
University of São Paulo 
“Luiz de Queiroz” College of Agriculture  

 
 
 
 
 
 
 

 
Late Pleistocene-Holocene environmental change in Serra do Espinhaço 

Meridional (Minas Gerais State, Brazil) reconstructed using a multi-proxy 
characterization of peat cores from mountain tropical mires 

 
 
 
 
 
 
 

 
Ingrid Horák-Terra 

 
 
 
 

Thesis presented to obtain the degree of Doctor in 
Science. Area: Soils and Plant Nutrition 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 

Piracicaba 
2014



 

 

Ingrid Horák-Terra 
Forest Engineer 

 
 
 
 
 
 
 
 
 
 
 

Late Pleistocene-Holocene environmental change in Serra do Espinhaço Meridional 
(Minas Gerais State, Brazil) reconstructed using a multi-proxy characterization of peat 

cores from mountain tropical mires 
versão revisada de acordo com a resolução CoPGr 6018 de 2011 

 
 
 
 
 
 

 
                  Adviser: 
                  Prof. Dr. PABLO VIDAL TORRADO 
 

 
 

 

 

Thesis presented to obtain the degree of Doctor in 
Science. Area: Soils and Plant Nutrition 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Piracicaba 
2014



            
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dados Internacionais de Catalogação na Publicação  
DIVISÃO DE BIBLIOTECA - DIBD/ESALQ/USP 

 
 

Horák-Terra, Ingrid  
Late Pleistocene-Holocene environmental change in Serra do Espinhaço 

Meridional (Minas Gerais State, Brazil) reconstructed using a multi-proxy 
characterization of peat cores from mountain tropical mires /  Ingrid Horák-Terra.- - 
versão revisada de acordo com a resolução CoPGr 6018 de 2011. - - Piracicaba, 2014. 

134 p: il. 

Tese (Doutorado) - - Escola Superior de Agricultura “Luiz de Queiroz”, 2013. 
 

1. Turfeiras tropicais 2. Organossolos 3. Pólen 4. Geoquímica 5. Isótopos            
6. Análise por componentes principais I. Título 

                                                                                     CDD 631.417 
                                                                                                        H811L                                                        

  
 
 
 

“Permitida a cópia total ou parcial deste documento, desde que citada a fonte -O autor” 
 



3 

 

 

 

 

 

 

 

Ao meu esposo Fabrício da Silva Terra, 

pela paciência, dedicação e amor nesta etapa. 

 

Aos meus pais Suely R. S. Horák e Eugenio Cezar Horák, 

pelo amor incondicional e compreensão. 

 

DEDICO



4 
 

 



5 

 

AGRADECIMENTOS 

 
A Deus pela vida e saúde para chegar a esta conquista.  

Ao Prof. Dr. Pablo Vidal Torrado, meu orientador, pelo incentivo, confiança, apoio, 

oportunidades oferecidas, conhecimentos transmitidos, amizade e por ter me aceitado na pós-

graduação.  

Ao Prof. Dr. Antonio Martínez Cortizas por ter me recebido durante o estágio no exterior na 

Universidade de Santiago de Compostela, em Santiago de Compostela - Espanha, e em seu 

grupo de pesquisa “Earth System Science – EPEC Node”, pelos ensinamentos e 

conhecimentos transmitidos a cerca da geoquímica das turfeiras, pela enorme colaboração, 

sugestões, confiança e amizade.   

Ao Programa de Pós Graduação em Solos e Nutrição de Plantas e ao Departamento de 

Ciência do Solo da ESALQ/USP pela oportunidade de realização do curso e pela 

disponibilização da estrutura, recursos e materiais para desenvolvimento do trabalho de 

pesquisa.  

À Fundação de Amparo à Pesquisa do Estado de São Paulo - FAPESP pela concessão da 

bolsa de doutorado regular e bolsa de estágio de pesquisa no exterior (BEPE). 

A Profª. Drª Cynthia Fernandes Pinto da Luz do Instituto de Botânica do Estado de São Paulo 

(IBt) pelos ensinamentos a cerca da palinologia, pelo apoio, sugestões e amizade.  

Ao Prof. Dr. Alexandre Christófaro Silva da Universidade Federal dos Vales do 

Jequitinhonha e Mucuri (UFVJM) – Diamantina (MG) pelo enorme suporte durante os 

trabalhos de campo, ensinamentos, sugestões e amizade. 

Ao Prof. Dr. Plínio Barbosa de Camargo por disponibilizar o Laboratório de Ecologia 

Isotópica do CENA/USP.  

Aos meus amigos de pós-graduação Josiane, Raphael, Rodrigo, Gabriel, Jairo, Danilo, Pedro, 

Mariane e José Ricardo, e aos que já concluiram Márcia, Alexandre, Flávio, Vanda, Fernando 

e Maurício; pela colaboração, companheirismo, risadas e incentivos.  

Aos amigos de Santiago de Compostela Noemí Sánchez, Rebeca Tallón, Luís Lado, Marta 

Pérez, Cruz, Diego, Nue, Pedro Rivas, Maria Santiso, Pyty, Nat, Alberto, Javi, Naty, Vero, 

David e em especial a Jordi (Xosé Luis Otero Pérez) e Esther pela acolhida, convívio, 

marchas, viagens e, sobretudo pelos bons momentos.    



6 
 

 

Aos colegas da UFVJM Uidemar, Gabriel, Pablo, Márcio, Diego, Bárbara e Ana Maria pelo 

auxílio durante os trabalhos de campo.  

Aos Professores do Departamento de Ciência do Solo - ESALQ/USP pelos conhecimentos 

transmitidos e contribuição à minha formação, em especial ao Prof. Dr. José Alexandre Melo 

Demattê, Antônio Carlos Azevedo, Miguel Cooper e Álvaro Pires da Silva.  

Ao técnico Luiz Silva do Departamento de Ciência do Solo – ESALQ/USP pela atenção e 

apoio nas atividades de laboratório.  

Aos funcionários do Departamento de Ciência do Solo - ESALQ/USP, em especial ao Sr. 

Dorival Grisotto pelo apoio e disposição nos trabalhos de campo, e também à Marta, Cristina, 

Célia, Camila e Nancy. 

Às famílias Horák e Terra pelo apoio emocional e fraterno, mesmo à longínquas distâncias.  

A todas as pessoas que colaboraram, direta ou indiretamente, para a realização desta pesquisa. 

 

Muito obrigada! 

 

 

 
 
 
 
 
 
 
 
 
 
 
 



7 

 

ACKNOWLEDGMENTS 
 
 
First of all, I thank God for the life and health to reach this achievement.  

My sincere gratitute to Prof. Dr. Pablo Vidal Torrado, my adviser, for his incentive, trust, 

support, opportunities offered, knowledge transmitted, friendship and for having accepted me 

in graduate school. 

I am very grateful also to Prof. Dr. Antonio Martínez Cortizas for having received me during 

the internship abroad at the Universidade de Santiago de Compostela - Spain, and his research 

group “Earth System Science – EPEC Node”, by teaching and knowledge transmitted about 

geochemistry of peatlands, great collaboration, suggestions, trust and friendship. 

I would like to thank the Graduate Program in Soils and Plant Nutrition and the Soil Science 

Department from ESALQ/USP for the opportunity of taking the course and for the availability 

of the facilities, resources and materials for the development of my research work.    

I thank the São Paulo Research Foundation (FAPESP) for the regular doctoral scholarship and 

research internships abroad (BEPE) fellowship.  

I thank Profª. Drª Cynthia Fernandes Pinto da Luz of the Institute of Botany of the São Paulo 

State (IBt) by teaching about the palynology, support, suggestions and friendship. 

I thank Prof. Dr. Alexandre Christófaro Silva of the Universidade Federal dos Vales do 

Jequitinhonha e Mucuri (UFVJM) – Diamantina (Minas Gerais State) by the great support 

during the fieldworks, teachings, suggestions and friendship. 

I thank Prof. Dr. Plínio Barbosa de Camargo for providing the Isotope Ecology Laboratory of 

CENA/USP. 

Thanks to my friends of the graduate program Josiane, Raphael, Rodrigo, Gabriel, Jairo, 

Danilo, Pedro, Mariane and José Ricardo, and those already concluded Márcia, Alexandre, 

Flávio, Vanda, Fernando and Maurício, by collaboration, fellowship, laughter and incentives.  

Thanks to my friends of Santiago de Compostela Noemí Sánchez, Rebeca Tallón, Luís Lado, 

Marta Pérez, Cruz, Diego, Nue, Pedro Rivas, Maria Santiso, Pyty, Nat, Alberto, Javi, Naty, 

Vero, David and in particular Jordi (Xosé Luis Otero Pérez) and Esther for having welcomed 

me, friendship and especially for the good times.  

Thanks to colleagues of the UFVJM Uidemar, Gabriel, Pablo, Márcio, Diego, Bárbara and 

Ana Maria for assistence during fieldwork.  



8 
 

 

Thanks to teachers of the Soil Science Department - ESALQ/USP by the knowledge 

transmitted and contribution to my education, in particular to Prof. Dr. José Alexandre Melo 

Demattê, Prof. Dr. Antônio Carlos Azevedo, Prof. Dr. Miguel Cooper and Prof. Dr. Álvaro 

Pires da Silva.  

I thank Luiz Silva the technician of the Soil Science Department - ESALQ/USP for the 

attention and support in laboratory analyses.  

Thanks to employees of the Soil Science Department - ESALQ/USP, in particular to Dorival 

Grisotto for support and disposition in the fieldworks, and also to Marta, Cristina, Célia, 

Camila and Nancy. 

Thanks to Horák and Terra families for emotional and fraternal support even at distances. 

To all the people who contributed directly or indirectly to this research. 

 
Thank you! 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



9 

 

CONTENTS 
  

RESUMO ...................................................................................................................................... 11 

ABSTRACT .................................................................................................................................. 13 

1 INTRODUCTION ...................................................................................................................... 15 

References ..................................................................................................................................... 17 

2 CHARACTERIZATION OF PROPERTIES AND MAIN PROCESSES RELATED TO 

THE GENESIS AND EVOLUTION OF TROPICAL MOUNTAIN MIRES FROM SERRA 

DO ESPINHAÇO MERIDIONAL, MINAS GERAIS, BRAZIL ................................................. 19 

Abstract .......................................................................................................................................... 19 

2.1 Introduction ............................................................................................................................. 19 

2.2.1 Study area ............................................................................................................................. 21 

2.2.2 Analytical determinations ..................................................................................................... 23 

2.2.2.1. Physico-chemical and morphological properties .............................................................. 23 

2.2.2.2 Elemental composition ...................................................................................................... 24 

2.2.2.3 Chronology ........................................................................................................................ 24 

2.2.3 Statistical analysis ................................................................................................................ 24 

2.2.4 Properties of other mountain mires ...................................................................................... 25 

2.3 Results ..................................................................................................................................... 25 

2.3.1 Stratigraphy .......................................................................................................................... 25 

2.3.2 Physico-chemical, morphological and elemental properties ................................................ 27 

2.3.2.1 Soil reaction ....................................................................................................................... 27 

2.3.2.2 Gravimetric moisture content and peat density ................................................................. 30 

2.3.2.3 Mineral matter and minimum residue ............................................................................... 30 

2.3.2.4 Unrubbed and rubbed fibres, degree of peat decomposition and Von Post scale ............. 30 

2.3.2.5 Organic and inorganic elemental composition .................................................................. 31 

2.3.3 Chronology ........................................................................................................................... 32 

2.3.4 Principal components analysis (PCA) .................................................................................. 34 

2.4 Discussion ................................................................................................................................ 35 

2.4.1 Inorganic matter versus organic matter content of the peat.................................................. 35 

2.4.2 Dust fluxes from regional sources ........................................................................................ 39 

2.4.3 Plant remains preserved ........................................................................................................ 40 

2.4.4 Degree of peat decomposition .............................................................................................. 43 

2.5 Conclusion ............................................................................................................................... 43 



10 
 

 

References ...................................................................................................................................... 45 

3 HOLOCENE CLIMATE CHANGE IN CENTRAL-EASTERN BRAZIL 

RECONSTRUCTED USING POLLEN AND GEOCHEMICAL RECORDS OF PAU DE 

FRUTA MIRE (SERRA DO ESPINHAÇO MERIDIONAL, MINAS GERAIS) ........................ 51 

Abstract .......................................................................................................................................... 51 

3.1 Introduction .............................................................................................................................. 51 

3.2 Material and Methods .............................................................................................................. 53 

3.2.1 Pollen study ........................................................................................................................... 55 

3.2.2 Elemental and isotopic composition ..................................................................................... 56 

3.2.3 Radiocarbon age dating and age/depth model ...................................................................... 56 

3.2.4 Statistical analysis ................................................................................................................. 57 

3.3 Results and discussion ............................................................................................................. 57 

3.3.1 Pollen study ........................................................................................................................... 57 

3.3.2 Geochemical composition of the peat ................................................................................... 63 

3.3.3 Chronology of the changes ................................................................................................... 68 

3.3.4 Mire’s behaviour in phase space ........................................................................................... 72 

3.4 Conclusions .............................................................................................................................. 74 

References ...................................................................................................................................... 75 

4 CLIMATE CHANGES IN CENTRAL-EASTERN BRAZIL DURING THE LAST ~60 kyr .. 81 

Abstract .......................................................................................................................................... 81 

4.1 Introduction .............................................................................................................................. 81 

4.2 Material and Methods .............................................................................................................. 83 

4.2.1 Sampling and stratigraphic description ................................................................................. 83 

4.2.2 Elemental and isotopic composition ..................................................................................... 85 

4.2.3 Pollen study ........................................................................................................................... 85 

4.2.4 Radiocarbon age dating and age/depth model ...................................................................... 86 

4.2.5 Statistical analysis ................................................................................................................. 86 

4.3 Results and discussion ............................................................................................................. 87 

4.3.1 Selection of proxies ............................................................................................................... 87 

4.3.2 Chronological reconstruction of environmental dynamics ................................................... 88 

4.3.3 Precipitation controls during the last ~60 kyr in central-eastern Brazil ............................... 92 

4.4 Conclusions .............................................................................................................................. 93 

References ...................................................................................................................................... 94 

APPENDICES ............................................................................................................................. 101 



11 

 

RESUMO 

Reconstrução paleoambiental da Serra do Espinhaço Meridional (Minas Gerais, Brasil) 
durante o Pleistoceno tardio e Holoceno usando uma caracterização multi-proxy de 

testemunhos de turfeiras tropicais de montanha 
 

 As turfeiras são ecossistemas extremamente sensíveis às mudanças da hidrologia, e 
são por excelência consideradas como "arquivos naturais da memória ecológica". Na Serra do 
Espinhaço Meridional, Minas Gerais, Brasil, as turfeiras de montanha vem sendo estudadas 
pelos cientistas do solo, mas até então estudos multi-proxy são quase ausentes. A localização 
destas é ideal pois estão em uma área influenciada pela atividade do Sistema Monçônico da 
América do Sul (SMAS), que controlam a quantidade e distribuição de precipitação anual. O 
objetivo deste trabalho foi reconstruir as mudanças ambientais ocorridas através do Holoceno 
e Pleistoceno Tardio, tanto sob escala local quanto regional, usando uma abordagem multi-
proxy (estratigrafia, propriedades físicas, datações 14C e LOE, pólen e geoquímica). No 
entanto, determinação dos processos envolvidos na gênese e evolução dos solos das turfeiras 
também foi um passo necessário. As propriedades físico-químicas e composição elementar de 
cinco testemunhos de turfa (PdF-I, PdF-II, SJC, PI e SV) de quatro turfeiras selecionadas (Pau 
de Fruta, São João da Chapada, Pinheiros e Sempre Viva) parecem ter respondido a quatro 
processos principais: acumulação relativa de matéria orgânica e material mineral, ligados à 
evolução dos solos das bacias das turfeiras (erosão local); deposição de poeira de fontes 
distantes/regionais; preservação de restos de plantas; e decomposição da turfa em longo e 
curto prazo. A combinação de proxies de PdF-I definiu seis principais fases de mudanças 
durante o Holoceno: (I) 10-7,4 mil anos cal AP, clima úmido e frio e instabilidade do solo na 
bacia da turfeira; (II) 7,4-4,2 mil anos cal AP, úmido e quente com solo na bacia estável e 
aumento de deposição de poeiras regionais; (III) 4,2-2,2 mil anos cal AP, seco e quente e 
reativação da erosão do solo na bacia; (IV) 2,2-1,2 mil anos cal AP, seco e resfriamentos 
pontuais, com aumento de poeiras regionais; (V) 1,2 mil anos-400 anos cal AP, sub-úmido e 
com os mais baixas entradas de poeiras local e regionais e as maiores acumulações de turfa; e 
(VI) <400 anos cal AP, sub-úmido com forte erosão local e regional. Para o Pleistoceno 
tardio, uma combinação de proxies aplicada para PI também definiu seis principais fases: (I) 
60-39,2 mil anos cal AP, de sub-úmido para seco em meio à temperaturas mais frias que o 
atual, e alta instabilidade do solo na bacia da turfeira; (II) 39,2-27,8 mil anos cal AP, seco e 
quente com alguns resfriamentos e ainda sob elevadas taxas de erosão local; (III) 27,8-16,4 
mil anos cal AP, úmido e muito frio com redução da erosão do solo na bacia; (IV) 16,4-6,6 
mil anos cal AP, muito úmido e muito frio com baixa intensidade de erosão local; (V) 6,6-3,3 
mil anos cal AP, muito seco e quente com taxas crescentes de erosão local; e (VI) <3,3 mil 
anos cal AP, de seco e quente para sub-úmido, com tendência de erosão local semelhante ao 
período anterior.  O clima é visto como o forçante mais importante das mudanças ambientais, 
mas é provável que atividades humanas tenham sido parcialmente responsáveis pelas 
mudanças significativas registradas ao longo dos últimos 400 anos. Dado o valor como 
arquivos ambientais, as turfeiras da Serra do Espinhaço Meridional devem ser completamente 
protegidas.  
 
Palavras-chave: Turfeiras tropicais; Organossolos; Pólen; Geoquímica; Isótopos; Análise por 

componentes principais  
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ABSTRACT 

Late Pleistocene-Holocene environmental change in Serra do Espinhaço Meridional 
(Minas Gerais State, Brazil) reconstructed using a multi-proxy characterization of peat 

cores from mountain tropical mires 
 

 The peatlands are ecosystems extremely sensitive to changes in hydrology, and are 
considered as faithful "natural archives of ecological memory". In the Serra do Espinhaço 
Meridional, Minas Gerais State, Brazil, mountain peatlands has been studied by soil scientists, 
but until now multi-proxy studies are almost absent. The location of these peatlands is ideal 
because they are in an area influenced by the activity of the South America Monsoon Systems 
(SAMS), which controls the amount and distribution of annual rainfall. The aim of this work 
was to reconstruct the environmental changes occurred throughout the late Pleistocene and 
Holocene, both at the local and regional scale by using a multi-proxy approach (stratigraphy, 
physical properties, 14C and OSL datings, pollen and geochemistry). However, determining of 
the processes involved in the genesis and evolution of peatlands soils was also necessary step. 
The physico-chemical properties and elemental composition of five peat cores (PdF-I, PdF-II, 
SJC, PI and SV) from four selected mires (Pau de Fruta, São João da Chapada, Pinheiros and 
Sempre Viva) seem to have responded to four main processes: relative accumulation of 
organic and mineral matter, linked to the evolution of the catchment soils (local erosion); 
deposition of dust from distant/regional sources; preservation of plant remains; and long and 
short-term peat decomposition. The combination of proxies of PdF-I core defined six main 
phases of change during the Holocene: (I) 10-7.4 cal kyr BP, wet and cold climate and soil 
instability in the mire catchment; (II) 7.4-4.2 cal kyr BP, wet and warm with catchment soils 
stability and enhanced deposition of regional dusts; (III) 4.2-2.2 cal kyr BP, dry and warm and 
a reactivation of soil erosion in the catchment; (IV) 2.2-1.2 cal kyr BP, dry and punctuated 
cooling, with enhanced deposition of regional dusts; (V) 1.2 cal kyr-400 cal yr BP, sub-humid 
climatic and the lowest inputs of local and regional dust and the largest accumulation of peat 
in the mire; and (VI) <400 cal yr BP, sub-humid conditions but both local and regional 
erosion largely increased. For the late Pleistocene, a combination of proxies applied to the PI 
core also defined six main phases: (I) 60-39.2 cal kyr BP, from sub-humid to dry amid colder 
conditions than today, and high soil instability in the mire catchment; (II) 39.2-27.8 cal kyr 
BP, dry and warm with cooling events under still high local erosion rates; (III) 27.8-16.4 cal 
kyr BP, wet and very cold with a decreased in soil erosion in the catchment; (IV) 16.4-6.6 cal 
kyr BP, very wet and very cold conditions with low intensity of local erosion; (V) 6.6-3.3 cal 
kyr BP, very dry and warm with increasing rates of local erosion; and (VI) <3.3 cal kyr BP, 
from dry and warm to sub-humid climate, with local erosion trend similar to the previous 
period. The climate is seen as the most important driving force of environmental change, but 
human activities are likely to have been at least partially responsible for the significant 
changes recorded over the past 400 years. Given the value as environmental archives, mires 
from Serra do Espinhaço Meridional should be fully protected.  
 
Keywords: Tropical mires; Histosols; Pollen; Geochemistry; Isotopes; Principal components 

analysis  
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1 INTRODUCTION 

 Nature writes books about its own history, but in a language we are not directly 

familiar with and that we need to decipher before the story is revealed. The 

palaeoenvironmental reconstruction assists in unraveling this story through the analysis of the 

evidence stored in archives, these being the true memory of geosystem (MARTÍNEZ 

CORTIZAS, 2000). They may be classified as natural (arctic ice and glaciers, ocean and lake 

sediments, peatlands, polycyclic soils, etc...) and anthropic archives (archaeological deposits, 

cultivated soils, terraces, etc...).   

 Peatlands are habitats that have accumulated layers of organic material resulting from 

the imbalance between accumulation/decomposition-mineralization (GORE, 1983), due to 

low oxygen availability associated with prolonged or almost permanent water saturation. 

Histosol (SOIL SURVEY STAFF, 2010) is their representative soil type. To Clarke and 

Joosten (2002), a peatland is an area with or without vegetation with a naturally accumulated 

peat layer at the surface, and a mire is a peatland where peat is currently being formed. 

Similarly, Chambers and Charman (2004) used the term ‘mire’ for areas of active peat 

accumulation; in other words, all mires are peatlands, but not all peatland are mires. 

 In the Serra do Espinhaço Meridional, Minas Gerais State, Brazil, mountain mires are 

found between 1200 and 2000 m a.s.l., over quartzite outcrops of the Espinhaço Supergroup 

(Paleo-Mesoproterozoic), hosting wildlife and flora with unique endemic species and used to 

provide water of good quality for the region's cities. In recent years, they have been studied by 

soil scientists in order to obtain a more detailed knowledge on their properties revealing, 

beyond the overall importance of these ecosystems, their characteristic functions and main 

roles, including their value as archive of climate change and atmospheric pollution and 

relation to the dynamics of organic matter (SILVA et al., 2009a, 2009b; HORÁK, 2009; 

HORÁK et al., 2011; CAMPOS; SILVA; VIDAL-TORRADO, 2012; SILVA, E.V. et al., 

2013; SILVA, A.C. et al., 2013).  

 The mires, when used for palaeo-research, have several advantages: i) their terrestrial 

location makes them generally more accessible than ice sheets or oceans; 2) they are more 

readily and economically cored than ice, ocean or lake sediments; 3) they contain a greater 

range of proxies for climate than trees; and 4) their autochthonous mode of production and 

accumulation renders them less susceptible to the redeposition that can bedevil some lake-

sediment sequences (CHAMBERS; CHARMAN, 2004).  
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 The ability of most mires to accumulate autochthonous material sequentially, to 

sequester carbon for thousands of years, and to contain within them a detailed archive of local 

and regional vegetation history, makes them amenable to study environmental and climatic 

changes (BLACKFORD, 1993; CHARMAN, 2002) over the Quaternary. 

 With this purpose, four mountain mires (Pau de Fruta, São João da Chapada, Pinheiros 

and Sempre Viva) from the Serra do Espinhaço Meridional were selected and five peat cores 

(PdF-I, PdF-II, SJC, PI and SV) collected (Figure 1).  

 
 Figure 1 - Location of the select peat cores of mountain mires from Serra do Espinhaço Meridional  
 

 In chapter 2 of this thesis, stratigraphy, chronology, characterization of properties 

(morphological, physico-chemical, and elemental) and the main processes related to the 

genesis and evolution of these mires are presented, based on the study of the collected cores. 
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This detailed study also helped in the selection of two of the cores to carry out a detailed 

palaeoenvironmental reconstruction. We selected the PdF-I core as representative for the 

Holocene evolution and the PI core as representative of the Pleisteocene evolution. Chapter 3 

covers the palaeoenvironmental dynamic of the Holocene (10,000 years BP), by using 

palynological and geochemical data of the PdF-I core, combined with stratigraphy, physical 

properties, 14C dating and multivariate statistics. Finally, chapter 4 covers the 

palaeoenvironmental dynamic of the Late Pleistocene (60,000 years BP) using the same 

approach (except for physical properties), in PI core.  

 Therefore, the main objectives of this study were: 

 - To determine the main constituents and properties of the mires from Serra do 

Espinhaço Meridional, as well as the processes involved in their genesis and evolution. 

 - To infer the environment and climate dynamic throughout the Holocene determining 

the main changes and their causes at both local and regional scale, by a multi-proxy 

(stratigraphy, physical properties, 14C dating, pollen and geochemistry) study of a peat core 

sampled in Pau de Fruta mire (PdF-I). 

 - To infer environment and climate dynamic throughout the late Pleistocene 

determining the main changes and their causes at both local and regional scale, by a multi-

proxy (stratigraphy, 14C dating, pollen, geochemistry) study of a peat core sampled in 

Pinheiro mire (PI). 

 In addition to the knowledge on the past environmental changes, we also expect that 

this study can be of help as a source of information for national and international agencies and 

programs related to the conservation of peatlands, for the protection of this unique ecosystem 

in the Serra do Espinhaço Meridional. This must be a priority objective for Quaternary 

researchers, disseminating this knowledge and adding value on the environmental role of 

peatlands so that the society claims them as part of their natural and cultural heritage 

(MARTÍNEZ CORTIZAS, 2000).   
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2 CHARACTERIZATION OF PROPERTIES AND MAIN PROCESSES RELATED 

TO THE GENESIS AND EVOLUTION OF TROPICAL MOUNTAIN MIRES FROM 

SERRA DO ESPINHAÇO MERIDIONAL, MINAS GERAIS, BRAZIL  

Abstract 

 The properties and components of the peat allow peatlands to function as water 
reservoirs which participate in the hydrological cycle by modulating water discharge. In 
particular, the mountain peatlands from Serra do Espinhaço Meridional, Minas Gerais State, 
Brazil, provide water of good quality for the nearby cities and also serve as habitats for 
wildlife and flora with unique endemic species. In this paper we present the characterization 
of four mountain mires (Pau de Fruta, São João da Chapada, Pinheiro and Sempre Viva) from 
the Serra do Espinhaço Meridional, based on morphological, physico-chemical, and elemental 
properties analyzed in five selected peat cores (PdF-I, PdF-II, SJC, PI and SV), which are 
compared with those of peatlands from other mountainous areas of tropical and temperate 
regions. Radiocarbon dating indicates that they started to form during the late Pleistocene. 
Principal components analysis was applied to synthesize the main peat properties and identify 
the underlying processes. The first principal component, PC1, is related to the relative content 
in inorganic versus organic matter of the peat, most probably related to the evolution of the 
soils of the mires' catchments (i.e. soil erosion); PC2 seems to be related to the incorporation 
of inorganic material by deposition of dust from regional sources; PC3 reflects the content 
and preservation of plant remains (fibre content); and PC4 indicates the degree of peat 
decomposition. Our results suggest that tropical mountain mires from Serra do Espinhaço 
Meridional are complex peatland ecosytems, with a large potential for the reconstruction of 
environmental changes (i.e. climate change) occurred since the late Pleistocene, and that they 
should be fully protected. 

Keywords: Tropical peatlands; Histosols; Peat properties; Principal components analysis 

2.1 Introduction 

 Peatlands are an important type of wetlands accounting for 50-70% of the global 

wetlands area (CLYMO, 1984; GORHAM, 1991), and occupying 5-8% of the Earth's land 

surface (INTERNATIONAL PANEL ON CLIMATE CHANGE - IPCC, 2010). The high 

carbon content is one of the characteristics of these ecosystems, being the Histosol (SOIL 

SURVEY STAFF, 2010) their representative soil type, and resulting from the imbalance 

between accumulation/decomposition-mineralization of organic matter (GORE, 1983), due to 

low oxygen availability associated with prolonged or almost permanent water saturation. 

 Large extensions are found in temperate and boreal areas, but tropical peatlands are 

also important contributing 10-12% (31-46 million hectares) to the global peatlands area 

(IMMIRZI; MALTBY; CLYMO, 1992; RIELEY; AHMAD-SHAH; BRADY, 1996) and 

being considered as environmental and ecological systems with intrinsic properties 

(BARBIER, 1994; PAGE; RIELEY, 1998). High cover of tropical peatlands is found in 
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Southeastern Asia with 56%, followed by South America with 24%, a 6% occurring in Brazil 

(PAGE; RIELEY; BANKS, 2011).  

 The restricted knowledge regarding to important aspects afforded by these tropical 

ecosystems has led to growing losses, poor preservation, and reduced ecological functions, 

mainly by inadequate management practices. In Southeastern Asia, episodes of drought 

associated with the El Niño-Southern Oscillation (ENSO) were observed in combination with 

forest degradation and changes of land use activities (PAGE; RIELEY; WÜST, 2006), which 

triggered the spread of fires in peatlands (PAGE et al., 2002) and produced high levels of air 

pollution (SCHWEITHELM, 1999). The huge release of the stored carbon, in the form of 

greenhouse gases, which are a major contributor to climate change (MURDIYARSO; 

HERGOUALC'H; VERCHOT, 2010), is also of wide concern. Therefore, more efforts should 

be made to better understand and disseminate the ecological value of peatlands. 

 According to Chimner and Karberg (2008) tropical peatlands are located at least in 

two distinctive altitudinal zones, below 30 m a.s.l., known as low altitude peatlands, and 

above 1200 m a.s.l., known as mountain peatlands; the second only found in South America, 

Africa and Papua New Guinea (PAGE; RIELEY; BANKS, 2011). In the Serra do Espinhaço 

Meridional (Minas Gerais State, Brazil), mountain peatlands are found between 1200 and 

2000 m a.s.l. over quartzite outcrops of the Espinhaço Supergroup, hosting wildlife and flora 

with unique endemic species and being used to provide water of good quality for the region's 

cities. In recent years, these peatlands have been studied by soil scientists in order to obtain a 

more detailed knowledge on their properties revealing, beyond the overall importance of these 

ecosystems, their characteristic functions and main roles, including their use as archive of 

climate changes and atmospheric pollution and the relationship to the dynamics of organic 

matter. The main objectives of the investigations already undertaken focused on the general 

characterization of the peat properties (physical, chemical, morphological and biological) 

from three peatlands -Biribiri, Itambé and Pau de Fruta (SILVA et al., 2009a), the 

characterization of humic substances of the same peatlands (SILVA et al., 2009b), mapping 

and determining the stock of organic matter and water volume (CAMPOS; SILVA; VIDAL-

TORRADO, 2012), reconstructing Holocene palaeoenvironmental change (HORÁK, 2009; 

HORÁK et al., 2011) and the determination of total biomass (SILVA, E.V. et al., 2013) and 

degree of peat humification (SILVA, A.C et al., 2013), the latter only in one peatland (Pau de 

Fruta).  

 In the European Union, peatlands are protected by the instruction directive from 1992 

(BÉLGICA, 1992), and some countries, like Spain, have their own protection regulations 
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(PONTEVEDRA POMBAL; MARTÍNEZ CORTIZAS, 2004). The situation is quite different 

for tropical peatlands. In Brazil, there are no regulations and specific planning for the 

appropriate use of peatlands; the importance of conservation is only loosely mentioned in the 

decree of the Convention on Wetlands (BRASIL, 1996). In 2005, the United Nations 

Educational, Scientific and Cultural Organization (UNESCO) recognized the Serra do 

Espinhaço as the seventh Brazilian Biosphere Reserve due to the high diversity of natural 

resources, but with any particular mention to the peatlands of this region. At present, it 

remains a challenge to involve as many trained scientist as possible in the study of tropical 

peatlands ecosystems to provide the basic knowledge needed for better conservation, 

protection and management strategies. 

 In this study we present a characterization based on morphological, physico-chemical, 

and elemental properties of mountain mires from the Serra do Espinhaço Meridional. The 

results obtained were compared with those of peatlands from other mountainous areas of 

tropical and temperate regions. Multivariate statistical methods (principal components 

analysis) applied to the physico-chemical properties was used to assist in the identification of 

processes/drivers that control the nature of the studied mires. Stratigraphy and chronology 

complement contextualize the main changes recorded. Beyond a scientific contribution, we 

also expect that this research may serve as a source useful for national and international 

agencies and programs related to the conservation of peatlands, to propose the protection of 

this unique ecosystem in the Serra do Espinhaço Meridional.  

 

2.2 Material and Methods 

2.2.1 Study area 

 Five cores were collected in four mires located in Serra do Espinhaço Meridional 

(Minas Gerais State, Brazil): core PdF-I (18º15’27,08” S 43º40’3,64” W) with 438 cm in 

length and core PdF-II (18°16'14.45" S 43°40'59.5" W) with 264 cm, were collected in Pau de 

Fruta mire, located at 1350 m and 1360 m a.s.l., respectively; core SJC, 378 cm, in São João 

da Chapada mire (18°5'40.47" S 43°47'16.27" W) at 1342 m a.s.l.; core PI, 324 cm, in 

Pinheiro mire (18°3'44.42" S 43°39'42.37" W) at 1242 m a.s.l.; and core SV, 162 cm, in 

Sempre-Viva mire (17°54'45.4" S 43°47'29.52" W) at 1260 m a.s.l (Figure 1D). Sampling 

was done between 2008 and 2010 using a vibracore (MARTIN; FLEXOR; SUGUIO, 1995). 

The stratigraphy of each core was described according to Guidelines for Soil Descriptions 

(FAO, 2006) and Field Book for Describing and Sampling Soils (SCHOENEBERGER et al.,  
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Figure 1 - Location of tropical and temperate mountain mires mentioned in this study. (A) Brazil and Northwest 

Iberian Peninsula; (B) temperate mountain mires from Galicia (Spain) (Pontevedra-Pombal, 2002; 
Pontevedra-Pombal et al., 2006) and other from Northwest Iberian Peninsula (Aira and Guitián, 
1986a, b; Molinero et al., 1984; Ramil and Aira Rodriguez, 1993; Ramil et al., 1994; Torras, 1982); 
(C) tropical mountain mires from Southeastern and Southern Brazilian States and Federative Unit 
(Central region) (Valladares, 2003); (D) tropical mountain mires from Serra do Espinhaço Meridional 
(Minas Gerais State, Brazil), where PdF-I, PdF-II, SJC, PI and SV belong to this study, while P1, P2 
and P4 after Silva et al. (2009a, 2009b) 

2012), whereas the horizons/layers were defined according to Soil Taxonomy (SOIL 

SURVEY STAFF, 2010). 
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 According to the classification system proposed by Lindsay (1995), the mires of this 

study are minerogenic, valley mires and present the following main characteristics: water 

table at or just below the surface; waters originating from mineral soils (minerotrophic); 

dominant slightly acidic to neutral peat materials; moderately to well decomposed; and sedge 

and/or brown moss peat (NATIONAL WETLANDS WORKING GROUP, 1988). 

 The basal lithology of the Pau de Fruta mire is the Sopa-Brumadinho formation and of 

the São João da Chapada mire is the São João da Chapada formation, both corresponding to 

the Guinda group, composed mostly by quartzites, but also green schists and hematitic 

phylites. Pinheiro and Sempre Viva mires correspond to the Galho do Miguel formation, 

constituted by pure and thin quartzites (90%) and thin micaceous quartzites and gray or 

greenish metargilites (5-10%) (KNAUER, 2007). All these formations have ages dating from 

the Paleo-Mesoproterozoic.  

 Present climate has been characterized as tropical mountainous, according to Köppen 

classification, with an average annual precipitation of 1500 mm (NIMER, 1977).  

 Vegetation is typical of Cerrado biome (savanna), one of the most endangered in the 

world, but also contains a mosaic of patches of forests (semi-deciduous forest and Cerradão) 

called "Capões", which appear as a small island dispersed among grassland formations (wet 

grassland: Campo Limpo Úmido, dry grassland: Campo Limpo Seco, and rupicola-saxicolous 

grassland: Campo Rupestre) within the mire. Fabaceae, Euphorbiaceae, Clusiaceae and 

Rubiaceae are the predominat families in the "Capões", while Poaceae, Cyperaceae, 

Droseraceae, Xyridaceae, Eriocaulaceae, Gentianaceae, Lentibulariaceae and Bromeliaceae in 

the grasslands. Moreover, Amaranthaceae, Clusiaceae, Caryocaraceae, Annonaceae, 

Lithraceae, Vochysiaceae and Leguminosae are often found between these two formations.  

2.2.2 Analytical determinations 

2.2.2.1. Physico-chemical and morphological properties 

 According to the characterization tests of Histosols (LYNN; MCKINZIE; 

GROSSMAN, 1974) described by Embrapa (2013), unrubbed (URF) and rubbed fibres (RF), 

pH in CaCl2, peat bulk density (BD), peat density without inorganic matter (BDO), 

gravimetric moisture (GM), minimum residue (MR) and mineral material content (MM) were 

determined, as well as the von Post scale (VP) to assess the degree of peat decomposition 

(STANEK; SILC, 1977). Wet samples of 10 cm in thickness of PdF-I and of 4 cm in 

thickness of PdF-II, SJC, PI and SV were used.   
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2.2.2.2 Elemental composition 

 Elemental concentrations were determined in dried, milled and homogenized samples 

of 10 cm in thickness in PdF-I core and samples of 2 cm in thickness in the other cores (PdF-

II, SJC, PI and SV). Carbon and N contents of PdF-I were determined by an elemental 

analyzer coupled to a mass spectrometer, hosted in the Laboratório de Isótopos Estáveis of the 

Centro de Energia Nuclear na Agricultura - CENA/USP (Piracicaba, SP, Brasil), while for 

cores PdF-II, SJC, PI and SV we used an elemental analyzer coupled to a mass spectrometer 

hosted in the Laboratório de Ecologia Isotópica of the Centro de Energia Nuclear na 

Agricultura - CENA/USP (Piracicaba, SP, Brasil). Silicon, Al, Ti and Zr concentrations were 

determined by X-ray fluorescence using two energy dispersive XRF analyzers 

(CHEBURKIN; SHOTYK, 1996; WEISS; CHEBURKIN; SHOTYK, 1998) hosted at the 

RIAIDT facility (Infrastructure Network for the Support of Research and Technological 

Development) of the University of Santiago de Compostela (Spain), which were calibrated 

using certified reference materials (NIST 1515, 1541, 1547 and 1575, BCR 60 and 62 and V-

1). Detection limits for organic matrices were: <0.01% for Al and Si; 0.0005% for Ti; and 1 

μg g-1 for Zr; the detection limits for mineral matrices were: 0.1% for Al; 0.05% for Si; 

0.002% for Ti; and 1 μg g-1 for Zr. 

2.2.2.3 Chronology  

 Forty five selected peat samples (11 in PdF-I, 7 in PdF-II, 8 in SJC, 13 in PI and 6 in 

SV) were radiocarbon dated by AMS (Accelerator Mass Spectrometry) in the Beta Analytic 

Inc. (Miami, USA) and AMS Laboratory of Georgia University (UGAMS, USA). Moreover, 

eight samples of mineral sediments (1 in PdF-II, 2 in SJC, 3 in PI and 2 in SV) were dated by 

OSL (Optically Stimulated Luminescence) in the Laboratório de Vidros e Datação of FATEC 

- Labvidro (São Paulo, SP, Brasil). The radiocarbon results were calibrated using CALIB 7.0 

software.  

2.2.3 Statistical analysis 

 Principal components analysis (PCA) was performed on the data matrices of the 

physico-chemical and elemental properties of the peat samples; Von Post data (VP) were not 

included, because it is a field test and has a qualitative significance. PCA enables an intuitive 

interpretation from a pedological point of view, each component providing a meaning in 

terms of the main factors and processes responsible for peat properties. The data were log-

transformed (except pH, C/N, MM, URF, RF, BD and BDO) and standardized before 
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analysis, as suggested for compositional data (i.e close data sets) (REIMANN et al., 2008). 

The PCA was performed, using SPSS 20.0 software, in the correlation mode and the varimax 

rotation was applied to maximize the loadings of the variables in the components 

(ERIKSSON et al., 1999).  

2.2.4 Properties of other mountain mires  

 Data of mountain mires were compiled for other tropical and temperate areas (Figure 

1) to compare with those from the Serra do Espinhaço Meridional. The choice was done 

depending on data availability. 

 Regarding to the tropical mountain mires, we used data of other mires from the Serra 

do Espinhaço Meridional, differentiated into minerogenic (P1 and P4) and ombrogenic (P2) 

(SILVA et al., 2009a,b) (Figure 1D), and from other Brazilian States in the southeast and 

south, including Minas Gerais (MG1 and MG2), Rio de Janeiro (RJ1 and RJ4), São Paulo 

(SP1), Paraná (PR2 and PR3) and Rio Grande do Sul (RS3), and the Federative Unit Distrito 

Federal (DF1) (Figure 1C; VALLADARES, 2003). In the following discussion, the mires 

from Serra do Espinhaço Meridional are referred as TRE (tropical Espinhaço), TRE-m for 

minerogenic and TRE-o for ombrogenic, and mires from other Brazilian States and Federative 

Unit as TRS (tropical States).  

 For the temperate mountain mires, data of mires from Galicia (NW Spain; Figure 1B) 

were used, being also differentiated into minerogenic (BLA, CPD, BPA, BAG and PLM) and 

ombrogenic mires (PVO, PDC and CAD) (PONTEVEDRA-POMBAL, 2002; 

PONTEVEDRA-POMBAL et al., 2006). Other mountain mire from the Northwest of the 

Iberian Peninsula (AGN, BUI, CDL, LUZ, MII, PNV and PZC) (AIRA; GUITIÁN, 1986a, 

1986b; MOLINERO; POLO; DORADO, 1984; RAMIL; AIRA RODRIGUEZ, 1993; 

RAMIL; AIRA RODRÍGUEZ; TABOADA, 1994; TORRAS, 1982) were also used. In the 

text, TEG (temperate Galicia) abbreviation was used for the mires studied by Pontevedra-

Pombal (2002) and Pontevedra-Pombal et al. (2006), being divided into TEG-m for 

minerogenic and TEG-o for ombrogenic mires; while TEI (temperate Iberian) is used for 

those studied by the other authors cited above. 

2.3 Results 

2.3.1 Stratigraphy 

 The stratigraphy of PdF-I, PdF-II, SJC, PI and SV cores is shown in Figure 2. The 

horizons/layers are differentiated based on the main morphological features, taking into  
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Figure 2 - Stratigraphy of the studied cores, sampled in mires from Serra do Espinhaço Meridional (Minas Gerais, 

Brazil) 
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account the degree of peat decomposition and consistency of the organic matter, texture of the 

mineral constituents and features preserved.  

 Mineral sediments are the main constituents of the bottom layers, except in SV in 

which the sediment was not reached during coring. The sediments are composed of quartzitic 

sands in all cases, with varying proportions of coarse, medium and fine sand grain size; they 

also differ in the presence of Fe coatings/precipitates, relative abundance of mica and woody 

fragments.  

 The peat deposits are dominated by sapric horizons (Oa) in all cores, although strongly 

decomposed peat is found at discrete depths: 278-298 cm, 158-202 cm, 125-138 cm, and 113-

118 cm in PdF-I; 137-159 cm in PdF-II; 287-294 cm, 262-273 cm, 234-254 cm, 173-201 cm 

in SJC; 212-220 cm, 192-198 cm, 136-157 cm, 10-58 cm in PI; and 44-75 cm in SV (Fig. 2). 

Hemic (Oe), hemic-fibric (Oe-i), and fibric-hemic (Oi-e) horizons were only found in PdF-I 

and PdF-II. The uppermost section of all cores is represented by fibric peat (58 cm in PdF-I, 

18 cm in PdF-II, 12 cm in SJC, 10 cm in PI, and 14 cm in SV).  

 Some peat horizons also contain large amounts of mineral matter, particularly in 

sections closer to the mineral substratum. Sandy peat horizons were found in PdF-I (in Oa7), 

PdF-II (Oa4), SJC (Oa5 and Oa3), PI (Oa6) and SV (Oa6 to Oa3). Peat horizons with finer 

grain size mineral matter were also found in SJC (Oa13 to Oa10) and PI (Oa7 and Oa5). 

Charcoal was only found in PdF-I (Oa7 to Oa2, Fig. 2). 

2.3.2 Physico-chemical, morphological and elemental properties  

 In the text that follows, minimum, maximum and average values of properties are 

mentioned, considering the whole population of samples analyzed. The vertical distribution of 

these properties can be seen in APPENDICES A-I, and average values for each property by 

horizon/layer are in table 1.   

2.3.2.1 Soil reaction  

 pH ranges between 2.7-5.1 and the average is 3.8±0.5, indicating strongly acidic to 

acidic conditions (APPENDIX A). In PdF-II, SJC and SV, the pH decreases from the base to 

158 cm, 22 cm and 66 cm, respectively, with a subsequent increase to the surface. The PdF-I 

and PI cores shows a pH decrease from the base to 268 cm and 122 cm, respectively, followed 

by an increase to 35 to 58 cm, and a decrease to the surface (APPENDIX A) 
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Table 1 - Average (±standard deviation) values of physico-chemical and morphological properties and elemental composition, by peat and mineral sediment 
horizon/layer, of the studied cores of mires from Serra do Espinhaço Meridional (Minas Gerais, Brazil)                                                                     (continues) 

1H/L pH 2GM 3BD 4BDO 5MM 6MR 7URF 8RF 9VP C N 10C/N Si Al Ti Zr 
 CaCl2 % ---------- Mg m-3 ---------- % m m-1  -------- % --------  --------- % ----------  ---------------- % ---------------- μg g-1 

PdF-I 
Oi 3.6±0.4 88±9 0.12±0.07 0.08±0.07 42±15 0.03±0.01 46±11 30±13 4±1 29±4 1.3±0.1 23±2 21±3 3.6±2.6 0.46±0.11 144±36 
Oi-e 3.3±0.2 92±1 0.08±0.01 0.04±0.01 46±15 0.02±0.01 34±7 13±3 6±1 35±6 1.4±0.2 25±3 15±4 1.7±0.7 0.36±0.08 72±19 
Oa 3.7 83 0.16 0.06 60 0.07 24 8 7 20 0.8 25 22 3.2 0.45 119 
Oe-i 3.6 80 0.18 0.05 71 0.09 12 2 10 22 0.8 27 22 3.4 0.54 128 
Oa2 3.6 80 0.21 0.07 66 0.09 12 4 8 20 0.7 30 23 2.8 0.48 142 
Oa3 3.5±0.1 68±7 0.30±0.11 0.05±0.001 79±5 0.16±0.07 11±4 2±0 10±1 14±7 0.5±0.2 28±3 32±11 2.6±0.5 0.28±0.23 109±1 
Oa4 3.5±0.2 60±12 0.45±0.19 0.06±0.01 83±8 0.26±0.13 14±8 3±1 10±1 10±5 0.3±0.1 30±2 26±3 2.5±0.4 0.41±0.18 111±40 
Oa5 3.3±0.1 81±4 0.17±0.04 0.07±0.02 61±7 0.07±0.02 36±9 7±3 8±1 24±5 0.7±0.1 37±7 25±6 2.1±0.2 0.44±0.12 145±15 
Oa6 3.4±0.0 58±19 0.46±0.26 0.07±0.01 82±9 0.26±0.17 22±8 6±3 10±0 12±8 0.3±0.2 38±3 30±15 1.9±0.4 0.31±0.25 115±25 
Oa7 3.6±0.1 46±11 0.64±0.18 .. 92±5 0.40±0.13 14±7 7±5 10±1 6±3 0.2±0.1 40±9 38±8 1.6±0.5 0.16±0.10 95±44 
C 4.2 13 1.08 .. 99 0.72 - - .. 1.2 0.03 36 45 2.0 0.12 71 
2C 3.9 15 1.24 .. 98 0.81 - - .. 1.4 0.03 53 ... ... ... ... 
3C ... ... ... .. ... ... ... ... .. ... ... ... ... ... ... ... 

PdF-II 
Oi 3.9±0.1 87±2 0.12±0.03 0.07±0.004 36±14 0.03±0.02 23±7 11±5 6±0 24±8 1.6±0.6 15±0.3 4±1 3.2±1.2 0.22±0.04 163±52 
Oe 3.8±0.1 87±3 0.12±0.03 0.09±0.02 23±4 0.02±0.01 17±12 6±6 7±1 37±3 1.7±0.4 22±5 3±1 2.4±0.6 0.11±0.04 58±18 
Oa 3.9±0.03 81±1 0.17±0.02 0.12±0.01 30±4 0.03±0.01 5±3 1±1 9±1 32±3 0.9±0.1 34±2 2±0.4 4.8±1.4 0.30±0.17 152±89 
Oa2 4.0±0.1 85±5 0.14±0.05 0.11±0.02 19±8 0.02±0.02 24±13 7±5 6±3 39±6 0.8±0.1 51±6 1.3±0.6 3.0±0.7 0.20±0.04 82±26 
Oa3 3.9±0.1 76±11 0.25±0.14 0.16±0.06 28±14 0.06±0.06 21±14 4±4 7±3 34±7 0.7±0.2 49±8 2±1 4.3±2.2 0.40±0.13 229±151 
Oa4 4.0±0.1 22±10 1.14±0.19 .. 96±6 0.74±0.15 - - ... 1±0.2 0.03±0.01 58±6 34±6 2.1±1.1 0.18±0.10 268±61 
C 4.2±0.2 17±2 1.26±0.12 .. 99±2 0.83±0.08 - - .. 0.3±0.3 0.01±0.005 55±22 38±2 1.6±0.4 0.2±0.07 260±61 

SJC 
Oi 4.1±0.04 91±1 0.08±0.003 0.07±0.004 15±2 0.01±0.001 31±8 9±6 3±1 35±3 2.0±0.3 18±2 4±1 0.6±0.3 0.02±0.003 7±1 
Oa 3.8±0.05 91±1 0.09±0.01 0.07±0.01 18±1 0.01±0.001 10±3 4±0 4±0 37±2 2.2±0.1 17±1 4±0 1.0±0.1 0.02±0.001 8±1 
Oa2 3.9±0.1 73±10 0.30±0.12 0.17±0.05 38±13 0.09±0.05 19±12 5±5 7±2 28±7 0.8±0.5 43±14 3±1 7.2±2.9 0.37±0.17 175±109 
Oa3 4.0±0.02 52±15 0.61±0.25 0.16±0.04 69±17 0.30±0.19 22±7 7±5 6±2 12±8 0.2±0.1 52±2 7±4 9.6±1.0 0.37±0.15 211±56 
Oa4 4.1±0.02 56±15 0.48±0.21 0.20±0.02 41±18 0.13±0.07 17±2 5±3 8±1 24±8 0.4±0.1 56±2 4±2 8.9±1.9 0.42±0.05 206±38 
Oa5 4.0±0.02 49±7 0.64±0.12 0.19±0.01 69±7 0.30±0.09 13±5 4±2 8±1 13±4 0.2±0.1 54±2 5±1 8.6±1.2 0.42±0.06 287±48 
Oa6 4.1±0.04 65±3 0.37±0.05 0.18±0.02 52±3 0.13±0.02 12±5 2±2 8±1 21±3 0.4±0.1 56±4 4±0.3 8.4±0.7 0.42±0.02 225±19 
Oa7 4.1±0.04 62±6 0.41±0.07 0.17±0.01 58±7 0.16±0.05 9±3 2±2 9±1 18±5 0.4±0.1 52±1 4±1 8.5±1.3 0.37±0.04 203±36 
Oa8 4.1±0.01 70±3 0.29±0.06 0.17±0.02 39±7 0.08±0.03 5±2 - 9±1 25±5 0.5±0.1 53±1 3±1 6.5±1.0 0.31±0.03 139±25 
Oa9 4.1±0.03 51±18 0.59±0.25 0.17±0.02 69±16 0.28±0.18 8±11 2±2 9±1 15±10 0.3±0.2 52±3 5±3 8.4±2.5 0.32±0.003 192±73 
Oa10 4.1±0.07 48±4 0.55±0.07 0.17±0.01 69±4 0.26±0.05 - - 10±0 10±1 0.2±0.01 52±0.2 5±0.4 10.9±0.1 0.47±0.04 302±23 
Oa11 4.2±0.01 46±3 0.60±0.06 0.18±0.01 69±4 0.28±0.04 - - 10±0 10±1 0.2±0.02 51±7 5±0.1 11.3±0.7 0.49±0.01 321±16 
Oa12 4.1±0.01 45±2 0.56±0.02 0.14±0.01 74±1 0.27±0.004 - - 10±0 9±0 0.1±0.01 59±1 5±0.1 9.8±0.2 0.45±0.04 320±1 
Oa13 4.1±0.1 44±2 0.67±0.05 0.18±0.02 74±0.4 0.33±0.02 - - 10±0 10±1 0.2±0.01 63±1 5±0.1 10.4±0.3 0.44±0.01 297±8 
Cg 4.1±0.04 34±7 0.89±0.17 .. 86±6 0.52±0.13 - - .. 3±3 0.1±0.03 36±14 13±5 15.4±2.3 1.37±0.55 328±26 
Cg2 4.1±0.07 19±3 1.23±0.14 .. 94±1 0.77±0.08 ... ... .. 0.3±0.1  0.015±0.005 22±1 23±3 13.5±1.6 1.07±0.20 283±52 
Cg3 4.1±0.04 15±1 1.23±0.06 .. 97±1 0.80±0.04 - - .. 0.09±0.1 0.004±0.001 22±7 28±3 9.6±1.2 0.84±0.12 250±16 
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Table 1 - Average (±standard deviation) values of physico-chemical and morphological properties and elemental composition, by peat and mineral sediment 

horizon/layer, of the studied cores of mires from Serra do Espinhaço Meridional (Minas Gerais, Brazil)                                                                (conclusion) 
1H/L pH 2GM 3BD 4BDO 5MM 6MR 7URF 8RF 9VP C N 10C/N Si Al Ti Zr 
 CaCl2 % --------- Mg m-3 -------- % m m-1  -------- % --------  --------- % ----------  ---------------- % ---------------- μg g-1 

SJC 
Cf ... ... ... .. ... ... .. .. .. .. .. .. ... ... ... ... 

PI 
Oi 3.5±0.04 89±1 0.11±0.01 0.08±0.002 23±3 0.02±0.003 30±8 4±0 5±1 36±0 2.0±0.1 18±1 6±0.1 1.4±0.1 0.02±0 12±0.2 
Oa 3.6±0.03 87±1 0.12±0.02 0.09±0.01 23±4 0.02±0.01 16±4 5±1 6±1 38±3 1.5±0.1 25±3 4±1.2 2.1±0.4 0.05±0.03 30±18 
Oa2 3.9±0.1 79±7 0.21±0.09 0.13±0.04 37±9 0.06±0.04 22±4 9±4 5±0 30±6 0.8±0.2 38±5 3±0.7 6.7±1.2 0.25±0.03 246±59 
Oa3 3.9±0.04 67±4 0.34±0.06 0.20±0.05 41±8 0.09±0.03 19±12 4±1 6±1 28±4 0.6±0.1 48±3 3±0.7 5.1±1.5 0.26±0.06 220±59 
Oa4 3.9±0.05 60±4 0.45±0.07 0.23±0.02 48±9 0.15±0.05 25±8 4±2 6±1 27±5 0.6±0.1 46±3 4±3 4.3±1.0 0.27±0.07 226±79 
Oa5 3.9±0.03 61±4 0.45±0.06 0.23±0.03 48±11 0.15±0.05 18±13 - 8±2 26±7 0.5±0.1 49±1 4±1 4.9±1.0 0.27±0.16 264±180 
Oa6 3.9±0.01 55±7 0.53±0.17 0.18±0.02 64±13 0.24±0.12 5±1 1±1 10±0 14±3 0.3±0.1 47±1 7±1 6.2±0.6 0.30±0.14 320±117 
Oa7 3.9±0.02 61±6 0.43±0.08 0.18±0.02 57±10 0.17±0.06 8±2 2±2 9±1 18±5 0.4±0.1 48±2 6±3 6.3±0.4 0.22±0.04 244±30 
Oa8 4.0±0.06 47±8 0.70±0.21 0.12±0.02 81±8 0.38±0.15 6±3 1±1 10±0 9±4 0.2±0.1 44±1 12±5 5.1±1.7 0.13±0.06 243±6 
Oa9 4.0±0.04 61±4 0.41±0.05 0.16±0.03 59±11 0.16±0.05 9±5 - 9±1 20±3 0.5±0.1 40±0.5 7±3 7.3±1.2 0.22±0.08 321±77 
Oa10 4.0±0.06 47±31 0.88±0.55 0.14±0.08 76±24 0.49±0.42 6±0 - 8±3 11±6 0.3±0.2 42±2 12±12 8.3±0.2 0.31±0.06 320±114 
C 4.2±0.07 14±0.3 1.25±0.06 .. 99±0.3 0.83±0.04 9±8 4±3 .. .. .. .. 28.7±2 9.1±0.1 0.19±0.01 244±22 
C2 4.3±0.06 16±2 1.28±0.20 .. 99±0.4 0.85±0.14 - - .. .. .. .. 28.7±1 8.9±0.1 0.16±0.02 241±9 
C3 4.7±0.2 14±1 1.25±0.04 .. 100±0 0.83±0.03 - - .. .. .. .. 34.9±2 4.3±0.6 0.07±0.02 89±20 
C4 4.9±0.1 14±1 1.14±0.06 .. 100±0 0.76±0.04 - - .. .. .. .. 37.8±2 4.1±0.5 0.05±0.01 70±16 

SV 
Oi 3.8±0.1 89±1 0.10±0.01 0.08±0.01 22±5 0.01±0.002 45±13 34±22 4±1 32±3 1.7±0.2 19±1 7±1 0.8±0.2 0.06±0.01 30±11 
Oa 3.0±0.2 87±4 0.11±0.03 0.09±0.01 21±8 0.02±0.01 19±10 10±6 6±2 37±2 1.5±0.5 27±8 4±2 0.6±0.4 0.06±0.08 33±30 
Oa2 2.8±0.1 82±1 0.19±0.18 0.11±0.05 21±22 0.01±0.01 16±6 9±3 6±1 44±13 1.0±0.4 47±9 4±4 0.7±0.2 0.06±0.04 23±23 
Oa3 2.8±0.1 37±12 0.83±0.23 0.15±0.07 78±17 0.45±0.19 24±7 12±4 5±1 13±8 0.3±0.2 55±15 15±6 1.3±1.1 0.09±0.09 105±84 
Oa4 3.0±0.03 61±9 0.32±0.18 0.18±0.01 37±20 0.21±0.20 56±13 11±5 4±1 23±9 0.2±0.1 99±3 6±5 0.6±0.2 0.05±0.05 39±31 
Oa5 3.1±0.04 56±8 0.42±0.11 0.12±0.02 68±10 0.20±0.09 49±4 9±3 4±0 12±2 0.09±0.01 100±0 16±2 0.51±0.07 0.01±0.001 26±6 
Oa6 3.2 36 0.74 0.06 92 0.45 36 4 4 3 ... ... 24 0.48 0.01 30 

1H/L: Horizons/layers; 2GM: gravimetric moisture; 3BD: bulk density; 4BDO: bulk density of the organic matter; 5MM: mineral material content; 6MR: minimum 
residue; 7URF: unrubbed fibres; 8RF: rubbed fibres; 9VP: Von Post degree of peat decomposition; 10C/N: C/N ratio.  
- numerical data equal to zero not resultant to rounding; ..  not applicable numeric data; ... numerical data not available. 
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2.3.2.2 Gravimetric moisture content and peat density   

 Despite the increasing trends of gravimetric moisture content (GM) from the base to the 

surface, with values between 12-94% and average of 59±26%, some variations are also observed 

(APPENDIX B). In PdF-I, SJC and SV, a pronounced decrease after the first upward trend from 

the base occurs at 167 cm, 146 cm and 106 cm, respectively, with subsequent recovery to the 

surface. In PdF-II (162-154 cm) and PI (218-214 cm) clear changes are observed in the boundary 

between the mineral sediments and the peat; values being lower and constant in the sediments 

while values are higher in the peat deposit.  

 Peat bulk density (BD) values vary between 0.06-1.5 Mg m-3 with an average of 0.5±0.4 

Mg m-3, and peat density without inorganic matter (BDO) between 0.02-0.3 Mg m-3 with an 

average of 0.14±0.06 Mg m-3. General trends (APPENDIX C_A) are observed for BD, the values 

decreasing from the base to the surface, with some smaller variations. For BDO (APPENDIX 

C_B), increasing values until 158 cm, 90 cm, 90 cm and 82 cm in PdF-II, SJC, PI and SV, 

respectively, are followed by a decrease to the surface. In PdF-I, BDO varies little with only two 

peaks at around 60 cm and 247 cm. 

2.3.2.3 Mineral matter and minimum residue  

 The mineral matter (MM) contents are between 6-99.8% with an average of 58±29%, and 

minimum residue (MR) varies between 0.003-0.9 m m-1 with an average of 0.27±0.29 m m-1. In 

all cores both properties show decreasing trends from the base to surface (APPENDICES D_A 

and D_B). Moreover, they show identical changes in the same core, i.e., all relative changes of 

these properties occur at the same depths, but MM changes are more pronounced than RM ones. 

MM, MR and BD have similar trends, and opposite to GM.  

2.3.2.4 Unrubbed and rubbed fibres, degree of peat decomposition and Von Post scale 

 Unrubbed fibres (URF) were between 0-72% with an average of 16±15% and rubbed 

fibres (RF) between 0-56% with an average of 5±7%. Similar variations are observed for these 

two properties in the cores PdF-II and SJC (APPENDICES E_A and E_B): PdF-II has higher 

contents at 162-110 cm, 66-42 cm and 26-6 cm, and SJC has irregular trends increasing from the 

base to 118 cm followed by a reduction and again an increase in the upper 18 cm. As for PdF-I, 

PI and SV, some sections show high contents of URF and almost absence of RF, as observed at 



31 

 

388-197 cm in PdF-I, 150-106 cm in PI and 158-114 cm in SV; high values for both properties in 

these cores are seen at the depths 117-0 cm in PdF-I, 74-10 cm in PI and 18-6 cm in SV.  

 The von Post degree of peat decomposition varies between classes 3 and 10 (APPENDIX 

F), therefore, the three stages of decomposition, fibric (3 and 4), hemic (5 and 6), and sapric (7 to 

10) were found (as already described in the stratigraphies). Cores PdF-I, PdF-II, SJC and PI have 

general trends of decreasing peat decomposition from the base to surface. In SV it increases from 

the base to around 30 cm followed by an abrupt decrease to the surface.  

2.3.2.5 Organic and inorganic elemental composition 

 Carbon content varies between 0.03 and 54% with an average of 21±14% and N between 

0.002 and 2.3% with an average of 0.6±0.6%. With the exception of the, expected, low content in 

the sediments, C contents show a general increase from the base of the top of the cores 

(APPENDIX G_A), although significant variations are found at different depths with local 

minima and maxima. In PdF-I, PdF-II and SV a more or less pronounced decrease in C content 

occurs in the upper 50-60 cm; while no such variation is observed in cores SJC and PI. 

 Nitrogen contents also increase from the base to the surface of the cores (APPENDIX 

G_B); with a reversing trend in the upper tens of centimeters in cores PdF-II and SJC. Although 

smaller local minima/maxima are also found, they are of much lower variation than those 

observed for C.  

 The C/N ratios vary between 12 and 92 with an average of 44±18. The large values found 

in the sediments are unreliable since the low amounts of organic matter resulted in N contents 

close to the detection limit. In agreement with what is observed for the C and N records, the C/N 

ratios show little or a slight decrease in the most part of the subsuperficial peat sections 

(APPENDIX H), followed by a pronounced decrease to the surface. The only exception is the 

PdF-I core, in which a general decreasing trend in C/N ratios is observed. 

 Concentrations of Si are between 0.6-45% with an average of 13±14% (APPENDIX I_A), 

Al between 0.2-18% with an average of 5±4% (APPENDIX I_B), Ti between 0.01-2% with an 

average of 0.3±0.3% (APPENDIX I_C) and Zr between 3-545 μg g-1 with average of 170±110 μg 

g-1 (APPENDIX I_D). The highest concentrations of Si correspond to the basal sediments (Fig. 

10A), but relative increases were also found in some horizons, particularly in the sapric peat 

horizons with visible presence of sands, silt and clay (described above). In general, Si does not 
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correlate, or the correlation is negative, with the other lithogenic elements analysed (r2:  -0.208 

with Al, -0.043 with Ti, -0.003 with Zr), which have quite similar distributions in each core (r2 

Al-Ti: 0.76; r2 Al-Zr: 0.68; r2 Ti-Zr: 0.57). 

2.3.3 Chronology  

 The ages of the PdF-I core cover the entire Holocene, whereas PdF-II, SJC, PI and SV 

started to form in the late Pleistocene, including the mineral sediments (Table 2). The oldest age  

Table 2 - Radiocarbon and OSL ages of peat and basal sediments of the studied cores of mountain mires from Serra 
do Espinhaço Meridional (Minas Gerais, Brazil)                                                                         (continues) 

Material Depth (cm) Sample code 1Lab. code Calibrated age 2δ 
 PdF-I 

peat 25 PdF1-3 Beta - 327639 117 ± 22 cal pMC 
peat 57.5 - UGAMS - 4921 493 ± 31 cal BP 
peat 87.5 - UGAMS - 4922 525 ± 19 cal BP 
peat 92.5 PdF1-13 Beta - 327640 404 ± 57 cal BP 
peat 147.5 PdF1-18 Beta - 327641 600 ± 54 cal BP 
peat 204.5 PdF1-24 Beta - 330478 4576 ± 69 cal BP 
peat 209.5 - UGAMS - 4920 4497 ± 75 cal BP 
peat 288 PdF1-33 Beta - 327642 5007 ± 581 cal BP 
peat 348 PdF1-39 Beta - 327643 8406 ± 56 cal BP 
peat 396 - UGAMS - 4923 9039 ± 54 cal BP 
peat 418 PdF1-47 Beta - 330479 10,596 ± 102 cal BP 

 PdF-II 
peat 21 PF011 Beta - 342713 92 ± 27 cal pMC 
peat 45 PF023 Beta - 342714 972 ± 43 cal BP 
peat 69 PF035 Beta - 339305 2591 ± 134 cal BP 
peat 105 PF053 Beta - 342715 11,133 ± 67 cal BP 
peat 137 PF069 Beta - 339306 13,057 ± 168 cal BP 
peat 161 PF081 Beta - 339307 20,796 ± 427 cal BP 
peat 215 PF108 Beta - 342716 17,739 ± 305 cal BP 

sediment ~260 PF2 - B Labv - 2943 175,000 ± 18,000 cal BP 
 SJC 

peat 11 SJ006 Beta - 342717 117 ± 21 cal pMC 
peat 23 SJ012 Beta - 342718 99 ± 39 cal pMC 
peat 71 SJ036 Beta - 342719 1462 ± 68 cal BP 
peat 115 SJ058 Beta - 342720 6252 ± 49 cal BP 
peat 155 SJ078 Beta - 342721 28,125 ± 353 cal BP 
peat 179 SJ090 Beta - 339302 34,993 ± 362 cal BP 
peat 309 SJ155 Beta - 339303 43,254 ± 784 cal BP 
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Table 2 - Radiocarbon and OSL ages of peat and basal sediments of the studied cores of mountain mires from 
Serra do Espinhaço Meridional (Minas Gerais, Brazil)                                                     (conclusion) 

Material Depth (cm) Sample code 1Lab. code Calibrated age 2δ 
SJC 

peat 339 SJ170 Beta - 339304 23,598 ± 308 cal BP 
sediment ~360 SJC2 – T Labv - 2939 64,000 ± 6000 cal BP 
sediment ~375 SJC2 – B Labv - 2940 83,000 ± 6000 cal BP 

 PI 
peat 9 PI005 Beta - 330480 701 ± 32 cal BP 
peat 19 PI010 Beta - 330481 2995 ± 78 cal BP 
peat 33 PI017 Beta - 330482 7030 ± 128 cal BP 
peat 69 PI034 Beta - 330483 15,888 ± 626 cal BP 
peat 101 PI050 Beta - 330484 24,723 ± 305 cal BP 
peat 121 PI060 Beta - 330485 9265 ± 145 cal BP 
peat 137 PI068 Beta - 333807 15,875 ± 615 cal BP 
peat 141 PI070 Beta - 330486 9380 ± 95 cal BP 
peat 169 PI084 Beta - 333808 20,141 ± 250 cal BP 
peat 173 PI086 Beta - 330487 16,884 ± 174 cal BP 
peat 193 PI096 Beta - 333809 23,918 ± 373 cal BP 
peat 201 PI100 Beta - 330488 30,105 ± 444 cal BP 
peat 219 PI109 Beta - 330489 20,383 ± 204 cal BP 

sediment ~230 PI2 - T Labv - 2936 207,000 ± 47,000 cal BP 
sediment ~260 PI2 – M Labv - 2937 190,000 ± 19,000 cal BP 
sediment ~320 PI2 – B Labv - 2938 210,000 ± 47,000 cal BP 

 SV 
peat 13 SV007 Beta - 342722 107 ± 11 cal pMC 
peat 39 SV020 Beta - 339299 3902 ± 75 cal BP 
peat 61 SV031 Beta - 342723 2209 ± 51 cal BP 
peat 93 SV047 Beta - 342724 17,520 ± 334 cal BP 
peat 119 SV060 Beta - 339300 31,931 ± 489 cal BP 
peat 161 SV081 Beta - 339301 16,650 ± 246 cal BP 

sediment ~170 SV2 – T Labv - 2941 57,000 ± 4800 cal BP 
sediment ~220 SV2 – B Labv - 2942 78,000 ± 12,000 cal BP 

1Beta: Beta Analytic Inc.; UGAMS: AMS Laboratory of Georgia University; Labv: Laboratório de Vidros e Datação 
of FATEC - Labvidro 

recorded for peat is observed in SJC with 43,254 ± 784 cal BP (309 cm) and for the mineral 

sediment in PI with 210,000 ± 47,000 cal BP (~320 cm). Strikingly, in all cores dating back to the 

Pleistocene there are pervasive age inversions below the maximum (below 161 cm in PdF-II, 309 

cm in SJC, 101 cm in PI and 119 cm in SV). The PI core is a paradigmatic example, since ages 

until 101 cm indicate a consitent linear peat accumulation (depth-age r2 0.99, 0.38 mm yr-1, i.e. 

261 yr cm-1), which extrapolated suggests a basal peat age of 55 kyr, when all ages below 101 are 
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much younger than 25 kyr. Although rejuvenation by roots or other sources of younger organic 

matter should be considered, we do not know the reason why all investigated mires are affected. 

Similar situations were found in Pleistocene layers of other peat deposits from the Southern 

Hemisphere (WEISS et al., 2002; MARGALEF et al., 2013). VOELKER et al. (2000) found 

highly increased concentrations of 14C for the period 27 to 54 ka, coincided with low 

paleomagnetic filed intensities. An alternative explanation could be a relationship to methane 

formation, since it has a very low δ13C value (~-60‰; CHARMAN et al., 1999) making the 

remaining material (peat) enriched in 13C and 14C contents (Peter Buurman, personal 

communication). With these limitations in mind, long-term accumulation rates were calculated 

with the ages that showed a consitent trend. The PdF-I core showed the largest rate (4.0 mm yr-1), 

followed by PdF-II and SJC (0.6-0.7 mm yr-1), while the lowest accumulation rates were found in 

PI and SV (0.34-0.38 mm yr-1).  

2.3.4 Principal components analysis (PCA) 

 Four principal components were extracted accounting for 86% of the total variance of the 

dataset (Table 3). The von Post degree of peat decomposition has not been included due to its 

qualitative, non-continuous nature. The first component (PC1) explains 45% of the variance and 

shows large positive loadings (0.88-0.96) for MR, BD, MM, and Si, a moderate positive loading 

(0.49) for pH and large negative loadings (-0.95) for C, N and GM, thus reflecting and opposition 

between mineral and organic matter content. The second component (PC2) explains 18% of the 

variance, showing positive loadings for Ti, Al and Zr, also lithogenic elements tracers of mineral 

matter content. The third component (PC3) explains 12% of the variance and shows positive 

loadings for RF and URF, the content in fibres of the peat. And the fourth component (PC4) 

explains 11% of the variance, and shows positive loadings for C/N ratio and BDO. 

 Most of the elements/properties analyzed here are correctly explained by the four 

principal components extracted (total length of the bar in Figure 3), with the only exception of pH 

–for which the total variance explained is rather low (32%). Also, most of them are associated to 

only one component (MR, GM, BD, C, N, MM, Si, Ti, Al, RF, C/N ratios) and can be considered 

as good proxies for the underlying processes. Zirconium, URF and BDO also have some variance 

allocated to at least another secondary process. Though von Post degree of the decomposition of 
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the peat has not been explained by PCA (not included) it may be associated with the C/N ratio 

and BDO, therefore with PC4. 
Table 3 - Factor loadings for the four components extracted by PCA using the physico-chemical properties and 

elemental composition of the peat of the studied cores of mires from Serra do Espinhaço Meridional (PdF-
I, PdF-II, SJC, PI and SV) 

 
PC1 PC2 PC3 PC4 

 1MR 0.96 0.08 -0.17 -0.09 
2GM -0.95 -0.10 0.16 0.03 
3BD 0.95 0.12 -0.18 0.04 
N -0.95 -0.11 0.18 -0.01 
C -0.95 -0.03 0.13 0.20 

4MM 0.90 0.23 -0.24 0.07 
Si 0.88 0.02 -0.12 -0.21 
pH 0.49 0.28 -0.02 0.07 
Ti 0.06 0.93 -0.05 0.11 
Al 0.07 0.92 -0.06 0.05 
Zr 0.35 0.83 -0.07 0.27 

5RF -0.20 -0.02 0.91 -0.16 
6URF -0.31 -0.14 0.86 0.11 
7C/N 0.09 0.14 -0.09 0.92 

8BDO -0.37 0.23 0.04 0.75 
9Eigv 6.8 2.7 1.8 1.6 

10Var (%) 45 18 12 11 
11Var_ac 45 63 75 86 

1MR: minimum residue; 2GM: gravimetric moisture; 3BD: bulk density; 4MM: mineral material content; 5RF: rubbed 
fibres; 6URF: unrubbed fibres; 7C/N: C/N ratio; 8BDO: bulk density of the organic matter; 9Eigv: eigenvalues; 10Var 
(%): percentage of variance; 11Var_ac: cumulative explained variance 

2.4 Discussion 

 The analyzed properties have to be conceived as proxies of the processes/drivers that 

control the nature of the studied mires. Thus, each principal component has to be envisaged as an 

association of physico-chemical proxies related to an underlying factor. The interpretation and 

discussion of each component is given below. 

2.4.1 Inorganic matter versus organic matter content of the peat 

 Most of the properties with positive loadings of PC1 are related to the mineral matter 

content (MR, BD, MM, and Si), while the elements (C and N are biophyllic elements) and 

properties (GM, water content) with negatives loadings are related to the organic matter content 

(Table 3). The opposite loadings indicate that as the content of mineral matter of the peat  
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Figure 3 - Fractionation of the communalities of the variables used in the PCA. The communality of each variable 

(i.e. the proportion of its variance explained by each component) corresponds to the total length of the bar; 
the sections of the bars represent the proportion of variance in each principal component. The variables are 
ordered by the component with the largest share of variance. Black: PC1, dark grey: PC2, light grey: PC3, 
white: PC4 

 
increases its content of organic matter decreases (i.e. a dilution effect). Silicon is related to this 

component because it is most probably reflecting the amount of quartz transported from the 

catchment soils to the mire, since the main geological material is quartzite, which is certainly the 

main source of MM and thus PC1 represents a local erosion signal.  

 The Si concentrations determined (0.6-45%; APPENDIX I_A) have minima which are 

lower than those observed in ombrogenic mires of the Serra do Espinhaço (TRE-o, 7-47%), and 

ombrogenic and minerogenic mires from temperate areas (TEG-o, 2-11%; TEG-m, 4-50%), and 

maxima comparable with those of ombrogenic mires of Serra do Espinhaço (TRE-o) and 

temperate minerogenic mires (TEG-m). Meanwhile, MM (6-99.8%; APPENDIX D_A) has 

values closer to those of minerogenic mires of Serra do Espinhaço (TRE-m, 16-98%) than to the 

TRE-o (2-34%), and comparable to those of TEG-o (2-99.4%) and TEG-m (1.4-99.3%). Mires 

from the Tropical States (TRS) have minima higher and maxima somewhat lower (63-81% in 
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DF, 33-79% in MG, 19-72% in PR, 81-91% in RJ, 55-82% in RS and 61-69% in SP) and mires 

from temperate Iberia (TEI) have very low maxima (4-19%) despite of comparable minima.  

 Minimum residue (MR) is an estimation of the original proportion of MM (similar 

trends); MR (0.003-0.9 m m-1; APPENDIX D_B) values are closer to those of TRE-o (0.5-1.3 m 

m-1) than TRE-m (5-90 m m-1), and have lower minima and higher maxima than TRS (0.2-0.4 m 

m-1 in DF, 0.1-0.2 m m-1 in MG, 0.02-0.3 m m-1 in PR, 0.3-0.6 m m-1 in RJ, 0.04-0.3 m m-1 in RS 

and 0.2-0.3 m m-1 in SP). Peat bulk density (BD; 0.06-1.4 Mg m-3; APPENDIX C_A) increases 

simultaneously with increasing MR, therefore also with MM and Si, because the inorganic matter 

has a higher density than the organic matter. Peat bulk density values are more similar to those of 

TRE-m (0.3-1.4 Mg m-3) than TRE-o (0.3-0.4 Mg m-3), and also to TEG-o and TEG-m (0.1-1.5 

Mg m-3); regarding to TRS (0.4-0.8 Mg m-3 in DF, 0.2-0.4 Mg m-3 in MG, 0.1-0.7 Mg m-3 in PR, 

0.5-1.0 Mg m-3 in RJ, 0.1-0.5 Mg m-3 in RS and 0.6 Mg m-3 average in SP) these have higher 

minima and lower maxima, and in relation to TEI (0.04-0.3 Mg m-3) the minima are comparable 

whereas the maxima are lower. Peat bulk density can also increase down in the peat deposits due 

to compression and structural collapse of the peat, but in the studied cores almost all the BD 

variance is allocated to the first component, indicating that the content of mineral matter is the 

most important driver.  

 As indicated above, pH has the lowest proportion of total explained variance (24%; Figure 

3), but most of what is explained is associated to PC1, due to the fact that the pH of the sediment 

layers tends to be higher than those of the peat. The minimum value (2.7; APPENDIX A) is 

comparables to TRE-o mires (2.7-2.9) and maximum (4.5) to TRE-m (3.8-4.5). Moreover, these 

values resemble those of TEG-o (2.0-3.9) and TEG-m (2.3-5.0). Concerning to TRS, in general 

the minimum is higher and the maximum comparable (4.1-5.3 in DF, 3.9-4.6 in MG, 3.4-4.2 in 

PR, 3.8-4.9 in RJ, 3.7-3.9 in RS and 4.0-4.4 in SP), as well as for TEI (3.2-4.9).  

 The biophyllic elements C and N show negative loadings because they depend on the total 

organic matter content, the most important contributor to the composition of peat. While the 

negative loading of GM indicates that water content is higher in peat sections than in mineral 

sections. According to Andriesse (1988) and Galvão and Vahl (1996), the accumulation of 

organic matter is directly influenced by the nature of the organic material. Mineral matter 

produces a relative dilution of the organic matter content of the peat and, in addition, effective 

processes of nutrient cycling (including immobilization and mineralization) and decomposition of 
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organic matter result in a further decrease of the organic matter content. Total carbon values 

(0.03-54%; APPENDIX G_A) are consistent with those obtained in TRE-m (8-49%) and TEG-m 

(0.14-54%). The TRE-o (40-52%) and TEG-o (17-56%) have minima similar to those of TRS 

(10-20% in DF, 12-37% in MG, 14-42% in PR, 4-10% in RJ, 7-16% in RS and 14-21% in SP) 

despite these have also higher maxima, and TEI (14-60%). The lower N (0.002-2%; APPENDIX 

G_B) contents are similar to those of TEG-m (0.01-3); while maxima are more in accordance to 

TRE-o (1-2%), TRE-m (0.2-2.1%), TEG-o (0.5-2%) and TEI (0.1-2%). According to Silva et al. 

(2004), low N contents in deeper sections are probably associated to longer interaction of organic 

compounds with soil biota, beyond to chemical reactions with the soil solution.  

 As can be seen in Figure 4, the changes in PC1 scores show general decreasing trends 

from the base to the surface, with more positive scores for the sediment layers with predominance 

of mineral material and more negative for the peat horizons. However, each core has 

characteristic patterns of distribution. In PdF-I, the first organic rich sediment horizon (388-298 

cm; Figure 2) is reflected by a decrease in PC1 scores, although the positive values still indicate 

the peat has large contents of mineral matter (APPENDIX D_A) compared to the organic matter 

(average C content 6%; APPENDIX G_A). From 298 to 207 cm, the scores continue to decrease 

to negative values pointing to an increase in organic matter content. Around 207 cm the scores 

increase again to moderate positive values until 158 cm, therefore indicating increasing mineral 

matter (70-91% of MM; 20-5% of C). After that scores decrease sharply to remain stable, at 

minimum values, until 60 cm; being this section the one with the largest C contents (19-40%). 

The upper 60 cm show higher, but still negative, almost constant scores. 

 The most positive PC1 scores in PdF-II are seen again in the basal sediment (202-158 cm; 

Figure 2). At 158 cm, the abrupt decrease in PC1 scores indicates the start of peat accumulation, 

showing the rest of the core negative values with much smaller variations. Local peaks are found 

at 158-130 cm, 106-98 cm, 82-54 cm and 34-22 cm. 

 At 302-230 cm in SJC, PC1 scores decrease steadily from positive to negative values, 

pointing to an increase in the organic matter content; however, at 258 cm and between 170 to 118 

cm there is a series of peaks in scores (higher mineral matter content) pointing to fluxes of 

mineral matter from the catchment (probably linked to soil erosion). Around 118 cm the scores 

decrease continuously to high negative values until 18 cm, being this section the one with the 

largest C contents (17-38%). The upper 18 cm show an increase in mineral matter content. 
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Figure 4 - Records of factor scores of the first component (PC1) for the studied cores 
 

 In PI, two sections are distinguished by the distribution of PC1scores, one between 218-

102 cm with more irregular peaky distribution and another in the upper 102 cm with a continuous 

decrease in mineral matter.  

 In SV, very large PC1 scores are observed below 100 cm, decreasing values until 70 cm, 

almost constant scores until 30 cm and a later increase to the top of the core.  

2.4.2 Dust fluxes from regional sources 

 The second component, PC2, shows large positive loadings for Ti, Al and Zr (Table 3). 

These elements are usually considered as tracers of the mineral matter content of the peat 

(SHOTYK, 1988). Thus, it is somewhat surprising that they do not load in the same component 

of the PCA as the other proxies for mineral matter. The main reason for this most probably relies 

on the fact that the dominant lithological material of the catchment is quartzite and quartz is the 

main mineral that is provided during episodes of local erosion. If PC1 is interpreted as a local 
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signal, then PC2 is likely to reflect the deposition of mineral dust after longer transport, i.e. a dust 

regional signal –which may be only seen in periods of stability in the catchment of the mires. 

This is also supported by the fact that Ti, Zr and Al tend to concentrate in finer grain sizes 

(TABOADA et al., 2006). Given the location of the mires and the distribution of geological 

materials in the Serra do Espinhaço Meridional, the sources for the regional signal are likely to be 

at a distance of  >40-50 km. 

 For Zr, although PC2 is the main factor controlling its concentrations in the peat, it also 

has a small proportion of its variance (12%; Figure 3) associated to PC1; thus, secondary 

increases in Zr at certain depths can also be associated with local sources. 

 The Ti concentrations (0.01-2.0%; APPENDIX I_C) have minima lower than those in 

TRE-o (0.03-0.6%) and TRE-m (0.2-2.1%) and maxima comparable to those of TRE-m; Al (0.2-

18%; APPENDIX I_B) has minima comparable to those of TRE-o (0.1-1.4%) and TRE-m (0.7-

2.6%) and maxima higher than those in both types of mires; and Zr (3-545 ppm; APPENDIX 

I_D) has minima comparable to those in TRE-o (5-181 μg g-1) than TRE-m (41-996 μg g-1) and 

maxima not comparable with any of those.  

 PC2 scores show an increasing trend in PdF-I, with some minima at 320 cm, 180-160 cm, 

100-50 cm and at 20 cm (Figure 5). SJC and PI show a similar record of scores, with higher 

values from 50-30 cm to the base of the cores (with small variations) and sharply decreasing 

scores in the upper peat sections. PdF-II and SV are characterized by pronounced peaks in scores 

at certain depths (160 cm, 90 cm and at the surface in PdF-II, and 110 cm, 30 cm and the surface 

in SV; Figure 5). Thus, while PdF-I shows an increasing contribution of dust from distant 

sources, SJC and PI suggest almost constant fluxes until a given phase when the fluxes abruptly 

declined; meanwhile PdF-II and SV suggest the presence of events of intense regional dust 

deposition, including the most recent periods reflected by the upper peat sections. 

2.4.3 Plant remains preserved 

 The third component, PC3, accounts for the fibre content of the peat (RF and URF; Table 

3), and it can be interpret as an indicator of the abundance of plant macro-remains. Plant remains 

can be preserve in peatlands due to the low pH and predominant anoxic conditions. According to 

Inanuzzi and Vieira (2005), the tissues and structures of terrestrial plants are preserved in the 

preference sequence: exine (comprising of sporopollenin, outer membrane of spores and pollen 
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Figure 5 - Records of factor scores of the second component (PC2) for the studied cores 

 
 

grains), cuticle (comprising of cutin, waxy outer layer that covers the surface of various portions 

of the aerial plant as young stems, leaves and reproductive structures) and xylem (comprising 

lignin and cellulose, woody portion of the conducting system). In the studied mires, pollen 

(HORÁK, 2009), stems, leaf debris and wood fragment were found (Figure 2). The small but 

significant negative loading of the URF (accounting for 10% of the variance; Figure 3) in PC1 

suggests that i) preservation of plant remains is lower in peat sections with higher mineral matter 

content (probably because of enhanced decomposition), or simply ii) that the basal mineral layers 

were never colonized by vegetation.  

 The TRE mires (0-72%; APPENDIX E_A) have URF minima lower than those seen in 

TRE-o (64-89%), TRE-m (65-71%), TEG-o (18-87%) and TEG-m (27-91%), but comparable 

maxima. Meanwhile, RF (0-56%; APPENDIX E_B) have minima comparable to those of TRS 

(0-2% in DF, 0-60% in PR, 0-20% in RJ, 4-16% in RS and 0-4% in SP) and TEG-m (2-73%), 
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and maxima similar to those seen in TRE-o (53-73%), TRE-m (10-52%), TEG-o (12-53%) and 

TEG-m; minima and maxima values of RF from MG (14-36%) are very high and low, 

respectively. 

 PdF-I and SV show a similar record of PC3 scores (Figure 6), with increases between 

126-25 cm and 22-6 cm respectively, almost constant values at the deeper layers and minima in 

intermediate sections; however, a more abrupt decrease in the surface layer occurs in SV than in 

PdF-I. SJC and PI also show similar records of scores (Figure 6), with increases from the mineral 

base to respectively 118 cm and 38 cm (PI with larger variations than SJC), followed by a 

decrease to 18 cm and 10 cm and a return to higher values at the surface. Meanwhile PdF-II is 

characterized by pronounced peaks in scores at certain depths (150-110 cm, 58-46 cm and 22-6 

cm). Since the major variations in scores occur in PdF-II, SJC and PI, these cores may reflect a 

higher frequency of changes in environmental conditions responsible for the preservation of plant 

remains. 

 
   
Figure 6 - Records of factor scores of the third component (PC3) for the studied cores 
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2.4.4 Degree of peat decomposition 

 The fourth component, PC4, is represented by the C/N ratio and BDO (Table 3), which 

can be considered as proxies for the degree of peat decomposition. High C/N ratios and BDO 

may be associated with a more humified organic matter (ANDRIESSE, 1988) and/or with 

organic compounds poor in N under intense mineralization processes (SWIFT, 1996). On the 

other hand, part of BDO variance is associated with PC1 (14%; Figure 3), the negative loading 

indicating that the presence of mineral matter negatively affects the density of the organic matter.  

 The C/N ratio (12-92) has minima comparable to those of TRE-m (14-40) and TEG-m 

(10-44) than TRE-o (25-41) and TEG-o (23-39), but higher maxima. Most of the low C/N ratio 

values of TRS (18-25 in DF, 15- 22 in MG, 18-40 in PR, 15-31 in RJ, 18-28 in RS and 22-37 in 

SP) are comparable and maxima values are lower than those determined in this work. The BDO 

(0.02-0.30 Mg m-3) has minima and maxima lower than those seen in TRE-m (0.03-0.44 Mg m-3) 

and TRE-o (0.24-0.35 Mg m-3), and minima lower and maxima higher than those seen in TRS 

(0.14-0.15 Mg m-3 in DF, 0.09-0.18 Mg m-3 in MG, 0.11-0.20 Mg m-3 in PR, 0.08-0.17 Mg m-3 in 

RJ, 0.04-0.12 Mg m-3 in RS and 0.19-0.23 Mg m-3 in SP). 

 As observed in Figure 7, the changes in PC4 scores show general decreasing trends from a 

certain depth to the surface (after 298 cm in PdF-I, 158 cm in PdF-II, 90 cm in SJC, 138 cm in PI 

and 114 cm in SV), therefore indicating a signficant change from higher to lower degree of peat 

decomposition. This is in agreement with the idea of a unidirectional evolution, with older peat 

being subjected for longer to decomposition processes. However, despite the variation is not very 

large in the sections were the PC4 scores decrease, some local peaks are seen in PdF-I (227 cm, 

207 cm, 60 cm and 25 cm), PdF-II (138 cm, 102 cm, 58 cm and 2 cm), SJC (30-22 cm and 10-0 

cm), PI (122 cm, 106 cm and 90 cm) and SV (94-70 cm, 26 cm and 18 cm), possibly indicating 

drier phases, since a drier environment enhances decomposition. The von Post degree of the 

decomposition shows almost the same trends of PC4 scores, except in PI from the base to 90 cm 

and SV from the base to 30 cm, possibly due to the large amount of FNE at these depths which 

may lead to an underestimate of the von Post value. 

2.5 Conclusion 

 The morphological, physico-chemical, and elemental properties of mountain mires from 

the Serra do Espinhaço Meridional are comparable to those of other tropical mountain peatlands  
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Figure 7 - Records of factor scores of the fourth component (PC4) for the studied cores 
 

and also to temperate mountain peatlands. Furthermore, the properties show variations in depth, 

most of them with a particular pattern for each core, which is in agreement with the peat 

stratigraphy. The physico-chemical properties and elemental composition of the peat seem to 

have responded to four main processes: relative accumulation of organic (C, N, GM) and mineral 

matter (MR, BD, MM, Si) linked to the evolution of the catchment soils (erosion in particular), 

deposition of dust from distant/regional sources (Al, Ti, Zr), preservation of plant remains (URF, 

RF), and long-term and short-term peat decomposition (C/N ratio and BDO). Our results indicate 

that tropical mountain mires from Serra do Espinhaço Meridional besides being very old are also 

complex involving numerous properties and processes. They should be preserved and protected 

in full.   
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3 HOLOCENE CLIMATE CHANGE IN CENTRAL-EASTERN BRAZIL 

RECONSTRUCTED USING POLLEN AND GEOCHEMICAL RECORDS OF PAU DE 

FRUTA MIRE (SERRA DO ESPINHAÇO MERIDIONAL, MINAS GERAIS) 

Abstract 

 Studies dealing with reconstruction of Holocene climate changes of tropical areas in 
South America are scarce. Of these, multi-proxy investigations using peatlands are still absent, 
although these ecosystems are extremely sensitive to changes in hydrology and have a large 
potential for the reconstruction of climate changes. In this paper, we present the Holocene record 
of environmental changes occurred in central-eastern Brazil reconstructed from a core sampled in 
Pau de Fruta mire (Serra do Espinhaço Meridional, Minas Gerais State, Brazil). We combined 
palynological and geochemical analyses, supported by core stratigraphy, 14C dating and 
multivariate statistics. The location of the mire is ideal because it is in an area which is influenced 
by the activity of the South America Monsoon Systems (SAMS) and is directly associated with 
the South Atlantic Convergence Zone (SACZ). Our findings enabled to describe six main phases 
of change suggested by vegetation and local and regional landscape dynamics. In phase I 
(10,000-7360 cal BP) the climate was wet and cold and was accompanied by soil instability in 
the mire catchment (severe local erosion) and the 8.2 ka event was easily recognizable by a large 
increase in the deposition of regional dusts. Phase II (7360-4200 cal BP) was characterized by 
wet and warm conditions, catchment soils stability and enhanced deposition of regional dusts. In 
phase III (4200-2200 cal BP), climate was dry and warm and soil erosion in the catchment 
increased again. In phase IV (2200-1160 cal BP) dry and punctuated cooling was reconstructed, 
together with enhanced deposition of regional dusts. Phase V (1160-400 cal BP) reflects sub-
humid climatic conditions, the lowest inputs of local and regional dust and the largest 
accumulation of peat in the mire. While in phase VI (< 400 cal BP) sub-humid conditions 
continued but both local and regional erosion largely increased. Although climate seems to have 
been the most important driving force of environmental change, human activities (arrival of 
europeans to Brazil, gold and diamond mining in the area, increased population and construction 
of infrastructures, extensive deforestation) are likely to have been at least partially responsible of 
the significant changes recorded over the past 400 years. A phase-space approach enabled to 
synthesize the evolutionary stages of the mire. Our results demonstrate that the tropical peatlands 
of Serra do Espinhaço Meridional contain relevant records of the Holocene climate changes, and 
that a multi-proxy approach offers good opportunities for a detailed reconstruction of 
palaeoenvironments.  

Keywords: Peatlands; Histosols; South America Monsoon Systems; Central-eastern Brazil; 
Pollen; Geochemistry 

3.1 Introduction 

 The South Atlantic Convergence Zone (SACZ) is one of the main features of South 

America Monsoon Systems (SAMS) during the Austral summer, associated with intense 

convective activity in the Amazon region (GARREAUD et al., 2009). Subtropical jet along the 
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convergence zone and runoff from low levels in the poleward (KODAMA, 1993) are important 

aspects of large-scale atmospheric circulation that are associated to the tropical intraseasonal 

oscillation (Madden-Julian Oscillation - MJO) (MADDEN; JULIAN, 1994), interannual 

oscillation (El Niño/Southern Oscillation cycle - ENSO) (KOUSKY; KAYANO, 1994) and the 

latitudinal position of the Intertropical Convergence Zone (ITCZ) (STRÍKIS et al., 2011), 

providing intrinsic control of the SAMS precipitation activity. During the peak monsoon season 

in central-eastern Brazil (December-February), negative precipitation anomalies cause warm 

surface temperatures and an anomalous low-level cyclonic circulation, thus moisture flux is 

enhanced (GRIMM, 2003; GRIMM; PAL; GIORGI, 2007) and precipitation increases.  

 Some authors have proposed a link between changes in Holocene precipitation of the 

SAMS and the Bond events (BOND et al., 2001). Studying proxies of drift ice measured in deep-

sea sediment cores in the subpolar North Atlantic, including hematite-stained grains (HSG), 

icelandic glass (IG), and detrital carbonate (DC), Bond et al. (2001) observed a dominant 

periodicity present in surface winds and surface ocean hydrography, influenced by periods of low 

solar activity (high 14C based on the atmospheric δ14C record) through the entire Holocene. These 

periodicities are known as Bond IRD (ice-rafted debris) events (1.4, 2.7, 4.2, 5.5, 7,4, and 9.2 kyr 

BP - in the order of Bond event 1 to Bond event 6) and have been linked to shifts in the intensity 

of the Atlantic thermohaline circulation, changes in sea surface temperature (SST), and intense 

cold conditions over the Northern Hemisphere. The association of the Bond events with abrupt, 

centennial to millennial scale, changes in SAMS precipitation was suggested to indicate wetter 

conditions in the Southern Hemisphere (BAKER et al., 2001, 2005; ARZ et al., 2001; EKDAHL 

et al., 2008). For example, the oxygen isotope record of speleothems from Lapa Grande (Minas 

Gerais State, central-eastern Brazil), presented abrupt fluctuations punctuating the entire 

Holocene (STRÍKIS et al., 2011), closely corresponding with Bond events 6, 5, 4 and the 8.2 kyr 

BP event. Response to Bond events 1 and 3 was not observed in this record, while other wet 

events at times of low IRD input to the North Atlantic occurred at 7.1 and 6.6 kyr BP. Moister 

and cooler conditions between 9.2 and 8.0 kyr BP, followed again by an arid period between ca. 

5.5 and 4.5 kyr BP, and a trend towards modern conditions since then were inferred for the region 

of Salitre (western Minas Gerais State; LEDRU, 1993), from the pollen record of a peat core. In 

Lagoa Santa (central Minas Gerais State), dates for the majority of archaeological burials cluster 

around two peaks: 10-8 kyr BP and 2-1 kyr BP, with a period of 6000 years in which they are 
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almost absent. This period is called the “Archaic Gap” and was related to a phase of 

abandonment of settlements and depopulation due to the onset of arid conditions (ARAUJO et 

al., 2005). 

 The Serra do Espinhaço Meridional (Minas Gerais State, Brazil) is located in the tropical 

latitudes and is one of the few mountainous regions of Brazil were peatlands have formed since 

the Pleistocene (CAMPOS et al., 2010). These wetlands ecosystems are extremely sensitive to 

changes in hydrology and peat records have been extensively used to reconstruct changes in 

precipitation in the Northern Hemisphere, mostly for the Holocene (BOOTH; JACKSON; 

NOTARO, 2010; CHAMBERS et al., 2010; MONTERO-SERRANO et al., 2010), while few 

investigations using peat records are available for the tropics and the Southern Hemisphere in 

particular (MARKGRAF, 1985; LEDRU, 1993; MARKGRAF; ANDERSON, 1994; WEISS et 

al., 2002; MULLER et al., 2008; DALEY et al., 2012). On the other hand, present climatic 

conditions in the Serra do Espinhaço are directly influenced by the activity of the SAMS, which 

suggests that peat records obtained from the peatlands of the area have a large potential to 

investigate on climate changes in central-eastern Brazil. 

 In this study we present a detailed reconstruction of climate and environmental change in 

the Serra do Espinhaço Meridional, based on a multi-proxy (stratigraphy, physical properties, 

pollen and geochemistry) study of a peat core sampled in Pau the Fruta mire, which comprises 

the whole Holocene period. The results obtained are compared with those found in the area using 

other environmental archives and proxies. 

3.2 Material and Methods 

 The PdF-I core was collected in Pau de Fruta (18º15’27,08” S 43º40’3,64” W), a mire 

located at 1350 m a.s.l. in the Serra do Espinhaço Meridional, Minas Gerais State (Brazil) (Figure 

1). Sampling was done in 2008 using a vibracore (MARTIN; FLEXOR; SUGUIO, 1995), and a 

core of 428 cm in length was recovered. The present soil is classified as a Hemic Haplosaprists 

(SOIL SURVEY STAFF, 2010). The basal lithology corresponds to the Sopa-Brumadinho 

(Guinda Group) formation (Paleo-Mesoproterozoic), mostly constituted by quartzites, but also 

green schists and hematitic phylites (KNAUER, 2007). 
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Figure. 1 - Location of Pau de Fruta mire, State of Minas Gerais, Brazil. Lithological map of the sampling location 

and nearby regions and stratigraphy of the PdF-I core. Other palaeoclimate records: LG (Lapa Grande; 
Stríkis et al., 2011);  LSN (Lagoa de Serra Negra; De Oliveira, 1992); SA (Salitre; Ledru, 1993); LN 
(Lagoa Nova; Behling, 2003); LP (Lago do Pires; Behling, 1995a); LO (Lagoa dos Olhos, De Oliveira, 
1992); LS (Lagoa Santa; PARIZZI et al., 1998) 

 

 Present climate is characterized as tropical mountainous, according to Köppen 

classification, with an average annual precipitation of 1500 mm (NIMER, 1977). Rainfall is 

controlled by the activity of the South Atlantic Convergence Zone (SACZ), which is one of the 

most prominent characteristics of the South Atlantic Monsoon System (SAMS) during the austral 

summer, associated to intense convective activity in the Amazonian region (GARREAUD et al., 

2009). The SACZ extends in a southeastern direction from the interior of the continent to the 

South Atlantic (VERA et al., 2006). From the end of the monsoon period, rainfall almost ceases 

from May to October. 

 Vegetation is that typical of Cerrado biome (savanna), one of the most endangered in the 

world, but also contains a mosaic of patches of tree species (seasonal semi-deciduous forest and 
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Cerradão), called "Capões", which appear as small island dispersed among grassland formations 

(wet grassland: Campo Limpo Úmido, dry grassland: Campo Limpo Seco, and rupicola-

saxicolous grassland: Campo Rupestre) within the mire. 

 The core stratigraphy is composed of 10 horizons and 3 inorganic layers (Figure 1), which 

are named according to the terminology of the Soil Survey Staff (2010). They basically differ in 

the content of mineral/organic matter, texture of the inorganic component, degree of peat 

decomposition and consistency (described according to FAO, 2006 and SCHOENEBERGER et 

al., 2012). The basal layers (3C, 2C e C; >404 cm) are quartzitic mineral sediments. Horizon Oa7 

(404-298 cm) contains many fine roots but organic matter is highly sapric, and there are sections 

with higher proportions of mineral matter at 404-400 cm, 381-365 cm, 328-327 cm, 316-315 cm 

and 305-300 cm; charcoal (355-330 cm) and wood fragments (340 cm) were also found. Horizon 

Oa6 (298-278 cm) is sticky and sapric, with low fibre content, and occasional charcoal. Horizon 

Oa5 (278-202 cm) is also sapric, less sticky and with higher fibre content than the underlying 

horizon; charcoal particles were found at 278-258 cm, 235-230 cm and 210-200 cm, and wood 

fragments at 275 cm and 255 cm. Horizon Oa4 (202-158 cm) has a very high mineral content, but 

the material is sticky because of the sapric nature of the organic matter; scattered charcoal 

particles were also found. Horizon Oa3 (158-137 cm) has a lower mineral matter content than 

Oa4, it is less sticky and has higher fibre content, with charcoal fragments between 146-137 cm. 

Horizon Oa2 (137-125 cm) is also sapric, highly sticky, has low fibre content, and scattered 

charcoal fragments. Horizon Oe-i (125-119 cm) is hemic-fibric, with a mixture of fine and 

coarser fibres. Horizon Oa (119-113 cm) is sapric; no charcoal was found. Horizon Oi-e (113-60 

cm) is fibric-hemic and the upper horizon, Oi (60-0 cm), is highly fibric. 

3.2.1 Pollen study  

 Physico-chemical treatment for the extraction of pollen, spores and other non-pollen 

palynomorphs (NPP) followed the procedure described in Ybert et al. (1992), using an ultrasound 

to separate large organic remains. Samples correspond to sections of 1 cm in thickness taken 

every 20 cm. Counting was done at 40 X under the microscope, obtaining a total land pollen sum 

(TLP) of 8685 grains. Hydro-hygrophytes and NPP were not included in the TLP, but are 

expressed as percentages of it. Average hydro-hygrophytes and NPP sum was 3478 

palynomorphs. Identification was aided by a reference collection of the Pau de Fruta mire hosted 
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at the laboratory of Núcleo de Pesquisa em Palinologia do Instituto de Botânica do Estado de São 

Paulo, Brazil, identification keys and atlases (VAN GEEL, 1978; TRYON; TRYON, 1982; 

ROUBIK; MORENO, 1991). Taxa included in the TLP are considered to be indicators of the 

regional vegetation, while hydro-hygrophytes and NPP are considered to mainly provide a local 

signal. Nevertheless, we have to remind that some hydro-hygrophytes may also be part of 

regional communities, as for example the Cyperaceae. The opposite may occur with Poaceae and 

Ericaceae, which are considered as regional components but they may also be present in local 

communities. Environmental requirements for regional taxa follow those described by Mendonça 

et al. (1998) and Marchant et al. (2002), and hydro-hygrophytes and NPP by van Geel (1978) and 

van Geel; Coope and van Der Hammen (1989). Pollen diagrams were done using TILIA software 

(GRIMM, 1992).  

3.2.2 Elemental and isotopic composition 

 Carbon and N contents and isotopic composition (δ
13C and δ

15N) were determined in 

dried, milled and homogenized samples of 10 cm in thickness, using a elemental analyzer 

coupled to a mass spectrometer hosted at the Laboratório de Isótopos Estáveis of the Centro de 

Energia Nuclear na Agricultura - CENA/USP (Piracicaba, SP, Brasil). Major, minor and trace 

elements (Si, Al, Fe, Ti, S, P, Ca, K, Rb, Sr, Y, Zr, Nb, Mn, Ni, Cr, Cl, Br) were determined by 

X-ray fluorescence using two energy dispersive XRF analyzers (CHEBURKIN; SHOTYK, 1996; 

WEISS; CHEBURKIN; SHOTYK, 1998) hosted at the RIAIDT facility (Infrastructure Network 

for the Support of Research and Technological Development) of the University of Santiago de 

Compostela (Spain). The instruments were calibrated using several reference materials. 

Detections limits for organic matrices are: <0.01% for Al, Si, S, K, Ca and Fe; 0.005% for P; 

0.001% for Mn; 0.0005% for Ti; 10 μg g-1 for Cl; 1 μg·g-1 for Cr, Ni, Br, Rb, Sr, Y, Zr and Nb. 

Detection limits for mineral matrices are: 0.1% for Al; 0.05% for Si; 0.04% for K; 0.01% for Ca 

and Fe; 0.006% for P; 0.004% for S; 0.002% for Ti and Mn; 10 μg g-1 for Cl; 1 μg g-1 for Cr, Ni, 

Br, Rb, Sr, Y, Zr and Nb. 

3.2.3 Radiocarbon age dating and age/depth model 

 Eleven samples were radiocarbon dated by AMS in the AMS Laboratory of Georgia 

University (UGAMS, USA) and Beta Analytic Inc. (Miami, USA). The results were calibrated 
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using SHCal04.14C calibration curve (REIMER et al., 2009). The age-depth model was obtained 

using the Clam.R application developed by Blaauw (2010); the best fit was obtained with a 

smooth-spline solution. In the text ages are thus provided as calibrated values unless specified 

otherwise. For the sake of consistency, ages found in the literature as conventional values were 

also converted to calibrated ones when the uncertainty term was available or assuming a ±50 

uncertainty when it was not.  

3.2.4 Statistical analysis 

 Stratigraphically constrained cluster analysis (total sum of squares method; GRIMM, 

1987) was applied to pollen and NPP data to define regional and local palynological zones. 

Principal components analysis (PCA) was also performed on the transposed data matrices of the 

regional and local types and NPP. This type of analysis enables an intuitive interpretation of 

pollen data from an ecological point of view summarizing the pollen composition of the samples 

based on co-variation (LÓPEZ-MERINO et al., 2012). The data was log-transformed and 

standardized before analysis, as suggested for compositional data (i.e close data sets) 

(REIMANN et al., 2008). The PCA was performed in the correlation mode and a varimax 

rotation was applied to maximize the loadings of the variables in the components (ERIKSSON et 

al., 1999). It was also applied to geochemical data in the same conditions as pollen data, but 

without transposing the data matrices. PCA was done using SPSS 20.0 software. 

3.3 Results and discussion 

3.3.1 Pollen study 

 The complete pollen diagrams for the regional and local taxa and NPP are provided in 

APPENDICES J and K. Assemblages of regional and local pollen types are interpreted to 

represent phytophysionomies (based on environmental requirements as indicated above, 

APPENDICES L and M): semi-deciduous forest (Floresta Semidecidua), mountain forest 

(Floresta Montana), wet grasslands (Campo Limpo Úmido), dry grassland (Campo Limpo Seco), 

rupicola-saxicolous grassland (Campo Rupestre), savanna (Cerrado lato sensu). The savanna also 

contains forested and shrubs formations (Cerradão). Some plant genus found in these 

phytophysionomies and respective pollen types can be seen in the APPENDICES N, O, P and Q, 

and some NPP in APPENDIX R.  
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 Principal components analysis of the regional types resulted in three components 

explaining almost 80% of the total variance (Table 1). The first component, PC1R (39% 

variance), is represented by large (score > 1.0) to moderate (score 0.5-1.0) abundances of pollen 

types representative of vegetation formations of semi-deciduous forest (Schefflera, Myrtaceae,  
 

Table 1 - Eingenvalues and variance explained by the principal components obtained by PCA analysis of the 
transposed data matrix of regional (R) and local (L) taxa (hydro-hygrophytes and NPP) of PdF-I core  

Component 1Eigenv 2Var (%)   Component 1Eigenv 2Var (%)   
PC1R 8.1 38.6  PC1L 6.2 29.5 
PC2R 5.6 26.9  PC2L 5.6 26.5 
PC3R 3.0 14.2  PC3L 4.6 21.7 

 1Eigenv: eigenvalues; 2Var (%): percentage of explained variance 

 
Figure 2 - Factor scores of the pollen types and NPP characterizing the three PCA components (transposed matrix) 

obtained for the regional (R) and local (L) signal of PdF-I core. Black bars: scores >1.0 or <-1.0; grey 
bars: scores 0.5-1.0 or -0.5 to -1.0; white bars: scores -0.5-0.5 

 



59 

 

Piper, Alchornea, Sorocea, Aristolochiaceae and some taxa of Melastomataceae), mountain 

forest (Podocarpus), wet grassland (Eryngium), rupicola-saxicolous grassland (Paepalanthus, 

Syngonanthus, Xyris and some taxa of Melastomataceae), as well as generalist grassland types 

(Plantago, Monocot, Poaceae and Gomphrena) (Figure 2). The component is also characterised 

by low abundances (negative scores) or absence of assemblages representative of humid savanna 

(also adapted to water streams; Ferdinandusa, Erythroxylum, Guettarda, Croton, 

Menispermaceae, Euphorbiaceae, Hyeronima, Proteaceae, Salicaceae, Rudgea and Strychnos) 

and dry savanna (Zanthoxylum, Ochnaceae, Buchnera lavandulaceae, Rubiaceae, Byrsonima and 

Amaranthus), and some taxa of rupicola-saxicolous grassland  (Eriocaulaceae) and generalist 

grassland types (Ichthyoyhere and Bidens). Thus, PC1R reflects wet but also cold conditions, as 

supported by the presence of mountain forest taxa like Drimys, Podocarpus, Mimosa scabrella, 

Weinmannia and Myrsine (APPENDIX J). 

 The second principal component, PC2R (27% of variance), is represented by large to 

moderate abundances (positive scores) of types typical of semi-deciduous forest (Trema, 

Alchornea, Sorocea and some taxa of Melastomataceae), dry savanna (Borreria, Zanthoxylum, 

Ochnaceae, Celtis, Rubiaceae, Cecropia and Buchnera lavandulacea), rupicola-saxicolous 

grassland (Xyris, Paepalanthus, Gaylussacia and some taxa of Melastomataceae), as well as 

genaralist grassland types (Poaceae, Baccharis and Gomphrena) (Figure 2). Low abundances 

(negative scores) were found for taxa of wet grassland (Eryngium), semi-deciduous 

(Aristolochiaceae, Myrtaceae and Piper) and mountain (Myrsine) forests and humid savanna 

(Erythroxylum, Guettarda, Proteaceae, Salicaceae, Croton, Rudgea and Strychnos); some types of 

dry savanna (Amaranthus), rupicola-saxicolous grassland (Syngonanthus) and generalist 

grassland types (Plantago and Monocot) also showed low abundance. Although mountain forest 

taxa were present sporadically, including Drymis, Podocarpus, Weinmannia, Ilex and Myrsine 

(APPENDIX J), they rarely occured together. PC2R points to drier and warmer conditions.  

 The third component, PC3R (14% of variance), shows larger abundances of pollen types 

of humid savanna (Guettarda, Ferdinandusa, Erythroxylum, Croton, Menispermaceae and 

Rudgea), semi-deciduous forest (Aristolochiaceae), rupicola-saxicolous grassland (Eriocaulaceae 

and Xyris), wet grassland (Emmeorhiza), as well as some generalist grassland types (Baccharis, 

Ichthyothere, Poaceae, Gomphrena and Monocot) (Figure 2). Low abundances are found for 

certain taxa characteristic of semi-deciduous (Schefflera, Myrtaceae, Tapirira and Alchornea) 
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and mountain (Myrsine and Podocarpus) forests, dry savanna (Zanthoxylum, Byrsonima, Celtis, 

Rubiaceae and Cecropia), rupicola-saxicolous grassland (Gaylussacia, Paepalanthus and 

Syngonanthus) and genaralist grassland types (Plantago and Monocot). This heterogeneity of 

phytophysionomies suggests that this component reflects variations in moisture (humidity) and 

temperature probably due to well-expressed climate seasonality. 

 For the local pollen signal three components explained almost 78% of the variance (Table 

1). The first component, PC1L (30% of variance), is characterised by large abundances of 

hydro-hygrophytes (Araceae and Bacopa) as well as NPP indicators of wet conditions like 

Assulina (VAN GEEL; MIDDELDORP, 1988; VAN GEEL; COOPE; VAN DER HAMMEN, 

1989) and Meliola niessleana (fungi parasite on Calluna; VAN GEEL, 1976). The 

epiphyte/herbaceous Polypodium is indicative of the presence of semi-deciduous forests 

(SEHNEM, 1970), although at present it has also been found in rupicola-saxicolous grassland and 

savanna in the Serra do Espinhaço Meridional (MENDONÇA et al., 1998); while Cyperaceae and 

Achyrocline may appear under diverse humidity conditions. Low abundances are suggested for 

Gelasinospora, a fungi indicating dry and oligotrophic conditions (VAN GEEL, 1976), and the 

fern Notholaena which is typical of warm, arid to semi-arid conditions (NOBEL, 1978). Thus, 

this component indicates local wet, and probably cold, conditions.  

 The second component, PC2L (26% of variance), shows larger abundances of types 

representative of wet grassland (Araceae and Sagittaria), plants as Calluna (NPP fungi Meliola 

niessleana) and the algae Spirogyra and Botryococcus, which suggest wet but changing 

hydrological conditions (GUY-OHLSON, 1992). The positive scores of Glomus and Blechnum 

point to hydric soil erosion (VAN GEEL; APTROOT, 2006). Landscape disturbance is also 

indicated by Pteridium, a fern usually found in ecological successions of degradation stages, 

particularly after fires (ELLIOT; FLENLEY; SUTTON, 1998). Low abundances of Bacopa, the 

fern Dennstaedtia and the fungi Assulina, all indicators of wet conditions, were also observed. 

The component reflects local perturbations, with pervasive hydrological changes and soil erosion. 

 The third component, PC3L (22% of variance), shows larger abudances of types and 

NPP pointing to variable humidity/shallow open water conditions (Araceae, Mougeottia, 

Sellaginella and Debarya; ELLIS-ADAM; VAN GEEL, 1978), presence of fires (Pteridium) and 

open, altered environments (Pityrogramma trifoliata; SÁNCHEZ-GONZÁLEZ; ZÚÑIGA; 

TEJERO-DÍEZ, 2010). Debarya has also been described as an airbone algae (KOŁACZEK et al., 
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2012), and probably related to greater activity of the monsoon system. Bacopa, Spyrogira, 

Assulina and Meliola niessleana, indicators of wet conditions, were low. This assemblage of 

polen types and NPP reflect limited, variable, humid conditions, an open forest landscape and 

fires.  

 Constrained cluster analysis enabled to identify five and six regional and local pollen 

zones (PZ), respectively (APPENDICES J and K). The regional and local zones are almost 

identical (except that the fifth regional PZ corresponds to the last two local PZ) and agree well 

with major stratigraphic units and the record of the components obtained with PCA (Figure 3).  

 

 
Figure 3 - Squared factor loadings of the three regional (R) and local (L) PCA components (transposed matrix) 

explaining the variation of the signal of the PdF-I core 
 

 In PZ-1 (401-298 cm) samples are dominated by PC1R (75-90% of variance) and PC1L 

(73-93% of variance), with small contributions of PC3R (24-42%) and PC3L (14-39%) (Figure 

3), indicating a landscape with dominant and dense forest vegetation composed of semi-

deciduous and mountain forests, and wet and rupicola-saxicolous grasslands. Thus, climatic 

conditions in PZ-1 were wet and cold, with short events of slight reductions in humidity and 



62 
 

 

increase in temperature, as supported by small variations of a more seasonal vegetation and 

indicators of hydrological changes and erosion. 

 In PZ-2 (298-202 cm) there is a moderate decrease in PC1R (to 64%) and a more intense 

one in PC1L (to 34%) (Figure 3). At the same time the contribution of PC2R (up to 60%) and 

PC3L (up to 83%) increase significantly, while PC3R shows minimum contributions (3-18%) and 

PC2L slightly increases (up to 40%). PC3L dominates the local signal at the end of the zone. 

Conditions seem to start to diversify, more readily at local scale and then at regional scale. A 

trend to opening of the semi-deciduous and mountain forests was followed by a more 

characteristic savanna vegetation, in a progressive way. Nevertheless, although a certain decline 

is observed, forests were the dominant formations and amid frequent fires. This scenario reflects 

a gradual reduction in humidity and warming. 

 PZ-3 (202-158 cm) mostly represents the consolidation of the trends developed in PZ-2, 

with a further slight decrease in PC1R (to 54%) and PC1L (30%), and stabilization of PC2R and 

PC3L (Figure 3). The remnants of semi-deciduous and mountain forests and the wet grasslands 

were probably located near water courses, while a more or less sparse savanna vegetation covered 

the area. PZ-3 represents a change from forest vegetation of humid and cold conditions to one 

indicating a drier and warmer climate, with the highest frequency of fires and where also the level 

of disturbance, due to changes in hydrology and/or erosion, started to increase. 

 PZ-4 (158-60 cm) shows a definitive decrease in PC1R (to 9%) and its substitution by 

PC2R which attains its maximum contribution in the record (up to 85%). At local scale PC3L is 

substituted by a large increase in PC2L (up to 79% contribution; Figure 3). The expansion of the 

savanna peaked while semi-deciduous and mountain forests showed the lowest abundances of the 

record, indicating the highest levels of regional aridity. Fires, although still frequent, started to 

gradually decrease but catchment disturbance remained. A slight increase of local wet grasslands 

also occurred. Climatic conditions in PZ-4 seem to have been drier and warmer, but often 

interrupted by short periods of cooling –as the occurrence of taxa characteristic of very cold 

conditions (i.e. Anadenathera, Drimys, Weinmannia and Myrsine) indicates. 

 PZ-5 (<60 cm) is characterised at regional scale by large contributions of PC3R (up to 

65%), a decrease in PC2R (to 12%), and minimun, although slightly higher than in PZ-4, 

contributions of PC1R (18-31%) (Figure 3). At a local scale, in this zone (60-20 cm) PCL2 

becomes dominant (up to 90%). With a reduction of savanna vegetation and a small increase in 
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semi-deciduous and mountain forests, conditions of a seasonal and sub-humid climate (as the 

present one) began to develop. Vegetation cover was more diverse than in the previous pollen 

zone, with rupicola-saxicolous grassland more abundant than semi-deciduous forests and woody-

savanna. On a local scale, the highest level of hydrological disturbance is detected. Increased 

humidity and a decrease in temperature are suggested, with conditions similar to present climate. 

 The local PZ-6 (upper 20 cm) is characterised by the total disappearance of PC3L and 

dominance of PC2L (Figure 3). None or low fire incidence and a slight recover of the humid 

forests support the interpretation of increased humidity and a relative decrease in temperature. 

Hydrological changes and soil erosion were still high in recent decades. 

3.3.2 Geochemical composition of the peat  

 The records of selected physico-chemical properties and the analyzed elements are 

provided in the supporting information (APPENDICES S, T and U). Four components explain 

80% of the total variance of the geochemical composition of the peat (Table 2). The first 

component, GC1, explains 43% showing C, N, Cl, Br, Ca, P, Rb and Sr high positive loadings 

(>0.7), S, Ti and K moderate positive loadings (0.5-0.7), and ash content, Si and bulk density 

(BD) large negative loadings (Table 2). Most of the elements with positive loadings are 

biophyllic (C, N, S, P, Ca, K) or organically bound (Cl and Br; BIESTER; MARTÍNEZ 

CORTIZAS; KEPPLER, 2006) elements and are surely dependent on the total organic matter 

content of the peat. While Si, Ti, Rb and Sr are elements hosted by inorganic mineral phases and 

can thus be taken as indicative of the content of mineral matter; as it is also the case for the ash 

content and the BD. In contrast to what has been found in other peat records (see for example 

WEISS et al., 2002), the loadings of these elements indicate that concentrations of Ti, Rb and Sr 

increase with increasing content of organic matter and decreasing Si, ash and BD. Since the main 

geological material of the catchment of the mire is quartzite, Si contents are most probably 

related to the amount of quartz transported from the catchment soils to the mire. At the same 

time, quartz is a mineral highly resistant to weathering that tends to concentrate in the sand 

fractions, while the other elements (Ti, Rb, Sr) usually concentrate in finer grain sizes (Ti, in 

particular; TABOADA et al., 2006). Thus GC1 is likely to reflect a local signal: under stable 

conditions in the catchment the mire accumulated organic matter and soil dust of finer particle 

size, while under unstable conditions larger amounts of coarse mineral matter (i.e. quartz from  
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Table 2 - Factor loadings for the four components extracted by PCA using the geochemical composition of the 
samples of the PdF-I core 

 
GC1 GC2 GC3 GC4 

N 0,93 0,25 
  C 0,92 0,27 
  Cl 0,80 

   Br 0,80 
  

0,32 
Ca 0,79 0,41 

  P 0,77 0,31 -0,42 
 Rb 0,76 0,42 

  Sr 0,70 0,59 
  S 0,69 0,26 
 

-0,56 
Ti 0,69 0,63 

  K 0,68 0,65 
  Ash -0,88 

   Si -0,88 
   1BD -0,95 
   Zr 

 
0,88 

  Al 
 

0,85 
  Y 0,49 0,77 
  Nb 0,49 0,65 
  Fe 0,27 

 
0,93 

 Mn 
  

0,89 
 Ni 

  
0,80 

 Cr -0,53 
 

0,77 
 δ13C 

 
0,37 

 
0,75 

δ15N -0,59 
  

0,69 
2Eigenv 10,3 4,5 3,1 1,5 

3Var (%) 43 19 13 6 
1BD: Bulk density; 2Eigenv: eigenvalues; 3Var (%): percentage of explained variance 

 

the quartzite) were transported to the mire producing an increase in ash content, BD and a relative 

dilution of both OM and other minerals. Although GC1 is not the main factor controlling their 

contents in the peat, Y and Nb also have a significant proportion of their variance (24%; Figure 

4) associated to GC1, supporting the interpretation of the physical fractionation effect (both have 

positive loadings and tend to be enriched in the finer fractions).  

 The second component, GC2, explains 19% of the variance, showing large positive 

loadings for Zr, Al, and Y, and a moderate one for Nb (Table 2). Some of the elements (K, Ti, Sr, 

Rb, Ca) dominated by GC1 have part of their variance in GC2 (Figure 4). They are also 

characteristic of the mineral matter of the peat. Zirconium and Al variance is only associated to 

GC2 and, since GC1 is interpreted as a local signal, it is likely that they reflect the deposition of  
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Figure  4 - Fractionation of communalities of the variables used in the PCA of geochemical properties of the peat 

of PdF-I core. The communality of each variable (i.e the proportion of its variance explained by each 
component) corresponds to the total length of the bar; the sections of the bars represent the proportion of 
variance in each component. The variables are ordered by the component with the largest share of 
variance 

 

mineral dust after longer transport. i.e. a dust regional signal. Except for Zr and Al, the PCA 

results suggest that the other elements have at least two different sources (local and regional). 

This is supported by the fact that the (K, Ti, Sr, Rb, Ca)/Zr ratios (not shown) are strongly 

correlated to GC1 scores (Pearson correlation coefficient, r 0.73-0.83) while the Al/Zr ratio is not 

correlated (r -0.11). Given the location of Pau de Fruta mire and the distribution of geological 

materials in the Serra do Espinhaço Meridional (Figure 1), the sources for the regional signal are 

likely to be at a distance of  >40-50 km. 

 The third component, GC3, explains 13% of the variance and the metals (Fe, Mn, Ni, Cr) 

are the elements showing large positive loadings (Table 2). Thus GC3 reflects the content in 

metals of the peat. Most of the elements in this component have a marked redox behavior (see for 

example CHESWORTH; MARTINEZ CORTIZAS; GARCIA-RODEJA, 2006) and, as it will be 
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discussed later, their co-occurrence in the same peat sections may reflect co-precipitation after 

being remobilized under anoxic conditions. But Cr also shows a significant proportion of its 

variance (29%; Figure 4) associated to GC1, the negative loading indicating that its concentration 

tends to increase with the increase in quartz and coarse mineral matter in the peat, pointing to a 

catchment source. 

 The fourth component, GC4, explains 6% of the variance and is represented by the 

isotopic signature of the organic matter (δ13C and δ 15N) (Table 2). The isotopic ratios also have a 

significant proportion of their variance in another component: δ 15N has a 35% in GC1 (Figure 4), 

its negative loading suggesting that the ratio is higher in horizons/layers containing higher 

amounts of coarse mineral matter and lower in peat sections rich in organic matter; while δ13C 

has a 14% of variance in GC2 (Figure 4), indicating that slightly heavier isotopic compositions 

are found in samples with higher contents of mineral matter originated from regional dust 

deposition. For the δ15N the correlation to GC1 scores is highly significant (r 0.75) if the upper 

peat layer (<60 cm) is excluded. Thus, GC4 accounts for the shared signal of both isotopic ratios 

and probably reflects the co-variation in the samples contributing to most of the variance (that of 

the mineral sediment and those of the upper peat section). 

 As it can be seen in Figure 5 the changes in GC1 scores show a good agreement with the 

stratigraphy of PdF-I core. The lowest scores are found at the base of the core and correspond to 

the mineral sediment. The first organic rich horizon (Oa7, 404-298 cm; Figure 1) shows an 

increase in GC1 scores, although the still negative values indicate a predominance of mineral 

matter (as also supported by the high ash content and bulk density and the low content in fibre, 

APPENDIX S). The average C content of this horizon (6.1±2.6%) is exceeded at its base and a 

peak at 338-348 cm, reaching up to 10.3% (APPENDIX S). At 298 cm the scores increase 

abruptly and remain positive until 198 cm indicating the accumulation of minerogenic peat and 

an important decrease in the flux of mineral matter from the catchment. From 198 to 158 cm the 

scores decrease again to negative values pointing to an increase in the mineral content (mainly 

quartz), with values similar to those of the first organic horizon (404-298 cm). By 158 cm the 

scores increase to moderate positive values until 119 cm, corresponding to the start of a second 

phase of peat accumulation. After that scores increase sharply to remain stable, at maximum 

values, until 60 cm; being this section the one with the largest C contents (APPENDIX S). The 

upper 60 cm show lower, but still positive, almost constant scores. 
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Figure 5 - Record of factor scores of the four principal components extracted for the geochemical composition of 

the PdF-I core 
 

 GC2 scores also show agreement with the stratigraphy (Figure 5). Negative scores, 

indicative of low contributions of regional dusts, are generally found below 298 cm, except for a 

peak at 338-348 cm. The scores remain positive, with small variations, from 298 to 119 cm. At 

119 cm they decrease abruptly coinciding with the largest values of GC1 scores and suggesting a 

decrease in the dust flux (local and regional) to the mire. The flux of regional dust recovers in the 

upper peat section (<60 cm). 

 The metal content (GC3 scores) in the PdF-I core is highly irregular below 298 cm; shows 

elevated values between 278-230 cm, and generally low values in the upper 230 cm (Figure 5). 

Discrete peaks are found at 388, 348, 210, 158 and 58 cm. Elevated metal concentrations were 

found in peat sections formed under wetter climate conditions (corresponding to cold periods in 

the North Atlantic represented in Figure 6; Bond et al., 2001, as it is discussed below) suggesting 
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that changing redox conditions linked to variations in water table depth may have been 

responsible for the remobilization and precipitation of the metals. 

 The isotopic signature of the organic matter captured by GC4 shows high scores at the 

base of the core and in the upper peat sections (Figure 5). The δ13C ratios of the upper peat 

section (APPENDIX S) point to a rapid shift from C3 to C4 vegetation. Small variations are 

observed in the rest of the record, with relatively lower values between 398-220 cm and 119-60 

cm, and relatively higher between 210-130 cm.  

3.3.3 Chronology of the changes 

 Some selected proxies are represented in Figure 6 to synthesize the chronology of the  

 
Figure 6 - Chronology of Holocene environmental changes recorded in the Pau-de-Fruta mire. GC1 and GC2: 

scores of the two first geochemical components extracted with PCA; HSG: standardized hematite-
stained grains record (original data obtained from BOND et al., 2001) 
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changes occurred during the Holocene in the Serra do Espinhaço Meridional. The figure also 

contains the record of hematite-stained grains (HSG) of the North Atlantic (BOND et al., 2001), 

which reflects variations in temperature at high northern latitudes. HSG variations were found to 

match the changes in oxygen isotopic composition of a speleothem collected from Lapa Grande 

cave (STRÍKIS et al., 2011), located at the north of the Minas Gerais State – some 400 km north 

of Pau de Fruta mire. Increased contents of HSG are related to colder temperatures in the North 

Atlantic and wetter conditions in central-eastern Brazil. The combination of proxies enables to 

define six main phases of change. 

 Phase I (10,000-7360 cal BP, horizon Oa7) represents the start of organic matter 

accumulation at the beginning of the Holocene (by 9500 cal BP). This horizon has a high 

content in inorganic matter and its geochemical composition indicates a dominance of inputs 

from the mire’s catchment, pointing to still landscape unstable conditions. A large increase in 

regional dust deposition (GC2, Figure 6) occurred by 8200-8300 cal BP, which coincides with 

the 8.2 ka event, and suggests intense winds. The vegetation was dominated by dense semi-

deciduous and mountain forests and wet rupicola-saxicolous grasslands, indicating wet and cold 

climate conditions. The start of this phase is coeval with Bond event 6 and its termination with 

the abrupt end of Bond event 5 (Figure 6). Thus the start of organic matter accumulation may 

have been triggered by the increase in humidity in the early Holocene.  

 Phase II (7360-4200 cal BP, horizons Oa6 and Oa5) shows a sharp increase in organic 

matter content, a decrease in the local fluxes of inorganic matter and a relative, almost constant, 

dominance of the regional dust component (with the exception of a local decrease by 4600 cal 

BP, Figure 6). A decline in mountain forests and the opening of the semi-deciduous forests with 

expansion of savanna formations suggest warmer conditions and a certain decrease in humidity. 

The abrupt end of Bond event 5 and development of dry conditions agree well with the formation 

of the highly sapric (i.e highly decomposed peat) Oa6 horizon. But the HSG record does not 

point to increase humidity (Bond event 4) until 6000 cal BP, some 600 years after the start of 

the formation of the horizon Oa5 (Figure 6). Also, Bond event 4 ends by 5200 cal BP with a 

return to dry conditions, while phase II (and peat horizon Oa5) extended until 4200 cal BP. 

Stríkis et al. (2011) also found that wet events at 6.6 and 7.1 ka detected in the oxygen isotope 
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record of Lapa Grande did not match the North Atlantic record. These mostly coincide with the 

time frame for the start of the formation of horizon Oa5.  

 Phase III (4200-2200 cal BP, horizons Oa4 and Oa3) is characterized by a large increase 

in the flux mineral matter from the catchment, surely related to severe soil erosion, with contents 

comparable to those of horizon Oa7 of phase I (reaching up to 90%, see APPENDIX S). Between 

4200-3800 cal BP the contribution of regional dust was significant, but after 3800 cal BP the 

local signal overrode the regional one and the mire evolved to conditions similar to those of the 

early Holocene. The vegetation showed a decline of semi-deciduous forests and expansion of 

formations typical of drier conditions. At a local level, frequent fires and perturbations of the 

catchment hydrology are suggested, their intensity being reduced by the end of the phase. The 

decrease in humidity may have been accompanied by increased rainfall seasonality and 

torrentiality, based on a greater diversity of regional pollen types. Most of the phase developed in 

the time period corresponding to Bond events 2 and 3. 

 Phase IV (2200-1160 cal BP; horizons Oa2, Oe-i, and Oa) shows a recover to 

geochemical conditions similar to those of phase II (Figure 6), with a decrease in local soil 

erosion and increase in regional dust deposition. Vegetation was still dominated by savanna 

formations under dry conditions, although periods of punctuated cooling, possibility also 

accompanied by variations in humidity, are suggested. This is supported by more frequent 

changes in peat stratigraphy. 

 Phase V (1160-400 cal BP, horizon Oi-e) shows the largest increase in organic matter 

accumulation and a sharp reduction in local and regional fluxes of mineral matter (Figure 6), 

pointing to environmental stability in both the catchment and at regional scale. The HSG record 

suggests that the phase may have occurred under dry conditions. 

 Phase VI (< 400 cal BP, horizon Oi) represents an abrupt shift. At the beginning of the 

phase there is a sudden increase in the regional dust signal (the largest of the whole record), 

together with a moderate increase in the local flux of mineral matter (comparable to phases IV 

and II). The C isotopic composition also shows an abrupt change to values typical of C4 plants, 

while the regional and local pollen indicators recorded large hydrological disturbances and soil 

erosion, but also a certain increase in humidity in the last couple of centuries (as indicated by the 

slight recover of the humid forests). 
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 The phases determined and environmental conditions inferred from the PdF-I record agree 

well with paleoclimatic interpretations obtained from other peat, lake sediments and speleothem 

records in central Brazil. Cold and humid conditions, as those proposed for phase I in Pau de 

Fruta, were verified in the isotopic record of Lapa Grande (STRÍKIS et al., 2011). Cold 

conditions were also suggested for the period 10,360-8840 cal BP in the Salitre peat record 

(LEDRU, 1993), reflected by the presence of Araucaria forests. Wet conditions are supported by 

the predominance of semi-deciduous forests in the record of Lagoa Nova between ca. 9540-8220 

cal BP (BEHLING, 2003), and by the expansion of the gallery forest in Lago do Pires between 

ca. 9910-8180 cal BP (BEHLING, 1995a). In the later record, the decrease in the abundance of 

mountain forest suggests slightly warmer conditions than those of the Bond event 6. A shift to 

wetter conditions is also recorded in Lapa Grande (STRÍKIS et al., 2011) during the 8.2 ka event 

and Bond event 5. 

 In phase II the PdF-I record points to a decrease in humidty, with the exception of the 

Bond event 4. In the Lagoa Nova record there is an expansion of Cerrado formations and 

regression of the gallery forest between ca. 7560-6060 cal BP; a sharp decrease in tree pollen and 

NPP indicators of wet environments between ca. 6320-4875 cal BP was found in the Salitre 

record; and drawdowns in lake level with development of a fen phase were found in Lagoa dos 

Olhos ca. 7865-7415 cal BP (DE OLIVEIRA, 1992), and Lagoa Santa between 7165-5590 cal BP 

(PARIZZI; SALGADO-LABOURIAU; KOHLER, 1998). In Lagoa da Serra Negra, apart from a 

reduction in humidity (expansion of Cerrado formations and retreat of semi-deciduous forests), 

increased temperatures are suggested after 5900-5580 cal BP. Phase II also coincides with the 

start of the so called “Archaic Gap” (ARAUJO et al. 2005) in the state of Minas Gerais, a phase 

of abandonment of settlements and depopulation that was related to the onset of arid conditions. 

In PdF-I the Bond event 4 is represented by a slight increase in humidity and warmer 

temperatures than in previous events.  

 The second half of the “Archaic Gap” period corresponds to phase III of the PdF-I record. 

Climate was probably more arid and warmer than in the previous phase, as supported by the low 

abundances or absence of pollen types characteristic of forests and humid grasslands and the 

increase in savanna types. A similar situation was inferred in Lagoa Nova ca. 2950-2790 cal BP, 

from the dominance of Cerrado (savanna) and Cerradão (tree-shrub savanna) formations. 

Despite the general arid conditions, in PdF-I two local increases in humidity coincided with Bond 
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events 3 and 2. Higher humidity was interpreted in the Salitre record between 4750-3350 cal BP 

based on increased abundance of the semi-deciduous forest, and by the formation of the lake in 

Lagoa dos Olhos by ca. 4350 cal BP. The second humid pulse was recorded after ca. 3350 cal BP 

in Lagoa Santa, reflected by a mosaic of forest and Cerrado formations – under a sub-humid 

climate. In the Lapa Grande record only Bond event 2 was registered. 

 In phase IV maximun aridity is suggested by the pollen record of PdF-I, with the largest 

expansion of Cerradão, similar to what has been reconstructed in Lagoa Nova for the same 

period. Nevertheless, conditions seem not to have been constant as increased humidity and 

cooling periods, particularly during Bond event 1, were also inferred. From 1270-970 cal BP in 

Lagoa da Serra Negra, 1320-1050 cal BP in Lagoa dos Olhos and ca. 1400 BP in Lagoa Santa –

close to Bond event 1- humidity approached that at present indicating a relative increase.  

 No record exists for phase V in Lagoa da Serra Negra and Salitre, due to the presence of 

hiatuses. In Lagoa Nova arid conditions, represented by Cerradão formations, continued until 

600 cal BP.   

 The start of phase VI occurred about a century after the arrival of Portuguese to Brazil and 

coincides with the initiation of gold mining activities (MACHADO; FIGUEIRÔA, 2001). The 

17th and 18th centuries CE were known as the “gold cycle”. In 1714 CE the first diamonds were 

found close to the Diamantina city (the origin of its name) and the Pau de Fruta mire. Mining 

intensity decreased with time but some activity persisted until today. Since the 18th century CE 

population has increased abruptly, several roads were built around the mire, deforestation became 

extensive, and in 1927 CE a water reservoir for the Diamantina city was constructed at the outlet 

of the mire. This increased human impact in the landscape may have been responsible for the 

abrupt change indicated by the PdF-I record in phase VI. Despite the enhanced anthropization of 

landscape, climate also showed significant changes as those related to Bond event 0, that may 

have contributed to the abrupt shift from a C3 to a dominant C4 vegetation (Fig. 6) in the Pau de 

Fruta mire.  

3.3.4 Mire’s behaviour in phase space 

 Following Dearing (2008), the evolution of Pau de Fruta mire (its system behavior) can be 

examined using a phase space diagram (i.e “a bivariate plot showing the temporal sequence of 

points”). In Figure 7 we have represented the GC1-GC2 projection, that is assumed to show the 
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combination of local (GC1) and regional (GC2) signals based on the geochemical composition of 

the peat/sediments of the PdF-I core. Three main states are suggested, the first one (S1) 

represented by the early Holocene (phase I, 10,000-7360 cal BP), indicating catchment 

instability with large fluxes of local mineral matter and a low contribution of regional dusts. The 

second state (S2) occurs under increased stability in the catchment, with lower fluxes of local 

mineral matter and enhanced deposition of regional dusts. While the third state (S3) represents 

highly stable local and regional conditions and the largest accumulation of organic matter in Pau 

de Fruta.  

 
Figure 7 - Phase space diagram of the two first geochemical components, representing local and regional fluxes of 

mineral matter (i.e. stability) to the Pau-de-Fruta mire 
 

 The graph shows that changes between states have been rather abrupt, as it also happened 

during the 8.2 ka event. The main exception is the evolution of phase III, in which the shift from 

S2 seems to have been preceded by a transition (4200-3800 cal BP) to conditions similar to 

those of the 8.2 ka event, before the abrupt change to S1 occurred. S2 and S3 represent stages of 

peat accumulation and peatland development, while S1 seems to reflect phases of large mineral 

fluxes from the catchment.  
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3.4 Conclusions 

 The multi-proxy investigation of the PdF-I suggests that Holocene environmental 

evolution in central-eastern Brazil was mainly linked to climate change. Peat stratigraphy is the 

visual evidence we have today of past changes, and it coincided with the variations found in 

vegetation and landscape dynamics. The combination of proxies enabled us to define six main 

phases of change: phase I (10,000-7360 cal BP), II (7360-4200 cal BP), III (4200-2200 cal 

BP), IV (2200-1160 cal BP), V (1160-400 cal BP) and VI (< 400 cal BP). The changes in 

vegetation suggested wet and cold (phase I), wet and warm (phase II), dry and warm (phase III), 

dry and punctuated cooling (phase IV) conditions until the current sub-humid (phases V-VI) 

climate was set up. Climate changes were accompanied by local (phases I and III) and/or regional 

(phases II and IV) reactivations of soil erosion. The 8.2 ka event was clearly identified by a large 

increase in regional dust deposition. Similar conditions to this event were found for the transition 

from phase II to phase III (4200-3800 cal BP). Reduced local and regional erosion and increased 

accumulation of organic matter were reconstructed for phase V.  

 Changes in PdF-I peat stratigraphy and the detected episodes of local erosion were 

probably related to intense hydrological changes in the mire catchment, that correlate 

chronologically with climate variations in the North Atlantic; in agreement with findings by 

Stríkis et al. (2011) that demonstrate that Holocene abrupt variations in monsoon precipitation in 

central-eastern Brazil were in pace with Bond events. But, although climate was the most 

important driving force of environmental change, human activity seems to have been also 

involved in the dramatic change occurred over the past 400 years (phase VI). These included 

mining activities, as the “gold cycle” during the 17th and 18th centuries CE and the extraction of 

diamonds since 1714 CE until today; abrupt increase in population, construction of roads around 

the mire and extensive deforestation since the 18th century CE, and construction of a water 

reservoir for Diamantina city at the outlet of the mire in 1927 CE.  

 The temporal sequence of the evolution of the local and regional erosion proxies suggests 

that the Pau de Fruta mire had three main states reflecting conditions of local landscape 

instability (in phase I) or stability (in phases III, IV and VI) in the mire catchment; with 

transitional conditions during the 8.2 ka event and most of phase III. During the phases of 

stability there was enhanced deposition of regional dusts, except for phase V which reflects the 

more stable conditions through out the Holocene.  
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 Our work indicates that mountain tropical peatlands are ideal archives for the 

reconstruction of Holocene climate change, in particular if a multi-proxy approach is applied.  
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4 CLIMATE CHANGES IN CENTRAL-EASTERN BRAZIL DURING THE LAST ~60 

kyr 

Abstract 

 Last glacial millennial-scale precipitation variability (wet and dry episodes) in South 
America was found to be in antiphase with the Northern Hemisphere Younger Dryas (YD), 
Heinrich (H) events and Dansgaard-Oeschger (D/O) cycles. Furthermore, within South America 
precipitation variations were found to be in phase between southern Brazil and western 
Amazonia, while these regions are out of phase with northeastern Brazil and eastern Amazonia, 
being orbital-scale variability proposed as the main direct force resulting from changes in Austral 
summer insolation (ASI). Here we present stable isotopes, geochemical and pollen records of a 
core sampled in a tropical mountain mire from central-eastern Brazil, spanning the last ~60 kyr. 
Precipitation in the area is associated to the intensity of the South American monsoon system 
(SAMS) and the current sub-humid climate allows the presence of Cerrado biome (savanna). We 
infer that the precipitation pattern from central-eastern Brazil from ~60 to ~26 cal kyr BP was out 
of phase with western Amazonia and southern Brazil and in phase with northeastern Brazil. From 
~26 to ~17 cal kyr BP the area was out of phase with western Amazonia, southern and 
northeastern Brazil. Since ~17 cal kyr BP to the present, the precipitation pattern became in phase 
with the latter region. This reflects that even under the dominant control of millennial-scale 
variations, summer solar radiation possibly played a more significant role during these last ~17 
kyr, with humid climate during low summer insolation phases. Precipitation changes were also 
accompanied by changes in temperature and soil stability in the mire's catchment (local erosion). 
Current climate and vegetation of Cerrado biome is relatively recent, probably establishing after 
3.3 cal kyr BP, but similar conditions may have been present in some time of MIS 3(60-27.8 cal 
kyr BP).  

Keywords: Peatlands; Late Pleistocene; Precipitation model; Central-eastern Brazil; Pollen; 
Geochemistry 

4.1 Introduction 

 Colder (stadials) and warmer periods (interstadials) alternated on timescales of several 

millennia over the course of the last ice age, as demonstrated by ice-core records from Greenland 

(GROOTES; STUIVER, 1997; SVENSSON et al., 2008) and sediment cores from the North 

Atlantic (BOND et al., 1993; MARTRAT et al., 2007).  

 The Heinrich (H) events are defined by distinct layers of coarse grain material in the 

North Atlantic sediments, spaced at irregular intervals of ~10,000 years, which were identified as 

ice rafted debris, i.e., material carried by massive episodic iceberg discharges into the ocean 

originated from instabilities of the Northern Hemisphere ice sheets (HEINRICH, 1988; 

CLAUSSEN et al., 2003). The Dansgaard-Oeschger (D/O) cycles are characterized by an abrupt 

warming of some 5–10 ºK in the Greenland and North Atlantic region within a few years or 
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decades, occurring approximately every 1500 years (DANSGAARD et al., 1993; VAN 

KREVELD et al. 2000; CLAUSSEN et al., 2003). The abrupt warming is followed by a gradual 

cooling over several hundreds or thousands of years, before the cooling ends with an abrupt drop 

of temperatures to stadial conditions. Therefore, in most cases Heinrich events are followed by a 

particularly warm D/O event, and successive D/O events tend to become progressively cooler 

until the next Heinrich event starts (CLAUSSEN et al., 2003).  

  Several records from South America have shown the millennial-scale shifts (WANG et 

al., 2004; CRUZ et al., 2005; CHENG et al., 2013) corresponding to Younger Dryas (YD)-H 

events and D/O cycles. During them the Southern Hemisphere was in anti-phase with the 

Northern hemisphere counterparts such as changes in Asian monsoon (WANG et al., 2008), 

Greenland temperature (SVENSSON et al., 2008) and the Cariaco Basin records (PETERSON, et 

al., 2000), and in phase with speleothem records from southern (CRUZ et al., 2005; WANG et 

al., 2006) and northeastern Brazil (WANG et al., 2004; CRUZ et al., 2009) and high altitude 

central Peruvian Andes (KANNER, et al., 2012), and the Lake Titicaca record (BAKER et al., 

2001). The interhemispheric anti-phase nature of these events supports the notion that the YD-H 

and D/O events manifest in South America as wet and dry episodes, respectively (CHENG et al., 

2013). The abrupt increase in monsoon rainfall during the YD-H events is likely related to a 

southward shift in the average position of the Intertropical Convergence Zone (ITCZ), a 

strengthening of the asymmetry in Hadley circulation in response to an interhemispheric gradient 

of sea surface temperature and to some extent a possible influence from Antarctic climate 

changes (WANG et al., 2004, 2006; KANNER, et al., 2012; CHENG et al., 2013).  

 According to Cheng et al. (2013), although the millennial-scale precipitation variability 

across tropical South America shows a highly coherent pattern, the spatial structure of 

precipitation is complex at orbital timescales. These authors claim that this is evident from the 

comparison of existing speleothem δ18O records from southern (CRUZ et al., 2005) and 

northeastern (CRUZ et al., 2009) Brazil with speleothem records from western and eastern 

Amazonia. The western Amazonia and southern Brazil δ18O variations are broadly in-phase, 

reflecting changes in the South American monsoon system (SAMS) intensity (VUILLE et al., 

2003; VUILLE; WERNER, 2005; CRUZ et al., 2005) resulting from changes in Austral summer 

insolation (ASI) associated with the precession cycle (CRUZ et al., 2005). In addition, they are 

anti-phased with their NH counterparts, the Asian monsoon (WANG et al., 2008; CHENG et al., 
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2012), supporting the notion that increased summer solar radiation is the most effective factor 

strengthening tropical–subtropical monsoons (KUTZBACH et al., 2008; CHENG et al., 2012). 

The western Amazonia and southern Brazil speleothem records are, however, out of phase with 

speleothem records from northeastern Brazil and eastern Amazonia (CHENG et al., 2013).  

 In central-eastern Brazil, sub-humid and seasonal climate with well-defined seasons (~4-5 

months of dry season and mean winter temperature ≥ 15°C) maintain the Cerrado biome, a vast 

tropical savanna that is part of the so-called corridor of “xeric vegetation’’ (BUCHER, 1982), 

mainly represented by gramineous-savanna (Campo Limpo Seco), savanna forest-shrubs 

(Cerrado Típico; ~50-20% canopy cover, ~5 m height and crooked trunks) and savanna forest 

(Cerradão; ~50% canopy cover and ~9 m height). Although, other phytophysionomies as semi-

deciduous forest (Floresta Semidecidua), mountain forest (Floresta Montana) and wet grasslands 

(Campo Limpo Úmido) are also seen occuring as relicts of wetter climates (ABSY et al., 1991; 

FERRAZ-VICENTINI; SALGADO-LABOURIAU, 1996; LEDRU et al., 1996) and as indicative 

of long-term climate variability during the Quaternary.  

 Tropical and subtropical peatlands have a large potential for the reconstruction of 

Pleistocene climate changes (WEISS et al., 2002; MULLER et al., 2008; LEDRU; 

MOURGUIART; RICCOMINI, 2009; DOMMAIN; COUWENBERG; JOOSTEN, 2011; 

DALEY et al., 2012; MARGALEF, et al., 2013), since they are ecosystems extremely sensitive 

to changes in hydrology. Therefore, here we investigated a core sampled in a tropical mountain 

peatland from the central-eastern Brazil, located in Minas Gerais State (Brazil) within the Serra 

do Espinhaço Meridional. In this area, rainfall is associated to the intensity of the SAMS. Its 

location is ideal since it is within the boundaries of oscilation of the SACZ. On the other hand, 

the multi-proxy approach used (stable isotopes, geochemical and pollen records), besides rainfall 

variations (dry and wet events), it also provides information on temperature, landscape stability 

and vegetation changes.  

4.2 Material and Methods 

4.2.1 Sampling and stratigraphic description 

 A core of 324 cm in length (APPENDIX V) was collected in Pinheiro mire (PI core), a 

tropical mountain peatland within the Serra do Espinhaço Meridional (Figure 1). Sampling was 

done in 2010 using a vibracore. 



84 
 

 

 
Figure 1 - Long-term mean (A.D. 1979-2000) precipitation (mm) for December-February (DJF) from the Climate 

Prediction Center Merged Analysis of Precipitation. Numbers on the map indicate the study site and 
other climate records from South America: 1 - Pinheiro mire in Minas Gerais State, central-eastern 
Brazil; 2 - Rio Grande do Norte caves in Rio Grande do Norte State, northeastern Brazil (CRUZ et al., 
2009); 3 - Botuverá cave in Santa Catarina State, southern Brazil (CRUZ et al., 2005); 4 - western 
Amazonia caves, northern Peru (CHENG et al., 2013). ITCZ - Intertropical Convergence Zone; SACZ - 
South Atlantic Convergence Zone; LLJ - low-level jet     

  

 The current climate is tropical mountainous with an average annual precipitation of 1500 

mm and vegetation belonging to the Cerrado biome. Wet grasslands (Campo Limpo Úmido) and 

rupicola-saxicolous grassland (Campo Rupestre) are the current phytophysionomies on the 

collection site. The study area is well situated for investigating past changes in precipitation, 

because monsoon rainfall depends on the South Atlantic Convergence Zone (SACZ), one of the 

main features of SAMS, as well as the ITCZ and the low-level jet (LLJ). 
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 The present soil is classified as a Hemic Haplosaprists (SOIL SURVEY STAFF, 2010) 

and the basal lithology corresponds to the Galho do Miguel formation (Paleo-Mesoproterozoic), 

constituted by pure and thin quartzites (~90%) and thin micaceous quartzites and gray or greenish 

metargilites (~5 a 10%). The stratigraphy of the core (APPENDIX V) was described according to 

Field Book for Describing and Sampling Soils (SCHOENEBERGER et al., 2012), whereas the 

horizons/layers were defined according to Soil Taxonomy (SOIL SURVEY STAFF, 2010). 
 

4.2.2 Elemental and isotopic composition 

 Carbon and N contents and isotopic composition (δ
13C and δ

15N) were determined in 

dried, milled and homogenized samples of 2 cm in thickness, using an elemental analyzer 

coupled to a mass spectrometer hosted at the Laboratório de Ecologia Isotópica of the Centro de 

Energia Nuclear na Agricultura - CENA/USP (Piracicaba, SP, Brasil). Major, minor and trace 

elements (S, Al, Si, Fe, Ti, K, Ga, Rb, Sr, Y, Zr, Nb, Th, Cr,  Pb and Br) were determined by X-

ray fluorescence using two energy dispersive XRF analyzers (CHEBURKIN; SHOTYK, 1996; 

WEISS; CHEBURKIN; SHOTYK, 1998) hosted at the RIAIDT facility (Infrastructure Network 

for the Support of Research and Technological Development) of the University of Santiago de 

Compostela (Spain). The instruments were calibrated using several reference materials. 

Detections limits for organic matrices are: <0.01% for Al, Si, S, K and Fe; 0.0005% for Ti; 1 

μg·g-1 for Cr, Br, Ga, Rb, Sr, Y, Zr, Th, Pb and Nb. Detection limits for mineral matrices are: 

0.1% for Al; 0.05% for Si; 0.04% for K; 0.01% for Fe; 0.004% for S; 0.002% for Ti; 1 μg g-1 for 

Cr, Br, Ga, Rb, Sr, Y, Zr, Th, Pb and Nb. 

4.2.3 Pollen study  

 Physico-chemical treatment for the extraction of pollen, spores and other non-pollen 

palynomorphs (NPP) followed the procedure described in Ybert et al. (1992), using an ultrasound 

to separate large organic remains. Samples correspond to sections of 1 cm in thickness taken 

every 10 cm. Counting was done at 40 X under the microscope. Identification was aided by a 

reference collection of the Pau de Fruta mire (also located in Serra do Espinhaço Meridional) 

hosted at the laboratory of Núcleo de Pesquisa em Palinologia do Instituto de Botânica do Estado 

de São Paulo (Brazil), identification keys and atlases (VAN GEEL, 1978; TRYON; TRYON, 

1982; ROUBIK; MORENO, 1991). Taxa included in the land pollen sum (TLP) are considered to 
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be indicators of the regional vegetation, while hydro-hygrophytes and NPP are considered to 

mainly provide a local signal. Nevertheless, we have to remind that some hydro-hygrophytes may 

also be part of regional communities, as for example the Cyperaceae. The opposite may occur 

with Poaceae and Ericaceae, which are considered as regional components although they can also 

be present in local communities. Environmental requirements for regional taxa follow those 

described by Mendonça et al. (1998) and Marchant et al. (2002), and hydro-hygrophytes, 

pteridophytes and NPP by van Geel (1978) and van Geel; Coope; van Der Hammen (1989). Main 

occuring environments of some pollen types observed in the Pinheiro mire can be checked in 

APPENDICES L and M referring to the pollen types observed in the Pau de Fruta mire. Pollen 

diagrams were done using TILIA software (GRIMM, 1992).  

4.2.4 Radiocarbon age dating and age/depth model 

 Thirteen samples were radiocarbon dated by AMS in the Beta Analytic Inc. (Miami, 

USA). The results were calibrated using SHCal04.14C calibration curve (REIMER et al., 2009). 

However, only six samples belonging to the first 101 cm were used for model construction 

(APPENDIX W), because below this depth all ages were unexpectedily young. Similar situations 

were found in Pleistocene layers of other peat deposits from the Southern Hemisphere (WEISS et 

al., 2002; MARGALEF et al., 2013). The cause is still unknown, but VOELKER et al. (2000) 

found highly increased concentrations of 14C for the period 27 to 54 kyr, coincident with low 

paleomagnetic filed intensities, which results in apparently young ages for the period. Another 

process that could have affeted the 14C content of the peat is methane formation and relased, since 

methane-C has a very low δ13C value (~-60‰; CHARMAN et al., 1999) and may result in an 

enrichment in 13C and 14C in the remaining material (peat) (Peter Buurman, personal 

communication). The age-depth model was obtained using the Clam.R application developed by 

Blaauw (2010); the best fit was obtained with a smooth-spline solution. Below 101 cm all ages 

are extrapolated from the model and thus are subjected to larger uncertainties. 

4.2.5 Statistical analysis 

 Stratigraphically constrained cluster analysis (total sum of squares method; GRIMM, 

1987) was applied to pollen and hydro-hygrophyte, pteridophytes and NPP data to define 

regional and local palynological zones, as well as to most representative environmental and 

phytophysionomies indicators. For geochemical data, principal components analysis (PCA) was 
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performed on log-transformed and standardized values, on correlation mode and applying a 

varimax rotation to maximize the loadings of the variables in the components (ERIKSSON et al., 

1999). PCA was done using SPSS 20.0 software.  

4.3 Results and discussion 

4.3.1 Selection of proxies  

 The factor loadings for the three components and fractionation of communalities of the 

variables used in the PCA of geochemical properties are provided in APPENDIX X, and the 

complete pollen diagrams for the regional and local taxa and NPP in APPENDICES Y and Z. 

Here the results and discussion are supported by proxies that offered the most accurate 

palaeoenvironmental information: δ13C, δ15N, Cp2 (factor scores of the second component of 

PCA geochemical properties) and Br/C ratio (Figure 2), as well as representative environment 

indicators and phytophysionomies determined by pollen analysis (Figure 3; environmental 

requirements followed the bibliographies aforementioned and APPENDICES L, M, Y and Z). 

 The δ13C values allow to identify carbon derived from different photosynthetic pathways, 

since isotopic ratio does not change with time (CERLING et al., 1989). Thus, this ratio can be 

used to inform on source vegetation and climate dynamics, because C3 plants (most trees and 

some graminoides of wet grasslands and indicators of humid environments) have δ13C values 

between -32 and -22‰, and C4 plants (graminoides of dry environments) between -17 and -9‰ 

(BOUTTON, 1991; O’LEARY, 1988).   

 The main factors affeting the δ15N ratio are: (i) the constant addition of organic matter 

from plants in the upper soil layers; (ii) the transformations of organic-N to inorganic-N, and 

among inorganic-N forms. With increased mineralization the remaining organic matter becomes 

enriched in atoms 15N. In general, these processes occur during drier periods. In tropical soils the 

values vary between +3.5 and +21.7‰, with much smaller variations in hydromorphic soils 

(between ≈+4 and +5‰) (MARTINELLI et al., 2009).  

 The second component of PCA on geochemical properties, Cp2 (APPENDIX X) is 

characterized by positive loadings of C, N and S (biophyllic elements) and Br (organically bound 

element) and negative loadings of Si, Cr and K (lithogenic elements). Since the main geological 

material of the catchment of the mire is quartzite, Si contents are most probably related to the 

amount of quartz transported from the catchment soils to the mire. Thus, Cp2 is likely to reflect a 
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local signal: under stable conditions in the catchment the mire accumulates organic matter 

(positive factor scores), while under unstable conditions (erosion episodes) larger amounts of 

coarse mineral matter (i.e. quartz from the quartzite) are transported to the mire (negative factor 

scores).  

 The main source of Br is the oceans. It reaches the soils by wet precipitation and it 

accumulates as organo-halogenated compounds (BIESTER; MARTÍNEZ CORTIZAS; 

KEPPLER, 2006). Given the inland location of the Pinheiro mire Br deposition may have been 

linked to atmospheric circulations bringing sea-spray and precipitation (LALOR, 1995). The 

Br/C ratio is used here to reflect the excess of Br that can not be explained by a substrate effect 

(i.e. availability of organic matter), and thus to infer changes in rainfall.   

 In Figure 2 we have also included the δ18O curve from Greenland ice record (GROOTES; 

STUIVER, 1997), showing the typical sequence of stadials (H-YD) and interstadials (D/O) 

events. For comparison we also included δ18O records of speleothems from northeastern (CRUZ 

et al., 2009) and southern Brazil (CRUZ et al., 2005), and Western Amazon (CHENG et al., 

2013), as well as the ASI curve (BERGER, 1978). The oxygen isotope ratios are mainly 

interpreted as a function of the isotopic composition of rainfall, therefore as indicative of past 

precipitation conditions, with δ18O being inversely proportional to the relative changes in 

precipitation amounts (CRUZ et al., 2009), i.e., more negative values indicate wetter 

environments and less negative drier environments. 

4.3.2 Chronological reconstruction of environmental dynamics 

 The PI record reflects predominant dry conditions (δ13C values >21.4‰) between ~60 and 

~27.8 cal kyr BP, interrupted by several excursions to, possibly, more humid conditions (Figure 

2). This phase coincides with the Marine Isotope Stage 3 (MIS 3), one of NH cold period, and 

also with the absence of speleothem formation in northeastern Brazil (CRUZ et al., 2009 - Fig. 

2C; WANG et al., 2004). The 17, 16, 15, 12, 8, 7, 5, 4 and 3 D/O cycles are represented in the PI 

record by increasing δ13C values (up to -18.9‰) which may be related to the presence of a long 

dry season (5 months or more), mainly in 12, 7 and 5 D/O cycles (~44.7, ~36 and ~31.6 cal kyr 

BP, respectively). High rates of organic matter mineralization (increased δ15N values; Figure 

2A2) and erosion in the catchment (more negative Cp2 values; Figure 2A3) were due to a low 

soil protection by the retraction of semi-deciduous forest and expansion of pioneer trees (Figure  
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Figure 2 - Comparison among South America records over the past 60 kyr BP. (A1) δ13C; (A2) δ15N; (A3) Cp2; 

(A4) Br/C ratio records of the PI core (central-eastern Brazil). (B) Greenland ice (GISP2) δ18O record 
(GROOTES; STUIVER, 1997). (C) Rio Grande do Norte speleothem δ18O records, northeastern Brazil 
(CRUZ et al., 2009). (D) Botuverá speleothem δ18O record, southern Brazil (CRUZ et al., 2005). (E) 
western Amazonia speleothem δ18O records, northern Peru (CHENG et al., 2013). The red curves 
represent austral summer (DJF) insolation (ASI) (Berger et al., 1978). Gray bars show periods of 
increased humidity in central-eastern Brazil. MIS 3 = Marine Isotope Stage 3; LGM = Late Glacial 
Maximum; LP = late Pleistocene; EH = early Holocene; MH = middle Holocene; LH = late Holocene 
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Figure 3 - Palynological diagram of the most representative environmental indicators and phytophysionomies of 

the PI core. The filled silhouettes show the percentage curves, while the open silhouettes show the 5× 
exaggeration curves, except those with an asterisk that show the 20× exaggeration curves. CONISS 
cluster analysis together with the Palynological Zones (PZ), and the estimated chronology are plotted as 
well. Values are expressed as percentages of the total land pollen sum 

3). Some periods of milder climate conditions with relative increased in humidity (but still with a 

shorter, dry season, possibly 2 to 3 months) are seen in ~60-57.7, ~51.7-45.8, ~43.6-39.2, and 

~34.9-33.2 cal kyr BP. The first three periods overlap with H6, H5 and H4 events, while the latter 

preceded the H3 event in ~2.1 kyrs. High oceanic-atmospheric activity and precipitation in the 

third period (~43.6-39.2 cal kyr BP) are inferred by higher Br/C ratios (except during 10 D/O 

cycle; Figure 2A4), which suggests higher humidity during MIS 3. Given these fluctuations a 

dryer climate is reconstructed for the period ~39.2 to ~27.8 cal kyr BP than from ~60 to ~39.2 cal 

kyr BP; while colder conditions seem to have occurred in the first half and short-duration cooling 

events in the second half of MIS 3.  

 With the beginning of the Late Glacial Maximum (LGM) by ~27.8 cal kyr BP, a new 

pattern of climate conditions was established, which remained until mid-Holocene (6.6 cal kyr 

BP). Predominant wet conditions are supported by almost constant low δ13C values, and cold 
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conditions are reflected by the pollen data (presence of cold and humid forest), during H2, H1 

and YD (~25.1, ~16.4 and ~11.5 cal kyr BP, respectively), as well as during the 8.2 cal kyr BP 

event. Erosion in the catchment increased during wet phases, but was relatively lower than during 

MIS 3 probably due to a denser tree-shrub vegetation cover (increasing δ15N values suggesting a 

greater accumulation of organic material). The increase in humidity shown by the PI core from 

~27.8 to ~18 cal kyr BP was simultaneous to a decrease in northeastern and an increase in 

southern Brazil. An abrupt change to dry and very cold conditions is recorded by ~17 cal kyr BP 

(highest % of Drimys and presence of Araucaria; APPENDIX Y), probably reflecting the H1 

event. Whereas from ~16.4 to ~7.1 cal kyr BP, there was a return to humid conditions at the same 

time rainfall increased in northeastern and decreased in southern Brazil and western Amazonia. 

The Bølling-Allerød interstadial is simultaneous to the 1 D/O cycle and it is registered in the PI 

record by a slight reduction of precipitation by ~13.7 cal kyr BP, synchronous to the phase with 

absence of speleothem formation in northeastern and wet climate conditions in southern Brazil 

(Figure 2). The highest Br/C ratio of the PI core is recorded by ~8.2 cal kyr BP, providing 

evidence of the wettest period ocurred in central-eastern Brazil, as it was also proposed for 

northeastern Brazil (Figure 2). 

 Between the mid- and late-Holocene, from ~6.6 to ~3.3 cal kyr BP, the decline of semi-

deciduous, cold and humid and mountain forest and the expansion of dry grassland point to a 

decrease in hummidity, while an almost constant presence of wet grassland indicates a certain 

degree of humidity, most likely around and within the mire, as supported by the lowest δ13C 

values (lowest value of -24.1‰ in ~3.3 cal kyr BP). After the ~5.5 cal kyr BP, climate turn to 

very dry (long dry season of ~6 months) and, probably, with periods of torrential rainfall despite 

the warm regional climate. The latter is consistent with the highest abundance of indicators of 

shallow open water in the mire (Figure 3) -the concentrated precipitation may have led to excess 

runoff and increased accumulation of water at the surface of the mire. The large decrease in the 

Br/C ratio, like those observed during MIS 3, supports the interpretation of a dry climate. During 

this period humidity also decreased in northeastern Brazil, while it increased in southern Brazil 

and western Amazonia.  

 δ13C abruptly changed by ~3.3 cal kyr BP, the ratio reaching a maximum by ~800 AD. 

These values are comparable to those of MIS 3 and reflect a similar dry vegetation, although 

climate was probably warmer climate (expansion and stabilization of savanna forest). A slight 



92 
 

 

recover of semi-deciduous, mountain and pioneer trees indicates a relative increase in humidity at 

regional scale, whereas the decline of wet grassland and the slight increase of dry grassland and 

mineralization of organic matter (δ15N, Figure 2) evidence a decrease in humidity at local scale. 

The trend to current climate conditions probably started at that point, with a strengthening of 

seasonality and low frequency of torrential rainfalls, allowing the establishment of Cerrado 

Biome (dry season ~4-5 months). Semi-arid conditions are stablished in northeastern Brazil, 

while southern Brazil and western Amazonia returned to humid and very humid climate, 

respectively, as that of today.   

 The last 800 years exhibit almost imperceptible changes suggesting a climate similar to 

the previous period. However, all phytophysionomies continued to decrease until the end of the 

phase, while dry grassland had small increase. Beyond the climatic factor, we must also take into 

account the impacts caused by the increase of population after the arrival of European settlers in 

the region recorded during the last 500 years. Impacts of mining activities are visible with peak in 

the 17th and 18th centuries CE in a period known as “gold cycle”; however, deforestation and 

construction of many roads have been increasingly frequent, mainly to meet the needs of the steel 

industries.   

4.3.3 Precipitation controls during the last ~60 kyr in central-eastern Brazil  

 The large reduction in humidity in our study site during MIS 3 coincided with the 

expansion of sea-ice cover and very low temperatures in northern hemisphere (WOLFF et al., 

2010; GROOTES; STUIVER, 1997; DANSGAARD et al, 1993; HEINRICH, 1988; Figure 2B): 

These conditions resulted in a southward displacement of the ITCZ and, consequently, also of the 

SACZ, leading to increased monsoon rainfall mainly in southern Brazil. The northerly limit of 

the SACZ was probably south of our area, more than several hundred kilometers south of its 

present northerly limit (Figure 1). Millennial-scale precipitation variability is the dominant 

control in MIS 3, but in certain periods increased precipitation was also possibly related to the 

strengthening of the SAMS due to high summer insolation, mainly in the second and third period 

of mild climate (Figure 2), apparently in phase between δ13C values and ASI.    

 It is known that during the last precession cycle strong convective activity and upward 

motion resulted in enhanced condensational heating over the western Amazon Basin. This 

coincided with high ASI, which in turn intensified the upper-tropospheric Nordeste low and 
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resulted in large-scale subsidence and humidity reduction over eastern equatorial South America 

(CRUZ et al., 2009). This is the east-west dipole-like pattern of precipitation changes, also called 

of South American precipitation dipole (SAPD) (CHENG et al., 2013). It seems to be present in 

the PI record after the ~17.0 cal kyr BP event, followed by the same trend in northeastern Brazil, 

including antiphase with ASI. Since then, increased precipitation related to insolation occurred in 

periods of weak monsoon season when the ASI was low. However, it is not yet clear if orbital-

scale variability was the dominant control on precipitation; after the H1 and YD events, abrupt 

increases in temperature in the NH most likely caused changes in the Atlantic meridional 

overturning circulation and a displacement of SACZ to northward positions, leading to increased 

rainfall in central-eastern.   

 The SAPD can be probably applied to LGM (~27.8-18.9 cal kyr BP), with some 

consistency as seen in the records of the other regions; although in our study area precipitation 

was in phase (increased precipitation when ASI was high). However, we must also consider the 

millennial-scale precipitation variability, because in this period temperatures in the NH had 

already started to increase slightly. Thus, whether orbital and millennial-scale precipitation 

variability was simultaneously influenced by these factor or only by one them, is still difficult to 

determined.  

4.4 Conclusions 

 The precipitation pattern of central-eastern Brazil from ~60 to ~26 cal kyr BP seems to 

have been out of phase with western Amazonia and southern Brazil and in phase with 

northeastern Brazil; while from ~26 to ~17 cal kyr BP it was out of phase with western 

Amazonia, southern and northeastern Brazil. Since ~17 cal kyr BP to the present, the 

precipitation pattern became in phase with the latter region. This reflects that even under the 

dominant control of millennial-scale variations, summer insolation possibly played a more 

significant role during these last ~17 kyr, with humid climate during low summer insolation 

periods.  

 Precipitation changes were also accompanied by changes in temperature and stability of 

the catchment (local erosion): from ~60 to 39.2 cal kyr BP there were variations from sub-humid 

to dry climate amid colder than today, and high landscape instability in the mire's catchment; 

~39.2-27.8 cal kyr BP, dry and warm with cooling events and still landscape instability; ~27.8-
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16.4 cal kyr BP wet and ~16.4-6.6 cal kyr BP very wet, both very cold and with reduced 

landscape instability; ~6.6-3.3 cal kyr BP, very dry and warm with increasing catchment 

instability; <3.3 cal kyr BP, from dry and warm to sub-humid climate.  

  Current sub-humid climate and vegetation of Cerrado biome is relatively recent, probably 

establishing after ~3.3 cal kyr BP, but similar conditions may have been present in MIS 3. Today 

semi-deciduous forest, mountain forest and wet grasslands are relicts from wetter climate, since 

they were much more developed in previous phases (especially between ~27.8 and ~6.6 cal kyr 

BP). 

 Pinheiro mire certainly contains a sensitive record in comparison to other studied before, 

mainly due to its location which enabled to capture the constant fluctuation and displacement of 

the SACZ. Another factor to be considered is the potential of peatlands in storing information not 

only regarding the changes in precipitation, but also in temperature, vegetation changes and 

landscape stability. 
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APPENDIX A - Depth records of pH of the studied mountain mires from Serra do Espinhaço Meridional 

 
 
APPENDIX B - Depth records of gravimetric moisture content (GM, in percentage) for the studied cores of mires 

from Serra do Espinhaço Meridional 
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APPENDIX C - Depth records of (A) peat bulk density (BD) and (B) peat density without inorganic matter (BDO) in 
Mg m-3 for the studied cores of mires from Serra do Espinhaço Meridional 
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APPENDIX D - Depth records of (A) mineral material (MM, in percentage) and (B) minimum residue (MR, in 
m m-1) for the studied cores of mires from Serra do Espinhaço Meridional 
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APPENDIX E - Depth records of (A) unrubbed fibre (URF) and (B) rubbed fibre (RF) in percentage, for the studied 
cores of mires from Serra do Espinhaço Meridional 
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APPENDIX F - Depth record of von Post degree of peat decomposition (VP) for the studied cores of mires from the 
Serra do Espinhaço Meridional 
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APPENDIX G - Depth records of (A) total carbon (C) and (B) nitrogen (N) in percentage, for the studied cores of 
mires from the Serra do Espinhaço Meridional 
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APPENDIX H - Depth record of the C/N ratio for the studied cores of mires from the Serra do Espinhaço Meridional 
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APPENDIX I - Depth records of (A) Si and (B) Al in percentage for the studied cores of mires from the Serra do 
Espinhaço Meridional                                                                                                             (continues) 
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APPENDIX I - Depth records of (C) Ti in percentage and (D) Zr in μg g-1 for the studied cores of mires from the 
Serra do Espinhaço Meridional                                                                                            (conclusion) 
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APPENDIX J - Regional (total land pollen sum) palynological diagram of the PdF-I core. The filled silhouettes show the percentage curves of the taxa, while the 
open silhouettes show the 5× exaggeration curves. CONISS cluster analysis together with the Regional Palynological Zones (RPZ), and the 
estimated chronology are plotted as well. Values of trees, shrubs, trees/shrubs, herbs, herbs/shrubs, lianas and diverse are expressed as 
percentages of the total land pollen sum 
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APPENDIX K - Local (hydro-hygrophytes, pteridophytes and NPP) palynological diagram of the PdF-I core. The filled silhouettes show the percentage curves of 

the taxa, while the open silhouettes show the 5× exaggeration curves. CONISS cluster analysis together with the Local Palynological Zones 
(LPZ), and the estimated chronology are plotted as well. Values of hydro-hygrophytes and NPP are expressed as percentages of the total land 
pollen sum 
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APPENDIX L - Pollen types observed  in PdF-I core from Serra do Espinhaço Meridional, phytophysionomies belonging, preferences in terms of light and 
humidity and the main occurring environment                                                                                                                                          (continues) 

Pollen Types  Phytophysionomies *Selectivity to light  
and humidity 

Main occurring 
environment Family Genus/Species  1SDF 2SFS 3C 4DG 5WG 6RSG 

Herbs 
Alismataceae 
 

Sagittaria 
 

     X X heliophyte, hygrophyte wet grassland 

Amaranthaceae Amaranthus  X X X X X X heliophyte, hygrophyte 
to xerophyte 

grassland 

Amaranthaceae Gomphrena  X X X X X X heliophyte, hygrophyte 
to xerophyte 

grassland 

Apiaceae Eryngium 
 

 X X X  X X heliophyte to mesophyte, 
hygrophyte to xerophyte 

grassland  

Araceae 
 

Spathiphyllum 
 

 X  X  X  scyophyte, hygrophyte wet grassland 

Araceae   X  X  X X heliophyte to scyophyte, 
hygrophyte 

wet grassland 

Asteraceae Achyrocline  X X X X X X heliophyte, hygrophyte 
to xerophyte 

wet grassland 

Bromeliaceae   X X X   X heliophyte to scyophyte, 
hygrophyte to xerophyte 

environmental 
complexity 

Cyperaceae 
 

  X X X X X X heliophyte, hygrophyte wet grassland 

Eriocaulaceae Paepalanthus  
 

 X X X  
 

X X heliophyte, hygrophyte 
to xerophyte 

wet grassland 

Eriocaulaceae   X X X  
 

X X heliophyte, hygrophyte 
to xerophyte  

wet grassland 

Lentibulariaceae Utricularia  X X X  X X hygrophyte  wet grassland and 
mountain forest 

Loganiaceae Strychnos 
 

 X X X    heliophyte to mesophyte, 
hygrophyte to xerophyte 

savanna 
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APPENDIX L - Pollen types observed  in PdF-I core from Serra do Espinhaço Meridional, phytophysionomies belonging, preferences in terms of light and 
humidity and the main occurring environment                                                                                                                                     (continuation) 

Pollen Types  Phytophysionomies *Selectivity to light  
and humidity 

Main occurring 
environment Family Genus/Species  1SDF 2SFS 3C 4DG 5WG 6RSG 

Herbs 
Monocotiledonea   X X X X X X heliophyte to scyophyte, 

hygrophyte to xerophyte 
 

grassland 

Orobanchaceae Agalinis   X   X X heliophyte, hydrophyte wet grassland 

Orobanchaceae Buchnera 
lavandulaceae  

  X  X X X heliophyte, hygrophyte to 
xerophyte 

grassland 

Plantaginaceae Bacopa      X X heliophyte, hydrophyte wet grassland 

Plantaginaceae Plantago       X X heliophyte, hygrophyte to 
xerophyte 

wet grassland 

Rubiaceae Borreria  X X X X X X heliophyte, xerophyte grassland 

Rubiaceae Emmeorhiza  X  X    heliophyte, hygrophyte wet grassland 

Thyphaceae 
 

Typha 
 

     X  heliophyte, hydrophyte to 
hygrophyte 

wet grassland 

Xyridaceae Xyris   
 

X   X X heliophyte, hygrophyte to 
xerophyte 

wet grassland 

Herbs and Shrubs 
Asteraceae Baccharis  

 
 X X X X X X heliophyte, xerophyte to 

indifferent to the humidity 
grassland 

Asteraceae 
 

Bidens  
 

 X  X X X  heliophyte, xerophyte to 
indifferent to the humidity 

grassland 

Asteraceae Ichthyothere     X X  heliophyte, hygrophyte to 
xerophyte 

grassland 

Euphorbiaceae 
 

Croton 
 

 X X X X X X heliophyte to mesophyte, 
hygrophyte to xerophyte 

environmental 
complexity 

Lythraceae Cuphea  X X X X X X heliophyte, hydrophyte to 
xerophyte 

environmental 
complexity 
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APPENDIX L - Pollen types observed  in PdF-I core from Serra do Espinhaço Meridional, phytophysionomies belonging, preferences in terms of light and 
humidity and the main occurring environment                                                                                                                                     (continuation) 

Pollen Types  Phytophysionomies *Selectivity to light  
and humidity 

Main occurring 
environment Family Genus/Species  1SDF 2SFS 3C 4DG 5WG 6RSG 

Herbs and Shrubs 
Orobanchaceae   X X  X X X heliophyte to sciophyte,  

hydrophyte to xerophyte 
grassland 

Poaceae   X X 
 

X X X X heliophyte, hydrophyte to 
xerophyte 

environmental 
complexity 

Verbenaceae Lantana   X X X X X  heliophyte, hygrophyte to 
xerophyte 

grassland 

Herbs and Lianas 
Aristolochiaceae   X X X   X heliophyte to sciophyte, 

hygrophyte 
   humid forest 

Lianas 
Menispermaceae   X X X X X  heliophyte to 

sciophyte, xerophyte 
humid forest and savanna 

Shrubs 
Ericaceae Gaylussacia   X X X   X heliophyte, hygrophyte grassland   
Piperaceae Piper   X X X X X X heliophyte to 

sciophyte, hygrophyte 
humid forest 

Trees 
Araliacea Schefflera  X X X    heliophyte to 

sciophyte, hygrophyte 
to indifferent to the 
humidity 

humid and savanna 
forest  

Betulaceae Alnus  X X X    heliophyte, hygrophyte mountain forest 
(exotic) 

Cannabaceae Celtis   X  X    heliophyte, xerophyte 
to hygrophyte 

humid forest 

Cannabaceae Trema   X  X    heliophyte, xerophyte 
to hygrophyte 

humid forest 

Cunnoniaceae Weinmannia  X X     heliophyte, hygrophyte mountain forest 

Euphorbiaceae Alchornea  X  X    heliophyte to sciophyte, 
hygrophyte 

humid forest 
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APPENDIX L - Pollen types observed  in PdF-I core from Serra do Espinhaço Meridional, phytophysionomies belonging, preferences in terms of light and 
humidity and the main occurring environment                                                                                                                                     (continuation) 

Pollen Types  Phytophysionomies *Selectivity to light  
and humidity 

Main occurring 
environment Family Genus/Species  1SDF 2SFS 3C 4DG 5WG 6RSG 

Trees 
Fabaceae 
 

Anadenanthera 
 

 X  X    heliophyte to 
sciophyte, hygrophyte 
to xerophyte 

humid and savanna 
forest 

Fabaceae Mimosa 
scabrella 

       heliophyte, hygrophyte 
to indifferent to the 
humidity 

mountain forest  

Meliaceae 
 

Trichilia 
 

 X  
 

X    heliophyte, hygrophyte 
to indifferent to the 
humidity 

humid and savanna 
forest 
 

Moraceae Sorocea  X  X    heliophyte, hydrophyte humid forest 

Podocarpaceae 
 

Podocarpus 
 

 X  X    heliophyte to sciophyte, 
hygrophyte  

humid and mountain 
forest 

Rubiaceae Ferdinandusa   X X X   X heliophyte, hydrophyte 
or hygrophyte 

humid forest and 
savanna 

Rutaceae 
 

Zanthoxylum 
 

 X X X    heliophyte, xerophyte to 
indifferent to the 
humidity 

humid and savanna 
forest 

Winteraceae Drimys  X      heliophyte to sciophyte,  
hygrophyte 

mountain forest 

Trees and Shrubs 
Anacardiaceae Tapirira  X X X    heliophyte, indifferent to 

the humidity 
humid forest 

Anacardiaceae 
 

   X  X X X heliophyte to sciophyte, 
xerophyte to indifferent 
to the humidity 

environmental 
complexity 

Aquifoliaceae 
 

Ilex 
 

 X X  
 

 
 

 
 

X heliophyte to sciophyte, 
indifferent to the 
humidity 

humid and mountain 
forest 
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APPENDIX L - Pollen types observed  in PdF-I core from Serra do Espinhaço Meridional, phytophysionomies belonging, preferences in terms of light and 
humidity and the main occurring environment                                                                                                                                     (continuation) 

Pollen Types  Phytophysionomies *Selectivity to light  
and humidity 

Main occurring 
environment 

Family Genus/Species  1SDF 2SFS 3C 4DG 5WG 6RSG 

Trees and Shrubs 

Chloranthaceae Hedyosmum  X      heliophyte to sciophyte, 
hygrophyte 

humid and mountain 
forest  

Erytroxylaceae 
 

Erythroxylum  
 

 X X X X X X indifferent to the light 
conditions and humidity 

savanna and  humid 
forest 

Fabaceae Senna  X X X   X heliophyte, xerophyte to  
hygrophyte 

savanna 

Fabaceae 
 

Machaerium   X  X    heliophyte, hygrophyte 
to indifferent to the 
humidity 

savanna forest  

Malpighiaceae Byrsonima  X X X  X X heliophyte, xerophyte to 
hygrophyte 

savanna forest 

Myrsinaceae Myrsine   X X X    heliophyte, hygrophyte mountain forest 

Myrtaceae   X X X X X X heliophyte to 
sciophyte, hygrophyte 
to xerophyte 

humid and savanna forest 

Ochnaceae   X X X X X X heliophyte, hydrophyte 
to xerophyte 

savanna and humid forest 

Phillanthaceae Hyeronima 
 

 X  X 
 

   heliophyte to 
mesophyte,  indifferent 
to the humidity 

humid forest 

Rubiaceae Guettarda   X X X    heliophyte, hygrophyte 
to xerophyte 

savanna and humid forest 

Salicaceae   X X X   X heliophyte, hygrophyte 
to xerophyte 

humid and dry forest 

Urticaceae Cecropia   X X X    heliophyte, hygrophyte humid forest 
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APPENDIX L - Pollen types observed  in PdF-I core from Serra do Espinhaço Meridional, phytophysionomies belonging, preferences in terms of light and 
humidity and the main occurring                                                                                                                                                             (conclusion) 

Pollen Types  Phytophysionomies *Selectivity to light  
and humidity 

Main occurring 
environment 

Family Genus/Species  1SDF 2SFS 3C 4DG 5WG 6RSG 
Diverses 

Euphorbiaceae   X X X X X X heliophyte to 
mesophyte, hygrophyte 
to xerophyte 

environmental 
complexity 

Fabaceae   X X X X X X heliophyte to sciophyte,  
hygrophyte to 
indifferent to the 
humidity 

environmental 
complexity 

Malpighiaceae   X X X X X X heliophyte to sciophyte, 
hygrophyte to 
indifferent to the 
humidity 

environmental 
complexity  

Melastomataceae 
 

  X X 
 

X X X X heliophyte to indifferent 
to the light conditions, 
hydrophyte to xerophyte 

humid forest 

Proteaceae   X X X   X heliophyte to sciophyte, 
hygrophyte to xerophyte 

environmental 
complexity 

Rubiaceae Psycotria   X X X X X X heliophyte, hygrophyte humid and savanna 
forest 

Rubiaceae Rudgea   X X X   X heliophyte, hygrophyte humid and savanna 
forest 

Rubiaceae   X X X X X X heliophyte to sciophyte, 
hydrophyte to xerophyte 

environmental 
complexity 

1SDF: Semi-deciduous forest; 2SFS: “Cerrado Típico” - Savanna forest-shrubs; 3C: “Cerradão” - Savanna forest; 4DG: “Campo Limpo Seco” - Dry grassland; 5WG: 
“Campo Limpo Úmido” - Wet grassland; 6RSG: “Campo Rupestre” - Rupicola-saxicolous grassland.  
*Heliophyte – plant species tolerant to shade. Scyophyte – plant species from shaded places or diffuse light. Xerophyte – plant species adapted to dry climate. 
Hygrophyte – plant species adapted to humid environment. Hydrophyte – plant species totally or partly submersed in water. Mesophyte – plant species adapted to 
environment with regular rainfall.  
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APPENDIX M - Pteridophyte spores types observed  in PdF-I core from Serra do Espinhaço Meridional, phytophysionomies belonging, preferences in terms of 
light and humidity and the main occurring environment                                                                                                                           (continues) 

Spores Types  Phytophysionomies *Selectivity to light  
and humidity 

Main occurring 
environment Family Genus/Species  1SDF 2SFS 3C 4DG 5WG 6RSG 

Herbs 
Dennstaedtiaceae Pteridium 

 
 X X   X  heliophyte to sciophyte, 

hygrophyte to xerophyte 
 

environmental complexity; 
often colonize areas after 
fire. 

Gleicheniaceae Dicranopteris 
  
 

 X  X  X X heliophyte, hygrophyte 
to xerophyte 

opened and changed 
environment 

Hymenophyllaceae 
 

Trichomanes 
 

 X X X  X X sciophyte, hygrophyte humid environment, near 
water courses 
 

Lycopodiaceae 
 

Huperzia 
 

 X X X  X X heliophyte to sciophyte, 
hygrophyte to xerophyte 

within or on the edge of the 
gallery forest and grassland 

Polypodiaceae 
 

Polypodium 
 

 X X X  X X heliophyte to sciophyte, 
hygrophyte to xerophyte 

environmental complexity;  
ocurr in the gallery, savanna 
and mountain forests 

Pteridaceae 
 

Adiantum 
 

 X X X    heliophyte to sciophyte, 
hygrophyte to xerophyte 

occur in the understory of 
dense forests and the shores 
of lakes and streams 
 

Pteridaceae 
 

Notholaena 
 

 X X X    heliophyte to sciophyte, 
hygrophyte to xerophyte 

environmental complexity 

Pteridaceae 
 

Pityrogramma 
trifoliata 

 

 X X X    heliophyte, hygrophyte 
to xerophyte 

open environment 

Herbs and Subshrubs 
Dennstaedtiaceae Hypolepis 

 
 X     X heliophyte to sciophyte, 

hygrophyte to xerophyte 
mountain environment and 
gallery forest 
 

Pteridaceae Pityrogramma  
 

 X X X X X X heliophyte, hygrophyte 
to xerophyte 

opened and changed 
environment; occur in the 
forests next to large rivers or 
clearings 
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APPENDIX M - Pteridophyte spores types observed  in PdF-I core from Serra do Espinhaço Meridional, phytophysionomies belonging, preferences in terms of 
light and humidity and the main occurring environment                                                                                                                            (conclusion) 

Pollen Types  Phytophysionomies *Selectivity to light  
and humidity 

Main occurring 
environment Family Genus/Species  1SDF 2SFS 3C 4DG 5WG 6RSG 

Herbs and Lianas 
Polypodiaceae Microgramma 

 
 

 X  X    
 

heliophyte, hygrophyte canopy of dense forests and 
rarely in the understory; 
near watercourses 

Schizaeaceae 
 

Lygodium 
 

 X X X X X  heliophyte, hygrophyte 
to xerophyte 

open environmental; in the 
understory of gallery forests 
and on the banks of streams 
and slopes 

Selaginellaceae 
 

Selaginella 
 

 X X X 
 

  X heliophyte to 
sciophyte, hygrophyte 
to xerophyte 

canopy and understory of 
forests, near streams and 
peatlands 

Herbs and Tree Ferns 
Blechnaceae Blechnum  X X X  X X heliophyte to 

sciophyte, hygrophyte 
to xerophyte 

within swampy forest, forest 
edges and disturbed areas 

Subshrubs 
Pteridaceae 

 
Pteris 

 
 X  X  X  heliophyte to sciophyte, 

hygrophyte 
understory of dense forests, 
along streams or in open 
environment 

Trees 
Dennstaedtiaceae Dennstaedtia  X X X   X sciophyte, hygrophyte humid environmetal 

Tree Ferns 
Cyatheaceae 

 
Nephelea 

 
 X     X heliophyte to sciophyte, 

hygrophyte  
humid environmetal; in 
mountain and gallery forests 
and rocky outcrops 

1SDF: Semi-deciduous forest; 2SFS: “Cerrado Típico” - Savanna forest-shrubs; 3C: “Cerradão” - Savanna forest; 4DG: “Campo Limpo Seco” - Dry grassland; 5WG: 
“Campo Limpo Úmido” - Wet grassland; 6RSG: “Campo Rupestre” - Rupicola-saxicolous grassland.  
*Heliophyte – plant species tolerant to shade. Scyophyte – plant species from shaded places or diffuse light. Xerophyte – plant species adapted to dry climate. 
Hygrophyte – plant species adapted to humid environment. Hydrophyte – plant species totally or partly submersed in water. Mesophyte – plant species adapted to 
environment with regular rainfall.  
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APPENDIX N - Some plant genus found in Semi-deciduous and mountain forest from Serra do Espinhaço 
Meridional and respective pollen types  
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APPENDIX O - Some plant genus found in Cerradão - Savanna forest and Cerrado típico - Savanna forest-shrubs 
from Serra do Espinhaço Meridional and respective pollen types  
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APPENDIX P - Some plant genus found in Vereda - waterlogged grassland and wet grassland from Serra do 
Espinhaço Meridional and respective pollen types  
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APPENDIX Q - Some plant genus found in dry grassland and Campo Rupestre - Rupicolous-saxicolous grassland 
from Serra do Espinhaço Meridional and respective pollen types  
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APPENDIX R - Some bryophytes, pteridophytes and fungi spores and algae preserved in mountain mires from Serra 
do Espinhaço Meridional  
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APPENDIX S - Contents (in %) of ash, fibre, C and N; BD (in Mg m-3); concentrations (g kg-1) of S and P; and  δ13C and δ15N (in ‰) of the PdF-I core 
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APPENDIX T - Concentrations (in g kg-1) of Si, Al, Fe, Ti, K and Ca of the PdF-I core 
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APPENDIX U - Concentrations (in µg g-1) of Rb, Sr, Zr, Y, Nb, Mn, Ni, Cr, Cl and Br of the PdF-I core 
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APPENDIX V - Stratigraphy of the Pinheiro record. The horizons and layers are named according to the terminology 

of the Soil Survey Staff (2010) and differ in terms of organic matter stages of decomposition and 
consistency, texture of the mineral constituents and preserved features   
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APPENDIX W - Age–depth model of the Pinheiro record fitted with a smooth-spline function using Clam 
(BLAAUW, 2010). Blue blocks indicate a consitent linear peat accumulation (depth-age r2 0.99)  
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APPENDIX X - Factor loadings for the three components and fractionation of communalities of the variables used 
in the PCA of geochemical properties of Pinheiro record. The communality of each variable (i.e 
the proportion of its variance explained by each component) corresponds to the total length of the 
bar; the sections of the bars represent the proportion of variance in each component. The 
variables are ordered by the component with the largest share of variance. 1Eigenv: eigenvalues; 
2Var (%): percentage of explained variance; 3Var_ac: cumulative explained variance 
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APPENDIX Y - Regional (total land pollen sum) palynological diagram of the Pinheiro record. The filled silhouettes show the percentage curves of the taxa, 
while the open silhouettes show the 20× exaggeration curves. CONISS cluster analysis together with the Regional Palynological Zones (RPZ), 
and the estimated chronology are plotted as well. Values are expressed as percentages of the total land pollen sum. The black dots indicate 
values lower to 0.16%  
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APPENDIX Z - Local (hydro-hygrophytes, pteridophytes and NPP) palynological diagram of the Pinheiro record. The filled silhouettes show the percentage 
curves of the taxa, while the open silhouettes show the 20× exaggeration curves. CONISS cluster analysis together with the Local Palynological 
Zones (LPZ), and the estimated chronology are plotted as well. Values are expressed as percentages of the total land pollen sum. The black dots 
indicate values lower to  0.19% 
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