• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.11.2019.tde-17012019-180101
Document
Author
Full name
Marcel Pinton de Camargo
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
Piracicaba, 2018
Supervisor
Committee
Aprilanti, Tamara Maria Gomes (President)
Flauzino, Rogério Andrade
Lotufo, Roberto de Alencar
Milan, Marcos
Title in English
Aerial machine vision, geographical information system and hue for pattern classification in agriculture
Keywords in English
Agricultural reuse
Precision agriculture
Python
QGIS
UAV-photogrammetry
Abstract in English
In this research we aim to achieve cybernetic cohesion information flow in precision agriculture, integrating machine learning methods, computer vision, geographical information system and UAV-photogrammetry in an irrigated area with slaughterhouse wastewater, under five treatments (W100 - irrigation with superficial water and 100% of nitrogen mineral fertilization, E0, E33, E66 and E100 - irrigation with treated effluent from slaughterhouse and addition of 0, 33, 66 and 100% of nitrogen mineral fertilization, respectively) and four replications on grassland (Cynodon dactylon (L.) Pers.). Several images (between one hundred and two hundred) with red, green, blue (RGB) color model were captured using a quadcopter flying at 20 meter altitude and obtaining spatial resolution of 1 centimeter on a surface of approximately 0.5 ha. The images were orthorectified together with nine ground control points done by differential global positioning system (GPS), both processed in the Agisoft PhotoScan software. Thirteen photogrammetric projects were done over time with 30-day revisit, the root mean squared error (RMSE) was used as accuracy measurement, and reached values lower than 5 centimeters for x, y and z axis. The orthoimage obtained with unmanned aerial vehicle (UAV) photogrammetry was changed from RGB to hue, saturation, value (HSV) color model, and the hue color space was chosen due to independence of illumination, beyond it has a good description of exposure of soil and vegetation, but it is dependent of light source temperature, so difficult to estabilish a static threshold, so we selected an unsupervised classification method, K-Means, to classify the unknown patterns along the area. Polygons were drawn delimiting the area represented by each portion and a supervised classification method based on entropy was used, the decision tree, to explore and find patterns that recognize each treatment. These steps are also displayed in forms of georeferenced thematic maps and were executed in the open source softwares Python, QGIS and Weka. The rules defined on the hue color space reached an accuracy of 100% on the training set, and provided a better understanding about the distribution of soil and vegetation on the parcels. This methodology shows a great potential for analysis of spectral data in precision agriculture.
Title in Portuguese
Visão de máquina aérea, sistema de informação geográfica e matiz para classificação de padrões na agricultura
Keywords in Portuguese
Aerofotogametria
Agricultura de precisão
Python
QGIS
Reuso agrícola
Abstract in Portuguese
Nesta pesquisa pretendemos alcançar a coesão cibernética no fluxo de informações dentro da agricultura de precisão, integrando métodos de aprendizagem de máquinas, visão computacional, sistema de informação geográfica e aerofotogrametria em uma área irrigada com efluente de matadouro, sob cinco tratamentos (W100 - irrigação com água superficial e 100 % de adubação mineral nitrogenada, E0, E33, E66 e E100 - irrigação com efluente tratado de abatedouro e adição de 0, 33, 66 e 100% de adubação mineral nitrogenada, respectivamente) e quatro repetições em pastagem (Cynodon dactylon (L.) Pers.) Várias imagens (entre cem e duzentas) com modelo de cor vermelho, verde e azul (RGB) foram capturadas por um quadricóptero voando a 20 metros de altitude, e obtendo resolução espacial de 1 centímetro em uma superfície de aproximadamente 0.5 ha. As imagens foram ortorretificadas juntamente com nove pontos de controle, realizados pelo sistema de posicionamento global diferencial (GPS), ambos processados no software Agisoft PhotoScan. Treze projetos fotogramétricos foram realizados ao longo do tempo com revisita de 30 dias, a raiz do erro quadrático médio (RMSE) foi usada como medida de acurácia e atingiu valores menores que 5 centímetros para os eixos x, y e z. A ortoimagem obtida com a fotogrametria do veículo aéreo não tripulado (UAV) foi alterada de RGB para matiz, saturação, valor (HSV) e o espaço de cor matiz foi escolhido devido a independência da iluminação, além de ter boa descrição da exposição do solo e vegetação. Entretanto este é dependente da temperatura da fonte de luz, portanto difícil de se estabelecer um limiar estático, logo selecionamos um método de classificação não supervisionado, o K-Means, para classificar os padrões desconhecidos ao longo da área. Polígonos foram traçados delimitando a área representada por cada parcela e um método supervisionado de classificação baseado na entropia foi utilizado, a árvore de decisão, para explorar e encontrar padrões que reconheçam cada tratamento. Essas etapas também são exibidas em formas de mapas temáticos georeferenciados e foram executadas nos softwares de código aberto Python, QGIS e Weka. As regras definidas no espaço de cor matiz atingiram uma acurácia de 100% no conjunto de treinamento e proporcionaram um melhor entendimento sobre a distribuição do solo e da vegetação nas parcelas. Esta metodologia mostra um grande potencial para análise de dados na agricultura de precisão.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2019-01-28
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2019. All rights reserved.