provide useful 

data on an outdoor environment up to 12 m (Intel) or 20 m (ZED).  For the time-of-flight cameras, some data can 

be acquired outdoors if the distance from the objects being analyzed is small (1 m for CamBoard Pico Flexx and 2 m 

for Microsoft Kinect v.2), which prevents their use for autonomous robotic navigation, for example.  Kinect v.1 did 

not present useful data on an outside environment. 

 

Table 8. Maximum distance (m) that depth cameras can acquire data for both indoor and outdoor environments and possibility 

of performing dimensions’ measures outdoor. 

Camera 
CamBoard 
Pico Flexx 

Intel® 
RealSense™ 

D435 

Microsoft 
Kinect v.1 

Microsoft 
Kinect v.2 

ZED Stereo 
Camera 

Max. Distance Indoor (m) 7.0 20.0 4.0 7.0 20.0 
Max. Distance Outdoor (m) 1.0 20.0 0.0 2.0 20.0 

Measurement Outdoor No Yes No No Yes 

 

The residuals between actual distance and camera-provided distance were calculated and plotted (Figures 

12b, 13b, 14b, 15b, and 16b) against distance.  Intel® RealSense™ D435 and ZED Stereo Camera presented the 

highest residuals.  Also, the residuals for these cameras increased with increasing distances, differently from the other 

cameras that presented a more constant residual with no visible pattern.  A power regression model of residuals 

versus actual distance was calculated for both Intel® RealSense™ D435 and ZED Stereo Camera, which presented 

residuals with a visually non-random behavior.  The power regression equations present form shown in eq. (4), and 

the coefficients for these equations are presented on Table 9. 

 

𝑅𝑒𝑠 = 𝑎 × 𝑍𝑏           (4) 

 

where: 

 𝑅𝑒𝑠 = residuals (m); 

 𝑍 = distance from camera to object being measured; 

 𝑎 = coefficient; 

 𝑏 = coefficient. 
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Table 9. Coefficients of residuals power curves for Intel® RealSense™ D435 and ZED Stereo Camera, indoor and outdoor. 

 Coefficients indoor 
R² 

Coefficients outdoor 
R² 

Camera a b a b 

Intel® RealSense™ D435 0539 1.466 0.991 0.049 1.597 0.991 
ZED Stereo Camera 0.019 1.766 0.993 0.008 1.049 0.978 

 

 

Figure 12. Average distance from camera to the foam board square (m) versus actual distance (m) and residuals of the 
measurements for CamBoard Pico Flexx (PMD Technologies). 

 

 

 

Figure 13. Average distance from camera to the foam board square (m) versus actual distance (m) and residuals of the 
measurements for Intel® RealSense™ D435. 
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Figure 14. Average distance from camera to the foam board square (m) versus actual distance (m) and residuals of the 

measurements for Microsoft Kinect v.1. 

 

 

Figure 15. Average distance from camera to the foam board square (m) versus actual distance (m) and residuals of the 
measurements for Microsoft Kinect v.2. 

 

 

Figure 16. Average distance from camera to the foam board square (m) versus actual distance (m) and residuals of the 
measurements for ZED Stereo Camera (StereoLabs). 
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3.3.4 Animal phenotypic data evaluation 

Top view images were taken on a group of pigs as they were being weighed.  Figure 17 shows the sample 

of the images captured with all five depth cameras used.  As the images are evaluated, all the pigs are easily visible in 

all the images except the image captured from the ZED Stereo Camera.  The main body is easily seen, but the head 

and the tail are difficult to discern.  The image taken with Kinect v.1 has rough edges on the pig.  The slightly rough 

edges are also observed on the image taken with the RealSense camera.  Both Time-of-Flight cameras had a clear 

image, and Kinect v.2 have the smoothest outline of the pigs, probably due to its higher resolution. 

The projected volumes (cm³) acquired from the body of the animals, without the head and tail regions, 

were plotted (Figure 18) against the mass (kg) of the animals.  Linear regressions were fitted, and equations were 

generated with the form presented on eq. 5 and coefficients presented on Table 10.  The best correlations between 

projected volume and mass was obtained for the Time-of-Flight technology (Microsoft Kinect v.2 and CamBoard 

Pico Flexx).  Cameras that use the structured light technology (Intel® RealSense™ and Microsoft Kinect v.1) also 

had a good correlation (R² higher than 0.9) between those two variables.  The camera that uses stereo vision-only 

(StereoLabs ZED) had the lowest correlation (R² = 0.798) between projected volume and mass.  Considering both 

the shapes provided and the depth information, the cameras that use ToF technology would be more advisable to be 

used indoor applications, such as animal phenotyping, followed by cameras that use structured light technology. 

 

𝑉 = 𝑎 × 𝑀 + 𝑏          (5) 

 

where: 

 𝑉 = volume, in cm³; 

 𝑀 = mass, in kg; 

 𝑎 = coefficient; 

 𝑏 = coefficient. 

 

Table 10. Coefficients a and b, and determination coefficient (R²) of linear regression equations. 

 Coefficients 

R² 
Camera a b 

CamBoard Pico Flexx 12.815 125.990 0.960 
Intel® RealSense™ D435 16.791 111.460 0.953 

Microsoft Kinect v.1 14.110 34.976 0.901 
Microsoft Kinect v.2 13.470 36.439 0.979 
ZED Stereo Camera 6.065 350.540 0.798 
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Figure 17. Depth images acquired from the pigs for all five cameras used: (a) Microsoft Kinect v.1, (b) Microsoft Kinect v.2, (c) 
CamBoard Pico Flexx (PMD Technologies), (d) ZED Stereo camera (StereoLabs) and (e) Intel® RealSense™ Depth 

Camera D435. 

 

 

Figure 18. Linear regressions of volume versus mass obtained with 5 different depth cameras: (a) Microsoft Kinect v.1, (b) 
Microsoft Kinect v.2, (c) CamBoard Pico Flexx (PMD Technologies), (d) ZED Stereo camera (StereoLabs) and (e) Intel® 

RealSense™ Depth Camera D435. 

 

3.4 Conclusions 

Low-cost depth-cameras use one or a combination of three technologies: structured light, time-of-flight 

(ToF), and stereo vision.  Five different cameras were tested for their suitability to be used in agriculture applications.  

Significant camera to camera differences were found for all the cameras (P<0.05), except for ToF cameras 
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(Microsoft Kinect v.2 and CamBoard Pico Flexx).  Increases in standard deviation in measurements were found with 

all camera as the distance between camera and object in-creased; however, Intel® RealSense™ camera had a much 

larger increase.  Time-of-flight cameras had the smallest error between different sizes of objects.  All cameras 

showed some distortion at the edges of the images; however, the ToF cameras had non-readable zones on the 

corners of the images.  Different values of area and length can be acquired with the data provided by depth cameras, 

for the same object located at different positions in the image. This distortion is greatest in the horizontal axis of the 

image for the ToF cameras and in the vertical axis for the structured light cameras.  The stereo vision-only camera 

(ZED) did not show any differences between the different positions for dimensions’ acquisition.  Cameras that use 

stereo vision technology can be used for outdoors applications.  Cameras that use ToF technology, although provide 

some data on outside environments, should be used outside only if necessary and in a close range (up to 1.0 - 2.0 m).  

As the variation of distances from sensor to object generates different values of length, area and volume to the same 

object, it’s necessary to standardize these values so that they can be compared. This can be done using the equations 

2 and 3, with coefficients provided on tables 3 and 4 proposed in this study.  Considering both the shapes provided 

and the depth information, the cameras that use ToF technology would be more advisable to be used on animal 

phenotyping, followed by cameras that use structured light technology. 
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4 IMPROVING SOWS’ PERFORMANCE: BODY CONDITION SCORE, BACKFAT 

AND BODY MASS PREDICTION THROUGH DEPTH IMAGE ANALYSIS 

Abstract 
Observation, control and maintenance of physical condition of sows in acceptable levels is critical to 

maintain animal welfare and production standards.  Early recognition of animals that present atypical physical 
condition is important to prevent production losses.  Currently, the classification of both body condition and 
lameness is done by subjective methods, thus is dependent on the opinion of the manager, which can generate 
differences between ratings.  As alternatives to these subjective methods of classification, various methods have been 
proposed to obtain a more objective measure.  Body mass can also be an indicative of the physical condition of 
animals.  A way to standardize these measurements would be to automate the process by analyzing images generated 
by depth cameras.  The present work aimed to obtain three characteristics (body condition score, body mass and 
backfat thickness) of sows using a commercially available depth camera.  A multiple linear regression was obtained 
using the minor axis of the ellipse fitted around sow’s body, the width at shoulders, and the angle, of the last rib’s 
curvature to predict body condition.  To predict backfat, a multiple linear regression was performed using the height 
of last rib’s curvature, the perimeter of sow’s body, the major axis of the ellipse fitted around sow’s body, the length 
from snout to rump, and the predicted body condition score.  It was possible to obtain the body mass with a simple 
linear regression using the projected volume of the sows’ body.  With these three characteristics it could be possible 
to have better insights on the physical condition of sows and aid on better and faster management decisions. 
 
Keywords: Precision livestock farming; Time-of-flight; Swine 
 

4.1 Introduction 

The observation, control and maintenance of the physical condition of sows in acceptable levels is critical 

to maintain the animal welfare and production in appropriate standards.  The animal welfare assessment protocol for 

pigs, Welfare Quality® (Quality, 2009), states that good feeding, one of the principles of the animal welfare, is 

composed of two criteria: absence of prolonged hunger and absence of prolonged thirst.  It is proposed to evaluate 

the first criterion on sows by measuring the body condition of the animals.  This is suggested to be done in a 

subjective method, visually and by touch, classifying the body condition in three levels: level 0 (sow in good 

condition, with well-developed muscles on the bone), level 1 (thin sow, with bones easily felt; or sow visually obese) 

and 2 (very thin sow, with the hips and backbone prominent). 

It is known that, during pregnancy, each sow should receive a different amount of food according to its 

body condition.  Bigger, older, or skinnier sows should receive higher amounts of food to meet their nutritional 

needs.  Underweight animals present nutritional deficiency, fewer piglets born per litter, and those that are born, can 

present also nutritional deficiencies and smaller body mass (Eissen et al., 2000).  Overweight sows are usually larger 

than the space provided in the pen, which leads to stress for the animal and may cause piglets’ crushing.  In addition, 

these sows have an abnormal development of mammary glands, reducing the amount of milk produced during 

lactation.  Sows that are obese during pregnancy tend to reduce the amount of food ingested during lactation, which 

also reduces the amount of milk produced (Eissen et al., 2000).  These factors can result in economic losses. 

Therefore, the early recognition of animals that present physical condition outside the standards is 

important to prevent production losses.  Some authors have been using ratings like those proposed by the Welfare 

Quality® to assess body condition of sows over the years (Charette et al., 1996; Esbenshade et al., 1986; M. Knauer 

et al., 2007; M. T. Knauer & Baitinger, 2015; Mark Knauer et al., 2012; Maes et al., 2004; Patience & Thacker, 1989; 
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Salak-Johnson et al., 2007).  As alternatives, various methods have been proposed to obtain a more objective 

measure. 

In the end of the 90’s, it was noted (Charette et al., 1996) the need for evaluation of body condition of 

sows using not only subjective methods of classification, but also more objective values, as body mass, backfat 

thickness and dimensions of the animal, taking parity into consideration.  This type of classification, covering a larger 

number of variables, was adopted more recently (Sell-Kubiak, 2015) and expanded, using also the duration of the 

sow’s gestation as a factor to be considered. 

To reduce the errors with the body condition scoring, one should try to reduce the variation generated by 

the classification done by different managers.  A way of doing that was proposed by Knauer & Baitinger (2015), who 

developed a caliper that quantifies the angularity from the spinous process to the transverse process of a sow’s back 

and concluded that this instrument can be used as a tool to standardize this classification.  Another way to 

standardize this measurement would be to automate the process by analyzing images generated by depth cameras.  

This method was used for dairy cows (Kazuhara et al., 2015), obtaining a correlation of 74% between the predicted 

and actual body condition score.  This can indicate the possibility of using this method for sows. 

The most used method for acquiring the backfat thickness (De Rensis et al., 2005; Kim et al., 2016; M. T. 

Knauer & Baitinger, 2015; Maes et al., 2004; Magowan & McCann, 2006) is through ultrasonic probes.  One problem 

with this approach is the difficulty of applying it on an industrial scale since this assessment should be done manually 

for each animal.  Noticing this difficulty in the production of dairy cows, Weber et al. (2014) proposed the use of a 

depth camera for prediction of their body fat, obtaining a correlation of 96% with the fat thickness measured with 

ultrasonic probes.  This could indicate a possibility of using this method on sows to predict their backfat. 

Weighing is a time consuming and stressful practice.  To reduce this problem, several authors (Isabella 

C.F.S. Condotta, Brown-Brandl, Silva-Miranda, & Stinn, 2018; Kongsro, 2014; Ott et al., 2014; Schofield, Marchant, 

White, Brandl, & Wilson, 1999; Wu et al., 2004) have been using pigs’ dimensions data for predicting animal’s mass.  

To replace the scale by an indirect method, both the convenience and the accuracy of the method to be used should 

be considered.  Different methods of obtaining pigs’ mass have been tested by many authors (Philips & Dawson, 

1936; Zagaroza, 2009).  The use of calipers and tape is shown to be effective, but the need to restrict the animals to 

obtain the data makes this process impracticable on an industrial scale and equivalent to the process of weighing 

itself. 

The use of images to obtain pigs’ dimensions is interesting because of its non-invasive approach.  

Problems with that approach include the fact that the animal’s skin and hair colors must be distinct from the 

environment color, so dark, stained or dirty animals hinder the automation of this approach.  A different approach 

has been used (Kongsro, 2014; Condotta et al., 2018; Pezzuollo et al., 2018), applying depth cameras to obtain pigs’ 

mass (boars and grow-finishing).  This approach reduces the problems due to the color of the animals.  No approach 

was made on acquiring sow’s mass through depth images. 

The present work aims to obtain three characteristics (body condition score, body mass and backfat 

thickness) of sows using a commercially available depth camera. 

 

4.2 Materials and Methods 

The experiment was conducted in a gestating building of the U.S. Meat Animal Research Center, from the 

Agriculture Research Service-ARS of United States Department of Agriculture – USDA (-98.13° W, 42.52° N).  
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Animal digital and depth images were collected on a population of sows at four parities, and at two different time-

points: on the day of moving to the farrowing building and on the day of moving from the farrowing building.  

Animal mass was collected on the day of moving from the farrowing building.  All animal procedures were 

performed in compliance with federal and institutional regulations regarding proper animal care practices (FASS, 

2010). 

 

4.2.1 Preliminary Study 

A preliminary study was conducted to test the calliper proposed by Knauer & Baitinger (2015) and the 

feasibility of using depth images to obtain a correlation with the values of body condition score (BCS).  For that, 

depth images (Figure 1) of a paper cylinder were acquired and the BCS was obtained with the calliper.  The size of 

the paper cylinder was set to obtain a BCS range from 7 to 21.  The cylinder was selected on the image by a depth 

threshold and its width was acquired in pixels and, then, transformed to cm using eq. 1, proposed on the third 

chapter of this thesis. 

 

 

Figure 1. Depth images of paper cylinder (center of image) with a BCS of 7 (a) and 21 (b). 

 

𝑙𝑐𝑚 = 𝑙𝑝𝑥 × 0.273 × 𝑍𝑚
0.915        (1) 

 

where: 

 

 lcm = length, in cm; 

 lpx = length, in pixels; 

 Zm = distance from the camera to the object being analysed, in meters. 

 

4.2.2 Animal Specifics 
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Two-hundred and twenty-eight sows at four different parities (1, 2, 3, and 4), weighing approximately 

between 130 and 260 kg, from a rotational Landrace and Yorkshire cross were sampled.  The animals were allocated 

in a gestating building.  Animals were sampled at two different time-points: on the day of moving to the farrowing 

building and on the day of moving from the farrowing building.  The first group received a restricted diet and ad 

libitum water and were housed in a group-pen; while the second group had ad libitum access to both feed and water 

and were housed in individual crates.  Diets were a mix of corn and soybean meal formulated to meet or exceed 

National Research Council recommendations (NRC, 2012). 

 

4.2.3 Data Acquisition 

Microsoft® Kinect Studio program was used to acquire both digital RGB color and depth videos from a 

commercially available depth camera (Microsoft Kinect® v.2).  The program was deployed on a Windows®-based 

computer for data collection.  The camera was positioned above the hallway of the building mounted on the ceiling 

to take both dorsal color (1920 x 1080 pixels per frame, Figure 2a) and depth videos (512 x 424 pixels per frame, 

Figure 2b) of the animals while being moved to and from the farrowing building, at approximately 30 frames per 

second. 

Animals were weighed when moving to the gestating building (after farrowing) using a Rice Lake 

weighing Systems digital weighing scale, that was calibrated by the company and regularly checked with a 50 lb. 

weight.  To acquire the body condition score of animals, the caliper proposed by Knauer & Baitinger (2015) was 

used as standard (Figure 3).  Backfat was acquired on the 10th rib region of the animal using an Ibex EVO with a 

L6E-3M transductor (E.I. Medical Imaging, Loveland, CO, USA) and the system BioQuant Nova Prime Image (v. 

6.9.1, BioQuant Image Analysis Corp., Nashville, TN, USA). 

 

 

Figure 2. Example of (a) color and (b) depth frames acquired. 

 



51 
 

 

Figure 3. Body condition score acquired with caliper proposed by Knauer & Baitinger (2015). (b) Backfat acquired with 
ultrasound probe. 

 

4.2.4 Data Analysis 

An algorithm, proposed by Condotta et al. (2018), was used in a numerical computing software 

(MATLAB, version R2018a) for pre-processing the images, by selecting the animal and removing its head and tail 

regions.  The area, in pixels and the projected volume of the sow’s body were acquired (Figure 4).  Both top-view 

cleaned binary images (with and without head and tail regions) were used to acquire the following dimensions on the 

animals: average height, maximum height (HM), height at shoulders (HS), height at last rib (HR), height at hip 

(HHp), width at shoulders (WS), width at last rib (WR), width at hip (WH), length from neck to rump (LN), length 

from shoulders to rump (LS), length from shoulders to hip (LH), length, from snout to rump (L) (Figure 5).  Also, 

an ellipse was fitted on the animals’ body (without head region) and its major and minor axis lengths were calculated 

(Figure 6a). The perimeter of the body region of the animal was also acquired (Figure 6b).  All frames of the videos 

that contained an entire animal were automatically selected and processed and the animals’ dimensions were acquired 

by averaging these frames. 
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Figure 4. (a) Raw depth image. (b) Cleaned binary image. (c) Cleaned image without head and tail regions, used for calculating the 
area of the animal. (d) Projected volume of sow’s body. 

 

To select the shoulder, hip and last rib regions, the animal was divided into parts, front and back, by the 

centroid.  Then, the widest region on the front of the animal was marked as the shoulders, and the widest region on 

the back part was marked as the hip.  For the last rib, the smallest region on the back was selected. 

 

 

Figure 5. Dimensions acquired from top-view images: HA – average height, HM – maximum height, HS – height at shoulders, 
HR – height at last rib, HHp – height at hip, WS – width at shoulders, WR – width at last rib, WH – width at hip, LN – 
length from neck to rump, LS – length from shoulders to rump, LH – length from shoulders to hip, L – length, from snout 
to rump. 
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Figure 6. (a) Ellipse fitted on sows’ body and major and minor axis of ellipse, and (b) perimeter of sow’s body acquired. 

 

At the last rib region, the length and angle (theta) of its curvature, formed by points P1 (lowest point to 

the left of curve), P2 (highest point of the curve), and P3 (lowest point to the right of the curve), were calculated 

(Figure 7).  Also, the height (H) of the curvature was calculated between P3 and the average between P1 and P2.  

After that, a second-degree polynomial was fitted at the last rib curvature. 

All dimensions were collected in pixel units, then, equation 1 was used for unit transformation from pixels 

to cm, and equation 2, also proposed on chapter 3 of this thesis, was used for unit transformation from px to cm². 

The following regression models were trained and tested on a numerical computing software (MATLAB, 

version R2018a) to predict body condition score, backfat, and weight: linear regression, stepwise regression, support 

vector machine models (linear, quadratic, cubic, and gaussian), regression trees, and gaussian process regression.  

Eighty five percent of the data set was used for models’ development and the remaining 15% was used for testing. 

The variables tested for body condition score predictions were widths at shoulder (WS), last rib (WR), and 

hip (WH); major and minor axis of ellipse fitted on animal’s body; and perimeter of animal’s body; angle, height, 

length, and coefficient of the quadratic component of second-degree polynomial fitted on the curvature at last rib 

region.  For backfat prediction, the variables tested were the same tested for body condition score, plus heights 

(maximum, average, at shoulders, at hip, and at last rib), lengths (from snout to rump, from neck to rump, from 

shoulders to rump, and from shoulders to hip), area and projected volume of the animal’s body.  For some of the 

animals it was not possible to acquire backfat, so a reduced number of animals was used for the regression. 
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Figure 7. Curvature at last rib. Theta (Ѳ) is the angle formed by points P1 (lowest point to the left), P2 (highest point), and P3 
(lowest point to the right). The height (H) of the curvature is calculated between the P2 and the average between P1 and P3. 

(b) Second-degree polynomial fitted at last rib’s curvature. 

 

For weight prediction the variables tested were: area and projected volume of the animal’s body, heights 

(maximum, average, at shoulders, at hip, and at last rib), widths (at shoulders, at hip, and at last rib ) , lengths (from 

snout to rump, from neck to rump, from shoulders to rump, and from shoulders to hip), major and minor axis of 

ellipse fitted on animal’s body; and perimeter of animal’s body.  For all models, principal component analysis was 

performed to select the variables that explained at least 95% of the variance of the predicted variable. 

 

𝑺𝒄𝒎𝟐 = 𝑺𝒄𝒎𝟐 × 𝟎. 𝟎𝟕𝟔 × 𝒁𝒎
𝟏.𝟗𝟐𝟖        (2) 

 

where: 

 

 Scm² = area, in cm; 

 Spx = area, in pixels; 

 Zm = distance from the camera to the object being analyzed, in meters. 

 

4.3 Results and Discussion 

The preliminary results showed a high correlation (Figure 8) between width of the paper cylinder and 

body condition score (BCS), with an R² of 0.9792 and an average absolute error of 3.2%, or 0.47 units of BCS. 

The body condition scores (BCS) of the population ranged from 8 to 19.5 units.  The best model 

(smallest error and highest R²) for predicting body condition score was a multiple linear regression found through 

the stepwise regression model, with form shown by eq. 3 and coefficients presented on Table 1.  The selected inputs 

were the minor axis of the ellipse fitted around sow’s body, the width at shoulders, and the angle, theta, of the last 

rib’s curvature (Figures 9a, 9b, and 9c).  The R² for this regression was 0.5175, with a standard error of 1.4659.  The 

average absolute error of the model for the test set was 7.7%, or 1.0 unit of BCS.  The R² of predicted versus actual 

BCS for the test set was 0.7769, with an intercept of 4.8094 and a slope of 0.6659 (Figure 9d). 
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Figure 8. Width of paper cylinder, in cm, versus body condition score (BCS) obtained with caliper. 

 

Previous results obtained by Kuzuhara et al. (2015) showed an R² of 0.73 for a multiple linear regression 

predicting BCS of cows that used as inputs six geodesic lines along the back of the animal and parity.  The results 

obtained in the present work were slightly lower, but the animal differences in anatomy should be taken in 

consideration and the comparison should be done with reservations. 

 

𝐵𝐶𝑆 =  𝑎 + 𝑏 × 𝑀𝑖𝐴 + 𝑐 × 𝑊𝑆 + 𝑑 × Ѳ       (3) 

 

where: 

 

 BCS = body condition score; 

 MiA = length of minor axis of ellipse fitted around sow’s body, in cm; 

 WS = width at shoulders, in cm; 

 Ѳ = angle of last rib’s curvature, in º; 

 a, b, c, d = coefficients. 

 

The errors on the model could have been caused by different sources.  One source could be human error, 

failing to consistently acquire the body condition score with the caliper due to animal’s movement specially when the 

animals were in the group pens and had more range of movement. 

Figure 10 shows the curvatures at last rib for two sows classified with a body condition score of 12.  One 

sow was younger and pregnant (located in the group pen), while the other was an open sow located in an individual 

crate.  It’s easy to see that the curvature for both sows is different, with one animal being wider than the other.  This 

difference could indicate either a measurement error or that the back curvature does not correlate so well with the 

calliper measurements.  Knauer & Baitinger (2015) found a maximum correlation between BCS and caliper 

measurements of 0.76, indicating that, although a less subjective measurement of BCS is much needed, a perfect gold 

standard for this variable is still needed. 
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Figure 9. Variables selected for body condition score (BCS) prediction model plotted against BCS: length of minor axis of ellipse 
fitted around sow’s body (a), width at shoulders (b), and angle, theta, of last rib’s curvature (c).  Predicted versus actual BCS 
for the test set are plotted on (d). 

 

 

Figure 10. Curvature at last rib for two sows classified with a body condition score of 12.  The shorter and wider sow (dashed 

line) was younger and pregnant. 

 

The backfat (BF) of the population ranged from 8 to 30 mm.  The best model (smallest error and highest 

R²) for predicting backfat was a multiple linear regression found through the stepwise regression model, with form 

shown by eq. 4 and coefficients presented on Table 1.  The selected inputs were the height of last rib’s curvature, the 

perimeter of sow’s body, the major axis of the ellipse fitted around sow’s body, the length from snout to rump, and 

the predicted body condition score (using eq.3) (Figures 11a, 11b, 11c, 11d, and 11e).  The R² for this regression was 

0.4863, with a standard error of 3.5841.  The average absolute error of the model for the test set was 16.07%, or 2.44 
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mm.  The R² of predicted versus actual BF for the test set was 0.6650, with an intercept of 4.9429 and a slope of 

0.6832 (Figure 11f).  This value was smaller than the obtained by Weber et al. (2014) for backfat prediction from 

depth cameras for dairy cows (R² = 0.96), but, again, the animal differences in anatomy should be taken in 

consideration and the comparison should be done with reservations. 

 

𝐵𝐹 =  𝑎 + 𝑏 × 𝐶𝐻 + 𝑐 × 𝑃 + 𝑑 × 𝑀𝐴 + 𝑒 × 𝐿 + 𝑓 × 𝑝𝐵𝐶𝑆    (4) 

 

where: 

 

 BF = backfat, in mm; 

 CH = height of last rib’s curvature, in cm; 

 P = perimeter of sow’s body, in cm; 

 MA = length of major axis of ellipse fitted around sow’s body, in cm; 

 L = length from snout to rump, in cm; 

 pBCS = predicted body condition score; 

 a,b,c,d,e,f = coefficients. 

 

Principal component analysis showed that the variable projected volume could explain 100% of the 

variance of the model (out of the variables tested) for predicting animal mass, so a simple linear regression of volume 

versus mass was performed (Figure 12a), with form presented in eq.4 and coefficients presented on Table 1.  The R² 

for this regression was 0.8749, with a standard error of 9.9166.  The average absolute error of the model for the test 

set was 3.8%, or 6.95 kg.  This value is slightly smaller than the value obtained by Condotta et al. (2018) (4.6%) for 

predicting grow-finishing pigs’ mass. 

The R² of predicted versus actual body mass for the test set was 0.9321, with an intercept of 18.693 and a 

slope of 0.8979 (Figure 12b).  This value is greater than the obtained (R² of 0.92) by Kashiha et al. (2014) for mass 

prediction of grow-finish pigs, but smaller than the values obtained by Kongsro (2014) for boars (R² = 0.99), by 

Condotta et al. (2018) (R² = 0.99) , and by Pezzuollo et al. (2018) (R² = 0.99) for grow-finishing pigs.  This smaller 

R² obtained probably has to do with the smaller mass range of the animals, as for the greater error, it must be taken 

in consideration that sows have different anatomy from grow-finish pigs and boars, which can reduce the correlation 

between volume and mass. 

Overall, the proposed method showed a satisfactory performance in the estimation of the three variables 

(body condition, backfat, and mass) assessed.  Although the errors are, sometimes, slightly larger than errors 

obtained by other authors when analyzing these characteristics for other animals, the proposed method showed a 

promising way to assess the physical condition of sows in a fast, objective and non-invasive way, that can be 

automated.  Problems with this approach are mainly related with the difficulty in having reliable gold standards for 

model development, especially for body condition.  Next steps of this research should use more animals to validate 

the model, and test weight prediction in pregnant sows. 
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Figure 11. Variables selected for backfat (BF) prediction model plotted against BF: length of major axis of ellipse fitted around 
sow’s body (a), height of last rib’s curvature (b), length from snout to rump (c), perimeter of sow’s body (d), and predicted 
BCS (e).  Predicted versus actual BF for the test set are plotted on (f). 

 

𝑀 =  𝑎 + 𝑏 × 𝑉         (5) 

 

where: 

 

 M = body mass, in kg; 

 V = projected volume, in cm³; 

 a, b = coefficients. 
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Figure 12. (a) Projected volume versus body mass. (b) Predicted versus actual mass. 

 

Table 1. Regression coefficients for body condition score (BCS), backfat (BF), and mass predictions. 

 Coefficients 
R² 

Regression a b c d e f 

BCS -14.7036 0.3259 -0.0715 0.3874 - - 0.5175 
BF 25.2855 0.0389 0.0505 0.0359 -0.2036 1.4117 0.4863 

Mass 48.7898 0.0010 - - - - 0.8749 

 

Table 2. Regression statistics for body condition score (BCS), backfat (BF), and mass predictions. 

Regression Statistics BCS BF Mass 

R2 0.5175 0.4863 0.8749 
Standard Error 1.4659 3.5841 9.9166 

Number of Observations 191 75 96 

 

4.4 Conclusions 

Regression models were performed to obtain body condition score, backfat, and body mass from 

variables obtained with a commercially available depth camera.  A multiple linear regression was obtained using the 

minor axis of the ellipse fitted around sow’s body, the width at shoulders, and the angle, of the last rib’s curvature to 

predict BCS.  To predict backfat, a multiple linear regression was performed using the height of last rib’s curvature, 

the perimeter of sow’s body, the major axis of the ellipse fitted around sow’s body, the length from snout to rump, 

and the predicted body condition score.  It was possible to obtain the body mass with a simple linear regression 

using the projected volume of the sows’ body.  With these three characteristics it could be possible to have better 

insights on the physical condition of sows and aid on better and faster management decisions. 
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5 IMPROVING SOWS’ PERFORMANCE: LAMENESS DETECTION THROUGH 

DEPTH IMAGE ANALYSIS 

Abstract 
To maintain the animal welfare and production in appropriate standards it is necessary to observe, control 

and maintain the physical condition of sows in acceptable levels.  Currently, the classification of lameness is done by 
subjective methods, thus is dependent on the opinion of the manager, which can generate differences between 
ratings.  As alternatives to these subjective methods of classification, various methods have been proposed to obtain 
a more objective measure.  A way to standardize these measurements would be to automate the process by analyzing 
images generated by depth cameras.  The present work aimed to propose a method for early detection of lameness in 
sows, adapting the kinematics method to be used with depth cameras and without the use of reflective markers.  
Three models presented the best accuracy (76.9%): linear discriminant analysis, fine 1-nearest neighbor, and weighted 
10-nearest neighbors.  The input variables used on the models were obtained from depth videos (number, time, and 
length of steps for each of the four regions analyzed - left and right shoulders and left and right hips; total walk time; 
and number of local maxima for head region).  With the automation of lameness detection, it could be possible to 
have better insights on the physical condition of sows and aid on better and faster management decisions. 
 
Keywords: Precision livestock farming; Time-of-flight; Swine 
 

5.1 Introduction 

To maintain the animal welfare and production in appropriate standards it is necessary to observe, control 

and maintain the physical condition of sows in acceptable levels.  The animal welfare assessment protocol for pigs, 

Welfare Quality® (Quality, 2009), states that good health, one of the principles of the animal welfare, is composed of 

three criteria: absence of injury, absence of disease and absence of pain induced by manager.  It is proposed to 

evaluate the first criterion on sows by verifying the presence of lameness. 

Lameness causes pain and difficulty of locomotion (Anil et al., 2009) and, however, it is a common 

disorder in sows that causes negative impacts in both welfare and production, since the animals that demonstrate this 

problem, have a smaller number of born-alive piglets, fewer gestations per year and are removed from the herd at a 

younger age than the ideal (Anil et al., 2009).  It is suggested (Quality, 2009) to classify lameness in a subjective 

method, by visually rating the animals in three levels: level 0 (normal gait, or animal with difficulty on walking, but 

still using all four legs), level 1 (sow severely lame, with asymmetric walking) and level 2 (animal cannot support any 

weight on affected limb, or cannot walk). 

As alternatives, various methods have been proposed to obtain a more objective measurement of 

lameness.  Kinetics and kinematics have been widely used in horses and cows and they began to be used in pigs.  The 

kinetics aims to relate the movement of the bodies with their causes and considers the dynamic forces and 

acceleration.  The footprint was analyzed in many species to study locomotion disorders.  One of the possibilities of 

kinetics is to study simultaneously the positioning of four legs and quantify parameters that cannot be measured with 

kinematics, such as slips when walking, trodden angles and the area of limbs in contact with the floor (Nalon et al., 

2013).  The use of a hallway with floor covered in clay has been tested for acquiring the footprints of sows (Grégoire 

et al., 2013), but it has not been possible to establish a relationship between the footprint pattern and the degree of 

lameness, perhaps because of the floor type used. 

Kinematic analysis quantifies the characteristics of the animal’s gait in the form of measures related with 

time, distance, and angles that describe the movements of the body segments and the joint angles.  This analysis is 

made using reflective markers in predetermined locations on the body of the animal and video recording of the gait.  
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With this technique, several parameters can be simultaneously analyzed by an auto-tracking software, however, some 

problems have been associated with it, mainly related with the placing of markers and their movement with the walk, 

the difficulty in finding joints or bones located behind muscle and fat where these markers are positioned, and 

repeatability of positioning (Nalon et al., 2013).  Despite the problems, this method was effective to show (Grégoire 

et al., 2013) that lame sows have lower walking speed, spend less time standing during a period of 24 hours and tend 

to step more often during the time following the feeding. 

An attempt was made (Stavrakakis et al., 2015) to reduce costs with the kinetics method by using a 

commercial depth camera to detect vertical position trajectories of a dorsal neck marker on pigs.  It was observed 

that the information obtained by the depth cameras is suitable to track characteristics of walking in pigs based on 

neck elevation (errors ranged from 0.5 to 2.0 cm when compared to the reflective markers method), showing 

potential to be used in the detection and classification of lameness, eliminating both the problem with the placement 

of the markers and the costs involved in the process. 

Another method used (Meijer et al, 2014) for lameness detection is the use of a pressure mat.  With this 

method it is possible to detect the standard gait of a non-lame pig.  This information can be used to detect an 

abnormal gait, indicating a lame pig.  It was shown (Meijer et al, 2014) that the gait of a lame pig is asymmetric, and 

this can be detected with a pressure mat. 

This manuscript aimed to propose a method for early detection of lameness in sows, adapting the 

kinematics method to be used with depth cameras and without the use of reflective markers. 

 

5.2 Materials and Methods 

The experiment was conducted in a gestating building of the U.S. Meat Animal Research Center, from the 

Agriculture Research Service-ARS of United States Department of Agriculture – USDA (-98.13° W, 42.52° N).  

Animal digital and depth images were collected on a population of sows at four parities, and at two different time-

points: on the day of moving to the farrowing building and on the day of moving from the farrowing building.  All 

animal procedures were performed in compliance with federal and institutional regulations regarding proper animal 

care practices (FASS, 2010). 

 

5.2.1 Animal Specifics 

Two-hundred and twenty-eight sows at four different parities (1, 2, 3, and 4), weighing approximately 

between 130 and 260 kg, from a rotational Landrace and Yorkshire cross were sampled.  The animals were allocated 

in a gestating building.  Animals were sampled at two different time-points: on the day of moving to the farrowing 

building and on the day of moving from the farrowing building.  The first group received a restricted diet and ad 

libitum water and were housed in a group-pen; while the second group had ad libitum access to both feed and water 

and were housed in individual crates.  Diets were a mix of corn and soybean meal formulated to meet or exceed 

National Research Council recommendations (NRC, 2012). 
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5.2.2 Data Acquisition 

Microsoft® Kinect Studio program was used to acquire both digital RGB color and depth videos from a 

commercially available depth camera (Microsoft Kinect® v.2).  The program was deployed on a Windows®-based 

computer for data collection.  The camera was positioned above the hallway of the building mounted on the ceiling 

to take both dorsal color (1920 x 1080 pixels per frame, Figure 1a) and depth videos (512 x 424 pixels per frame, 

Figure 1b) of the animals while being moved to and from the farrowing building, at approximately 30 frames per 

second. 

 

 

Figure 1. Top-view of the experiment setting.  (a) Color and (b) depth frames acquired. 

 

 

Figure 2. Experiment settings. (a) Animal walking on pressure mat. (b) Walkway with depth camera mounted on ceiling. 
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Animals were weighed using a Rice Lake weighing Systems digital weighing scale, that was calibrated by 

the company and regularly checked with a 50 lb. weight.  The lameness level of the animals was visually assessed, 

validated with a commercially available pressure mat (GAITFour® Walkway, Figures 1a and 2a). 

The assessment classified animals in lame or not lame, and, in case of lame, the animals were classified in 

one of two lameness categories: mild (animal with difficulty on walking, but still using all four legs), or severe 

(asymmetric walking).  No animals with extremely severe lameness (e. g. animal cannot support any weight on 

affected limb or cannot walk) were observed on the population. 

For the pressure mat evaluation, sows individually walked across the mat and the data was deployed on a 

laptop using the GAITFour® software.  In case the walk was not usable (e.g. animal backed up, or stepped outside 

the mat with one or more limbs), the animals were walked across the mat again, up to two repetitions. 

 

5.2.3 Data Analysis 

An algorithm, proposed by Condotta et al. (2018), was used in a numerical computing software 

(MATLAB, version R2018a) for pre-processing the images.  After that, the animal’s head region was selected by 

applying a circular binary mask on the image, starting from the shoulder, with diameter equal to the width at the 

shoulders of the animal.  The rest of the sow’s body was segmented in halves (left and right side), and for each side  

the regions of shoulders and hips were selected (Figure 3).  For each of the four regions (head, shoulder - left and 

right, and hip – left and right), the centroid was calculated.  Also, position (x, and y directions) and height at the 

centroids was acquired.  Average, maximum, and minimum height at each region was recorded.  The animal’s 

velocity was also measured by calculating the Euclidian distance between the positions of the animals’ centroid (not 

considering its head) over the elapsed time between frames. 

 

 

Figure 3. Regions selected of the animal body: head (H), left (LS) and right sides (RS), shoulders (left - SL and right - SR sides), 
and hip (left - HL and right - HR sides). 

 

The curves of height by time obtained for the centroids of all five regions were plotted and analyzed 

(Figure 4a).  For that, an algorithm was developed on a numerical computing software (MATLAB, version R2018a) 

that smoothed the curves using a moving average filter, then found the local maxima of the curves.  For the 

shoulders and hips regions, the local maxima were marked as being the steps of the animals.  This information was 

validated by plotting curves for left and right sides together (Figure 4b) and finding the number of times that the 

curves crossed each other.  The mode of all 6 number of steps obtained (one for each region, plus two for both 

shoulders and both hips) as being the number of steps of the animals.  Time and length for each step was recorded. 

The following classification models were trained and tested on a numerical computing software 

(MATLAB, version R2018a) to predict lameness level: decision tress, discriminant analysis, support vector machines, 
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and nearest neighbor classifiers.  To evaluate the models’ performance in making predictions on new datasets that it 

has not been trained on and prevent overfitting during training, a five-fold cross-validation was performed.  The 

input variables used were: number, time, and length of steps for each of the four regions analyzed (left and right 

shoulders, and left and right hips), total walk time, and number of local maxima for head region. 

 

 

Figure 4. Curves of height versus time for the head (H) region and the shoulders regions - left (SL) and right (SR). Smoothed 
curves and local maxima are also plotted. 

 

5.3 Results and Discussion 

Nine sows of the population presented a lameness level of 2 (severe), and eight animals presented a 

lameness level of 1 (mild).  For training the classification models, nine non-lame animals (level 0) were randomly 

selected.  Table 1 presents the accuracy for all models tested.  The three models that presented highest accuracy for 

predicting lameness level were: (1) linear discriminant analysis (Fisher discriminant – Fisher, 1936), that assumes that 

different classes generate data based on different Gaussian distributions; (2) fine nearest neighbor classifier, with 1 

nearest neighbor used to classify each point during prediction and no distance weighing; and (3) weighted nearest 

neighbor classifier, with 10 nearest neighbors and squared inverse distance weighting function (the weight is 

1/distance²).  The distance metric used for both nearest neighbors’ models was the Euclidean distance. 

The accuracy of all three best models was 76.9%, with 62.5% of true positive rate for the mild lameness 

level, 66.7% of true positive rate for the severe lameness level, and 100% of true positive rate for the non-lame level.  

Confusion matrixes with these results are presented on Figure 5.  All miss-classifications were of lame animals (either 

severe or mild) classified as not-lame (false negatives), which is the least ideal error.  Jabbar et al. (2017) found an 

accuracy of 95.0% for lameness detection in dairy cows with two prediction levels, lame and not-lame.  Van Hertem 

et al. (2014) obtained correct classification rate of 53.0% for dairy cows at five lameness levels, and 81.2% when 

using a binary classification (lame versus not-lame). 

Although the accuracy obtained in this study is slightly smaller than some of the previous results obtained 

for dairy cows, the animal differences in anatomy should be taken in consideration and the comparison should be 

done with reservations.  Van Hertem et al. (2014) found that consecutive measurements on the same animal can 

improve the classification output of a computer vision system, so this is something that could be tested on future 

steps of this research, aiming the improvement on accuracy. 
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Table 1. Models tested to predict lameness level of sows and their accuracy. 

Method Model Type Accuracy (%) 

Decision Trees 

Fine Tree 73.1 

Medium Tree 73.1 

Coarse Tree 73.1 

Discriminant Analysis Linear Discriminant 76.9 

Support Vector Machines (SVM) 

Linear SVM 57.7 
Quadratic SVM 65.4 

Cubic SVM 65.4 

Nearest Neighbour Classifiers (KNN) 

Fine KNN 76.9 
Medium KNN 50.0 
Coarse KNN 46.2 
Cosine KNN 46.2 
Cubic KNN 46.2 

Weighted KNN 76.9 

 

 

Figure 5. Confusion matrix of predicted lameness level versus actual lameness level (0 – not lame, 1 – mildly lame, 2 – severely 
lame) for the three models with highest accuracy: linear discriminant analysis (a), fine nearest neighbor (b), and weighted 

nearest neighbor (c). 

 

With the analysis of the graphs of height versus time obtained (Figures 7,8, and 9), it is possible to 

observe that lame animals take more time to walk the same distance (lower velocity), as previously shown by 

Grégoire et al. (2013).  It was also possible to see that lame animals have smaller steps, so they take more steps to 

walk the same distance as non-lame animals.  These facts were confirmed by the pressure mat analysis (Figure 6).  

The affected limb of lame animals presented a higher total press and a lower “down” time when compared with the 

non-affected limbs.  They also have a higher number of head swings.  The higher the lameness level, the higher the 

amplitude (Figure 7) of these swings.  This could indicate that these animals use the head as a counter-balance of the 

affected limb. 

Because a low number of animals on the population analyzed were classified as lame (17 out of 228, or 

7.42%), future steps of this research should use more lame animals per level in order to improve the model.  Overall, 

the results suggest that an accurate lameness detection can be done by applying a commercially available depth 

camera and a weighted 10-nearest neighbor classification model, with the possibility of automation on farm settings.  

The model should be improved using a higher number of animals to train the model.  With this, it could be possible 

to have better insights on the physical condition of sows and aid on better and faster management decisions. 
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Figure 6. Steps of a severe lame (a) animal, a mildly lame (b) animal, and a non-lame (c) animal recorded by a pressure mat. The 
higher the lameness level, the higher the number of steps and the shorter the step. 

 

 

Figure 7. Curves of height versus time for head (H) region of a non- lame (NL), a mildly lame (LM), and a lame (L) sow. 

 

 

Figure 8. Curves of height versus time for the shoulders (left – SL, and right - SR) of a non- lame (a), a mildly lame (b), and a 
lame (c) sow. 
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Figure 9. Curves of height versus time for the hips (left – HL, and right - HR) of a non- lame (a), a mildly lame (b), and a lame (c) 
sow. 

 

5.4 Conclusions 

A method for early detection of lameness in sows was proposed by using commercially available depth 

cameras and one of the three models: linear discriminant analysis, fine 1-nearest neighbor, and weighted 10-nearest 

neighbors.  The input variables to the models were number, time, and length of steps for each of the four regions 

analyzed (left and right shoulders and left and right hips); total walk time; and number of local maxima for head 

region.  The lameness can be classified with a good accuracy (76.9%).  Future steps of this research should use more 

animals per level in order to improve the model.  With the automation of lameness detection, it could be possible to 

have better insights on the physical condition of sows and aid on better and faster management decisions. 
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