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RESUMO 

Utlização do modelo JULES-crop para previsão de produtividade da cultura do milho 

segunda safra no Brasil  

A cultura do milho (Zea mays L.) é uma importante commodity brasileira, sendo a 

segunda cultura mais produzida e a quinta mais exportada no Brasil. Diante de sua relevância 

para diversos setores da economia, tem-se mostrado imperioso estudos que aprofundem as 

análises sobre as consequências dos efeitos climáticos nesta cultura, sobretudo diante de um 

cenário de mudanças climáticas nas próximas decadas. Para tal, modelos de culturas baseados 

em processos biofísicos vem sendo utilizados a fim de avaliar efeitos do clima na 

produtividade da cultura. No entanto, existe uma lacuna na ciência de modelos que consigam 

fazer simulações em larga escala devido a limitações na integração de fluxos de energia, CO2, 

água e momento da atmosfera com a fisiologia da cultura. Diante disso, o modelo de 

superfície Joint UK land Environment Simulator (JULES), foi integrado com uma 

parametrização de diferentes culturas dentre as quais, o milho, porém, ainda não calibrado e 

avaliado no Brasil. Esta tese traz, em dois capítulos, a utilização de um modelo de larga escala 

na cultura do milho e a sua aplicação para prever a produção do milho safrinha no Brasil. No 

primeiro capítulo, objetivou-se calibrar e avaliar o modelo JULES-crop para a cultura do 

milho, obtendo uma alta performance para simular o indice de area foliar (IAF), altura do 

dossel e massa seca de grãos, tanto em condições de irrigação, quanto em sequeiro para 

diferentes regiões do Brasil e épocas de semeadura. No segundo capítulo, foi possível utilizar 

o modelo JULES-crop calibrado, além de indicadores agro-climáticos relevantes para a 

cultura do milho como temperatura do ar, precipitação e radiação difusa, para desenvolver um 

modelo de previsão de produtividade de larga escala para o milho safrinha do Brasil. A 

conjunção dos fatores agro-climáticos e de variáveis do modelo JULES-crop mostrou boa 

performance para prever a produção de milho no Brasil a partir do 80
o
 dia do ciclo. Assim, é 

possível afirmar que se trata de um modelo ábil para a simular em larga escala e capaz de 

melhorar a previsão de safra da cultura do milho no Brasil, sendo uma importante ferramenta 

que pode ser utilizada pela ciência para estimar a produtividade do milho em diferentes 

regiões produtoras brasileiras.  

Palavras-chave: Zea mays L., JULES-crop, Mudanças climáticas, Calibração de modelos, 

Previsão de safra 
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ABSTRACT 

Using the process-based JULES-crop model for forecasting off-season maize yield in 

Brazil  

Maize (Zea mays L.) is an important Brazilian commodity, being the second most 

produced crop and the fifth most exported in Brazil. In view of its relevance for many sectors 

of the economy, studies that deepen the consequences of climatic effects are imperatives in 

face of a climate change scenario for the next decades. For this purpose, process-based 

biophysical models has been used to evaluate the weather effects on crop yield. However, 

there is a gap in the science of models able to perform in large-scale due to limitations in the 

integration of energy, CO2, water and momentum fluxes with crop physiology. In view of this 

lacuna, the land surface model Joint UK land environment simulator (JULES) was integrated 

with a parametrization of different crops, among which maize, however, the model was not 

calibrated and evaluated in Brazil. This thesis brings in two chapters the use of a large-scale 

model in maize and its application to predict the off-season maize yield in Brazil. In the first 

chapter, the objective was to calibrate and evaluate the JULES-crop model for maize, 

obtaining a high performance to simulate leaf area index (LAI), canopy height and grain dry 

mass both for irrigated or rainfed conditions, in different regions of Brazil and sowing dates. 

In the second chapter, it was possible to use the calibrated JULES-crop, in addition to agro-

climatic indicators such as air temperature, rainfall and diffuse radiation, to develop a large 

scale yield forecasting model for off-season maize in Brazil. The conjunction of agro-climatic 

indicators and JULES-crop outputs resulted in high performance predictions for maize yield 

from the 80
th

 day of the cycle. Therefore, it is possible to confirm a skillful model to simulate 

in a large scale, and that it is able to improve the forecasting for maize yield in Brazil.       

Keywords: Zea mays L., JULES-crop, Climate change, Models calibration, Yield forecasting 
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1. INTRODUCTION 

Maize occupies a prominent place among commodities exported in Brazil, being 

fundamental for the worldwide food security due to its nutritive value. In Brazil, maize is the 

second most cultivated crop with the production of 115.2 Tg in 2021 (BRASIL, 2022), 

making Brazil the world’s third largest producer. The high production of maize in Brazil is 

due to the environmental conditions allowing two growing seasons in a year: main season or 

first season (sown between September- December); off-season or off-season maize (sown 

between January-April) in succession to the soybean crop (Andrea et al., 2018; Dias et al., 

2019).    

Due to an imminent scenario of increase in demand for food, with projections of 

doubling the demand for food to attend the population in 2050 (Tilman et al., 2013), strategies 

to increase food production, considering the limitation for territorial expansion, are necessary 

for assuring the worldwide food security. Another challenging scenario for cropping systems 

is the climate change effects, impacting production due the rainfall irregularity and higher air 

temperatures as projections of IPCC (2021) indicating a minimum increase of 1.5 
o
C until 

2040.  

One of the tools used to understand weather variability and climate change impacts 

on crop yield is the process-based crop models (PBCM) (Rosenzweig et al., 2013). They have 

a set of algorythms that comprise physical and physiological aspects of the agricultural 

systems, being able to simulate numerically crop growth and development (Jones et al., 

2017). The application of this tool for maize in Brazil has been used for different types of 

PBCM as DSSAT (Souza et al., 2020), Aquacrop (Silvestre et al., 2019, Souza et al., 2019) 

and APSIM-Maize (Santos et al., 2020). However, there is a gap in these crop models to 

represent CO2, water and energy fluxes in crop growth and in large territorial areas. In view of 

the resolution of these deficiencies, a land surface model JULES (Joint UK Land 

Environment Simulator Model; Best et al., 2011, Clark et al., 2011) was adapted with a 

parametrization for crops generating the JULES-crop (Osborne et al., 2015). JULES-crop 

contain classical principes of crop phenology and carbon allocation to simulate crop growth 

coupled with carbon, water, energy and momentum fluxes between the surface land and 

atmosphere, being able to evaluate the weather and climate effects on food and water 

resources. 

One of the applications of crop models is to forecast crop yields. The relevance to 

forecast crop yield at national or regional scale can potentially provide early warning for 
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stakeholders and institutions, allowing different ways to face production decrease due to 

adverse climatic effects (Laudien et al., 2020). Maize has importance in the supply chain 

including different economic sectors such as agriculture, energy, animal feeding and 

marketing, and all of which would benefit from early yield forecasting. Some studies using 

crop models to forecast maize in different regions of Brazil were developed, however, none of 

these were approached in a national scale for maize using a land surface model parameterized 

for maize crop, incorporating CO2, energy and water fluxes to simulate crop growth.    

Due to the relevance of maize in a national scenario for economy, exploring 

methodologies capable to contemplate analysis in large scale using a land surface model able 

to integrate crop phisiology with fluxes presented in the biosphere-atmosphere process would 

be valuable effort for agricultural sector in a scenario of climate change in the next decades. 

Thus, the hypothesis of this study is that a land surface model adapted for agriculture on a 

large scale can contribute for reducing uncertainty for forecasting maize yield in Brazil.   

 

1.1 Research objectives 

The central objective of this thesis is to couple seasonal climate scenarios with a land 

surface model adapted for agriculture to forecasting maize yield in Brazil.  

The specific objectives were: 

1) Understand the JULES-crop growth and development parameters using a local 

sensitivity analysis for tropical conditions. 

2) Calibrate and evaluate the JULES-crop model to simulate the maize crop in 

different regions of Brazil.  

3) Develop and evaluate a yield forecast approach for off season maize at a national 

scale in Brazil using the JULES-crop model and agro-climatic indicators.  

 

References 

 

Andrea, M. C. D. S., Boote, K. J., Sentelhas, P. C., and Romanelli, T. L. (2018). 

Variability and limitations of maize production in Brazil: Potential yield, water-limited 

yield and yield gaps. Agricultural Systems, 165, 264-273.  

  



11 
 

Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H., Ménard, C. B., Edwards,  

J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., 

Boucher, O., Cox, P. M., Grimmond, C. S. B.; Harding, R. J. (2011). The Joint UK 

Land Environment Simulator (JULES), model description–Part 1: energy and water 

fluxes. Geoscientific Model Development, 4(1), 677-699. 

BRASIL. Secretaria do comercio exterior. Disponível em:                              

http://www.mdic.gov.br/index.php/comercio-exterior. Acessed in August 9
th

, 2022.  

Clark, D. B., Mercado, L. M., Sitch, S., Jones, C. D., Gedney, N., Best, M. J., Cox, P. M.  

(2011). The Joint UK Land Environment Simulator (JULES), model description–Part 

2: carbon fluxes and vegetation dynamics. Geoscientific Model Development, 4(3), 

701-722 

Dias, F. S., Rezende, W. M., Zuffo, L. T., Caixeta, D. G., Massensini, M. A., Ribeiro, J. I.,  

De Lima, R. O. (2019). Agronomic responses of maize hybrids to row spacing and 

plant population in the summer and winter seasons in Brazil. Agronomy 

Journal, 111(6), 3119-3129.    

Laudien, R., Schauberger, B., Makowski, D., and Gornott, C. (2020).  

Robustly forecasting maize yields in Tanzania based on climatic predictors. Scientific 

reports, 10(1), 1-12.  

Osborne, T., Gornall, J., Hooker, J., Williams, K., Wiltshire, A., Betts, R., and Wheeler, T.  

(2015). JULES-crop: a parametrisation of crops in the Joint UK Land Environment  

Simulator. Geoscientific Model Development, 8(4), 1139-1155.  

Rosenzweig, C., Jones, J. W., Hatfield, J. L., Ruane, A. C., Boote, K. J., Thorburn, P., Antle,  

J. M., Nelson, G. C., Porter, C., Janssen, S., Asseng, S., Basso, B., Ewert, F., Wallach, 

D., Baigorria, G., & Winter, J. M. (2013). The Agricultural Model Intercomparison 

and Improvement Project (AgMIP): Protocols and pilot studies. Agricultural and 

Forest Meteorology, 170, 166–182.  

Silvestre, N. G., Vieira, G. H. S., Rosado, T. L., Poloni, C. M. M., Peterle, G., and Krause, M.  

R. (2019). Maize production estimated by aquacrop software and obtained by crop 

under different irrigation depths. [In Portuguese, abstract in English]. Irriga, 24(3), 

552-568.  

Santos, M. V. C., de Carvalho, A. L., de Souza, J. L., da Silva, M. B. P., Medeiros, R. P.,  

Ferreira Junior, R. A., and Maringolo Lemes, M. A. (2020). A modelling assessment 

of the maize crop growth, yield and soil water dynamics in the Northeast of 

Brazil. Australian Journal of Crop Science, 14(6), 897-904.  

Souza, J. L. M. D., Oliveira, C. T. D., Rosa, S. L. K., and Tsukahara, R. Y. (2020).      

Calibration and Validation of the AquaCrop Model to Estimate Maize Production in 

Campos Gerais, Paraná State, Brazil. Revista Brasileira de Meteorologia, 35(2), 243-

253.  



12 
 

Tilman, D.; Balzer, C., Hill, J., Befort, B. L (2013).   Global food demand and the  

sustainable intensification of agriculture. Proceedings of the National Academy of 

Sciences, 108 (50) 20260-20264. 

 



13 
 

2. CALIBRATION AND EVALUATION OF JULES-CROP FOR MAIZE IN BRAZIL  

 

Abstract 

      Maize (Zea mays L.) is a prominent Brazilian commodity, being the second largest crop 

produced and fifth exported product by the country. Due to its importance for the agricultural 

sector, there is a concern about the effect of climate change on the crop. Process-based models 

are valuable tools to evaluate the effects of climate on crop yields. The Joint UK Land 

Environment Simulator (JULES) is a land-surface model that can be run with an integrated 

crop model parameterization. The resulting model (JULES-crop) thus integrates crop 

physiology principles with the complexity of atmosphere–biosphere coupling. It has been 

shown to be a valuable tool for large-scale simulations of crop yields as a function of 

environmental and management variables. In this study, we calibrated JULES-crop using a 

robust experimental dataset collected for summer and off-season maize fields across Brazil. A 

targeted local sensitivity analysis was performed to detect parameters of major importance 

during the calibration process. After calibration, the model was able to satisfactorily simulate 

both season and off-season cultivars. Modeling efficiency (EF) was high for leaf area index 

(EF =0.73 and 0.71, respectively, for summer season and off-season datasets), crop height 

(EF = 0.89), and grain dry mass (EF =0.61 and 0.89, respectively, for summer season and off-

season datasets). The model showed a lower accuracy for simulating leaf dry mass in summer 

season cultivars (EF = 0.39) and soil moisture (EF = 0.44), demonstrating the necessity of 

further improvements including additional parametrizations of the rainfed conditions. 

 

2.1 Introduction  

Maize (Zea mays. L) crop has major economic and social importance in Brazil and 

worldwide. It is relevant for food security due to the nutritive value and chemical 

composition, being the third most produced crop in the world (Wijewardana et al., 2016). 

Brazilian maize production has been expanding over the last decades because of advances in 

cropping systems, positioning Brazil as the third largest world producer, with 102.5 Tg 

produced in 2020 (BRASIL, 2020). 

Addressing the increasing demand for food, considering the limitation for territorial 

expansion, is one of the main agricultural challenges facing our times (Meyfroidt, 2018). FAO 

(2009) projects an increase in population resulting in an increase in food demand by more 

than 70% in 2050 in comparison to 2009. Moreover, climate change imposes other 

challenging aspects for maize cropping systems, such as the rainfall irregularity (Carvalho 

et al., 2014) and thermal stress from the higher air temperatures (Bassu et al., 2014; T. Souza 

et al, 2019). 

https://acsess.onlinelibrary.wiley.com/doi/10.1002/agj2.21066#agj221066-bib-0052
https://acsess.onlinelibrary.wiley.com/doi/10.1002/agj2.21066#agj221066-bib-0027
https://acsess.onlinelibrary.wiley.com/doi/10.1002/agj2.21066#agj221066-bib-0014
https://acsess.onlinelibrary.wiley.com/doi/10.1002/agj2.21066#agj221066-bib-0007
https://acsess.onlinelibrary.wiley.com/doi/10.1002/agj2.21066#agj221066-bib-0002
https://acsess.onlinelibrary.wiley.com/doi/10.1002/agj2.21066#agj221066-bib-0043
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Process-based crop models (PBCMs) have been a valuable tool for understanding climate 

change effects on crop yields (Rosenzweig et al, 2013). They contain robust physical and 

physiological bases organized in a set of algorithms for numerical simulations representing 

crop growth and development (Jones et al., 2017). Thus, PBCMs aim to simulate crop 

dynamics in a specific environment, considering management differences, enabling analysis 

with practicality and speed (Marin et al., 2014). Several PBCMs have been used to simulate 

maize systems in Brazil, such as Aquacrop (Silvestre et al., 2019; T. Souza et al., 2019), 

DSSAT-CERES-Maize (J. Souza et al., 2020; Duarte & Sentelhas, 2020), and APSIM-Maize 

(M. Santos et al., 2020). For studies on climate change on large territorial areas, there is a 

need for PBCMs that integrate crop physiology principles with biosphere–atmosphere 

processes. 

Due to the necessity to improve the representation of crop growth and development in 

earth systems modelling, many studies have adjusted characteristics in land surface models to 

better represent the energy, CO2, and water fluxes effects in crop growth and development in 

large-scale domains (Drewniak et al., 2013; Wu et al., 2016; Zhang et al., 2020). With the aim 

to adapt a land surface model, with the capacity to incorporate different fluxes in the 

biosphere–atmosphere process for crop growth simulation, a parameterization for crops was 

added to the land surface model Joint UK Land Environment Simulator (JULES) model (Best 

et al., 2011; Clark et al., 2011) by Osborne et al. (2015), which is referred to as JULES-crop. 

JULES-crop uses classical principles of crop phenology and C allocation to simulate crop 

growth coupled with C, water, energy, and momentum fluxes between the surface land and 

atmosphere. It also enables the assessment of weather and climate effects on food and water 

resources (Osborne et al., 2015). JULES-crop obtained satisfactory simulations when tested 

for irrigated maize in Nebraska (Williams et al., 2017). The model also performed well for 

rainfed maize in the North China Plain (Wolffe et al., 2021), but had mixed results when 

evaluated against FAO country yields (Osborne et al., 2015; Franke et al., 2020). In the study 

of Osborne et al. (2015), the model was not calibrated against field observations, where the 

parameter values were derived from the literature. Despite Osborne et al. (2015), Franke et al. 

(2020) presented some simulations for maize and compared with Brazilian yield recorded in 

FAO database, the JULES-crop had not yet been calibrated and evaluated for tropical 

environments as in Brazil, covering its climatic, soil, and management variability. 

https://acsess.onlinelibrary.wiley.com/doi/10.1002/agj2.21066#agj221066-bib-0039
https://acsess.onlinelibrary.wiley.com/doi/10.1002/agj2.21066#agj221066-bib-0020
https://acsess.onlinelibrary.wiley.com/doi/10.1002/agj2.21066#agj221066-bib-0026
https://acsess.onlinelibrary.wiley.com/doi/10.1002/agj2.21066#agj221066-bib-0042
https://acsess.onlinelibrary.wiley.com/doi/10.1002/agj2.21066#agj221066-bib-0043
https://acsess.onlinelibrary.wiley.com/doi/10.1002/agj2.21066#agj221066-bib-0044
https://acsess.onlinelibrary.wiley.com/doi/10.1002/agj2.21066#agj221066-bib-0012
https://acsess.onlinelibrary.wiley.com/doi/10.1002/agj2.21066#agj221066-bib-0041
https://acsess.onlinelibrary.wiley.com/doi/10.1002/agj2.21066#agj221066-bib-0010
https://acsess.onlinelibrary.wiley.com/doi/10.1002/agj2.21066#agj221066-bib-0056
https://acsess.onlinelibrary.wiley.com/doi/10.1002/agj2.21066#agj221066-bib-0057
https://acsess.onlinelibrary.wiley.com/doi/10.1002/agj2.21066#agj221066-bib-0003
https://acsess.onlinelibrary.wiley.com/doi/10.1002/agj2.21066#agj221066-bib-0008
https://acsess.onlinelibrary.wiley.com/doi/10.1002/agj2.21066#agj221066-bib-0032
https://acsess.onlinelibrary.wiley.com/doi/10.1002/agj2.21066#agj221066-bib-0032
https://acsess.onlinelibrary.wiley.com/doi/10.1002/agj2.21066#agj221066-bib-0053
https://acsess.onlinelibrary.wiley.com/doi/10.1002/agj2.21066#agj221066-bib-0055
https://acsess.onlinelibrary.wiley.com/doi/10.1002/agj2.21066#agj221066-bib-0032
https://acsess.onlinelibrary.wiley.com/doi/10.1002/agj2.21066#agj221066-bib-0016
https://acsess.onlinelibrary.wiley.com/doi/10.1002/agj2.21066#agj221066-bib-0032
https://acsess.onlinelibrary.wiley.com/doi/10.1002/agj2.21066#agj221066-bib-0032
https://acsess.onlinelibrary.wiley.com/doi/10.1002/agj2.21066#agj221066-bib-0016
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This paper has three major objectives: (a) to understand the JULES-crop growth and 

development parameters using a local sensitivity analysis for tropical conditions; (b) to 

calibrate the JULES-crop model using an experimental dataset conducted across the main 

producing regions of Brazil using the leave one-out cross validation method; and (c) to 

evaluate the JULES-crop predictions for different cultivars, sowing dates, and water regimes 

using the parameters calibrated from the cross-validation method. 

 

2.2 Material and Methods  

2.2.1 Brief model description 

The model simulates crop development using a development index (DVI) varying 

from −2 to 2. The value −2 represents the time before the sowing, −1 represents the sowing 

date, 0 represents emergence, 1 represents the beginning of reproductive stage and 2 

represents the end of the simulated crop season (usually harvest – see below). The DVI is 

used to simulate the specific leaf area (SLA), C partitioning throughout crop growth, 

senescence, and the harvest date. The DVI is based on the accumulation of effective 

temperature (Teff), that is, growing degree days (Williams et al., 2017; Osborne et al., 2015), 

as follows in Equation 1: 

                𝑇𝑒𝑓𝑓 =  

{
 
 

 
 

0 𝑓𝑜𝑟 𝑇 < 𝑇𝑏
𝑇 − 𝑇𝑏 𝑓𝑜𝑟 𝑇𝑏 ≤ 𝑇 ≤ 𝑇𝑜

(𝑇𝑜 − 𝑇𝑏) (1 −
𝑇−𝑇𝑜

𝑇𝑚−𝑇𝑜
)  𝑓𝑜𝑟 𝑇𝑜 < 𝑇 < 𝑇𝑚

0 𝑓𝑜𝑟 𝑇 ≥ 𝑇𝑚 }
 
 

 
 

                                     (1) 

where To is optimal temperature for crop development; Tm is maximum temperature for crop 

development, Tb is base temperature for crop development (i.e. crop develops most rapidly 

when the temperature is close the optimal temperature). Each temperature adopted in this 

study was based in Birch et al., (1998) and Williams et al., (2017).   

For crop growth simulation, the model partitions net primary productivity (NPPacc) to 

each plant structure and to a stem reserve pools. This partitioning is controlled by user-

specified parameters. In the case of the stem, there is a partitioning for the structure and for 

the reserve, therefore, it also depends on a remobilization adjustment. To define the crop 

partitioning factors for each carbon pool (pi), the following equation was used:   

https://acsess.onlinelibrary.wiley.com/doi/10.1002/agj2.21066#agj221066-bib-0053
https://acsess.onlinelibrary.wiley.com/doi/10.1002/agj2.21066#agj221066-bib-0032
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                                                                         pi = 
exp(𝛼𝑖+ 𝛽𝑖𝐷𝑉𝐼)

∑ exp (𝛼𝑗+𝛽𝑗𝐷𝑉𝐼)𝑗
     (2) 

where j= stem, leaf, harv and root. αi and βi are numerical constants that are adjusted to 

observational data. ∑ 𝑝𝑗 = 1𝑗 . 

Carbon pools are initialized (to a value specified by the user: initial_carbon_io) when 

DVI reaches threshold (initial_c_dvi_io). In the reproductive stage, a fraction of carbon 

allocated in the stem is remobilized to reproductive structure as panicle and grain. A similar 

process occurs for the leaf, to simulate leaf senescence reducing LAI. This occurs when DVI 

becomes greater than the parameter controlling the senescence phase (DVIsen=0.4) (Equation 

3):  

                                               sen_dvi=  𝜇 (𝐷𝑉𝐼 − 𝐷𝑉𝐼𝑠𝑒𝑛)𝜐                                                (3) 

where: 𝜇 and ν allometric coefficients for calculation of senescence.  

Similar to carbon partitioning, the SLA is calculated as a function of DVI (Equation 

4):  

                                                               𝑆𝐿𝐴 =  𝛾 (𝐷𝑉𝐼 + 0.06)𝛿                                           (4) 

where the coefficients δ and γ were derived from allometric adjustments and the ratio between 

leaf dry mass and its carbon fraction.  

The green LAI is calculated using the leaf carbon and the SLA (Equation 5):  

                                                   𝐿𝐴𝐼 =
𝐶 𝑙𝑒𝑎𝑓

𝑓𝑐,𝑙𝑒𝑎𝑓
 SLA                                                               (5) 

where C leaf is the leaf carbon pool and fc,leaf is the carbon fraction of the dry leaves.  

Under normal circumstances, harvest is triggered when the DVI reaches 2, but harvest 

can be triggered earlier in some circumstances (such as low soil temperatures, extreme LAI 

values, low plant carbon, very slow crop development; please see Williams et al., 2017 for a 

more detailed description). In the present study, none of our simulations triggered the early 

harvest procedure.  

The Cstem pool is used to calculate the crop height (h) (Equation 6): 
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                                                 ℎ = 𝑘 (
𝐶𝑠𝑡𝑒𝑚

𝑓𝑐,𝑠𝑡𝑒𝑚
)
𝜆
                                                                 (6) 

where k and λ are allometric parameters, and the fc stem is the carbon fraction in dry stem 

including reserve.  

 

2.2.2 Database description  

This study used a database with seven experiments conducted across Brazil. Four of 

those field experiments were conducted at the College of Agriculture “Luiz de Queiroz” of 

the University of São Paulo, located in Piracicaba, Sao Paulo State, Brazil (Southeast region, 

latitude 22
o
42’30” S, longitude 47

o
38’30 W and altitude 546 m a.m.s.l.). Of these four 

experiments, two was carried out for this study and the other 2 were carried out by Souza et 

al., (2019). The remaining three experiments were conducted in: a) the environmental and 

agricultural center of the University of Maranhão, located in Chapadinha, State of Maranhão 

(Northeast, 43
 o

21’33’’S, longitude 3
o
44’,26’’ W and altitude 93 m a.m.s.l); b) The research 

and extension unit of State University of São Paulo, located in Selviria, State of Mato Grosso 

do Sul (Midwest region, 20
o
22’11’’S, longitude 51

 o
25’9’’ W and altitude 345 m a.m.s.l); and 

c) the agronomic experimental station of University of Rio Grande do Sul, located in 

Eldorado do Sul, State of Rio Grande do Sul (South region, latitude 30
o
5’9’’S, longitude 

51
o
37’5’’ W and altitude 18 m a.m.s.l).  

The climate in Piracicaba is classified by Koppen (Alvares et al., 2013) as Cwa; in 

Selviria and Chapadinha, the climate classification is Aw and in Eldorado do Sul, the climate 

classification is Cfa. All experiments received N, P, and K fertilization recommended by Raij 

et al., (1996) and regular weed control. Sowing and harvest dates as well as other details on 

the experiments are available in Table 2.1. 
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Table 2.1. Description of the experimental databases used for JULES-crop calibration in four different regions of Brazil.  

Experiment Region County 
Sowing and harvest 

dates 

Cultivar, varieties or 

hybrid 
Treatments 

emp and 

rainfall

Water 

regime  

Row 

spacing Plant 

population  
References   

(m)  

1 Southeast Piracicaba 
29 Nov 2018 and 28 

Mar 2019 
DKB363 

Summer 

season 

24.9 oC, 

847.4 mm 
Irrigated 0.45 66,000 -- 

2 Southeast Piracicaba 
7 May 2016 and 18 Oct 

2016 
P4285YH Off-season 

19.2 oC, 

653.6 mm 
Irrigated 0.45 66,000 

Souza et al., 

(2019) 

3 Southeast Piracicaba 
10 Jun 2016 and 19 

Oct 2016 
P4285YH Off-season 

19.3 oC, 

374.6 mm 
Rainfed 0.9 70,000 

Souza et al., 

(2019) 

4 Southeast Piracicaba 
5 Dec 2019 and 30 Mar 

2020 
LG36790 

Summer 

season 

24.9 oC, 

771.3 mm 
Rainfed 0.9 70,000 -- 

5 South 
Eldorado do 

Sul  

25 Oct 1995 and 6 Mar 

1996 
Pionner   3230 

Summer 

season 

23.5 oC, 511 

mm 
Irrigated 0.75 67,000 França (1999) 

6 Northeast Chapadinha 
20 Feb 2015 and 04 

Jun 2015 
AG 1051 

Summer 

season 

26.15 oC, 897 

mm 
Rainfed 0.85 58,823 Santos (2016) 

7 Midwest Selviria 
02 Dec 2014 and 06 

Apr 2015 
DKB393 

Summer 

season 

27.4 oC, 1058 

mm 
Rainfed 0.45 65,000 Rosa (2017) 

 Average air temperature and total rainfall observed in each experimental season. 
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In all experiments, detailed crop growth variables were monitored, including leaf dry 

mass, stem dry mass, grain dry mass, crop height and leaf area index (LAI), as described by 

Souza et al., (2019). Root dry mass were determined based on aboveground/belowground 

maize crop ratio, according to Vilela and Bull (1999) and Gondim et al., (2016). Soil 

parameters of each experiment are described in Table 2.2. In experiment 4, soil moisture data 

was measured using a frequency domain reflectometry (FDR) probe (Diviner 2000), 

calibrated for the local soil for the 0-60 cm depth (Marin et al., 2020).  

 

Table 2.2. Soil physical parameters required by JULES-crop, with their respective definitions 

and units for four Brazilian regions. 

Parameter  Definition 
Piracicaba 

(Southeast)  

Selviria 

(Midwest) 

Eldorado 

(South)  

Chapadinha 

(Northeast) 

b 
Brooks-Corey exponential for hydraulic soil 

characteristics (dimensionless) 
17.28 7.82 9.59 5.14 

hcap Dry heat capacity (J m-3 k-1) 1.27E+06 1.26E+06 1.26E+06 1.37E+06 

sm_wilt Soil moisture at the point of permanent wilt (m3 m-3) 0.28 0.18 0.217 0.11 

hcon Dry thermal conductivity (W m-1 k-1) 1.394 0.25 0.239 0.251 

sm_crit   Soil moisture at the critical point (m3 m-3) 0.358 0.29 0.322 0.24 

satcon Saturation hydraulic conductivity (kg m-2 s-1) 0.01 0.01 0.01 0.01 

sathh Soil matrix suction at saturation (m) 1.37 0.17 0.204 0.17 

sm_sat  Soil moisture at saturation (m3 m-3) 0.463 0.43 0.433 0.42 

albsoil Soil albedo (-) 0.133 0.133 0.133 0.133 

 

Hourly meteorological data was collected by a weather station installed near to the 

experimental site of Piracicaba and variables recorded and their respective model codes are 

described in Table 2.3. For other locations, it was used the WATCH dataset based on ERA-

Interim (WFDEI) reanalysis data contemplating meteorological data from 1979 to 2016 

(Weedon., 2018). JULES-crop requires downward flux of longwave radiation, and diffuse 

radiation, which was estimated based on the methods proposed by Prata (1996). Moreover, 

the model required yearly averages of atmospheric CO2 concentration, which were obtained 

from the National Oceanic and Atmospheric Administration (NOAA, 2020).  
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Table 2.3. Meteorological variables required by JULES-crop and their respective definitions 

and units.  

Parameter Definition 

sw_down Downward flux of short-wave radiation (W m-2) 

lw_down Downward flux of long-wave radiation (W m-2) 

Precip Rainfall (Kg m-2s-1) 

T Air temperature (oC) 

Wind Wind speed (m s-1) 

Pstar Air pressure (Pa) 

Q Specific humidity (kg kg-1) 

diff_rad Diffuse radiation (W m-2) 

 

2.2.3 Local sensitivity analysis  

JULES-crop has 130 parameters in its structure used for simulating maize growth and 

development, mass and energy fluxes. We use a sensitivity analysis to detect the most 

important parameters to focus on, when calibrating JULES-crop for different cultivars in 

different sites across Brazil. The local sensitivity analysis followed the methods described by 

Wallach et al., (2018), where the reference crop parameters were those provided by Williams 

et al., (2017) but using specific weather and soil data (Table 2.1, 2.2 and 2.3). Then, a +/- 3% 

disturbance was applied to each parameter with the aim to facilitate the understanding of 

sensitivity parameters, and a heat map was developed based on the average absolute 

difference. The output variables considered in the sensitivity analysis were: LAI (croplai, m
2
 

m
-2

), crop height (cropcanht, m), crop development index (cropdvi, dimensionless), in 

addition to the C content in leaf yield (cropleafc, kg m
-2

), roots (croprootc, kg m
-2

), and stem 

(cropstemc, kg m
-2

), as well as the crop harvest part (cropharvc, kg m
-2

) and net primary 

production (npp, kg m
-2

), representing the crop carbon fixation capacity. 

 

2.2.4 Calibration procedure and statistical analysis  

We organized the calibration process in two steps, one being for cultivars used in the 

summer season (Table 2.1), and the second for off-season maize cultivars, which corresponds 

to the P4285YH cultivar (Table 2.1). The JULES-crop calibration procedure was based on 

Williams et al., (2017), where the main allometric functions of the model were adjusted to 
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field data. Considering that a limited number of sites were available to split data for 

calibration and validation, the leave-one-out cross-validation method (Marin et al., 2011, 

Wallach et al., 2018) was used to simultaneously include all the variability of conditions and 

measurements in assessing the calibration performance. The leave-one-out cross-validation 

was applied separately for summer and off-season cultivars, because of the genetic differences 

between these two groups of cultivars. The procedure of the leave-one-out cross-validation 

had a factorial design in which each run missed one treatment each time. Consequently, five 

combinations were performed for summer season cultivar and two for off-season cultivar, 

similar to that used by Marin et al. (2011). As related in the section 2.2.3, to determine which 

parameters were adjusted, a targeted sensitivity analysis was performed to determine the 

dependency of simulated variables on changes in key parameters. After the selection of the 

most sensitivity parameters, the calibration procedure was based on direct adjustment in 

relation to observed on field experiments, using the eye fitting calibration method (Wallach et 

al., 2018). We did not adjust others parameters considered well-known, such as the base 

temperature (t_base_io), optimum temperature (t_opt_io) and others related in Table S2.  

JULES-crop predictions were evaluated using the following outputs: LAI, crop height, soil 

moisture, leaf, stem and grain dry mass. For quantifying the model performance, we 

compared the observed data with simulations of LAI, soil moisture, crop height, leaf, stem 

and grain dry mass, using the average root mean square error (RMSE) (Loague and Green, 

1991), the index of agreement (d) (Willmott et al., 2012) and the Nash-Sutcliffe efficiency 

index (EF) (Nash-Stucliffe, 1970), as measures of goodness-of-fit (Marin et al., 2011; 

Wallach et al, 2018), calculating an overall statistical indexes for both groups of summer and 

off-season cultivars. All other model parameters were kept at the values from Williams et al., 

(2017). 

 

2.3 Results and Discussion 

2.3.1 JULES-crop local sensitivity analyses  

Based on the targeted local sensitivity analysis, we verified that 52 parameters were 

sensitive to the environmental conditions observed in experiment 1 (Southeast; Table 2.1). 28 

are associated with the model functionality to simulate C4 vegetation (Table S1) and 24 are 

associated with the specific crop parametrization of JULES-crop (Table S2), based on the 

output variables described in section 2.2.3: LAI, crop height, crop development index, the 
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carbon content in leaf, stem, root, harvest part and net primary productivity. The local 

sensitivity analysis revealed a greater sensitivity of JULES-crop to partitioning-related 

parameters (alpha1_io, alpha2_io, alpha3_io, beta1_io, beta2_io, beta3_io), and to the 

parameter related to the crop specific leaf area (gamma_io) (Fig. 2.1). These parameters vary 

according to the DVI, a model variable used for calculating plant carbon pools during 

different crop phenological phases. Out of these parameters, alpha3_io has the strongest 

influence on the fraction of NPP partitioned to leaves and therefore is the strongest influence 

on LAI and net primary productivity variables (Fig. 2.1, Fig S1).  

The fact that the leaf-related partition parameters are more sensitive than the others 

may be related to the difference in carbon allocation for this structure. According to Nabinger 

and Pontes (2002), the balance between photosynthesis and respiration generates a quantity of 

carbon in which part is fixed and another part is available for constituting plant biomass in the 

formation of roots, reserves, stems or leaves. However, the distribution of this balance in 

species of the Poaceae genus is uneven to meet the internal demand of the plant, with the 

formation of leaves mainly in vegetative stage, when more carbon will be allocated due to the 

need for the plant to have a leaf area to intercept solar radiation, in comparison to the carbon 

allocation for stem being more constant during the cycle than in the leaves. The JULES-crop 

algorithm for crop growth uses the LAI to calculate the canopy radiation interception, which 

affects the net primary productivity. Since net primary productivity affects the leaf carbon, 

and thus LAI (as described in Section 2.2.2), this creates a feedback loop. Hence, compared 

with other parameters, changes in the alpha and beta coefficients related to leaves tend to have 

a greater impact compared on estimating the output variables.  

Two sensitive parameters in the analysis were the base and optimum temperatures 

(t_base_io and t_opt_io, Fig 2.1). The JULES-crop simulation is based on the DVI, i.e. the 

crop development calculated by an effective temperature, calculated using the base and 

optimum temperature (Clark et al., 2011; Osborne et al., 2015). Other crop models have also 

presented temperature parameters for the crop development calculation, such as CERES-

Maize (Jones et al., 2003). CERES-Maize demonstrates high sensitivity to these temperature 

parameters, manifested in growth and development outputs, as well as grain dry mass and 

LAI (Bhusal et al., 2009). However, given that the base and optimum temperatures do not 

vary significantly in different cultivars (Birch et al., 1998) this study focused on calibrating 

the carbon partitioning parameters. Another sensitive parameter observed was related to initial 

amount of carbon in crops (Fig 2.1), as this experiment did not measure the carbon presented 
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near emergence, the value was adopted based on Williams et al., (2017), adjusted to the value 

used by Osborne et al., (2015), both studies for Maize. 
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Figure 2.1. Heatmap of the local sensitivity analysis of the JULES-crop parameters for the experiment 1 (Piracicaba, SP). Greater sensitivity is 

expressed by values closer to 1 and clearer colors. 
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2.3.2 JULES-crop calibration   

Compared to the parameter values reported by Williams et al., (2017) when assessing 

maize cultivars in Nebraska-USA, we found greater differences for cultivar P4285YH, which 

is commonly used for off-season crops after soybean crop in tropical producing regions of 

Brazil (Table 2.4). As climatic conditions in Brazil offer a wide range of viable sowing dates 

for maize production, there is a large availability of cultivars with distinct carbon allocation 

(Liang et al., 2020; Peng et al., 2020), making it necessary to calibrate off-season cultivars 

separately from in-season ones. Cultivars used in the summer season generally show similar 

patterns of growth and development, which explains the use of the same parameter values to 

represent this group of cultivars (Table 2.4).  

The carbon partition parameters were derived using the observed data as a reference 

(Fig 2.2 and 2.3). In comparison to off-season cultivar, the most part of observed partitioning 

fractions for the summer season cultivars were shifted to higher DVI (Fig 2.2A, points, with 

the exception of the Pionner 3230 cultivar (South, experiment 5) when DVI between 0.5 to 1 

and 1.5 to 2, so we also calibrated SLA for the two periods of crop production separately (Fig 

2.2A, colored lines). Once again, this effectively mimicked the shifted pattern in DVI. The 

crop height measurements (Fig 2.2B) were taken only during the off-season experiment 

(Souza et al, 2019), so we adopted the same crop height parameters values (Table 2.4) for the 

summer season experiment. For the crop height parameter, the comparison used was in 

relation to stem dry mass as reported by Williams et al., (2017) and Osborne et al., (2015). 

Some patterns of carbon partitioning (Fig 2.3) and SLA (Fig 2.2A) indicate some water and 

thermal stress impact in grain dry mass yield (Fig 2.3D), specifically in the cultivars DKB363 

(Midwest, experiment 7), AG1051 (Northeast, experiment 6) and LG36790 (Southeast, 

experiment 4), inducing the carbon allocation for different structures as a strategy to supply 

the atmospheric water demand. In the DKB363 (Midwest, experiment 7), AG1051 (Northeast, 

experiment 6) and LG36790 (Southeast, experiment 4), both under rainfed conditions, the 

flowering occurred when the air temperature exceeded the 33
o
C, which was above the 

optimum temperature of 28
o
C and influencing the carbon allocation in view of the negative 

impacts on the crop (Johkan et al., 2016). We verify that in experiments 6 and 7 (Northeast 

and Midwest) the root carbon partitioning is extended after the flowering stage (DVI>1) 

resulting in less carbon in the grain (Fig 2.3A and 2.3D). Such ecophysiological strategy was 

also observed by Pedreira et al., (2001) and Duan et al., (2019) in Poaceae species, with 
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greater proportion of carbon allocated to the root system in relation to the above ground parts 

as an effect of deepening the root system towards water and nutrients. Although crop models 

based on fixed carbon partitioning, such as JULES-crop, can simulate the water stress in 

biomass gain (aboveground), it cannot simulate the effect of altered water regimes and soil 

nutrients on root architecture.  

 

 
 
Figure 2.2. Calibrations for specific leaf area (A) and crop height (B) derived for different 

maize experiments conducted in four Brazilian regions. Off-season maize observations are 

those from cultivar P4285YH. 
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Table 2.4. Crop parameters adjusted for summer-season and off-season maize cultivars 

considered in this study in comparison with a set of parameters previously published by 

Williams et al., (2017).  

  
Williams et al., (2017) 

Summer 

season 
Off-season 

α1 - root 13.5 12.2 12.2 

α2 - stem 12.1 10.4 9.9 

α3 – leaf 13.1 11.3 11.1 

β1 - root -15 -9.6 -9.1 

β2 - stalk -12.1 -7.4 -6.3 

β3 – leaf -14.1 -8.3 -7.8  

γ 

(gamma_io) 
17.6 14.1 14.2 

δ (delta_io) -0.33 -0.33 -0.39 

λ (allo2_io) 0.38 0.52 0.52 

k (allo_1_io) 3.6 2.5 2.5 

 

We also observed a greater fraction of carbon partitioned to leaves (Fig 2.3C) in the 

knee-high stage of the off-season cultivar (for DVI <0.5) than in the summer season one, with 

a carbon partitioning around 50% allocated to leaves in the off-season cultivar in comparison 

to the summer cultivars, for which the carbon partitioning ranged from 30% to 45% for 

DKB363 (Southeast, experiment 1) and Pionner 3230 (South, experiment 5), respectively. 

Liang et al (2020) observed, in two maize cultivars, a decrease of carbon (C) fixation and high 

%C retained in leaves at low light intercepting leaves. Given that our off-season experiment 

reached the knee–high stage during the winter, and thus under low levels of solar radiation, 

we speculate that it could have been a contributing factor for a high level of carbon retained in 

leaves in our dataset. Yet, the leaf senescence algorithm used in JULES-crop might also be 

the cause of uncertainties in estimates, as our experiments did not measure the dead and live 

leaves along the crop cycle. The senescence algorithm was already targeted by Williams et al., 

(2017) in order to improve its performance, but further work is still needed.  

Comparing off-season and summer season cultivars, we found difference in the stem 

height and mass (Fig 2.3B), these being greater in some summer cultivars than in the off-

season, with carbon allocation to stems ranging from 20% to 40%, at the end of the season 

(DVI>1.5) in cultivars specifically in DKB363 (Southeast, experiment 1) and LG36790 

(Midwest, experiment 7). However, in the tasseling stage (DVI=1) occurred the greater stem 

carbon allocation for off-season cultivar (Fig 2.3B), reaching 48% of the carbon distributed 
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for the stem. Although our results contrast with off-season and Williams et al., (2017), similar 

carbon allocation rates at the end of season were also observed by Vasconcellos et al., (1998) 

in maize experiments in the southeast of Brazil using three season cultivars (BR106, AG519 

and BR201). The sensitivity analysis in 3.1 summarizes the importance of modifying the 

carbon allocation to calibrate JULES-crop for different cultivars and sowing dates. 
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Figure 2.3. Carbon partitioning fractions for the root (A), stalk (B), leaf (C) and grain (D) 

carbon pools, derived for different maize experiments conducted in four Brazilian regions. 

Off-season maize observations use cultivar P4285YH. 

  



30 
 

2.3.3 Evaluation of the JULES-crop calibration  

JULES-crop simulated maize development and growth, as well as plant structures and 

carbon pools during the crop cycle (Table 2.5, Fig 2.4 and 2.5) satisfactorily, in two different 

conditions (irrigated and rainfed) in different regions of Brazil. Using the same dataset 

collected for an off-season cultivar, Souza et al., (2019) calibrated the DSSAT-CERES Maize 

and found EF=0.70 for LAI in irrigated conditions, which is similar to this study (EF =0.71 in 

off-season cultivar and EF= 0.73 in summer cultivar). JULES-crop showed higher efficiency 

for simulating crop height in both treatments: EF=0.70 and 0.68 for irrigated and rainfed 

conditions found by Souza et al., (2019) in comparison to 0.88 found in this study (Table 2.5). 

Thus, LAI and canopy height were better simulated compared to other variables (Table 2.5, 

Fig 2.4 and 2.5 B, Fig 2.4 and 2.5C); moreover, it is important to highlight the grain dry mass 

simulation in summer cultivars (EF=0.61 for summer experiment and EF=0.89 for off-season 

experiment) observed in Table 2.5 and Fig 2.4D. Important to mention despite the difference 

between the harvest carbon partitioning for both seasons and observed data (Fig 2.3D) the 

model simulated grain yield with accuracy and efficiency, such as a high observation plots are 

along the bottom line (Table 2.5, Fig 2.3D, Fig 2.4D and 2.5D). The difference can be 

explained because JULES-crop remobilizes carbon from the leaf pool to the harvest pool to 

simulate the leaf senescence (Osborne et al., 2015; Williams et al., 2017), while the observed 

field data shown in Fig 2.3D are only from grain biomass gain. In general, JULES-crop 

presented higher levels of EF for some variables, and the model showed low efficiency in leaf 

dry mass and soil moisture.   
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Table 2.5. Statistical indexes of performances of the calibrated JULES-crop model in 

simulating leaf, stalk and grain dry mass, leaf area index, canopy height and soil moisture in 

four Brazilian regions, Brazil.  

Variable R2 d-index  

RMSE (Mg ha-1 

m2 m-2, m 

or,cm3cm-3)  

EF 

Summer season 

Stem dry mass 0.92 0.86 1.12 0.54 

LAI 0.96 0.91 0.59 0.73 

Leaf dry mass 0.89 0.75 1.13 0.39 

Grain dry mass 0.94 0.93 1.31 0.61 

Soil moisture  0.78 0.81 0.01 0.44 

Off-season 

Leaf dry mass  0.89 0.71 0.46 0.63 

Stem dry mass  0.93 0.91 0.98 0.71 

LAI 0.95 0.98 0.34 0.71 

Grain dry mass 0.96 0.94 1.03 0.89 

Crop height  0.96 0.98 0.18 0.88 

 

Soil moisture presented the second lowest value of efficiency in this study (EF=0.44 

and R
2
=0.78), Table 2.5). However, this is a higher value compared to the model CropSPAC, 

as observed by Duan et al., (2019) that demonstrate a R
2
=0.78 and EF=0.26. JULES-crop also 

obtained a better statistical index than Santos et al., (2020b), who evaluated the APSIM-

Maize model in the Brazilian northeast for simulating the soil moisture and observed RMSE 

ranging from 0.02 to 0.08 cm
3 

cm
-3

 for several sowing times treatments, compared to the 

RMSE of 0.01 cm
3 

cm
-3

 found in this study. Furthermore, they found an average d-index of 

0.58 while this study obtained d-index=0.81. Inaccuracies for soil moisture simulations are 

common in crop models that utilize water balance based on texture and retention curves 

components, which usually overestimate simulated soil moisture, mainly because of the 

difficulty to estimate the surface runoff and deep drainage (Ghiberto et al., 2011). In addition, 

the soil moisture temporal variability of rainfed condition for DKB363 cultivar (Southeast, 

experiment 4), conducted under hot and wet season, was very challenging to the model as it 

was marked by days with heavy rainfall followed by dry spells in which moisture was 

severely reduced. Nonetheless, it is difficult to directly compare our results with the 

aforementioned studies as they do not consider the same set of observations. 



32 
 

Another variable that presented low efficiency was the leaf dry mass (Table 2.5, Fig 

2.4F and 2.5F). This can be explained by the calibration difficulties in the senescence period. 

As the experiments used in this study did not separate senesced and green leaves, the 

alternative was to use the parameter values obtained by Williams et al., (2017). Certainly, if 

all experiments were standardized accounting the senesced and green leaves separation, the 

uncertainty of calibration would be reduced as the senescence period would be better 

simulated in comparison with observed data. Important to mention that cultivars LG36790 

(Southeast, experiment 4), AG1051 (Northeast, experiment 6) and DKB393 (Midwest, 

experiment 7) were conducted under rainfed conditions, and DKB363 (Southeast, experiment 

1) and Pionner 3230 (South, experiment 5) under irrigation. The rainfed cultivars showed 

different carbon allocation for leaves compared to irrigated scenarios as they might show 

distinct response in terms of leaves biomass gain rates and shortening the senescence in 

rainfed scenarios due to water limitations (Da Silva et al., 2012), because these type of 

responses are not yet captured by JULES-crop. This, in part, may be due to the use of the 

DVIsen value from Williams et al., (2017), which was initially derived for irrigated maize and 

might explain the lower EF values observed for rainfed summer maize. Another interesting 

aspect for the leaf dry mass low EF for summer season (Table 2.5) might be the canopy 

structure differences among cultivars due to the genetic diversity, in addition to the high 

sensitivity demonstrated in the leaf carbon partitioning and allocation in JULES-crop. One of 

the pieces of evidence is the higher efficiency in the off-season calibration in comparison to 

the summer experiments (EF=0.63 for off-season and EF=0.39 for summer calibration).  

Crop models are being developed to make large-scale simulations. For example, Peng 

et al., (2018) combined two maize models (CLM4.5 and APSIM) with the aim to implement 

the maize growth simulation in a large-scale model, using a carbon allocation procedure for 

improving performance. The authors observed an important improvement for irrigated and 

rainfed treatments by joining CLM4.5 and APSIM and using databases from Nebraska 

(Verma et al., 2005; Suyker et al., 2004, 2005). JULES-crop could be a useful large-scale crop 

model with improvements such as realizing the JULES-crop calibration in different variations 

of nutrients as mentioned by AgMIP-GGCMI group (Elliot et al., 2015; Muller et al., 2019) 

given that the JULES-crop is in development.  

The leave-one-out cross validation method was able to generate a calibration with high 

efficiency in LAI (Table 2.5, Fig 2.4 and 2.5 C), crop height (Table 2.5, Fig 2.4 and 2.5 C) 

and grain dry mass (Table 2.5, Fig 2.4 and 2.5 D). High efficiency in grain dry mass is 
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important for the utilization of a large-scale crop model for crop forecasting systems in maize 

crop in Brazil. This method was used by Marin et al., (2011) to calibrate the few sugarcane 

cultivars in Brazil, posteriorly used by Marin et al., (2014) and Pagani et al., (2017). The 

leave-one-out cross validation method was a valuable technique for permitting the use of data 

not specifically collected for modeling studies, and to include both calibration and evaluation 

steps dealing with small datasets.     
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Figure 2.4. Comparison between observed and simulated variables by JULES-crop for (a) soil 

moisture, (b) crop height, (c) LAI, (d) grain dry mass, (e) stem dry mass, (f) leaf dry mass of 

different maize cultivars in different regions of Brazil. Irr-Irrigated, rf-rainfed, obs-observed, 

sim-simulated. Off-season maize observations use cultivar P4285YH. 
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Figure 2.5: Relationship between simulated and observed values for (a) soil moisture, (b) crop 

height, (c) LAI, (d) grain dry mass, (e) stem dry mass, (f) leaf dry mass of maize for different 

regions of Brazil.    
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2.4 Conclusion  

 (i) The JULES-crop sensitivity analysis allowed us to identify which were the main 

parameters that should be considered during the calibration process. Mainly, they were those 

related to carbon partitioning and the parameters associated to the crop specific leaf area.      

(ii) The JULES-crop well simulated the carbon partitioning and allometric relationships for 

different maize cultivars in Brazil under irrigated and rainfed regimes, for summer and off-

season sowing dates.  

(iii)  The JULES-crop performance for simulating the development of maize crop in the field 

experiments was satisfactory, particularly for crop height (EF=0.89), LAI (EF=0.73 and 0.71, 

respectively for summer and off-season experiments) grain dry mass (EF=0.61 and EF=0.89, 

respectively for summer and off-season experiments). However, it demonstrated a low 

efficiency simulating the leaf dry mass (EF=0.39) and soil moisture (EF=0.44). The leave-

one-out cross validation method was useful for calibrating different cultivar groups in 

different regions of Brazil with different experimental designs. The JULES-crop is a potential 

large-scale crop model, and its ability to evaluate climate scenarios and for forecasting maize 

yield in Brazil can be investigated in future studies, with improvement possibilities in 

fertilization rates and in rainfed scenarios.  
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3 APPLICATION OF THE JULES-CROP MODEL AND AGROCLIMATIC 

INDICATORS FOR FORECASTING OFF-SEASON MAIZE YIELD IN BRAZIL 

 

Abstract 

      Maize (Zea mays L.) is an important Brazilian commodity, being the second largest 

produced and fifth exported product by the country. In Brazil, 80 % of total production of 

maize is focused in the offseason (off-season) maize, mainly following the main season of 

soybean. Due to its relevance in the economy and food security, a maize forecasting model 

was developed and successfully applied in the Brazilian territory for the off-season 

production. The model was based on multiple linear regressions relating agroclimatic 

indicators and simulated outputs from JULES-crop, a land surface model applied in 

agriculture for large scale analysis. The resulting model was applied each 10 days after the 

sowing date until the maturity stage. The reliability of the forecasting model was then 

compared with the 2003-2016 time series of official grain yields. Agroclimatic indicators 

explained 60% of the inter-annual variability of maize yield in the reproductive stage. When 

JULES-crop outputs were added, the forecasting approach reached Nash-Sutcliffe modeling 

efficiency (EF) of 0.77 in the maturity stage, and EF=0.72 in the filling-grain stage, 

demonstrating that this method can provide useful predictions of the final maize yield from 

the 80
th

 day of the cycle. JULES-crop outputs brought benefits during the vegetative stage, 

which decreased the standard deviation error in prediction (SDEP) from 0.59 to 0.49 Mg ha
-1

. 

The overall performance indicated the yield forecasting model developed in this study was 

able to predict off-season maize grain yield, taking into account the challenge of climate 

variability in the Brazilian territory.   

 

3.1 Introduction 

Maize is an annual crop which has major importance in the worldwide economy and 

food security due its nutritive value (Wijewardana et al., 2016). In Brazil, maize is the second 

most cultivated crop with the production of 115.2 Tg in 2021 (CONAB, 2022), making Brazil 

the world’s third largest producer. Of the total maize production in Brazil, 88% is used as 

animal feed (CONAB, 2019), while the rest is used for silage (Daniel et al., 2019) and human 

consumption mainly in the semiarid northeast (Martins et al., 2018). Due to the Brazilian 

environmental conditions, maize has two growing seasons: main season or first season (sown 

between September-December); off-season or off-season maize (sown between January-

April) in succession to the soybean crop (Andrea et al., 2018; Dias et al., 2019). Currently, 

off-season maize represents 80% of the total production in Brazil (CONAB, 2021), becoming 

thus the most important growing season for maize in the country.  
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Brazilian maize is relevant worldwide for food security and stands as a primary source 

in several supply chains, enhancing the importance of timely estimation of maize yields in 

Brazil. Yield forecasting at national or regional scale can potentially provide early warning 

for stakeholders and institutions, allowing actions before production declines due to adverse 

climatic effects (Laudien et al., 2020). Moreover, the maize supply chain includes different 

economic sectors such as agriculture, energy, marketing and animal feeding, all of which 

would benefit from early forecasting of yield. Early forecasting would also be useful for 

adjusting the food imports and regulating the agricultural markets (Basso and Liu, 2019). 

Furthermore, transparent yield forecasts have the function to mitigate the volatility of prices 

influenced by unexpected yield losses and speculative actions (OECD and FAO, 2011).  

Historically, yield forecasts methods were mostly based on crop scouting and on-farm 

surveys (Bannayan and Crout, 1999). Such approach has however been updated in the last 

decades to account for crop management and weather information, by using agroclimatic 

indicators, remote sensing and crop modeling as basis for current yield forecasts systems 

(Vossen and Rijks, 1995; Bouman et al., 1997; Assad et al., 2007). Recent literature has 

however pointed out some deficiencies that could be improved in these forecast systems by 

reducing the parametrizations errors included in the model and identifying causal factors of 

yield fails and data uncertainties at regional scale for weather, soil properties, crop cultivars 

and agro-management practices (Hoffmann et al., 2016, Pagani et al., 2017).  

In Brazil, maize yield forecasts were developed in different regions using distinct 

methods based on remote sensing data (Venancio et al., 2019), edaphoclimatic indicators 

(Spera et al., 2020) and crop simulation models with agroclimatic indicators (Soler et al., 

2007; Martins et al., 2018; Duarte et al., 2020). Despite the relevance of these studies, none of 

them addressed the question of maize production in the off-season at national scale. 

Moreover, crop models used to develop the yield forecast in Brazil (CERES-Maize, Aquacrop 

and FAO-AEZ) are limited in their ability to integrate crop physiology with biosphere-

atmosphere processes, not incorporating CO2, energy and water fluxes to simulate crop 

growth. In view of the necessity to improve the representation of crop growth and 

development within Earth systems modelling, a parametrization for crops was added to the 

land surface Joint UK Land Environment Simulator (JULES) model (Best et al., 2011; Clark 

et al., 2011) by Osborne et al. (2015), which is referred to as JULES-crop. JULES-crop has 

obtained satisfactory simulations for maize in irrigated (Williams et al., 2017) and rainfed 

(Wolffe et al., 2021; Prudente Jr, 2022) conditions, however, it has not yet been used for yield 

forecasting at large spatial scales.  
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Thus, this study presents a yield forecast approach for maize based on agroclimatic 

indicators and on the JULES-crop model with the following objectives: (a) to identify factors 

that explain the maize yield variability in different phenological phases; (b) to analyze the 

yield forecasting model using JULES-crop outputs in potential and water limited conditions 

with agroclimatic indicators; and(c) to evaluate the yield forecast at national scale for maize 

in the off-season in Brazil.   

 

3.2 Material and Methods  

3.2.1 JULES-crop model description 

The JULES-crop model simulates crop development using a development index (DVI) 

varying from -2 to 2. The value -2 represents the time before the sowing, -1 represents the 

sowing date, 0 represents emergence, 1 represents the beginning of the reproductive stage and 

2 represents the end of the simulated crop season (usually harvest – see below). The DVI is 

used to simulate the specific leaf area (SLA), carbon partitioning throughout crop growth, 

senescence and the harvest date. The DVI is based on the accumulation of effective 

temperature (Teff), i.e. growing degree days (Williams et al., 2017; Osborne et al., 2015), as 

follows:  

                      𝑇𝑒𝑓𝑓 =  

{
 
 

 
 

0 𝑓𝑜𝑟 𝑇 < 𝑇𝑏
𝑇 − 𝑇𝑏 𝑓𝑜𝑟 𝑇𝑏 ≤ 𝑇 ≤ 𝑇𝑜

(𝑇𝑜 − 𝑇𝑏) (1 −
𝑇−𝑇𝑜

𝑇𝑚−𝑇𝑜
)  𝑓𝑜𝑟 𝑇𝑜 < 𝑇 < 𝑇𝑚

0 𝑓𝑜𝑟 𝑇 ≥ 𝑇𝑚 }
 
 

 
 

                               (1) 

where To is optimal temperature for crop development; Tm is maximum temperature for crop 

development and Tb is base temperature for crop development (i.e. crop develops most 

rapidly when the temperature is close to the optimal temperature). Each temperature adopted 

for maize was based on Birch et al. (1998) and Williams et al. (2017).   

For crop growth simulation, the model partitions net primary productivity (NPPacc) to 

each plant structure and to a stem reserve pool. This partitioning is controlled by user-

specified parameters. To define the crop partitioning factors for each carbon pool (pi), the 

following equation was used:   

                                                       pi = 
exp(𝛼𝑖+ 𝛽𝑖𝐷𝑉𝐼)

∑ exp (𝛼𝑗+𝛽𝑗𝐷𝑉𝐼)𝑗
     (2) 
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where j= stem, leaf, harvest part (grain for maize) and root. αi and βi are numerical constants 

that are adjusted to observational data. ∑ 𝑝𝑗 = 1𝑗 .  For carbon partitioned to the stem, there is 

a subsequent remobilization adjustment (between the structure and the reserve). 

Carbon pools are initialized to a value specified by the user (initial_carbon_io) when 

DVI reaches threshold (initial_c_dvi_io). In the reproductive stage, a fraction of carbon 

allocated in the stem is remobilized to reproductive structure as panicle and grain. A similar 

process occurs for the leaf, to simulate leaf senescence reducing LAI. This occurs when DVI 

becomes greater than the parameter controlling the senescence phase (DVIsen=0.4) (Equation 

3):  

                                       sen_dvi=  𝜇 (𝐷𝑉𝐼 − 𝐷𝑉𝐼𝑠𝑒𝑛)𝜐                                                (3) 

where 𝜇 and ν are allometric coefficients for calculation of senescence.  

Similar to carbon partitioning, the SLA is calculated as a function of DVI (Equation 4):  

                                                    𝑆𝐿𝐴 =  𝛾 (𝐷𝑉𝐼 + 0.06)𝛿                                             (4) 

where the coefficients δ and γ were derived from allometric adjustments and the ratio between 

leaf dry mass and its carbon fraction.  

The green LAI is calculated using the leaf carbon and the SLA (Equation 5):  

                                             𝐿𝐴𝐼 =
𝐶 𝑙𝑒𝑎𝑓

𝑓𝑐,𝑙𝑒𝑎𝑓
 SLA                                                       (5) 

where C leaf is the leaf carbon pool and fc,leaf is the carbon fraction of the dry leaves.  

Under normal circumstances, harvest is triggered when the DVI reaches 2, but harvest 

can be triggered earlier in some circumstances (such as low soil temperatures, extreme LAI 

values, low plant carbon, very slow crop development; please see Williams et al., 2017 for a 

more detailed description). In the present study, none of our simulations triggered the early 

harvest procedure.  

The Cstem pool is used to calculate the crop height (h) (Equation 6): 

                                             ℎ = 𝑘 (
𝐶𝑠𝑡𝑒𝑚

𝑓𝑐,𝑠𝑡𝑒𝑚
)
𝜆
                                                                 (6) 
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where k and λ are allometric parameters, and the fc,stem is the carbon fraction in dry stem 

including reserve.  

 

3.2.2 Spatial distribution of maize production and model configuration 

 For the purpose of the study, we split Brazil into climate homogeneous zones (CZ, van 

Waart et al., 2013) in a total of 16 CZs (Figure 3.1) which represent 92 % of Brazilian maize 

production in the off-season. Simulations were run for one representative county of maize 

production in as reference of each CZ (Table 3.1), using hourly meteorological data obtained 

by the WATCH dataset based on ERA-Interim (WFDEI) re-analysis data contemplating 

meteorological data from 1979 to 2016 (Weedon et al., 2018). The maize growth was 

simulated in the most representative soil class in each CZ (greater than 10%) presented in 

each CZ (Table 3.1). Soil physical information of different layers (0-20 cm, 20-60 cm and 60-

100 cm) was obtained by the EMBRAPA soil database (https://www.embrapa.br/solos), 

which were used to estimate the van Genuchten parameters for water retention curve (van 

Genuchten, 1980) based on pedotransfer functions of Wosten et al. (1999). JULES-crop was 

calibrated by Prudente Jr et al. (2022) using different maize cultivars in different sites across 

Brazil (Table 3.1). To analyze the maize yield for different growing regions of Brazil, it was 

necessary to set up the simulations according to the most typical sowing date in each CZ 

(Table 3.1), based on Cruz et al (2009) and Duarte and Sentelhas (2020). The harvest date was 

simulated by the JULES-crop model and assumed to be the same as the physiological 

maturity of each growing season (DVI =2.0) (Osborne et al., 2015; Williams et al., 2017).   

 

 

https://www.embrapa.br/solos
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Figure 3.1. Climate homogeneous zone in the Brazilian territory used in the simulations for 

off-season maize yield forecast. 
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Table 3.1. Description of counties represented in the respective climate homogeneous zone in 

Brazil, used as reference to develop the maize yield forecast using the JULES-crop model 

outputs and agroclimatic indicators.  

 

CZ Latitude Longitude Region County 

Sowing 

date 

Temperature and  

Rainfall (oC and 

mm)  

Soil 

classification  

(%) 

soil 

7601 -22.037 -55.707 Midwest Ponta Porã 1-Feb 23.14, 432 

Rhodic 

Ferralsol 34.41 

Dystric 

Cambisol 16.32 

6601 -23.938 -48.786 Southeast Itapeva  1-Feb 21.27, 345 

Rhodic 

Ferralsol 46.18 

Ferric Acrisol 32.30 

8801 -12.265 -58.004 Midwest Brasnorte 1-Feb 26.10, 604 

Ferric Acrisol 58.51 

Rhodic 

Ferralsol 13.66 

Ferralic 

Arenosol 11.00 

8601 -12.342 -52.533 Midwest Querência 1-Feb 26.95,554 

Rhodic 

Ferralsol 52.38 

Ferralic 

Arenosol 13.30 

8701 -12.705 -55.686 Midwest Sorriso 1-Feb 26.54,669 

Rhodic 

Ferralsol 41.04 

Ferric Acrisol 20.06 

Ferralic 

Arenosol 12.67 

9501 -8.224 -46.842 North Campos Lindos  1-Feb 26.40,471 

Ferric Acrisol 21.13 

Rhodic 

Ferralsol 16.05 

Albic 

Plinthosol 15.91 

8401 -9.543 -46.113 Northeast Alto Parnaíba 1-Mar 26.50,269 

Dystric 

Leptosol 33.94 

Ferralic 

Arenosol 33.05 

Rhodic 

Ferralsol 33.01 

8501 -8.495 -46.533 Northeast Balsas 1-Mar 24.83,229 

Rhodic 

Ferralsol 45.81 

Albic 

Plinthosol 14.22 

Dystric 

Leptosol 12.24 

Ferric Acrisol 10.70 

9401 -8.280 -45.841 Northeast Tasso Fragosso 1-Mar 26.86,267 

Dystric 

Leptosol 36.57 

Rhodic 

Ferralsol 34.33 

Albic 

Plinthosol 16.63 

9301 -8.134 -45.486 Northeast 
Ribeiro 

Gonçalves  
1-Mar 26.42,251 

Rhodic 

Ferralsol 60.16 

Dystric 29.86 
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Leptosol 

8301 -11.898 -45.411 Northeast Barreiras 1-Apr 26.76,167 
Rhodic 

Ferralsol 80.30 

7701 -17.699 -51.015 Midwest Rio Verde 1-Feb 24.70,414 

Rhodic 

Ferralsol 40.84 

Ferralic 

Arenosol 22.50 

7801 -24.594 -52.804 South 
Campina da 

Lagoa 
1-Feb 20.87,437 

Ferric Acrisol 59.03 

6801 -24.728 -53.242 South Corbelia 1-Feb 20.68,492 

Rhodic 

Ferralsol 41.91 

Dystric 

Leptosol 17.03 

Dystric 

Cambisol 15.09 

Rhodic 

Nitisol 10.82 

9701 -13.536 -60.603 North Cabixi 1-Apr 24.39,115 

Rhodic 

Ferralsol 38.80 

Albic 

Plinthosol 31.60 

9601 -13.108 -61.599 North 
Pimenteiras do 

Oeste 
1-Apr 25.01,127 

Rhodic 

Ferralsol 50.15 

Albic 

Plinthosol 34.11 

 
* Cultivar-specific parameters provided by Prudente et al. (2022) 
 Average air temperature and total rainfall observed during the cycle in each CZ during the period 2003-2016.  

 

3.2.2 JULES-crop outputs and agroclimatic indicators 

In order to develop the maize yield forecast model, we simulated the potential (Yp) 

and water limited potential yields (Yw), and calculated agroclimatic indicators for each CZ, 

grouped for each 10 days period of the cycle from sowing to harvest (Table 3.2). Based on 

Pagani et al (2017), we used two soil water balance indicators of the crop model during the 

cycle: FSMC (Water stress factor ranging from 0 in severe drought stress to 1 when there is 

no drought stress) and SWC (soil water content) from the water limited outputs simulated by 

JULES-crop. The SWC parameter obtained in the simulation was derived by the soil moisture 

minus the residual soil moisture, however, we adopted 0 for residual soil moisture due to the 

value in each location were not significant. For both soil parameters we considered the 

average from each 10 cm of depth until the effective maize root zone (60 cm). In addition, 

JULES-crop outputs directly related to maize yield such as the stalk dry mass (SDM), leaf dry 

mass (LDM), crop height (CH), leaf area index (LAI) and grain dry mass (GDM) were also 

included in the analysis. The agroclimatic indicators selected were: average air temperature 
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(TMED), diffuse incoming radiation, (DIFF_RAD) and accumulated rainfall (RAIN) from 

sowing to every 10-day period until the harvest (120 days) obtained in the WFDEI and in the 

case of diffuse radiation we based the calculus in Weiss and Norman (1985). For upscaling 

the forecasts at national scale, JULES-crop outputs and agroclimatic indicators were weighted 

according to the cultivated area of maize in the off-season in each CZ based on official 

statistical data provided by IBGE (IBGE, www.ibge.gov.br), for the period from 2003 to 

2016. Firstly, a weighted average was calculated based on the cultivated area of off-season 

maize of producer counties in each CZ. After, a weighted average was calculated based on the 

cultivated area participation of each CZ in Brazil, generating the forecast at national scale. In 

each CZ, a weighted average was calculated to approach the soil percentage (Table 3.1) in the 

simulations of maize growth.   

 
Table 3.2. List of JULES-crop model outputs and agroclimatic indicators selected each 10-

day period and used for yield forecast.   

Indicator name Unit 

Production 

level Description 

Model outputs  

LDM Mg ha-1 Pa, WLb Leaf dry mass  

SDM Mg ha-1 P, WL Stalk dry mass 

GDM Mg ha-1 P, WL Grain dry mass 

CH M P,WL Crop height 

LAI  m2 m-2 P,WL Leaf area index 

FSMC 0-1 WL 

Integer indicating weighting of soil layers in water stress 

factor 

SWC m3 m-3 WL Soil water content in the rooted zone 

Agroclimatic indicator 

TMED o C P,WL 

Average daily medium temperature from sowing to the 

date 

RAIN mm WL Accumulated rainfall from sowing to the date 

DIFF_RAD MJ m-2 day P,WL Average diffuse radiation from sowing to the date 
a Potential yield 

b Water-limited potential yield  

 

3.2.3 Statistical analysis 

JULES-crop outputs and agroclimatic indicators (Table 3.2) were treated as 

independent variables for multiple linear regressions to the time series 2003-2016 of grain 

yield in each representative county(IBGE, www.ibge.gov.br) for each 10-days period from the 

sowing to the harvest (Table 3.1) depending on the sowing date considered for each CZ. A 

http://www.ibge.gov.br/
http://www.ibge.gov.br/
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detrending procedure based on Pagani et al., (2017) was implemented, to remove the effect of 

significant technological trends, such as high-productive cultivars and management advances 

in the period. For analysis of different water management in the maize yield, the regressors 

were divided in three groups: JULES-crop Yp; JULES-crop Yw and agroclimatic variables. 

Posteriorly, a step-wise analysis was realized to identify the most suitable regressors that 

explained yield variability in each 10-days period from the sowing.  

 In order to avoid collinearity and overfitting problems in each regressor, it was 

calculated the Variance Inflation Factor (VIF, 1 to +∞, optimum =1) as in the following 

equation: 

                                                      VIF= 
𝟏

𝟏−𝑹𝒊
𝟐                                                                  (7) 

 

where R
2

i is the proportion of variance in the ith independent variable associated with the 

other independent variables in the model. Another factor evaluated was the presence or 

absence of autocorrelation among residual, for this the Durbin-Watson test was implemented 

(Durbin and Watson, 1971, Equation 8):  

                                                     DW=
∑ (𝑒𝑡−𝑒𝑡−1)

2𝑛
𝑡=2

∑ 𝑒𝑡
2𝑛

𝑡=1
                                                       (8) 

 

where et is the difference between observed and predicted yield in the tth year of the time 

series; n is the number of years. Based on Savin and White (1977), the absence of 

autocorrelation among residuals is accepted if the result is higher than the upper critical value 

(dU), rejected if the result is smaller than the lower critical value (dL) and is inconclusive if 

the result is between dL and dU.  

To evaluate the significance (p-value) of each indicator in the regression model and, 

with this, analyze its influence throughout the cycle, the t-test was applied. For quantifying 

the regression models performance, a leave-one-out cross validation (Wallach et al., 2018) 

was used excluding one year of forecasted yield and compared with historical yields. As 

measures of goodness-of-fit, based on Marin et al (2011), Pagani et al (2017) and Wallach et 

al (2018), was selected the cross validation-coefficient of determination (R
2
) the index of 

agreement (d) (Willmott et al., 2012), the Nash–Sutcliffe efficiency index (EF) (Nash-

Stucliffe, 1970) and the standard deviation error in prediction (SDEP, Mg ha
-1

) to evaluate the 

forecast ability of different regression models. 

 

https://acsess.onlinelibrary.wiley.com/doi/10.1002/agj2.21066#agj221066-bib-0054
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3.3 Results 

3.3.1 Statistical model selection 

 The stepwise analysis selected the best regression models based on JULES-crop 

outputs and agroclimatic indicators in each forecasting window (Table 3.3). The significance 

level for all the combinations of regressors was lower than 0.05 for the 80 to 120 days of the 

10-day period (Table 3.3), indicating the best performance of the regressors models was in the 

reproductive stage of maize, in the beginning of the grain filling until maturity (days 80 to 

120). The Durbin-Watson test (DW) was inconclusive to reject or accept the presence of 

correlation among residuals in most 10-day period; however, in the 10, 50 and 120 days after 

sowing, the null-hypothesis of the Durbin-Watson test was accepted (Table 3.3). Even in 

inconclusive cases, the null hypothesis could not be rejected. The VIF values never exceed 5.0 

in each regressors model (Table 3.3), pointing out the absence of multicollinearity. In relation 

to the regressors model performance, the EF increased as long as there is a proximity to the 

maturity stage, reaching the highest values from the eightieth day to the last 10-day period 

(EF=0.65 and EF=0.77, respectively). The lowest values of EF was observed during the 

vegetative stage, in the first ten days after sowing (EF=0.43) and in the fiftieth day of the 

cycle (EF=0.46).   
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Table 3.3. Statistical indexes of performances of each forecasting window based on regressors 

models developed using JULES-crop outputs and agroclimatic indicators for off-season maize  

in Brazil.  

 

3.3.2 Selected indicators for regressors models. 

A stepwise analysis allowed us to observe the factors (independent variables) 

influencing the grain yield (dependent variable) for each 10-day periods when compared with 

official yield in different CZ of Brazil. A heatmap was developed to present the most 

significant indicators for each regression model using maize outputs simulated for water 

limited conditions and agro-climatic indicators that presented better statistical performance. 

The most important factor observed during the maize cycle was RAIN (Figure 3.2), which 

was selected in all regression models by the stepwise analysis. The only exception was the 

first 10 days of the cycle. Another relevant agroclimatic indicator selected was TMED, being 

more significant in the last 10 day-period, in the maize maturity stage. Only agroclimatic 

indicators were responsible for explaining 60% of the maize yield variability during the days 

80, 90, 110 and 120 (i.e, reproductive and maturity stage). The most frequent selected 

variables from JULES-crop outputs during the cycle were LAI and SDM, being significant 

mainly in the vegetative stage. The SWC were selected by the regression models during the 

tasseling stage (i.e. 80
th

 day), which is a moment with less rainfall in the most important CZ 

maize producers in off-season in Brazil for CZs 8701, 7601, 7701, 6601, 8801, respectively. 

   

Statistical index 
Days after sowing 

10 20 30 40 50 60 70 80 90 100 110 120 

R2 0.43 0.53 0.48 0.52 0.46 0.55 0.60 0.71 0.65 0.65 0.72 0.77 

d 0.77 0.82 0.80 0.81 0.79 0.84 0.84 0.91 0.89 0.89 0.92 0.93 

EF 0.43 0.53 0.48 0.52 0.46 0.55 0.60 0.71 0.65 0.65 0.72 0.77 

VIF 1.75 2.13 1.92 2.08 1.85 2.22 2.50 3.45 2.86 2.86 3.57 4.35 

DW 1.61 1.76 1.34 1.28 1.53 1.24 1.31 1.47 1.24 1.45 1.73 1.83 

p-value 0.116 0.110 0.081 0.126 0.095 0.097 0.128 0.044 0.033 0.036 0.037 0.001 
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Figure 3.2: Heatmap of the indicator selected in each forecasting window based on JULES-

crop outputs in water limited condition and agroclimatic indicators for maize in off-season in 

Brazil.  

 

3.3.3 Yield forecast evaluation 

 In order to evaluate the use of JULES-crop outputs in potential and water limited 

conditions, it was observed the SDEP of each forecasting window and found that in none of 

the 10-day period, the JULES-crop potential outputs were selected by the stepwise regression, 

given the fact of its low statistical performance during the cycle (Figure 3.3c). In general, the 

agroclimatic indicators contributed to explain the inter-annual maize yield variability mainly 

in the reproductive stage, with SDEP varying from 0.5 to 0.38 Mg ha
-1

 (80-120 days, 

respectively) in the period (Figure 3.3b). However, it was observed the benefit of using 

JULES-crop outputs and agroclimatic indicators together in the regression models for the 

reproductive stage (80-120 days), reducing the SDEP by 0.4 to 0.31 Mg ha
-1 

in that stage 
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(Figure 3.3d). The benefits of JULES-crop water limited outputs and agroclimatic indicators 

were however highest during the vegetative stage (Figure 3.3d) with SDEP ranging from 0.49 

to 0.46 Mg ha
-1

 while others had SDEP between 0.59 and 0.49 Mg ha
-1

 until the 70
th

 day. 

Furthermore, only JULES-crop outputs in water limited condition explained the grain yield 

variability mainly in the vegetative stage as in 30 and 50 days (SDEP =0.54 and 0.49 Mg ha
-1

, 

respectively) when outputs related to leaf (LDM and LAI) and SDM prevailed (Figure 3.2, 

Figure 3.3a). Figure 3.4 shows the forecasted yield for maize in the off-season with the 

highest statistical performance in comparison with the official data. Every year, the regression 

models reached the official yield in any 10-day period even in the years with the highest 

yields in the official series (2014 and 2015). Moreover, it was possible to forecast from the 

80
th

 day of the cycle near of the official data during the years of 2003-2016, being the days 

80, 110, 120 those that were closest to the official yield data for maize in the off-season in 

Brazil (Figure 3.2, Figure 3.4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3. Standard deviation error in prediction (SDEP) of different forecasted yield for off-

season maize in Brazil based on a) JULES-crop outputs in water limited condition; b) 

agroclimatic indicators; c) JULES-crop outputs in potential conditions; d) JULES-crop in 

water limited conditions + agroclimatic indicators. 
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Figure 3.4. Comparison between official grain maize yield in off-season (dotted lines) and 

yield forecasted during the maize cycle for each day after sowing (solid line). 

 

3.4 Discussion 

 The yield forecast approach for off-season maize developed in this study identified 

TEMP and RAIN as the main responsible for the inter-annual variability of maize yield in 

Brazil (Figure 3.2). Temperature influences maize biomass accumulation, interfering in the 

growing season length and in the average daily growth rate (Lizaso et al., 2018 and Zhu et al., 

2019). Moreover, temperatures above optimum level (32
o
C for maize) may cause failures in 

the pollination and injuries in the plant tissue as the metabolic activity accelerates (Johkan et 

al., 2011; Hatfield and Prueger 2015). Rainfall is responsible for supplying the crop water 

demand and maize has a high sensitivity to drought mainly during the reproductive stage, 

influencing the photosynthetic efficiency due to stomatal closure and wilting of leaves (Santos 

and Carlesso 1998 and Zhao et al., 2015). Still, the fact of the forecast approach had 

demonstrated two outputs related to water condition (SWC and RAIN, Figure 3.2) in the 

grain-filling period (around 80
th

 day) being the most sensitive stages during the cycle 

(Bergamaschi et al., 2004) indicate the relevance of the water demand in the inter-annual 

variability in grain maize yield. The diffuse radiation was considered in this study and 

demonstrated significant relevance during the grain-filling period (Figure 3.2) as in Liu et al. 
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(2021), which observed an increase of 5.9% in yield grain under high incidence of solar 

radiation during grain-filling.   

 The integration between JULES-crop outputs and agroclimatic indices was beneficial 

to explain the yield variability in all forecast windows considered. Crop model and 

agroclimatic indices were used to develop a yield forecast system in Northeast Brazil by 

Martins et al. (2018) based on Aqua-crop model and weather data, reaching consistent 

predictions at least 30 days before harvest, similar to that found in our study. The high 

performance during the grain-filling (R
2
=0.72) observed in this study was detected by those 

authors with similar precision (R
2
=0.74). The same was also observed by Bussay et al. (2015) 

who identified a high precision to predict maize yield in Hungary during the grain-filling 

stages. Soler et al. (2007) used the CERES-maize model to forecast yield of off-season maize 

and predicted with reasonable performance around 45 days prior the harvest in Southern 

Brazil.  

 JULES-crop potential outputs were not selected by stepwise analysis in none of crop 

stages approached by the yield forecast model developed in this study. Pagani et al (2017) 

developed a sugarcane yield prediction approach for the State of São Paulo using agroclimatic 

indicators and DSSAT/Canegro outputs, and in none of the forecast windows considered they 

found the potential related variables being selected by the stepwise analysis. The authors also 

observed the combination of agroclimatic indicators and crop model output in water limited 

conditions being the best option in terms of performance for estimating the sugarcane yield. 

One possible reason to reject the crop outputs simulated in potential condition is the Brazilian 

management, characterized for rainfed crops during offseason maize, in a period where 

rainfall decreases near the reproductive stage in the Brazilian center-south, causing a yield 

gap due to the lack of water around 3.2 Mg ha
-1

 (Andrea et al., 2018).  

Similar to our study, Coelho and Costa (2010) and Bergamashi et al. (2013) used a 

large-scale model (GLAM) for predicting maize yield in Brazil, reaching R
2
=0.77 for 

predicting the yield in the maturity stage forecast window, similar to that we found here. Due 

to the fact that this study developed a maize yield forecast in a national level, large scale 

model outputs contributed to generate prediction with similar precision and in the same period 

of regional scale studies, which indicates the efficiency of the JULES-crop model to 

incorporate energy and water fluxes of the atmosphere in plant biomass accumulation process, 

explaining the high predictivity performance and jointly with temperature and precipitation 

being able to explain the yield variability of maize in off-season, especially during the 

reproductive stage.   
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3.5 Conclusion 

 This study proposed a yield forecast for maize off-season in Brazil using JULES-crop 

outputs and agroclimatic indicators. From a stepwise analysis, it was possible to identify 

regression model components in each forecast window, being precipitation and temperature 

mainly responsible to explain 60% of inter-annual variability of maize off-season yield in 

Brazil in the 2003-2016 period. Moreover, JULES-crop outputs improved the prediction 

ability during the reproductive stage, explaining 77% of the yield variability in the maturity 

stage, as well as outputs related to leaf and stem dry mass that reduced the error when 

together with the agroclimatic indicator during the vegetative stage. The yield forecast 

approach developed in this study predicted the maize yield with high performance around 40 

days before the harvest (p-value<0.05) from the grain-filling stage. Finally, this study showed 

that JULES-crop was able to contribute to the large-scale forecast for a national approach of 

one of the most relevant agricultural commodities produced in Brazil.      
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4 CONCLUSION AND FUTURE WORK 

 This Ph.D. thesis was developed in view of the necessity to improve forecasting maize 

yield in Brazil using a land surface model adapted for agriculture (JULES-crop) with 

conditions to simulate in large scale. The first step was presented in the first chapter the 

calibration and evaluation of JULES-crop for maize in different regions of Brazil, using a 

robust dataset including various cultivars, in different sesason and distincts water 

management. In this chapter was possible to confirm JULES-crop as a valuable tool for large-

scale simulations of maize crop in Brazil, with high performance to simulate specially crop 

height, LAI and grain dry mass in rainfed and irrigated conditions.     

In the second chapter was proposed a forecasting approach based on JULES-crop 

outputs and agroclimatic indicators being tested in national scale for offseason maize. The 

yield forecast model demonstrated high performace for predcting yield from the 80
th

 day of 

the cycle, being possible to confirm the hypothesis presented in this study in which land 

surface model adaptaed for agriculture in large scale can contribute to reduce uncertainty to 

forecasting maize yield in Brazil. Another lines of investigation can be explored in the future 

as the utilization of whether dataset measured in meteorological stations, being more feasible 

to develop a forecasting system to predict maize yield. One relevant suggestion for the future 

is to use grid analysis (0.25
o
 x 0.25

o
) instead climate homogeneous zone to approach the 

climate diversity of Brazil. Moreover, this PhD thesis can serve as a reference to demonstrate 

JULES-crop can be able to be used for different crops as wheat, sugarcane and soybean to 

predict another commodities in large scale, being a relavant tool for farmers, institutions and 

stakeholders to anticipate solutions for different problems can caused by extreme whether 

factors due to a climate change scenario in the next decades.          
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5 APPENDICES 

Table S1. Functional parameters of JULES-crop for maize crop and its values based on 

Williams et al., (2017). Units of dimensionless variables are represented by (-). 

Parameters  value Definition 

alpar_io 0.1 Leaf reflection coefficient for VIS (photosyntehtically active radiation) (-). 

alpha_io 0.055 Quantum efficiency of photosynthesis (mol CO2 per mol PAR photons). 

can_struct_a_io 0.65 Canopy structure factor (adimensional). 

catch0_io 0.5 Minimum canopy capacity (kg m-2). 

dcatch_dial_io 0.05 Rate of change of canopy capacity with LAI (kg m-2). 

dqcrit_io 0.075 Critical humidity deficit (kg H2O per kg air). 

dz0v_dh_io 0.1 Rate of change of vegetation roughness length for momentum with height (-). 

emis_pft_io 1 Surface emissivity (-) 

f0_io 0.4 
Ratio of internal to external CO2 pressure when canopy level specific humidity deficit is zero (-

). 

fd_io 0.0096 Scale factor for dark respiration (-) 

fsmc_p0_io 0.65 Scaling factor in water stress calculation (-) 

glmin_io 1.00E-06 Minimum leaf conductance for H2O (m s-1). 

infil_f_io 2 Infiltration enhancement factor (-) 

kext_io 0.5 Light extinction coefficient (-) 

knl_io 0 Parameter for decay of nitrogen through the canopy, as a function of LAI (-) 

lai_alb_lim_io 0.5 Minimum LAI permitted in calculation of the albedo in snow-free conditions (-) 

neff_io 0.00057 Scale factor relating Vcmax with leaf nitrogen concentration (-) 

nI0_io 0.07 Top leaf nitrogen concentration (kg N (kg C) −1 ). 

nr_ni_io 0.195 Ratio of root nitrogen concentration to leaf nitrogen concentration (-) 

ns_nl_io 0.215 Ratio of stem nitrogen concentration to leaf nitrogen concentration (-) 

omega_io 0.17 Leaf scattering coefficient for PAR (-) 

q10_leaf_io 1 Q10 factor for plant respiration (-) 

r_grow_io 0.25 Growth respiration fraction (-) 

rootd_ft_io 0.5 Parameter determining the root depth (m). 

tlow_io 16 
Lower temperature parameter for photosynthesis, for the Collatz model of leaf photosynthesis 

(oC) 

tupp_io 47 
Upper temperature parameter for photosynthesis, for the Collatz model of leaf photosynthesis 

(oC) 

z0hm_pft_io 0.1 Ratio of the roughness length for heat to the roughness length for momentum (adimensional) 
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Table S2: JULES-crop parameters specific to maize crop and its values. Units of 

dimensionless variables are represented by (-) (Williams et al., 2017). 

Parameters  value Definition 

cfrac_l_io 0.439 Carbon fraction of dry matter for leaves (-) 

cfrac_s_io 0.439 Carbon fraction of dry matter for stems (-) 

initial_c_dvi_io 0.1 DVI at which the crop carbon is set to initial_carbon_io (-) 

initial_carbon_io 8.00E-04 Carbon in crop at emergence (kg C m−2 ). 

mu_io 0.02 Allometric coefficient for calculation of senescence (-). 

nu_io 4 Allometric coefficient for calculation of senescence (-). 

remob_io 0.12 Remobilisation factor (-) 

rt_dir_io 0 Coefficient determining relative growth of roots vertically and horizontally (-) 

sen_dvi_io 0.4 DVI at which leaf senescence begins. 

t_bse_io 281.15 Base temperature (K). 

t_max_io 318.15 Maximum temperature (K). 

t_mort_io 273.15 Soil temperature (second level) at which to kill crop if DVI>1. 

t_opt_io 303.15 Optimum temperature (K). 

tt_emr_io  53.4 Thermal time between sowing and emergence (deg Cd). 
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Fig S1: The fraction of NPP partitioned to leaf pool, when partitioning parameters are 

perturbed by a factor in the sensitivity analysis. 

 




