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RESUMO 

Sensoriamento remoto e próximo para caracterização da mineralogia do solo  

A mineralogia é a engrenagem dos processos do solo, desempenhando um papel 

fundamental em questões relevantes para a humanidade. Porém, o acesso às análises 

mineralógicas é difícil devido à dificuldade de aquisição pelos métodos tradicionais e formas 

alternativas de alcançá-las devem ser exploradas. Esta tese foi dividida em dois capítulos que 

visaram: 1) Compreender os fundamentos das interações da energia na informação do pXRF 

com ênfase nas formas de ferro, umidade e matéria orgânica do solo para uso na ciência do 

solo e 2) Mapear as abundâncias dos minerais predominantes para todo o território Brasileiro,  

em superfície e subsuperfície. Para atingir o primeiro objetivo, três tratamentos de dissolução 

seletiva foram aplicados para remover: (i) matéria orgânica do solo (−MOS), ii) MOS e 

formas de ferro pouco cristalinas (−o), iii) MOS e as formas de ferro pouco cristalinas e 

também as formas bem cristalinas de ferro (−d). Um tratamento adicional iv) incluindo a 

adição de água (+ W) também foi realizado. O pXRF foi capaz de detectar alterações pelos 

tratamentos de dissolução seletiva e distribuição granulométrica do solo. Os teores de 

caulinita, gibbsita, Fe2O3, Al2O3, SiO2, TiO2 e MnO foram quantificados com acurácia 

satisfatória (0,61 <R2 <0,97). Fontes de incerteza, principalmente a umidade do solo, devem 

ser consideradas nas análises. A compreensão dos fundamentos da interação da energia com a 

matriz da amostra na faixa de raios X é o ponto de partida para a caracterização do solo por 

meio de pXRF. Para atingir o segundo objetivo, a Biblioteca de Espectral Solos do Brasil 

(BESB) com dados espectrais no Vis-NIR-SWIR foi utilizada para acessar a abundância de 

hematita (Hem), goethita (Gt), caulinita (Kt) e gibbsita (Gbs) em amostras de solo do Brasil. 

Os atributos do terreno (TA) e uma imagem sintética do solo (SySI) com pixel de solo 

exposto de imagens multitemporais do Landsat (1984 a 2020) foram usados como preditores. 

Uma nova abordagem foi realizada a fim de obter uma imagem de solo exposto para todo o 

território brasileiro. O modelo Random Forest foi utilizado na predição espacial para obtenção 

dos mapas minerais e sua incerteza por procedimento de bootstrapping. O Hem apresentou os 

modelos mais acurados com R2 variando de 0,48 a 0,56, seguido por Gbs (0,42 a 0,44), Kt 

(0,20 a 0,31) e Gt (0,16 a 0,26). A abordagem proposta foi capaz de revelar a distribuição 

espacial da abundância relativa de minerais para o território brasileiro. Os mapas minerais 

estavam de acordo com mapas legados de geologia e pedologia e também com as condições 

de clima e terreno. A abordagem proposta é um método eficiente para obter informações de 

mineralogia para grandes áreas.  

Palavras-chave: Mapemento digital de solos, Pedometria, Espectroscopia de solos, pXRF 
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ABSTRACT 

Proximal and remote sensing to soil mineralogy assessment   

 

The mineralogy is the gear of soil processes, playing a fundamental role in relevant 

issues for humanity. However, access to mineralogical analyses is difficult due the difficulty 

of acquisition through traditional methods and alternative forms to reach it must be explored. 

This thesis was divided in two chapters that aimed: 1) To understand the fundamental 

interactions of the energy on pXRF information with emphasis on iron forms, moisture and SOM 

for use on soil science and 2) To map the abundances of major soil mineralogical components 

for the whole Brazilian territory at the surface and subsurface. In order to reach the fist 

objective, three selective dissolution treatments were applied to remove: (i) soil organic 

matter (−SOM), ii) SOM and poorly crystalline iron forms (−o), iii) SOM and poorly 

crystalline plus well crystalline iron forms (−d). One additional treatment iv) including water 

addition (+W) was also carried out.  The pXRF was able to detect changes caused by the 

selective dissolution treatments and soil particle size distribution. The kaolinite, gibbsite, 

Fe2O3, Al2O3, SiO2, TiO2 and MnO contents were quantified with satisfactory accuracy (0.61 

< R2 < 0.97). Sources of uncertainty, mainly soil moisture, must be considered. The 

understanding of the fundamentals of energy interaction with the sample matrix in the X-ray 

range is the starting point for characterizing the soil through pXRF. In order to reach the 

second objective, The Brazilian Spectral Library (BSSL) with Vis-NIR-SWIR spectral data, 

was used to assess the relative amounts of hematite (Hem), goethite (Gt), kaolinite (Kt) and 

gibbsite (Gbs) in soil samples from Brazil. Terrain attributes (TA) and a synthetic soil image 

(SySI) with bare soil pixel from multitemporal Landsat images (1984 to 2020) were used as 

predictors. A novel approach was performed in order to obtain a bare soil image for the whole 

Brazilian territory.  The model Random Forest (RF) was used for spatial prediction to obtain 

the mineral maps and their uncertainty by bootstrapping procedure. The Hem presented the 

more accurate results in RF models with R2 ranging from 0.48 to 0.56, followed by Gbs (0.42 

to 0.44), Kt (0.20 to 0.31) and Gt (0.16 to 0.26).  The proposed approach was able to reveal 

the spatial distribution of the relative abundance of minerals for the Brazilian territory. The 

mineral maps were in accordance with geology and soil legacy maps and also with the climate 

and terrain conditions. The approach proposed is an efficient method to obtain mineralogy 

information for large areas. 

 

Keywords: Digital soil mapping, Pedometric, Soil spectroscopy, pXRF 
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1. GENERAL INTRODUCTION 

The physical, chemical and biological soil processes are essential for the humanity due their 

relationship to food, fiber and wood supply, climate, flood and water regulation, cultural issues and supporting 

for nutrient cycling and soil formation (Adhikari et al., 2014; Jónsson and Davíðsdóttir, 2016). Soil is also the 

largest terrestrial reservoir of C (Stockmann et al., 2013). In this way, the optimization of soil management 

practices contributes to food security and sustainability (Shah and Wu, 2019) and the knowledge about soil 

attributes is essential to determine their potentials, limitations and make management decisions (Bouma, 2020).  

The mineralogy is the gear of all soil processes. Clay minerals and iron and aluminum oxide minerals 

are related to cation exchange capacity, aggregation and structure, organic matter dynamic, water retention, 

adsorption of phosphorus, among others (Gérard, 2016; Gilkes and Prakongkep, 2016; Santos et al., 2017; Zhao 

et al., 2017). However, the traditional methods to mineralogical characterization, such as X-ray diffraction 

(XRD) are laborious, expensive, time consuming, and only provide qualitative or semi-quantitative information 

(Chipera and Bish, 2001; De Souza Bahia et al., 2015; Viscarra Rossel, 2011). Because of it, the mineralogical 

analysis always was restricted for scientific research level and not commercially available, being few used for 

the comuns users, such as farmers.  

In this context, alternative methods for soil mineralogy characterization come necessary and the 

proximal and remote sensing techniques can be employed as an efficient tool to reach it (De Souza Bahia et al., 

2015; Silva et al., 2021; Viscarra Rossel, 2011). The portable X-ray fluorescence (pXRF) spectrometry sensors 

access the total elemental content of samples, making possible a simultaneous multi-elemental characterization, 

with good accuracy and capacity to detect substantial concentration, being easy to use and able to perform 

analyses directly in the field (Silva et al., 2021). While, the diffuse reflectance spectroscopy, in the Vis-NIR-

SWIR range, has  specific wavelengths related to the electronic and vibrational transition caused by clay 

minerals and iron and aluminum oxide minerals (Fang et al., 2018). The spectroscopy in this range is a rapid and 

environmental friendly method for soil attributes estimation (Soriano-Disla et al., 2014). These specific 

wavelengths can be used to access the abundances of each mineral by equations or models and it can be 

spatialized by digital soil mapping procedures plus remote sensed data (Mendes et al., 2021; Poppiel et al., 2020; 

Silva et al., 2020; Viscarra Rossel, 2011; Viscarra Rossel et al., 2010).  

The evolution of the understanding of pXRF is fundamental to continue the study of soil mineralogy 

due the close relation between the total elemental contents of soil sample and its mineralogy. On the other hand, 

there is few spatial information about the soil mineralogy and the information obteined from Vis-NIR-SWIR 

data can be spatialized by digital soil mapping procedures in  order to reach it (Viscarra-Rossel et al., 2011). 

Mineralogy maps for Brazilian territory are almost non-existent.  

This thesis was divided in two scientific papers (chapters) that aimed: 

1)  To understand the fundamental interactions of the energy on pXRF information with emphasis on 

iron forms, moisture and SOM for use on soil science; 

2) To map the abundances of major soil mineralogical components for the whole Brazilian territory at 

the surface and subsurface; 
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2. THE FUNDAMENTAL OF THE EFFECTS OF WATER, ORGANIC MATTER, 

AND IRON FORMS ON THE pXRF INFORMATION IN SOIL ANALYSES 

 

ABSTRACT 

Portable X-ray fluorescence (pXRF) has great potential for numerous applications in soil science. 

However, the basic knowledge about the effects of soil properties on pXRF spectra are still poorly studied, 

which may lead users to biased interpretations of mathematical models. The present study aimed to evaluate the 

outcomes of moisture, soil organic matter content (SOM), and iron forms on pXRF data. The work was 

conducted with seventeen soil samples from the central region of São Paulo state (Brazil). Three selective 

dissolution treatments were applied to remove: (i) soil organic matter (−SOM), ii) SOM and poorly crystalline 

iron forms (−o), iii) SOM and poorly crystalline plus well crystalline iron forms (−d). One additional treatment 

iv) including water addition (+W) was also carried out. The effects of treatments were evaluated for sandy and 

clayey samples. Soil particle size distribution and elemental content affected the bremsstrahlung and 
characteristic peaks counts. In +W, there was a generalized decrease in counts mainly for the light elements 

(magnesium, aluminum and silicon). Regarding the selective dissolution procedures, alterations were verified, 

reflecting mainly the removal power of reagents. Generally, the most pronounced alterations occurred for −d and 

moderate alterations for −SOM and −o. The pXRF data showed high correlation with particle size distribution 

and mineralogy attributes. The kaolinite, gibbsite, Fe2O3, Al2O3, SiO2, TiO2 and MnO contents were quantified 

with satisfactory accuracy (0.61 < R2 < 0.97). The pXRF was able to detect changes caused by the selective 

dissolution treatments and soil particle size distribution. Sources of uncertainty, mainly soil moisture, must be 

considered. The understanding of the fundamentals of energy interaction with the sample matrix in the X-ray 

range is the starting point for characterizing the soil through pXRF. 

 

Keywords: Proximal sensing; Soil mineralogy; Chemometrics; Tropical soils 

 

Published as: Rosin, N.A., Demattê, J.A.M., Leite, M.C.A., Carvalho, H.W.P, Costa, A.C., Greschuk, L.T., 

Curi, N., Silva, S.H.G. The fundamental of the effects of water, organic matter, and iron forms on the pXRF 

information in soil analyses. Catena 105868. https://doi.org/10.1016/j.catena.2021.105868 

 

2.1. Introduction 

The optimization of soil management practices contributes to high crop productivity and, 

consequently, to food security and sustainability (Shah and Wu, 2019). Knowledge about soil attributes is 

essential to determine their potentials, limitations and make management decisions (Bouma, 2020). However, 

soil characterization is predominantly carried out via wet chemistry and particle size distribution analyses, with 

mineralogical analyses being less used by users, even in recent studies using Proximal Sensing (PS) (Afriyie et 

al., 2020, Allo et al., 2020, Andrade et al., 2020a, Andrade et al., 2020b, Barthès et al., 2020, Benedet et al., 

2020, Biney et al., 2020, Costa et al., 2020, Gomez et al., 2020, Ma et al., 2021, Mammadov et al., 2020, Xu et 

al., 2020). Mineralogical analyses are essential for understanding the dynamics of water and nutrients in soils (da 

Costa et al., 2020, Souza et al., 2017), especially in tropical environments, where Oxisols cover approximately 

40% of the Brazilian territory (Anjos et al., 2012) and almost 50% of Sub–Saharan Africa territory (Dewitte et 

al., 2013). For instance, effects of the contents of iron and aluminum oxide minerals on soil aggregation and 

consequently on their permeability were demonstrated by Pinheiro-Dick and Schwertmann, 1996, Lima and 

Anderson, 1997, Ferreira et al., 1999, Muggler et al., 2007. 
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In this respect, the focus of the laboratories for users at international level is in soil fertility attributes. 

This is due to several issues, both historical and, mainly, the difficulties in analyzing soil mineralogy (Kunze and 

Dixon, 1986). Initially, the mineralogy was analyzed via X-ray diffractometers that assess soil crystalline 

minerals (Whittig, 1965). However, such technique, which is the basis for mineralogical studies, has limitations 

such as sample preparation and equipment that is difficult to access and use (Chipera and Bish, 2001, McManus, 

1991). This approach has led such analyses to be restricted to the research level, and whose users focus on 

interpretation of data analyses, in detriment to the use of information by common users (i.e., farmers). Hence, the 

insertion of soil mineralogy as an essential piece of information for the agronomic community is not as 

ubiquitous as it could be. With the advent of numerous technologies, such as remote sensing, PS and 

computational processing and interpretation, this problem tends to decrease (Demattê et al., 2004). In this 

context, it has been shown that spectral bands at the mid-infrared (Mid-IR) and visible, near infrared, and 

shortwave infrared (Vis-NIR-SWIR) can be employed to predict a large number of soil attributes (Soriano-Disla 

et al., 2014). 

The Vis-NIR-SWIR and Mid-IR ranges are mainly related to molecular vibrations (Soriano-Disla et 

al., 2014). However, due to the low energy intensity, they do not reach the atomic level (Soriano-Disla et al., 

2014), impacting on the non-detection of the total content of each element. Therefore, within the wide range of 

applications of PS, special attention should be paid to the bands with the highest energy which have greater 

strength to cause atomic changes and consequently be detected (Silva et al., 2021, Weindorf et al., 2014). The X-

ray fluorescence (XRF) spectrometry relies on electronic transitions at the atomic level, which brings elemental 

specificity (Silva et al., 2021, Weindorf et al., 2014). The elemental identification and quantification are possible 

because the rate of fluorescence emission is directly proportional to the concentration of each element (Weindorf 

et al., 2014). The portable X-ray fluorescence (pXRF) spectrometry sensors make possible a simultaneous multi-

elemental characterization, with good accuracy and capacity to detect substantial concentration, being easy to 

use and able to perform analyses directly in the field (Silva et al., 2021, Zhu et al., 2011). 

For soils from tropical environments, there are accurate results for prediction of the pseudo-total 

content (determined by incomplete digestion procedures) of iron (R2 of the best regression/model = 0.98), 

chromium (0.91), manganese (0.72), calcium (0.84), copper (0.81), nickel (0.86), titanium (0.99), vanadium 

(0.72), phosphorus (0.97), among others (Silva et al., 2019, Silva et al., 2020). Santana et al. (2018) predicted the 

soil pseudo total content of iron with high accuracy in laboratory (R2 = 0.96) and field (R2 = 0.91) conditions. 

The pXRF can also be used, by inference, to predict clay (R2 of the best model = 0.91), sand (0.85), soil organic 

matter (SOM) (0.72), total nitrogen (0.60), cation exchange capacity (CEC) (0.75), and exchangeable/available 

content of calcium (0.91), cupper (0.61), magnesium (0.85), manganese (0.86) and potassium (0.90) (Andrade et 

al., 2020a, Andrade et al., 2020b, Tavares et al., 2020, de Lima et al., 2019). 

However, certain soil properties and analytical conditions interfere in the interaction between pXRF 

energy and the sample matrix (Ge et al., 2005, Ribeiro et al., 2017, Sahraoui and Hachicha, 2017). 

Understanding the relationships between the main properties of the soil, such as mineralogy, SOM and water, 

can bring light to the interpretations of the results obtained by the pXRF. In fact, most soil studies focus on the 

quantification of elements and not on the fundamentals. Observing the literature, there are no studies showing 

the effect of different forms of iron on the pXRF spectra. How to really understand mineralogy without this basic 

knowledge? Scientific foundations on soil science becomes necessary in view of the large production of soil data 
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without new knowledge production (Wadoux et al., 2021). Therefore, such investigations are needed especially 

in tropical soils, since their unique structure is composed of microaggregates, which in turn is influenced manly 

by the clay mineralogy (especially gibbsite), iron forms and SOM. In such soils, structure is more important than 

texture in terms of physico-hydrical behavior (Silva et al., 2021). 

The evolution of the understanding of pXRF for soil analyses is fundamental to continue the study of 

soil mineralogy. The hypothesis is that pXRF has sufficient energy to identify iron forms, thus assisting in soil 

mineralogy understanding. Also, it is expected that moisture causes interference and must be considered on the 

data evaluation. Thus, the objective of this study was to understand the fundamental interactions of the energy on 

pXRF information with emphasis on iron forms, moisture and SOM for use on soil science. 

 

2.2 Material and methods 

2.2.1 Study area and sample collection 

This study was conducted with seventeen soil samples from the central region of São Paulo state (Brazil), 

between the coordinates 22°45′ − 22°70′ S and 48°60′ −49°47′ W, covering the municipalities of Bauru, Lençóis 

Paulista and Macatuba, emphasizing that such soil samples represent the major soils of the region (1.702 Km2) 

(Instituto Brasileiro de Geografia e Estatística, 2020). The soils of the study region are geologically derived from 

basic eruptive rocks of the Serra Geral (Early Cretaceous) formation, which overlap the Botucatu (Jurassic-

Cretaceous) formation. The latter consists of fine to coarse sandstones. In this region, geological material from 

the Bauru group is also observed, which is superimposed on the rocks of the Serra Geral (Late Cretaceous) 

formation (Demattê et al., 2007, Fernandes et al., 2010). The samples were collected at 0–20, 40–60 and 80–100 

cm depths, from 13 sampled representative soil profiles, according to Empresa Brasileira de Pesquisa 

Agropecuária (1995). The samples were from Rhodic Hapludox, Typic Hapludox, Typic Quartzipsamments and 

Typic Paleudalf soils (Table 1) (Soil Survey Staff, 2014). The flowchart of the methodology can be found in Fig. 

1 and more detailed information about the study sites were provided by Demattê et al. (2007) and Silvero et al. 

(2020). 

 

Table 1: Description of soil samples.  

Soil profile Sample  Soil Type  Depth (cm) Texture 

P1 RH1 (B) 

Rhodic Hapludox (RH) 

40-60  Clayey 

P2 
RH2 (A) 0-20  Clayey 

RH2 (B) 40-60  Clayey 

P3 TE1 (B) 
Typic Eutrustox (TE) 

40-60  Clayey 

P4 TE2 (B) 40-60  Clayey 

P5 
TH1 (A) 

Typic Hapludox (TH) 

0-20  Clayey 

TH1 (B) 40-60  Clayey 

P6 
TH2 (A) 0-20  Sandy 

TH2 (B) 40-60 Clayey 

P7 TH3 (B) 40-60  Sandy 

P8 
TH4 (B) 40-60  Clayey 

TH5 (A) 0-20  Sandy 

P9 TH5 (B) 40-60  Clayey 

P10 TP1 (C) 
Typic Paleudalf (TP) 

80-100  Sandy 

P11 TP2 (B) 40-60  Sandy 

P12 TQ1 (B) 
Typic Quartzpament (TQ) 

40-60  Sandy 

P13 TQ2 (B) 40-60  Sandy 
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Fig. 1. Flowchart of methodology. -SOM = soil organic matter removal, -o = SOM and poorly crystalline iron 

removal, -d = SOM and poorly crystalline plus free crystalline iron removal; +W = water addition. 

 

2.2.2 Laboratorial analyses 

For laboratory analyses, the soil samples were air-dried, ground, and passed through a 2 mm sieve. The soil 

chemical analyses performed included: (a) clay, sand and silt contents (particle size distribution), using the 

pipette method (NaOH - dispersant solution) (Teixeira et al. 2017); (b) soil organic matter content (SOM) 

determined by the Walkley-Black oxidation method (Walkley and Black, 1934); (c) pH in water, soil acidity 

(exchangeable/available aluminum and hydrogen) and exchangeable/available calcium, magnesium, potassium 

and phosphorus contents were determined in addition to the sum of bases (SB), cations exchange capacity 

(CEC), saturation of bases (V%) and saturation of aluminum (m%) calculated according to van Raij et al. (2001); 

(d) pseudo total iron (Fe2O3), aluminum (Al2O3) and silicon oxides (SiO2) contents were determined by sulfuric 

acid digestion (Empresa Brasileira de Pesquisa Agropecuária, 1997); (e) Ki (SiO2/Al2O3) and Kr [SiO2/(Al2O3 + 

Fe2O3)] were calculated using Fe2O3, Al2O3 and SiO2 contents divided by their molar weight; (f) poorly 

crystalline iron (Feo) content was determined after selective dissolution with ammonium oxalate solution (10 mL 

at 0.2 M) (McKeague and Day, 1966); (g) poorly crystalline plus well crystalline iron (Fed) were obtained after 

selective dissolution with sodium citrate-dithionite-bicarbonate solution (Holmgren, 1967); (h) kaolinite (Kt) and 

gibbsite (Gb) contents were determined by differential thermal analysis (Dixon et al., 1989, McKeague and Day, 

1966); (i) Silicon and aluminum poorly crystalline materials were determined after selective dissolution with 

boiled 0.5 N KOH (Si + Al); (j) other clay minerals (V + M) were calculated by the equation: other clay minerals 

(%) = 100 – (Kt + Gb + iron oxides). 
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2.2.3 Treatments 

The soil samples without treatment were called control. Three selective dissolution treatments and one water 

addition treatment were performed in order to verify spectral changes (Fig. 1). The selective removal procedures 

were carried out according to Jackson (1969) and more detailed information can be found in Demattê and Garcia 

(1999): (i) SOM removal treatment (−SOM): first, 40 mL of H2O2 (30%) were mixed with soil samples (20 g), 

promoting the cold reaction. After, the hot reaction was carried out by adding sodium acetate, followed by 

shaking and centrifugation at 1400 rpm. The samples were then washed with ethanol. (ii) SOM and poorly 

crystalline iron removal treatment (−o): after SOM removal, the poorly crystalline iron was removed by acid 

ammonium oxalate (0.2 M) in the dark. The samples were then washed with ethanol. (iii) SOM and poorly 

crystalline plus well crystalline iron removal treatment (−d): after SOM removal, 40 mL of citrate solution (0.3 

M) and sodium bicarbonate (1 M) were added, followed by heating and 1 g of sodium dithionite was added. 

After mixing, 10 mL of acetone, and 10 mL of sodium chloride saturated solution were added. The 

centrifugation was carried out at 1400 rpm and the supernatant material was discarded. Detailed information 

about the removal effect of each treatment can be found in Table A.1. Besides, before pXRF measurements, a 

treatment with water addition was performed: (iv) Water addition treatment (+W): 0.5 mL of pure water was 

added in a small amount to soil samples (5 g). This amount of water/soil was adequate to evaluate the influence 

of water in Mid-IR in a previous study (Silvero et al., 2020). 

 

2.2.4. pXRF analyses 

The analyses were carried out in a portable X-ray fluorescence (pXRF) spectrometer Olympus Delta 

Professional (Olympus Corporation, Waltham, MA, USA), with two excitation modes (EM). The first EM 

employed 40 keV, 91.1 μA, and is equipped with a 2 mm aluminum filter, which is most suitable to quantify the 

following elements: vanadium, chromium, iron, cobalt, nickel, copper, zinc, tungsten, mercury, arsenic, lead, 

bismuth, rubidium, uranium, strontium, zirconium, yttrium, aurum, thorium, niobium and, molybdenum and 

secondarily: titanium and manganese. The second EM employed 10 keV and 80.5 μA, which improves the signal 

of light elements (mainly magnesium, aluminum and silicon) and quantifies the following elements: magnesium, 

aluminum, silicon, phosphorus, sulfur, chlorine, calcium, titanium and manganese. About 5–15 g of the samples 

were placed in a 20 μm polyethylene bag and submitted to analysis in a platform with protection for X-rays 

emission. The pXRF Delta Professional is furnished with a 50 keV silver X-ray anode and a silicon drift 

detector, with 2048 channels. The precision for quantified elements can be seen in Table A.2. 

 

2.2.5 Spectral processing and quantitative analyses 

For spectral descriptive analyses, the samples were stratified into two classes: sandy (≤250 g kg−1 of 

clay) and clayey (>250 g kg−1 of clay) (Demattê and Demattê, 2009) (Table 1). The EM1 in the range from 4 to 

40 keV and the EM2 from 0 to 8 keV average spectra for each textural class were assessed. The counts rate of (i) 

characteristic peaks of each element (ii) scattering peaks (Compton and Thomsom) and (iii) background intensity 

were evaluated. The objective of qualitative analyses was to evaluate visually the spectral effects caused by 

particle size distribution and selective dissolution treatments. The total content of copper, zinc, magnesium, 

aluminum, silicon, titanium, iron and manganese were determined using the Geochem mode. The Geochem 

mode determines the elemental contents based on the count rate of characteristic peaks of each element, and has 
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a Compton normalization method to correct the matrix effects and operates in the two EM mentioned above 

(Stockmann et al., 2016). The average contents for each texture class and treatments were presented together 

with the raw spectral information. 

In order to identify the relationships between the pXRF channels and soil attributes, Pearson's 

correlation analysis was carried out between spectral data and soil attributes of control samples. Other papers, 

such as Silvero et al. (2020), also used the Pearson Correlation to evaluate the relation between soil attributes 

and spectral data. With the objective of eliminating the blank zones (regions in which the pXRF detector did not 

register signals), the region from 0 to 7.25 keV from EM2 and the region from 7.25 to 24 keV for EM1 were 

selected for Pearson’s correlation. Linear Regression (LR) analysis was carried out between the elemental 

contents from pXRF Geochem mode (iron, silicon, aluminum, titanium and manganese) and the soil 

mineralogical attributes. Also, a linear equation was generated for Kt, Gb, SiO2, Al2O3, TiO2, MnO and Fe2O3 

contents. The parameter of accuracy evaluation employed were the coefficient of determination (R2), with 

significance value (p) of 0.005, and the root mean square error (RMSE). Statistical analyses were performed 

using the R software, version 4.0 (R Development Core Team, 2020). 

 

2.3 Results 

2.3.1 Descriptive analyses of laboratory data 

 

The soil particle size distribution and chemical attributes had large variation between samples (Fig. 2). 

The soil particle size contents varied from 30 to 860 g kg−1 and from 80 to 870 g kg−1, for sand and clay contents, 

respectively (Fig. 2a). The SOM content varied from 9 to 21 g kg−1 (Fig. 2b). Expressive variations were also 

verified for the chemical attributes (pH, calcium, magnesium, potassium, phosphorus, aluminum, hydrogen, SB, 

CEC, V% and m%) (Fig. 2c). Briefly, the CEC showed values ranging from 2.40 to 34.30 cmolc kg−1. 
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Fig. 2. Boxplots of soil particle size distribution (a), soil organic matter (SOM) (b), chemical (c) and 

mineralogical (d) attributes. SOM = soil organic matter; ex-: exchangeable/available form; SB = sum of bases; 

CEC = cations exchange capacity at pH 7; Feo = poorly crystalline iron forms; Fed = poorly plus well crystalline 

iron forms; Kt = kaolinite; Gb = gibbsite; Si + Al = silicon and aluminum poorly crystalline material; V + M = 

other clay minerals. 
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Table 2. Descriptive statistics of soil particle size distribution and chemical attributes for sandy and clayey samples.   

 

 

 

 

 

 

 

 

 

Where: Min = minimum value; Max = maximum value; SD= standard deviation; SOM = soil organic matter; ex-: exchangeable/available forms SB = sum of bases; CEC = 

cations exchange capacity; V% = bases saturation; m% = aluminum saturation.             

Table 3. Descriptive statistics of mineralogical analyses and weathering indexes for sandy and clayey samples. 

 

 

 

 

 

 

 

 

 

Where: Min = minimum value; Max = maximum value; SD = standard deviation; S/C = silt/clay; Ki = Ki index; Kr = Kr index; Feo = poorly crystalline iron forms; Fed = 

poorly crystalline and free crystalline iron forms; Kt = kaolinite; Gb: gibbsite; V+M = other clay minerals; Si+Al = silicon and aluminum poorly crystalline material.

 Sand Silt Clay  pH H2O     SOM  ex-P  ex-K ex-Ca ex-Mg ex-Al ex-H SB CEC  V%  m% 

                       Sandy samples 

 ..........g kg-1..........    g kg-1  Ug kg-1  .................................. cmolc kg-1 ....................................  ...................%................. 

Mean 769 61 170  5.5  12.6  6.6  0.09 3.56 2.36 0.77 2.29 6.10 8.30  49  29 

Min 660 40 80  4.4  9.0  3.0  0.02 0.50 0.10 0.00 0.20 0.60 2.40  11  0 

Max 860 100 240  7.2  21.0  21.0  0.31 19.00 15.00 3.00 6.20 34.10 34.30  99  77 

SD 78 23 66  0.9  4.2  6.5  0.10 6.82 5.58 1.14 2.10 12.40 11.58  34  35 

                          Clayey samples 

 ..........g kg-1..........    g kg-1  Ug kg-1  .................................. cmolc kg-1 .................................... ...................%................. 

Mean 392 104 504  5.3  15.9  5.6  0.05 2.71 0.91 0.73 5.64 3.66 9.30  45  25 

Min 30 40 270  4.5  10.0  1.0  0.01 0.30 0.20 0.00 0.20 0.60 4.50  6  0 
Max 620 130 870  6.6  21.0  23.0  0.15 5.80 2.30 2.80 23.70 8.20 25.10  97  75 

SD 204 31 192  0.7  4.0  6.8  0.05 2.13 0.77 0.99 6.67 2.87 6.13  33  32 

 S/C Ki Kr  Kt  Gb  V+M  Si+Al SiO2 Al2O3 TiO2 MnO Fe2O3 Fed  Feo  
 Sandy samples 

     ............................................................................... % .......................................................................  

Mean 0.41 1.68 1.32  10.0  2.5  1.4  1.4 5.7 5.9 2.1 0.03 3.4 3.1  1.2  

Min 0.20 0.83 0.63  4.9  1.2  4.0  1.0 2.5 2.5 6.0 0.01 7.0 7.0  2.0  

Max 0.75 2.36 1.79  13.4  5.0  2.4  3.7 10.0 7.4 5.6 0.05 8.6 5.3  3.6  

 SD 0.51 0.41  3.4  1.6  7.0  1.5 2.5 18 17 0.01 2.7 1.9  1.1  

Clayey samples 

     ............................................................................... % .......................................................................  

Mean 0.22 1.68 1.02  27.3  6.1  3.3  2.2 14.4 14.2 4.5 0.09 14.3 11.7  4.4  

Min 0.11 1.32 0.68  14.0  1.1  1.4  3.0 4.0 4.6 3.1 0.05 8.1 7.5  1.7  

Max 0.44 2.11 1.30  45.2  19.1  10.4  5.7 24.4 22.6 7.0 0.13 25.4 15.3  8.0  

SD 0.10 0.27 0.19  9.6  5.3  2.7  1.6 7.1 6.0 1.3 0.03 6.3 3.1  2.0  
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In the mineralogical analyses, it was verified great differences among samples for some attributes, 

mainly for Kt, Fe2O3, Fed and SiO2 contents (Fig. 2d). The Kt, Gb, V+M and Si+Al contents presented values 

from 4.9 to 45.2, 1.1 to 19.1, 0.4 to 10.4 and 0.1 to 5.7%, respectively. These results are in accordance with the 

differences observed in the Al2O3, SiO2, TiO2, MnO and Fe2O3 values that ranged from 2.5 to 24.4, 25 to 25.5, 

0.6 to 7.0, 0.01 to 0.13 and 0.7 to 25.4%, respectively. The Feo and Fed contents showed values ranging from 

0.2 to 8.0 and from 0.7 to 15.3 g kg−1, respectively. 

Seven samples were allocated into sandy class and 10 into clayey class (Table 1). The sandy samples 

were generally from the less weathered soil classes (TQ and TP) and also from the A and C horizons of TH. 

Conversely, the clayey samples corresponded to more weathered soils classes (TH, RH and TE). The chemical 

attributes showed some variation with textural class (Table 2). Briefly, there were increases for clayey samples 

of 3.3 g kg−1 and 1.0 cmolc kg−1 for SOM and CEC, respectively. The soil particle size distribution had greater 

variations than chemical attributes. The values for sandy samples varied from 80 to 270 g kg−1, with mean of 170 

± 66 g kg−1 and from 660 to 860 g kg−1, with mean of 769 ± 78 g kg−1, for clay and sand contents, respectively. 

For clayey samples, the soil particle size distribution varied from 270 to 870 g kg−1, with mean of 504 ± 192 g 

kg−1 and from 30 to 620 g kg−1, with mean of 392 ± 204 g kg−1, for sand and clay contents, respectively (Table 

2). 

There was an average increase of 10.9, 8.3, 5.7, 2.4 and 0.06% for Fe2O3, Al2O3, SiO2, TiO2 and MnO, 

respectively for clayey samples when compared with sandy samples (Table 3). The other mineralogical attributes 

also showed higher values for clayey samples, with Kt and Gb increasing by 17.3 and 3.6%, respectively. 

Samples from the highly weathered soil profiles (TH, TE and RH) presented higher iron oxides, aluminum 

oxides and clay contents (Table 1, Table 3). Generally, the soil weathering indices presented the greatest values 

associated to sandy samples (except for Ki). 

 

2.3.2. Treatments and X-ray configuration effects 

In EM2, one can observe that both background radiation and characteristic peaks increased compared to 

EM1 (Fig. 3, Fig. 4, Fig. 5). When we look at the mean spectra of sandy and clayey samples, it was possible to 

verify that soil particle size distribution differed between them in all peaks of the pXRF patterns (Fig. 3). The 15 

to 35 keV region is quite influenced by soil particle size distribution, with an increase of background counts. In 

this region, there are scattering peaks (Compton and Thomson) (Kα and Kβ), that also have count rate variation. 

The zirconium-Kα count rate was not influenced by soil particle size distribution. Conversely, copper and zinc 

contents presented differences by textural classes, with contents above the limit of quantification only for clayey 

samples with average of 0.015 and 0.008%, respectively. 
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Fig. 3. Mean spectra for sandy and clayey soil samples. EM1 = excitation mode 1; EM2 = excitation mode 2; 

NA = non-analyzed; BLOQ = below the limit of detection; CPS = counts per second. The percentage 

corresponds to the concentration of the element calculated by the Geochem mode. 
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Fig. 4. Mean spectra of treatments for sandy soil samples. EM1 = excitation mode 1; EM2 = excitation mode 2; 

−SOM = soil organic matter removal; −o = SOM and poorly crystalline iron removal; −d: SOM and poorly 

crystalline plus well crystalline iron removal; +W: water addition; NA = non-analyzed; BLOQ = below the limit 

of quantification; CPS = counts per second. The percentage corresponds to the concentration of the element 

calculated by the Geochem mode. 
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Fig. 5. Mean spectra of treatments for soil clayey samples. EM1 = excitation mode 1; EM2 = excitation mode 2; 

−SOM = organic matter removal; −o: OM and poorly crystalline iron removal; −d: SOM, poorly crystalline plus 

well crystalline iron removal; +W: water addition; NA = non-analyzed; BLOQ = below the limit of 

quantification; CPS = counts per second. The percentage corresponds to the concentration of the element 

calculated by the Geochem mode. 

 

In EM2, the greatest peaks and elemental concentrations were observed in the mean spectra for clayey 

samples (Fig. 3). Differences in contents of 9.1, 1.7, 1.0, 0.4 and 0.061% were observed between sandy and clay 

samples for iron, aluminum, titanium, magnesium and manganese, respectively. Conversely, silicon had greater 

content in sandy samples, with a difference of 6.9? %. Phosphorus, sulfur, calcium and potassium (−Kα) peaks 

also showed differences; however, they did not reach the limit of quantification. Calcium and potassium (−Kα) 

counts were reduced for clayey samples; while phosphorus, and sulfur (−Kα) increased. 

The +W treatment had a generalized decrease on the count rate and contents, and distinct alterations 

for −SOM, −o, and –d treatments were also verified (Fig. 4). The +W treatment caused a major impact on the 
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pXRF spectra. In EM1 mode, for copper-Kα, only −o treatment varied, when compared with the control, while 

zinc and zirconium (−Kα) showed stability (Fig. 4a). The background and scattering peaks kept patterns for the 

treatments, showing greater count rate increase for −d, small increases for −o and −SOM and decrease for +W, 

when compared to the control. 

For EM2 mode (Fig. 4b), large differences of count rates can be observed for aluminum, silicon, 

calcium, titanium, manganese and iron (−Kα), smaller for phosphorus-Kα and silver Thomson and potassium 

and magnesium (−Kα) remained stable. Magnesium content was 1.8% for all treatments. Aluminum content was 

greater for the control (11.1%) and decreased to 9% for −SOM and −o, and to 7.4% for −d and +W treatments, 

respectively. Silicon content showed stability for −o and −SOM, when compared to the control, with content of 

20.7%, while −d and +W reduced it to 19.9% and 16.6%, respectively. Titanium content in the control samples 

was 1.2%, while the +W treatment reduced it to 0.9% and the −d increased it to 1.3%, while −SOM and −o 

treatments remained stable. Manganese content remained stable for −SOM and −o treatments, when compared 

with the control, with values of 0.025%, while +W and −d treatments reduced it to 0.021% and 0.019%, 

respectively. Iron in the control, was present at 3.7% and decreased for −SOM, −o, +W and −d treatments, with 

determined values of 3.6%, 3.2%, 3% and 1.8 %, respectively. Titanium and manganese contents in −d treatment 

increased, despite the count rate decreased when compared with the control and +W treatments, respectively. 

The calcium-Kα count rate was the most affected by −SOM, and a great increase in sulfur and chlorine (−Kα) 

peaks was verified for −d treatment. 

For EM1 mode, differently from sandy soil samples, one can observe that +W increased the 

background, Compton, and Thomson peaks (Fig. 5). Copper showed greater content for −d treatment (0.012%), 

with values of 0.014% greater than other treatments, while zinc contents remained stable (0.007%). 

For EM2 mode (Fig. 5b), larger differences of count rates were observed for aluminum, silicon, 

phosphorus, calcium, titanium, manganese and iron (−Kα), while minor differences were observed for potassium 

and magnesium (−Kα) and silver Thomson. Magnesium content presented values of 2.2% for all treatments. 

Aluminum content showed stability for −SOM and −o when compared with the control (13%), decreased to 

8.2% for −d and to 8.4% for +W treatments. Silicon content also showed stability for −o and −SOM, when 

compared to the control (13.5%), while −d and +W treatments reduced it to 12.4% and 9.7%, respectively. 

Titanium in control samples presented a value of 2.3%, the +W treatment reduced its content to 1.6%, while, the 

SOM, −o, and −d treatments increased it to 2.3, 2.4, and 2.9%, respectively. Despite the increase in titanium 

content in −d treatment, the count rate decreased. Manganese content remained stable for −SOM and −o 

treatments, when compared with the control (0.08%), while −d and +W treatments reduced it to 0.066% and 

0.063%, respectively. Compared to control, −SOM increased iron content from 12.8% to 13.2%, while −o, +W, 

and −d treatments decreased it to 11.7%, 9.7%, and 6.7%, respectively. Similarly to sandy samples, the calcium-

Kα counts were the most affected by −SOM, and a great increase in sulfur and chlorine (−Kα) peaks were 

verified for −d treatment.  

 

2.3.3 Pearson's correlation 

The Pearson’s correlation coefficients between the pXRF spectra of the control samples and soil 

attributes (Fig. 6) showed strong correlation with the soil particle size distribution across the spectrum. Between 

1.7 and 7.25 keV, it were observed mostly positive correlation coefficients between clay and silt contents and the 
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pXRF spectra. The exception to this pattern was observed close to the 1.8 keV range (corresponding to silicon-

Kα peak), where a negative correlation was observed with the clay fraction content. The silt and SOM contents 

followed a similar pattern to the clay content, but with weaker correlations. Between 15 and 24 keV, an opposite 

pattern was observed for clay and sand contents, showing stronger negative and positive correlations, 

respectively. 

 

 

Fig. 6. Pearson's correlation between pXRF spectral data and soil attributes. EM1 = excitation mode 1; 

EM2 = excitation mode 2; SOM = soil organic matter; ex- = exchangeable/available forms; SB = sum of bases; 

CEC = cations exchange capacity at pH 7; V% = base saturation; m% = aluminum saturation; Ki = Ki index; 

Kr = Kr index; Feo = poorly crystalline iron forms; Fed = poorly crystalline and well crystalline iron forms; 

Kt = kaolinite; Gb: gibbsite; V + M: other clay minerals; Si + Al: silicon and aluminum poorly crystalline 

materials. The EM2 spectra range from 0 to 7.25 keV and the EM1 spectra range from 7.25 to 24 keV. 

 

Regarding chemical attributes, the correlations, in general, were not significant across the spectra. 

However, close to 3.7 keV, corresponding to calcium (Fig. 6), significant correlations were observed with the 

attributes exchangeable/available calcium, magnesium and phosphorus, pH, SB, CEC and V%, in addition to the 

negative correlation with exchangeable/avaliable aluminum and hydrogen contents and m%. 

The total Fe2O3, Al2O3, SiO2, TiO2, MnO, Feo and Fed and Kt contents showed positive correlations 

between 1.7 and 7.25 keV (Fig. 6). However, alike the clay content, close to 1.8 keV region, it was observed a 

negative correlation. Mostly negative correlations were also observed between 15 and 24 keV. The same 

behavior was observed for Gb and V + M%, but with smaller correlations and partially followed by Si + Al 
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content, that presented moderate positive correlation between 15 and 24 keV. The Ki and Kr weathering indices 

did not present significant correlations with the spectrum.  

 

2.3.4 Linear regression (LR) 

Generally, the LR between elements determined by the Geochem mode of pXRF and soil attributes showed 

high accuracy (Table 4). For the oxides from sulfuric acid digestion, the most accurate equations were found for 

MnO, Fe2O3, Al2O3 TiO2, and SiO2 contents, with R2 of, 0.97, 0.95, 0.75, 0.75 and 0.64 and RMSE of 0.006, 

2.108, 3.001, 0.910 and 4.122%, respectively. For Kt, the Fe from pXRF reached the highest R2 and the lowest 

RMSE (0.89 and 3.635%) values, followed by silicon (0.78 and 5.258%) and aluminum (0.58 and 7.258%). For 

Gb, the Fe content from pXRF reached the highest R2 and the lowest RMSE (0.61 and 2.741%) values, followed 

by aluminum (0.53 and 2.953%) and silicon (0.31 and 3.605%). 

 

Table 4. Linear regression (LR) equations between pXRF elements content and soil mineralogical attributes.    

Soil attribute (%) pXRF element 

content (%) 

Equation R2 RMSE (%) 

 

Kt 

Fe Kt = 1.8543 x Fe +3.3682 0.89 3.635 

Al  Kt = 3.5965 x Al –23.544 0.58 7.258 

Si  Kt = -2.1463 x Si + 53.84 0.78 5.285 

 

Gb 

Fe Gb = 0.5908 x Fe –0.7457 0.61 2.741 

Al Gb = 1.3476 x Al – 11.771 0.53 2.953 

Si  Gb = -0.5271 x Si + 12.875 0.31 3.605 

SiO2 Si SiO2 = -1.1989 x Si + 29.648 0.64 4.122 

Al2O3 Al Al2O3 = 2.2248 x Al –16.288 0.75 3.001 

TiO2 Ti TiO2 = 2.4711 x Ti –0.9443 0.75 0.910 

MnO Mn MnO = 1.0134 x Mn + 0.00026 0.97 0.006 

Fe2O3 Fe Fe2O3 = 1.2414 x Fe -1.4394 0.95 2.108 

Where: Kt = kaolinite; Gb = gibbsite; RMSE = root mean square error. The pXRF elements were determined by 

the Geochem mode 

 

2.4 Discussion 

2.4.1 Descriptive analyses of laboratory data 

The variability found in the soil attributes (Fig. 2, Table 1, Table 2) reflects the mineralogy among the 

studied soils. Highly weathered-leached soils present lower Ki and Kr values due to greater Kt, Gb, and well 

crystalline iron oxide minerals (Schaefer et al., 2008). The Oxisols (RH, TH and TE) dominated by low-activity 

clays have lower natural fertility due to the predominance of 1:1 clay minerals and iron and aluminum oxide 

minerals (Schaefer et al., 2008, Soil Survey Staff, 2014). Otherwise, TQ has a greater amount of quartz minerals 

(Soil Survey Staff, 2014). The mineralogy attributes influenced the physical and chemical soil attributes (Fig. 2, 

Table 2, Table 3). The 2:1 (vermiculite and or smectite), the 1:1 (kaolinite) clay minerals and the iron and 

aluminum oxide minerals, such as hematite and Gb, have a fundamental role in the physicochemical properties 

of the soil, such as structure, porosity and CEC (Barré et al., 2014). 

The stratification of studied soil samples by soil particle size distribution, also separated them 

according to degree of weathering (Table 3). The RH, TH and TE soils have greater clay content, while TQ is 

composed mainly of sand-sized particles (Soil Survey Staff, 2014). The clay content also affects the water 

holding capacity, the SOM and several elements sorption (Ferreira et al., 1999). In Fig. A1, it is presented the 
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total content of aluminum, silicon, titanium and iron from pXRF for each sample showing the variation of soil 

chemical composition according to the weathering degree. 

 

2.4.2. Treatments and X-ray configuration effects 

2.4.2.1. Effects of X-ray tube configuration and Geochem mode 

The EM1 is the most suited for the detection of elements after vanadium in the Periodic Table, while 

the EM2 is recommended for elements between magnesium and titanium. This different suitability is a 

consequence of the continuous radiation (bremsstrahlung) which, together with the characteristic anode peaks, 

excite the elements present in the sample. This profile is largely influenced by the X-ray voltage tube, which in 

turn, modifies both the excitation efficiency and the count rate (Tavares et al., 2020). The generalized count rate 

increase in EM2 (Fig. 4, Fig. 5, Fig. 6) is a consequence of the absence of the primary filter. Conversely, under 

EM1 mode the primary filter suppresses the beam flux on the sample and hence the count rate of the X-ray 

fluorescence phenomenon. However, this dumping compensated the gains on the detection limits since the 

decreasing of the continuous radiation facilitates the differentiation between signal and background. 

The variation of quantified contents was smaller than the peaks variation and sometimes the count rate 

decrease was followed by an increase in some element content (like titanium) (Fig. 4, Fig. 5, Fig. 6). This is very 

common in XRF technique because of the use of equations for matrix effect correction (Gallhofer and 

Lottermoser, 2018, Rousseau, 2006). In this case, the Geochem mode uses a Compton correction to improve the 

determinations. 

 

2.4.2.2 Effects of soil particle size distribution 

The ability of pXRF to provide information on soil mineralogy and particle size distribution is 

evidenced by the spectral peaks of different textural classes (Fig. 3). For most elements, the count rate of pXRF 

peaks followed the same pattern as that obtained by sulfuric acid digestion (Table 3 and Fig. 3). A remarkable 

exception was found for SiO2 and silicon-Kα that did not show this pattern since the sulfuric acid digestion does 

not extract most of the sandy fraction (Castro et al., 1984). 

Since the sandy soils of this study are less weathered, the greater silicon peak and lower aluminum, 

iron, manganese and titanium peaks (Fig. 3) can be explained by the weathering processes. The sand fraction is 

composed mainly of silicon, which is present in the form of quartz minerals (Soil Survey Staff, 2014). 

Conversely, in the clay fraction of tropical soils (like Oxisols), there are great amounts of minerals rich in iron, 

titanium and aluminum (Schaefer et al., 2008). According to Macías and Camps-Arbestain (2020), the 

susceptibility to weathering of minerals can be accessed through the strength of the oxygen bound to the most 

mobile elements (Parker index) (Parker, 1970) and the mobility sequence is Ca, Na > Mg > K > Si > Al, Fe. 

Hence, this parameter can be promptly assessed by X-ray fluorescence spectrometry. 

In highly weathered soils, basic cations, such as calcium, potassium, sodium and magnesium were 

almost completely lost due to leaching processes (Macías and Camps-Arbestain, 2020). However, normally, 

clayey soils have greater SOM contents due to the stabilization of smaller particles, mainly iron oxide minerals 

in acidic soils (Hassink, 1997, Lima and Anderson, 1997). These factors affect the sorption of several elements, 

mostly as outer-sphere complexes (Lima and Anderson, 1997, Schaefer et al., 2008). This behavior might 

explain the count rate of peaks from several elements, with decrease (calcium and potassium (−Kα)) or increase 
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(manganese, phosphorus, sulfur, cooper and zinc(−Kα)) in counts for clayey samples (Fig. 3). Sometimes, the 

peaks variation did not agree with the exchangeable/available contents (phosphorus and magnesium (−Kα)) 

(Table 2), which can be explained by the several factors that affect the plant accessible reservoirs, as 

management practices and fertilizer inputs. 

The increase of background and scattering peaks for sandy soils (Fig. 3) is a consequence of matrix 

effects, caused by the diversity of elements forming the sample. The Thomson peak corresponds to the elastic 

scattering of X-rays, whereas the Compton peak is the inelastic scattering. The count rate of both peaks depends 

on the sample thickness and average atomic number. Since the measurements were carried under the infinitely 

thick regime, the first parameter can be neglected. However, one must expect the latter parameter to be highly 

affected by particle size distribution, since sandy soils tend to contain more light elements than clay soils. Iron 

and silicon play a major role in the intensity of the Compton peak and background radiation, making them more 

intense in lighter (sandier) matrixes and less intense in heavier (clayer) matrixes (Gallhofer and Lottermoser, 

2018, Tavares et al., 2020). The great influence of particle size distribution in pXRF, related to elemental 

composition changes and matrix effects, pave the way to the detection of several soil properties. 

 

2.4.2.3 Effects of soil moisture 

The free water in pores and adsorbed to the surface of the soil constituent materials explains the 

generalized reduction of count rate (Fig. 4, Fig. 5). According to Ge et al. (2005), there are two types of water in 

soil, rock and sediments: (i) structural water, which is constant because it is part of material structure and (ii) free 

water in pores. The influence of moisture in pXRF is explained by two factors: (i) when the water content 

increases, there is a decrease in count rate of the characteristic peaks by decrease in the X-rays signal and (ii) 

water has the ability to interfere in the counts of scattered primary X-rays from the sources (Ge et al., 2005). The 

attenuation of X-rays by water is higher than that of air due to greater density of the latter compared to the 

former. As a consequence, the greater the sample moisture, the lower will be the net peak areas of characteristic 

X-rays that constitute the sample, resulting in lower precision, accuracy and detection limits (Bastos et al., 2012, 

Sahraoui and Hachicha, 2017, Santana et al., 2019). Therefore, the elemental peaks in wet soils are generally 

lower than in dry soil as observed between control and +W treatments (Fig. 4, Fig. 5). 

The scattering peaks reduction more pronounced in sandy samples (Fig. 4, Fig. 5) evidences the greater 

effect that water caused in light elements than in heavy ones, mainly by reduction of silicon signal (Potts and 

Webb, 1992). The silicon content is greater in sandy samples than in clayey ones, which explains the matrix 

effect to be more significant. According to Bastos et al. (2012), moisture affects the accuracy especially for 

elements with an atomic number smaller than 30, such as magnesium, aluminum and silicon. Besides that, the 

Compton normalization present in the Geochem mode partially attenuated the effects of moisture in quantified 

contents, manly for heavy elements (titanium, iron and manganese). However, it was not enough to obtain results 

similar to the dry sample. In this way, the soil measurements in field condition is not recommended without an 

efficient method for moisture effects correction. For example, Bastos et al. (2012) proposed a correction method 

for titanium, iron and zirconium quantification based on an independent parameter: the background of titanium-

Kα. Also, it is possible convert pXRF results obtained in the field to those achieved under laboratory conditions 

(Dijair et al., 2020). 
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2.4.2.4 Effects of soil organic matter 

Soil organic matter (SOM) is mainly composed of carbon, hydrogen and oxygen, hence its average 

atomic number is small (Leifeld et al., 2020). Usually, X-ray fluorescence is not suitable for elements of atomic 

number below magnesium due to the low fluorescence yield of such elements combined to the degree of 

attenuation of the radiation. Conversely, low atomic number elements contribute to increase the Compton 

scattering. Preliminary measurements, not shown here, revealed that Compton scattering alone was insensitive to 

organic matter ranging from 1.5 up to 3.5%, whereas its intensity started to increase above 5% (Fig. A.2). Thus, 

lower SOM contents in soil samples do not imply in accuracy decreased. 

The removal of SOM can, in principle, increase the overall concentration of the remaining elements 

(Fig. 4, Fig. 5). However, since the samples presented low concentration of SOM, i.e. around 14 g kg−1 (Table 

2), such effect was not expected to be pronounced. The decrease of concentration observed for most elements in 

sandy soils might be a result of leaching promoted by the reagents used to oxidize the SOM. This was especially 

remarkable for calcium, which interacts via outer-sphere complex with soil components. 

In clayey samples, the CEC depends mainly on SOM and clay fraction. Although, sandy soils contain 

less SOM, the CEC is even more dependent on it (Asadu and Chibuike, 2015). Therefore, the removal effect was 

more pronounced in sandy samples (Fig. 4). It is possible to observe a count rate increase of some peaks, mainly 

for clayey samples (magnesium, aluminum, phosphorus, titanium and iron (−Kα)) (Fig. 4, Fig. 5). These 

elements (except for phosphorus- Kα) are structural constituents of soil minerals and the hydrogen peroxide has 

a small effect on them (Table A.1). The phosphorus behavior can be explained by the formation of inner-sphere 

complexes with the ferrol (FeOH) and aluminol (AlOH)) surface functional complex groups formed on the 

broken edges of iron and aluminum oxide minerals in acid soils (Smithson, 1999). Another factor related to 

counts increase of some elements can be the annulation of matrix effect caused by the elements removed 

altogether with SOM. 

 

2.4.2.5 Effects of iron forms 

The iron forms include silicate-free iron oxides that involve well crystalline, poorly crystalline and 

non-crystalline oxides (Table A.1). These forms are affected differently by iron dissolution treatments, due to 

different extraction actions, either by sodium citrate-dithionite-bicarbonate or by ammonium oxalate acid in the 

dark (Table A.1). The ammonium oxalate acid extraction is a selective dissolution method for poorly crystalline 

iron forms (Rennert, 2019), which occur in small contents in highly weathered soils (Schaefer et al., 2008). The 

high complexing power of the oxalate anion and the effect of the ammonium oxalate solution are responsible for 

extracting ferrihydrite and small amounts of organically bound iron (Table A.1). In −o treatment, it was verified 

a small reduction in iron-Kα counts (Fig. 5, Fig. 6), indicating that the iron of the soils was associated mainly 

with well crystalline oxides. Inda et al. (2014) elucidate that in aerobic pedo-environments like tropical soils, 

iron oxide minerals exhibited high stability and are able to persist in the soil for long periods, for this reason, 

they tend to have low poorly crystalline iron content. 

In sandy soils, the decrease of aluminum and manganese contents (Fig. 4, Fig. 5) suggests that the −o 

treatment removed not only iron, but also aluminum and manganese, in poorly crystalline forms (Table A.1). 

However, for clayey soils the signal of aluminum increased, which might be a consequence of modification of 

matrix composition due to a more significant reduction in iron content. Even though the −o treatment can affect 
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silicon content by removing extractable forms, represented by silicon from poorly crystalline soil components 

(Table A.1), no decrease was observed in silicon-Kα intensity (Fig. 4, Fig. 5). This can occur due to the low 

content of poorly crystalline silicon in the samples and matrix changes. 

Conversely, the −d treatment showed decrease on several peaks signal in sandy and clayey samples 

compared to the control (Fig. 4, Fig. 5). This decrease is expected because sodium citrate- dithionite-bicarbonate 

dissolves selectively all forms of pedogenic iron oxide minerals (Table A.1). This extraction allows one to 

determine, in addition to iron, the content of other elements that can isomorphically replace iron within the iron 

oxide minerals structure (Table A.1). The dissolution of poorly crystalline aluminum oxides by sodium citrate-

dithionite-bicarbonate explains the aluminum-Kα peak intensity reduction. The decrease in the silicon-Kα 

intensity (Fig. 4, Fig. 5) is related to the poorly crystalline silica compounds (Table A.1). Besides, the sulfur and 

chlorine count rates increased for −d treatment are due to the use of ammonium dithionite and sodium chloride 

reagents. The spectral changes due to selective dissolution treatments (−o and −d) demonstrate the capacity of 

pXRF to capture changes in soil chemical composition and corroborate the elucidation of soil pedogenic 

processes. 

 

2.4.3 Pearson’s correlation 

The results (Fig. 6) are in agreement with previous studies that show correlation between soil particle 

size distribution and some elements. Zhu et al. (2011) described positive correlation between soil clay fraction 

and titanium, chromium, iron, cobalt, copper, zinc, calcium, arsenic, lead, manganese, and potassium. 

Conversely, negative correlation coefficients were observed between the soil sandy fraction and these same 

elements. Corroborating this, Benedet et al., 2020, Silva et al., 2018 described the positive coefficients with the 

same elements and others like chlorine, nickel and aluminum, in addition to the silicon, which were inversely 

related with the soil clay fraction (Fig. 4). 

Positive correlations were found between the spectral region around 3.6 keV, which corresponds to 

calcium peak, with SOM, pH, SB, CEC, V%, and also with exchangeable/available calcium, magnesium, 

potassium and phosphorus. Sharma et al., 2014, Zhu and Weindorf, 2009 also reported positive correlations 

between calcium peak and pH. Likewise, Sharma et al. (2015) were also successful in obtaining CEC values, 

using Ca content from pXRF. Such positive correlation is a result of the chemical role played by calcium, which 

affects, in tropical cultivated soils, pH, CEC, V%, and magnesium concentration. 

There are few studies showing correlations between pXRF data and mineralogical attributes. Similar 

to the present study, de Lima et al. (2019) described positive correlation between clay fraction and FeO2 and 

Al2O3, in addition to inverse relationship with SiO2. Thus, the negative correlation between mineralogical 

attributes and those obtained by sulfuric acid digestion related with the spectrum feature corresponding to silicon 

peak (1.8 keV) (Fig. 6) is justified, and can reflect the weathering-leaching processes. It is important to note that, 

in the present study, silicon signal was positively correlated to sand fraction content (Fig. 6). However, it was not 

positively correlated with SiO2 determined by the sulfuric acid digestion. This disagreement is due to the 

difference between the methods of analyses. The quartz in the sand fraction is not dissolved by H2SO4 (Mehra 

and Jackson, 2013, Castro et al., 1984), while pXRF is able to capture the total silicon, including the sand 

fraction (mainly composed of quartz mineral). This disagreement is accentuated by the great sand content in part 

of the samples (Fig. 1). 
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Between 15 and 24 keV, it were observed mostly negative correlations between the studied attributes 

and the spectra (Fig. 6). This pattern can be explained by the inverse relationship between scattering peaks and 

silicon content, as described above. 

 

2.4.4. Linear regression 

Previous studies also presented equations, such as those in Table 4, which were able to predict the total 

and pseudo-total content of titanium, silicon, iron, and aluminum. In tropical soils, Silva et al. (2020) found 

equations with high accuracy for Fe2O3 and TiO2, using linear regression. While, Silva et al. (2019) found 

accurate results for Fe2O3 and MnO. O'Rourke et al. (2016) reported results for iron, manganese, titanium, and 

aluminum total contents and for other several elements. As a general trend, the results for iron predictions 

presented higher accuracy than for lighter elements, like silicon and aluminum (O'Rourke et al., 2016, Santana et 

al., 2018, Silva et al., 2020). 

The high accuracy for MnO and Fe2O3 (Table 4) is related to the great molar mass of iron and 

manganese (Lindgren, 2006) and the high potential for assessing such oxides by the sulfuric acid digestion 

(Castro et al., 1984). 

Santana et al. (2018) were able to determine Fe2O3 under laboratory and field conditions. 

Additionally, the equations for TiO2 and MnO achieved great accuracy in laboratory condition. However, the 

SiO2 and Al2O3 presented less accurate predictions. Silva et al. (2020) found low accuracy results for Al2O3 and 

SiO2 with linear regression, but high accuracy with multiple linear regression, with inclusion of other elements 

and soil particle distribution data in the models. In this case, the low accuracy for SiO2 can be related to the 

inefficient extraction of SiO2 by sulfuric acid digestion in the sand fraction (Castro et al., 1984). Besides that, in 

this study, SiO2 delivered by sulfuric acid digestion was inversely proportional to silicon content from pXRF. 

The pXRF was able to estimate Kt content and the best results were obtained using iron and aluminum 

as independent variables (Table 3). Kt is a 1:1 clay mineral, composed of aluminum and silicon and it is the most 

common phyllosilicate mineral found in the soils of the humid tropical and subtropical climates (Schaefer et al., 

2008). In this way, Jozanikohan et al. (2016) found accurate results for clay minerals, mainly using as predictor 

variables the iron and aluminum content from pXRF, and also using multivariate statistics, with several 

elements. 

For Gb, the pXRF also provided accurate results (Table 4). Although Gb is basically formed by layers 

of aluminum (octahedra), the LR showed less adjustment for aluminum in relation to iron for this mineral. It is 

explained by the indirect relation between the iron and Gb content, which occurs since soils rich in iron also tend 

to have great Gb contents, driven by leaching processes (Schaefer et al., 2008). Besides that, the iron has greater 

molar mass than aluminum, promoting more accurate determinations by pXRF. 

The pXRF was able to access the particle size distribution modifications, water addition and 

dissolution procedures to remove SOM, poorly crystalline iron forms and well crystalline iron forms in soil 

samples. 

  



31 
 

2.5 Conclusions 

The soil particle size distribution implied in changes by different elemental composition of samples 

and matrix effects caused by it, which is related to soil mineralogy and weathering processes and pave the way 

for determination of several soil attributes. 

The presence of lower contents of SOM in the soil samples do not imply mandatorily in accuracy 

decrease. However, alterations in pXRF data were detected by removal of SOM with hydrogen peroxide (i.e. 

diminution of calcium peak). 

The water addition reduced the signal of the elements, which must be considered if measurements are 

to be carried out under field conditions, and methods to correct the soil moisture effects should be used. Such 

effects were more pronounced for light elements, such as aluminum and silicon. 

The well crystalline iron removal by sodium citrate-dithionite-bicarbonate promoted high decrease in 

iron content and other elements also were removed. Conversely, the acid ammonium oxalate promoted only 

moderate alterations in pXRF data due the low amount of poorly crystalline iron oxides in tropical soils. 

The pXRF demonstrated to be a very useful tool for mineralogical and chemical studies, delivering 

satisfactory results for Kt, Gb, Fe2O3, Al2O3, SiO2, TiO2 and MnO contents estimation by LR. Besides that, the 

qualitative and Person’s correlation analyses showed relationships between the pXRF data and both soil particle 

size distribution and soil fertility attributes. 

The understanding of the fundamentals of interactions between pXRF energy with the sample matrix is 

the starting point for characterizing the soil mineralogy through this technique. 
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Appendix  

 

Table A.1.  Removal effects of Sodium citrate-bicarbonate dithionite, Ammonium oxalate and Hydrogen 

peroxide on forms of iron, aluminum and silicon of soils. 

Extraction 
Sodium citrate-dithionite-

bicarbonate  
Acid ammonium oxalate Hydrogen peroxide 

Iron 

Well crystalline, poorly 

crystalline, and non-

crystalline oxide 

minerals, such as 

hematite, goethite, 

maghemite, lepidocrocite 

and ferrihydrite  

(Schwertmann and 

Carlson, 1994; dos Anjos 

et al., 1995; Trolard et al., 

1995). 

Poorly crystalline iron 

oxide minerals, such as 

ferrihydrite and small 

amounts of organically 

bound iron 

(Schwertmann, 1959, 

1964; Cornell and 

Schwertmann, 2003). 

 

a) Removal of macro and micro 

nutrients present or adsorbed 

to soil organic matter. 

 

b) Calcium oxalate formation in 

some clayey soil (Brown, 

1953; Farmer and Mitchell, 

1963)  

 

c) Poorly crystalline minerals are 

subject to attack or alteration 

(Mitchell et al., 1964). 

 

d) Formation of water soluble 

chelated oxalates of aluminum 

and iron, and water insoluble 

chelated oxalates, on the 

surface of clay minerals. 

(Farmer and Mitchell, 1963). 

 

e) Dissolution of sesquioxides 

(Harada and Inoko, 1977). 

 

f) Partial dissolution of MnO2 

(Jackson, 1969). 

 

g) Exfoliation of mica (Drosdoff 

and Miles, 1938).  

Aluminum 

and 

Manganese 

Elements that replace iron 

in the structure of iron 

oxide minerals. For 

aluminum, it can be 

affected by the partial 

dissolution of poorly 

crystalline aluminum 

oxides during extractions 
of kaolinite and gibbsite 

(Fitzpatrick and 

Schwertmann, 1982; 

Schwertmann and Taylor, 

1989). 

Poorly crystalline forms 

aluminum complexed 

with soil organic matter 

(McKeague et al., 1971; 
Parfitt and Henmi, 

1982). 

Silicon 

 
The removal of Si(OH)4 

is attributed to the lower 

silica retaining soil 

remaining capacity of the 

minerals (Weaver et al., 

1968). 

 

 

Silicon from poorly 

crystalline soil minerals 

(Hallmark et al., 1982). 
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Table A.2. Precision average for the measured samples 

Element Precision (%) * 

Mg ± 0.3504 

Al ± 0.1500 

Si ± 0.0921 

Ti  ± 0.0251 

Mn  ± 0.0028 

Fe ± 0.0466 

Cu ± 0.0008 

Zn ± 0.0005 

*Average for all samples with contents above the limit of quantification informed by equipment  

 

 

Fig. A.1. Titanium, silicon, iron and aluminum total contents determined by XRF Delta Olympus internal model 

for the treatments. -SOM = Organic matter removal; -o: SOM and poorly crystalline iron forms removal; -d: OM 

and poorly crystalline plus free crystalline iron forms removal; +W: Water addition; Max = maximum; Min = 

minimum; SD = standard deviation; TH = Typic Hapludox; RH = Rhodic Hapludox; TE = Typic Eutrustox; TP  

Typic Paleudalf; TQ = Typic Quartzpament.  



41 
 

 

Fig. A.2. Compton and Thomson behavior with sugar addition for sandy (a) and clayey (b) sample. The sandy 
sample had 50 g kg-1 of clay and 1 g kg-1 of soil organic matter (SOM), while the clayey sample had 739 g kg-1 

of clay and 34 g kg-1 of SOM.    
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3. MAPPING BRAZILIAN SOIL MINERALOGY USING PROXIMAL AND 

REMOTE SENSING DATA 

 

ABSTRACT 

The mineralogy is the gear of soil processes, playing a fundamental role in relevant issues for humanity, 

such as food and fuel supply, and climate and water regulating. Nevertheless, the mineralogical analyses are few 

used for soil characterization, due the difficulty of acquisition data through traditional methods and low 

commercial availability. On the other hand, the abundance of soil minerals can be accessed by soil spectroscopy 

(Vis-NIR-SWIR) and spatialized by digital soil mapping frameworks. This work aims to map the abundances of 

major soil mineralogical components for the whole Brazilian territory at the surface and subsurface. The 

Brazilian Spectral Library (BSSL) with Vis-NIR-SWIR spectral data, was used to assess the relative amounts of 

hematite (Hem), goethite (Gt), kaolinite (Kt) and gibbsite (Gbs) in soil samples from Brazil. Terrain attributes 

(TA) and a synthetic soil image (SySI) with bare soil pixel from multitemporal Landsat images (1984 to 2020) 
were used as predictors. A novel approach was performed in order to obtain a bare soil image for the whole 

Brazilian territory.  The model Random Forest (RF) was used for spatial prediction to obtain the mineral maps 

and their uncertainty by bootstrapping procedure. The mineral maps were compared with geology and soil 

legacy maps and also climate and terrain conditions at national, regional and farm levels. The major iron and 

aluminum oxide minerals and Kt were successfully identified and its abundances quantified by Vis-NIR-SWIR 

reflectance from BSSL. The Hem presented the more accurate results in RF models with R2 ranging from 0.48 to 

0.56, followed by Gbs (0.42 to 0.44), Kt (0.20 to 0.31) and Gt (0.16 to 0.26). The proposed approach was able to 

reveal the spatial distribution of the relative abundance of minerals for the Brazilian territory. The mineral maps 

were in accordance with geology and soil legacy maps and also with the climate and terrain conditions. The 

approach proposed for this paper is an efficient method to obtain mineralogy information for large areas. 

 

Keywords: Remote Sensing; soil spectroscopy; chemometrics; tropical soils. 
 

3.1 Introduction  

The mineralogy is the gear of soil processes, playing a fundamental role in several relevant issues for 

humanity, such as food and fuel production and regulation of climate and water. It influences the soil fertility, 

plant growth, CO2 sequestration, climate changes mitigation, dynamics of pesticides, and contaminants and land 

degradation (Viscarra Rossel, 2011). Clay minerals and sesquioxides, such as hematite (Hem), goethite (Gt), 

kaolinite (Kt) and gibbsite (Gbs) are related to cation exchange capacity, aggregation and structure, organic 

matter dynamic, water retention, adsorption of phosphorus, among others (de Oliveira et al., 2020; Gilkes and 

Prakongkep, 2016; Hassink, 1997; Heuvelink et al., 2021; Santos et al., 2017; Zhao et al., 2017). The soil 

mineralogy is also key to soil genesis and geochemistry processes (Macías and Camps-Arbestain, 2020). 

Soil is the result of the interaction of the forming factors: climate, organisms, relief, parent material and 

time (Jenny, 1941). Several factors command the processes of soil formation and determine the soil mineralogy 

composition (Heimsath et al., 2012). The extensive Brazilian territory has great geological (Gómez et al., 2019), 

climate (Alvares et al., 2013), topography and biodiversity (Gomes et al., 2019) variability that results in 

innumerous soil types, with distinct properties, including mineralogy (Instituto Brasiliero de Geografia e 

Estatística, 2021; Santos et al., 2018). The maps of soil classes available for Brazilian territory is at inappropriate 

scales or restricted for some regions (Lepsch, 2013; Nolasco de Carvalho et al., 2015). For example, in the north 

region, where the Amazon rainforest is located, soil maps with semi-detailed scale are almost non-existent 

(Mendonça-Santos and dos Santos, 2006). Mineralogical maps covering all Brazilian territory are still non-

existent.  
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Traditional methods to mineralogical characterization by X-ray diffraction (XRD) and X-ray powder 

diffraction (XRPD) are laborious, expensive, time consuming, and only provide qualitative or semi quantitative 

information (Chipera and Bish, 2001; De Souza Bahia et al., 2015; Fang et al., 2018; Kunze and Dixon, 1986; 

McManus, 1991; Viscarra Rossel, 2011; Whittig, 1965) Consequently, the mineralogical evaluation historically 

was restricted to scientific research level, being less available to other users, such as farmers. Additionally, these 

analyzes are not commercially available and are falling into disuse. Obtaining mineralogical data for large 

territorial extensions is even more challenging. The traditional techniques, due the costs of data acquisition, are 

not applicable to obtain data on a large scale (Mendes et al., 2021) and because it, the available information is 

punctual or limited to small areas (Viscarra Rossel, 2011).  

 In this context, an alternative method for soil mineralogy assessment becomes necessary (Fang et al., 

2018; Viscarra Rossel, 2011). The proximal sensing techniques, specifically the diffuse reflectance spectroscopy 

in the visible, near infrared and shortwave infrared (Vis-NIR-SWIR) ranges provide a rapid, non-destructive and 

environmentally friendly method for soil characterization (Nocita et al., 2015; Soriano-Disla et al., 2014). The 

350-2500 nm range is used for estimation of several soil attributes (Soriano-Disla et al., 2014; Viscarra Rossel et 

al., 2006), such as soil particle size distribution (Coblinski et al., 2020; Silva et al., 2019), soil organic carbon 

(Barthès et al., 2019; Moura-Bueno et al., 2020) and soil chemical attributes (Vaudour et al., 2018; Wadoux et 

al., 2019; Zhao et al., 2021). According to Bahia et al. (2015), while it takes more than 55 hours per sample to 

obtain the iron oxide minerals contents by conventional method, with Vis-NIR-SWIR spectroscopy, it can be 

reached in 20 minutes.  

The Vis-NIR-SWIR range has specific wavelengths related to the electronic and vibrational transition 

caused by the interaction of energy with minerals in the soils (Fang et al., 2018). The use of spectral pre-

processing, such as the Kubelka-Munk function combined with the second derivative by Savitzy-Golay method 

can be used to enhance these spectral features (Barrón and Torrent, 1986; Scheinost, 1998) and improve their 

estimations.  In general, the intensity of the band amplitude calculated from derivative values between minima 

and maxima at specific absorption feature is proportional to the mineral abundance in the sample (Kosmas et al., 

1984; Mendes et al., 2021). 

 Several studies focused on the understanding of the fundamentals of the soil mineralogy influence in 

Vis-NIR-SWIR spectra (Barrón and Torrent, 1986; Clark et al., 1990; Madeira-Neto et al., 1995; Scheinost, 

1998). Additionally, some researchers developed equations and models to quantify the minerals content based on 

amplitude from this range and XRD data (Canton et al., 2021; De Souza Bahia et al., 2015; Fernandes et al., 

2020; Madeira-Neto et al., 1995; Mendes et al., 2021; Silva et al., 2020). Finally, spatial predictions were carried 

out for mineral amplitudes/indexes (Fernandes et al., 2020; Mendes et al., 2021; Poppiel et al., 2020; Ramos et 

al., 2020; Viscarra Rossel et al., 2010; Viscarra Rossel, 2011) or mineral contents (Silva et al., 2020).  Thus, 

spectroscopy becomes an important tool to obtain quantitative and spatial information of soil mineralogy.  

 Using proximal sensing and geostatistic techniques, such as kriging, the relative abundance of iron 

oxides (Hem and Gt) in the soil from Vis-NIR-SWIR were accessed and mapped for all Australia territory 

(Viscarra Rossel et al., 2010). Environmental covariables representing the soil formation factors were used to 

digitally map Kt, illite and smectite in Australian territory (Viscarra Rossel, 2011). For the west of São Paulo 

State region in Brazil, Silva et al., (2020) mapped the content of Hem and Gt and Fernandes et al. (2020) the 

Kt/(Kt+Gbs) ratio. Meanwhile, Ramos et al. (2020) mapped the Hem/(Hem+Gt) ratio for the Rio Grande do Sul 
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State. Environmental covariates, such as terrain attributes and synthetic soil image (SySI) with bare soil pixels, 

from multi-temporal satellite data, also can be used as predictors for soil mineralogy mapping (Mendes et al., 

2021; Poppiel et al., 2020). Poppiel et al. (2020) mapped the relative abundance of Hem, Gt, Kt, Gbs and 2:1 

minerals for Goiás State in Brazil. Moreover, Mendes et al. (2021) mapped Hem, Gt, Kt, Gbs and several 2:1 

minerals at regional scale in Brazil.  

 The mineralogy has been neglected in analyses for soil characterization and its impact on several 

agricultural and environmental issues (Viscarra Rossel, 2011). Brazil, as a country with an important 

agribusiness sector and considered the center of several environmental issues at global level, information on soil 

mineralogy spatial variability needs to be better known. And thus, this study aims to map the abundances of 

major soil mineralogical components for the whole Brazilian territory at the surface and subsurface. The 

abundances of soil minerals such as Hem, Gt, Kt and Gbs can be identified by Vis-NIR-SWIR spectra (Fang et 

al., 2018) and that the interaction of electromagnetic energy with soil matrix fundamentals are the same at 

laboratory and satellite levels, respecting the proportions of scale (Bellinaso et al., 2021). The hypothesis is that 

the soil mineral abundances can be accessed by punctual information from Vis-NIR-SWIR spectra and 

spatialized by SySI and terrain attributes derived from remote sensed data. 

 

3.2 Materials and Methods 

3.2.1 Study area and soil spectral library 

The study area covered Brazilian territory, with approximately 8.8 million of km2 (Fig. 1), comprising a 

high diversity of climates, geologies and soil types. The climate is divided into tropical (81%), dry (5%) and 

subtropical (14%) zones, according to the Koppen classification system (Alvares et al., 2013) (Fig. 1). The 

geology is complex with several types of metamorphic igneous and sedimentary rocks (Gómez et al., 2019) (Fig. 

A1a). The main soil classes of the country are Latossolos (Ferralsols) and Argissolos (Acrisols/Lixisols/Alisols), 

which comprises more than 60% of territory (Instituto Brasiliero de Geografia e Estatística, 2021) (Fig. A1b).  

Brazil also has a great biodiversity with six distinct biomas, being that the Amazonia (49.29%) and Cerrado 

(22%) cover most part of the territory (Gomes et al., 2019).   

A legacy database with spectral data in Vis-NIR-SWIR range (350 to 2500 nm) from The Brazilian Soil 

Spectral Library (BSSL) (Demattê et al., 2019), accessible at https://besbbr.com.br, was used in this study. The 

BSSL was constructed with the support of more than 40 Brazilian researchers and has more than 50,000 samples 

with spectral data in the Vis-NIR-SWIR range. However, only the samples with exact coordinates obtained by a 

Global System Position (GPS) equipment were used in this study, totalizing 30,334 soil samples (Fig. 1). The 

major part of BSSL observations were from 0-0.2 (10,306), 0.4-0.6 (7,676) and 0.8-1m (7,697) layers and the 

remaining (7,264) from other depths or soil profiles with irregular sampling.     

For spectral analysis, the samples were dried, ground, sieved with 2 mm mesh and distributed in a Petri 

dish. A FieldSpec 3 spectroradiometer (Analytical Spectral Devices, Boulder, CO) was used to obtain the 

reflectance of soil samples with resolution of 1 nm from 350 to 700 nm, 3 nm from 700 to 1,400 nm and 10 nm 

from 1,400 to 2,500 nm. The output data was resampled to 1 nm (totalizing 2151 channels). The light source was 

two 50 W halogen lamps positioned 35 cm from the samples, with zenith angle of 30º and 90º between them. 

The reflected energy was captured by a fiber-optic cable allocated 8 cm away from the sample. The 
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spectroradiometer was calibrated with a Spectralon standard every 20 min. Each spectrum was the mean from 

100 readings and two replicates (changing the position of the petri dish).  

 

 

Figure 1: The Brazilian Soil Spectral Library (BSSL) points for 0-0.2m depth and flowchart of mineral 

amplitude calculation procedure. A= Tropical zone, without dry season (Af), monsoon (Am), dry winter (Aw) or 

dry summer (As); B= Dry zone with semi-arid climate and low latitude and altitude (BSh) C: Subtropical zone 

with oceanic climate, without dry season, with hot summer (Cfa) or with temperate summer (Cfb) or subtropical 

zone with dry winter and hot summer (Cwa) or temperate summer (CWB); Gt = goethite; Hem = hematite; Kt = 

kaolinite; Gbs = gibbsite. 

 

3.2.2 Calculation of relative abundance of minerals 

The raw reflectance spectra were transformed to absorbance using the Kubelka-Munk function (KM) 

[(KM = (1 −R)2/2R)], where R is the reflectance (Barrón and Torrent, 1986) (Fig. 1). Since the KM spectra had 

overlapping bands, we calculated their 2º derivative (SD) using the Savitzky-Golay method (Savitzky and Golay, 

1964) to resolve and enhance the spectral features of interest (Poppiel et al., 2020). The intervals related to Gt, 

Hem, Kt and Gbs were defined in the SD spectra based on literature (Table 1).  Thus, the amplitude of minerals 
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(AM) was calculated [AM = Maxλ - Minλ], where Maxλ and Minλ are the maximum (positive) and minimum 

(negative) values into the specific ranges, respectively. 

In order to normalize the data for spatial predictions, the AGt, AHem, AKt and AGbs were submitted to 

depth harmonization by spline interpolation in the GSIF R package (Hengl and MacMillan, 2019). The output 

data was divided into five layers stratified by 0.2 m from surface up to 1m depth (0-0.2, 0.2-0.4, 0.4-0.6, 0.6-0.8 

and 0.8-1m). The study, before the spline procedure, was conducted with 9,600 observation points varied from 0-

0.2m layer (about 1.09 x 10-3 points per km2) to 7,300 for the 0.8-1m layer (about 8.29 x 10-4 points per Km2) 

(Table 2). 

 

Table 1: Selected bands for amplitude of minerals (AM) calculation. 

 

3.2.3 Environmental covariates 

3.2.3.1 Syntetich soil image (SySI) and terrain attributes (TA) 

The environmental covariates used were a synthetic soil image (SySI) and terrain attributes (TA), at 

30m of spatial resolution (Fig. 2). We assumed that is possible to infer about the undersurface using the soil 

reflectance available for surface, being that Mendes et al. (2021), highlighted the use of SySI as a predictor for 

AM mapping at soil depths until 1m. Thus, the SySI was used as covariate also for undersurface layers. 

The SySI, was obtained using the collection of Landsat images, from 1984 to 2020 (Landsat 5, 6, 7 and 

8), through the GEOS3 method (Demattê et al., 2020, 2018), in Google Earth Engine (GEE) (Gorelick et al., 

2017). The GEOS3 employs multitemporal satellite images and spectral indices to select only bare soil pixels 

and creates a synthetic image with the median reflectance of bare soil pixels over time. The SySI is directly 

related to spectral data obtained at the laboratory level and was successfully used to map soil attributes 

(Bellinaso et al., 2021; Demattê et al., 2018; Fongaro et al., 2018; Silvero et al., 2021). The SySI had the same 

number of bands of the satellite used as input data for GEOS3, in this case (Landsat), it had 6 bands: blue (450–

520 nm), green (520–600 nm), red (630–690 nm), NIR (760–900 nm), SWIR1 (1550–1750 nm) and SWIR2 

(2080–2350 nm). The GEOS3 uses the soil spectral trend and the Normalized Difference Vegetation Index 

(NDVI) and Normalized Burn Ratio 2 (NBR2) to create the soil mask (Demattê et al., 2018).  The bare soil 

pixels were selected when there was an increase in reflectance from blue to SWIR1, and NDVI and NBR2 

between -0.15 to 0.25 and -0.15 to 0.15, respectively. The SySI pixels are the median of all bare soil pixels 

detected along the time series images.  

Other than that, a total of 13 TA were derived from the digital elevation model (DEM) of Advanced 

Land Observing Satellite (ALOS) (Japan Aerospace Exploration Agency: ALOS Research and Application 

Project, 2021), using the package terrain analysis in Google Earth Engine (TAGEE) (Safanelli et al., 2020a). 

Soil 

mineral 

Minimum band in 

literature (nm) 

Maximum band in 

literature (nm) 

Selected range 

(nm) 
Reference 

Goethite ~415 ~455 410-460 Scheinost et al. (1998) 

Hematite ~535 ~580 520-590 Scheinost et al. (1998) 

Kaolinite 2205 2225 2,190-2,240 
Clark et al. (1990) 

Madeira-Neto et al. (1995) 

Gibbsite  2265 2295 2,250-2,305 
Clark et al. (1990) 

Poppiel et al. (2020) 
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The SySI and TA values were extracted for the observation points, in a spreadsheet containing the AM 

values. The spatial predictors were selected based on the Spearman correlation with AM. The correlation 

analyses were performed for all depth combinations in conjunction (without stratification by layer). The criteria 

for selection of covariable for modelling was correlation > 0.10 or < -0.10. In this way, the covariates selected 

were all bands from SySI: blue, red, green, NIR, SWIR1 and SWIR2 and four TA from DEM: elevation, slope, 

maximum curvature and hillshade. The results of Spearman correlation analyses can be found in Table A1. 

 

3.2.3.2 Synthetic soil image with full coverage (SySIc) 

The GEOS3 showed to be a powerful tool for spatial prediction of soil attributes (Poppiel et al., 2021, 

2020; Safanelli et al. 2020b, 2021ab). However, the method is useful only in locations with naturally exposed 

soil or exposed by anthropic activities (i.e. soil tillage). For the Brazilian territory, which have vast areas with 

native vegetation (i.e. Amazon rainforest), the SySI only covers about 30% of the total area. In this way, in order 

to obtain continuous maps of soil mineralogy for the entire Brazilian territory, a synthetic soil image with full 

coverage (SySIc) was created using environmental covariates and machine learning (Fig. 2).  

 The TA selected were the same as mentioned in section 3.2.3.1 (Elevation, Slope, Maximal Curvature 

and Hillshade). Besides that, the bands blue, green, red, NIR, SWIR1 and SWIR2 obtained from a natural 

vegetation mosaic produced with the mean of Landsat images of the year 1984 also was used as covariates. It 

was used an available mosaic generated for Hengl et al. (2018), obtained in the GEE, with the spatial resolution 

of 1km and after resampled to 30m.  

A random sampling was realized in SySI, TA and natural vegetation mosaic, limited by the extent of 

SySI and totaling 85.740 points in Brazilian territory. The correlation between the covariates (vegetation mosaic 

and TA) and SySI was obtained as topic 3.2.3.1 and are also available in table A.1.  The modelling was 

performed using each SySI band as dependent variable and the mosaic bands and TA as independent variables, 

totalizing six models. The modelling procedure and model evaluation (Table A.2) were performed, as mentioned 

in section 3.2.4. The bootstrap predictions were performed for each band as mentioned below (section 3.2.6).  

Finally, the SySI original bands were overlapped to the six bare soil predicted bands and the merged 

were united in an unique raster file, originating the SYSIc. In this way, in the final image, the pixels with soil 

exposition during the time remained with the original information, while the “gaps” were filled with the 

predicted bands. This procedure aimed to obtain an image with full coverage to use as covariates for minerals 

mapping. Besides that, we preserved the real reflectance of pixels with bare soil detected by GEOS3, instead of 

the use of only predicted reflectance, because, the prediction processes had uncertainties associated that can be  

propagated to the AM prediction. 

 

3.2.4 Prediction models for soil minerals 

 The selected environmental covariates were used as independent variables to obtain prediction models 

for AGt, AHem, AKt and AGbs using the Random Forest algorithm (RF) (Breiman, 2001). We used the scikit-

learn algorithm in Python (Pedregosa et al., 2011) to implement a bootstrapping procedure for training and 

testing the RF algorithm, as described by Safanelli et al. (2021ab).  The calibration set was composed of 

bootstrapped samples, while the other samples, not used for calibration, were used exclusively for validation. 
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The number of samples used in calibration were 63% of the total dataset, according to Raschka (2018). The 

bootstrapping was performed up to 500 times, which is similar to each forest size (FS) tested. 

A grid search procedure was performed in order to select the best hyperparameters combination, 

looking to reduce the overfitting possibilities. It was tested diferentes values for FS (30, 60, 100, 200 and 500 

trees), number of predictors in tree splits (nRP) (3, 5, 8 and 10) and minimum number of observations at leaves 

(minSL) (10, 20, 30, 40, 50, 100, 200 and 500). The optimal combination (FS, nPR and minSL) with the least 

root mean square error (RMSE) for the validation set was selected for each mineral. However, when the RMSE 

difference between the hyperparameters combination were less than 1x10-5, the combination with less FS value 

was chosen, to make the spatial prediction faster, in view of the largest territory to map and the great influence of 

FS in processing time.  

The accuracy of developed models were evaluated by coefficient of determination (R2), RMSE, ratio of 

the performance to interquartile distance (RPIQ = (Q3-Q1)/RMSE), where Q1 and Q2 are 1º and 3º quartiles. 

 

 

Figure 2: Flowchart of spatialization procedures. AM = amplitude of minerals; DEM = Digital elevation model; 

TA= Terrain attributes; SySI = synthetic soil image; SySIc = synthetic soil image full coverage; Uc = 

uncertainty; RF = Random Forest.    

 

3.2.5 Spatial prediction 

 The spatial prediction was performed by bootstrapping routine (Efron and Tibshirani, 1993) in GEE 

(Gorelick et al., 2017), in order to obtain the maps of AM and their uncertainties. The models were fitted with 

TA and SySI (to increase the accuracy) and the spatial prediction was performed using TA and SySIc, in order to 

obtain mineral maps covering all the territory.  This step was more demanding in time for processing, thus, the 

number of bootstraps was fixed in 50.  
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 The final AM maps were obtained by the mean of 50 bootstrap predictions, with 30m of spatial 

resolution. The uncertainty maps were obtained by the coefficient of variation (CV= SD/mean×100), where SD 

is the standard deviation, with spatial resolution of 250m. The CV was chosen because permits the comparation 

between attributes with different magnitudes. The pixels with high CV values had more uncertain predictions, 

while the pixels with low CV values had less uncertain predictions (Poppiel et al., 2021).  

 

3.2.6 Interpretation, indexes and spatial validation 

For the description of AM variation in Brazilian territory, the predicted maps were stratified in tree 

equal percentiles: 1) less occurrence = AM value into the inferior percentile; 2) moderate occurrence = sample 

with AM value into the intermediary percentile; 3) high occurrence = sample with AM value into the superior 

percentile. The limits of percentiles varied for each mineral due the differences of magnitude. The uncertainty 

maps were also stratified in three classes: 1) CV equal or less than 12%; 2) CV value between 12 and 24%; 3) 

CV value equal or higher than 24%.  

 Indexes are calculated from the AM maps in order to demonstrate where each mineral is predominant. 

The AM maps were normalized between 0 and 100 (AMn) using the equation: AMn = (AMx100)/AMmax, where 

AMmax is the higher AM of all samples for each mineral. After that, the A Hemn/(Hemn+Gtn) and 

Ktn/(Ktn+Gbsn) ratio maps were calculated. 

In order to evaluate the distribution of iron oxides (Hem and Gt), Kt and Gbs, the AMn maps passed by 

a second normalization procedure (AMn2), using the following equations: Hem+Gtn2 = 

(Hmn+Gtn)/(Hmn+Gtn+Ktn+Gbsn), Ktn2= Ktn/(Hmn+Gtn+Ktn+Gbsn) and Gbsn2= Gbsn/(Hmn+Gtn+Ktn+Gbsn). 

Finally, a spatial ternary plot was made, with red band = iron oxides (Hem  n2+Gtn2), green = Ktn2 and blue = 

Gbsn2.  

 For interpretation of results and spatial validation the AM and indexes maps were visually compared 

with 1.5.000.000 geologic (Gómez et al., 2019) and 1:1.000.000 soil (Instituto Brasiliero de Geografia e 

Estatística, 2021) maps and also with climate (Alvares et al., 2013), elevation and slope (Japan Aerospace 

Exploration Agency: ALOS Research and Application Project, 2021) patterns.  The 1;1,000.000 soil map is 

derived from the RADAMBRASIL project and has a cartographic base of 1.250.000, however the soil 

information is compatible with the 1.1.000.000 scale (Instituto Brasiliero de Geografia e Estatística, 2021).  

The following case studies also were carried out followed by visual comparison of: 1) 1.5.000.000 

geologic (Gómez et al., 2019) and 1:1.000.000 soil (Instituto Brasiliero de Geografia e Estatística, 2021) maps, 

AHem, AGt and AHem/(AHem+AGt) ratio maps for Rio Grande do Sul (RS), Santa Catarina (SC), Paraná (PR), 

São Paulo (SP) and Mato Grosso do Sul (MS) States, with zoom in the west of PR. 2) 1:1.000.000 soil map 

(Instituto Brasiliero de Geografia e Estatística, 2021), AHem and  AHem/(AHem+AGt) ratio maps for the west 

of Pará State (PA). 3) 1:1.000.000 soil map (RADAMBRASIL, 1983), AHem and AGbs maps for the shout of 

Goiás State (GO). 4) 0-0.2m layer and 0.8-1m layer of AHem and AKt for west of São Paulo State (SP), with 

zoom at farm level. 5) 0-0.2m layer and 0.8-1m layer of AGt for the southwest of Amazonas State (AM) and of 

AHem for south of GO (farm level). 6) 1.100.000 soil map (adpted from Oliveira and Prado, 1989), AHem and 

AGbs for Piracicaba-SP region. 7) 1.10.000 soil map (Souza, 2020), AHem and AGbs maps at farm level in 

Piracicaba-SP. 8) 1.5.000 soil map (Demattê et al., 2004) and AHem at farm level in Piracicaba-SP.  
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3.3. Results  

3.3.1 Descriptive statistics of relative abundance of minerals  

 The AM, which reflects the relative abundance of minerals in soil samples, increased with depth. The 

iron oxides, AHem and AGt showed mean values of 360, 411, 439, 454, 463 (x10-6) and 527, 575, 605, 670, 615 

(x10-6) for 0.0-0.2, 0.2-0.4, 0.4-0.6, 0.6-0.8 and 0.8-1.0m, respectively. For the same depths, AKt and AGbs 

showed mean values of 196 ,240, 274, 291 and 301 (x10-6) and 42, 46, 50, 50 and 51 (x10-6), respectively. The 

AGbs values showed stability above 0.40m while a more pronounced increase in deep layers was verified for 

AKt, followed by AGt.     

The AM showed pronounced variations for the sampled points (Table 2). The highest variabilities were 

verified for AGbs, with CV ranging from 114.80 to 127.83%. The iron oxides showed intermediary variability 

between the minerals, with CV of AHem and AGt ranging from 65.75 to 71.28% and from 67.44 to 82.04%, 

respectively. The AKt showed the least variations with CV ranging from 46.54 to 60.13%. The high CV were 

verified for 0.0-0.2m depth, with AM values showing less variations in deep layers. 
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Table 2: Descriptive statistics for amplitude or minerals (AM) and Random Forest (RF) hyperparameters and accuracy. 

Where: Min = minimum value; Max= maximum value; SD = standard deviation; CV = coefficient of variation; RF = Random Forest; FS = Forest size; nPR = number of 

predictors; minSL = minimum samples to leaf; R2 = coefficient of determination; RMSE = root mean square error; RPIQ = ratio of the performance to interquartile distance. 

 

 

 

 

 

 

 

 

 

Mineral Amplitude  Layer (m) 

  Descriptive statistic  RF hyperparameters  Calibration set results  Validation set results 

  n 
Min  

(x10-6) 

Max  

(x10-6) 

Mean  

(x10-6) 

SD  

(x10-6) 
CV (%)  FS nPR minSL  R2 

RMSE 

(x10-6) 
RPIQ  R2 

RMSE 

(x10-6) 
RPIQ 

Hematite (AHem) 

 0.0 - 0.2   9,645 3.4 1246 360 257 71.28  100 10 100  0.62 158 2.55  0.56 171 2.34 

 0.2 – 0.4   8,216 2.2 1247 411 260 63.41  30 7 100  0.62 161 2.60  0.56 173 2.41 

 0.4 – 0.6   8,011 3.5 1191 439 267 60.91  60 10 100  0.59 171 2.51  0.52 186 2.31 

 0.6 – 0.8   7,411 1.4 1184 454 259 57.09  30 10 100  0.59 166 2.51  0.51 180 2.31 

 0.8 – 1.0   7,371 2.5 1188 463 263 56.75  30 10 100  0.56 174 2.40  0.48 189 2.23 

Goethite (AGt) 

 0.0 - 0.2   9,644 7.5 2975 527 433 82.04  30 10 200  0.31 361 1.13  0.25 372 1.10 

 0.2 – 0.4   8,220 7.8 2874 575 425 73.99  200 10 200  0.32 351 1.24  0.26 366 1.19 

 0.4 – 0.6   8,015 5.6 2987 604 452 74.77  100 10 200  0.27 388 1.15  0.20 403 1.10 

 0.6 – 0.8   7,408 8.2 2951 610 411 67.44  60 3 200  0.25 355 1.19  0.20 368 1.16 

 0.8 – 1.0   7,368 0.0 2980 615 439 71.43  60 10 200  0.22 387 1.08  0.16 403 1.03 

Kaolinite (AKt) 

 0.0 - 0.2   9,645 3.2 1194 196 118 60.13  30 10 200  0.34 95 1.53  0.29 100 1.47 

 0.2 – 0.4   8,216 6.2 1133 240 127 52.9  30 10 200  0.37 101 1.57  0.31 105 1.50 

 0.4 – 0.6   8,011 4.9 1363 274 141 51.68  30 10 200  0.32 117 1.46  0.25 122 1.40 

 0.6 – 0.8   7,411 0.3 1183 291 135 46.54  200 5 200  0.30 113 1.43  0.25 118 1.37 

 0.8 – 1.0   7,731 3.4 1197 301 140 46.66  30 10 500  0.22 124 1.34  0.20 125 1.32 

Gibbsite (AGbs) 

 0.0 - 0.2   9,567 0.0 300 42 54 127.83  30 7 50  0.56 36 1.16  0.42 41 1.03 

 0.2 – 0.4   8,074 0.0 300 46 55 120.48  30 10 100  0.51 39 1.20  0.43 42 1.11 

 0.4 – 0.6   7,868 0.4 300 50 60 120.32  30 10 100  0.51 42 1.20  0.43 46 1.11 

 0.6 – 0.8   7,224 0.3 298 50 57 114.8  30 10 50  0.57 37 1.35  0.44 43 1.18 

 0.8 – 1.0   7,184 0.7 298 51 60 116.9  60 10 50  0.56 40 1.30  0.41 45 1.12 
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3.3.2 Performance of AM models 

The modelling procedure reached satisfactory results for predicting the relative abundance of soil 

minerals. The best results were found in superficial layers, decreasing the accuracy with increasing depth (Table 

2). The more accurate results were reached for AHm with R2 for validation set varying between 0.48 and 0.56. 

The RMSE ranged from 171x10-6 to 189x10-6 and RPIQ from 2.23 to 2.34. The AGb reached R2 values ranging 

between 0.41 and 0.44, with RMSE ranging from 41x10-6 to 46x10-6 and RPIQ from 1.03 to 1.18 in the 

validation set. The less accurate results were found for AKt and AGt with R2 values from 0.20 and 0.29 and from 

0.16 to 0.25 in the validation data set, respectively. For Kt, the RMSE ranged from 100x10-6 to 125x10-6 and the 

RPIQ from 1.32 to 1.50, while for Gt, the RMSE ranged from 372x10-6 to 402x10-6 and RPIQ from 1.03 to 1.19.  

 

 3.3.3 Mineralogy and uncertainty maps 

The maps of iron oxide minerals along the Brazilian territory revealed localized areas with higher 

occurrence of Hem and Gt in 0-0.2m depth, in the midwest, southwest and south, (Fig. 3). In this layer, 87, 11 

and 2.1% of the area have low (equal or less than 270x10-6), moderate (between 270x10-6 and 540x10-6) and high 

(equal or greater than 540x10-6) AHem occurrence, respectively. In the same way, 65, 32 and 3% of area had low 

(equal or less than 350x10-6), moderate (between 350x10-6 and 700x10-6) and high (equal or greater than 700x10-

6) AGt occurrence, respectively. 

For the 0.8-1m depth, there was a generalized increase in the area with greater occurrence of Hem and 

Gt when compared with the superficial layer, with this increase being more pronounced for Gt. In this layer, 71, 

22 and 7% of area for AHem and 1, 89 and 10% of area for AGt showed values into the mentioned ranges, 

respectively. Thus, almost all of the Brazilian territory has considerable occurrence of Gt in depth.   

Only a small part of the territory has a high occurrence of Gbs (Fig. 3e). The distribution at 0.8-1m 

depth showed that the Brazilian territory has 86, 6 and 8% of the area with low (equal or less than 6x10-6), 

moderate (between 65x10-6 and 130x10-6) and high (equal or higher than 130x10-6) AGbs occurrence, 

respectively. The Kt occurs in significant amounts in Brazilian soils (Fig. 3f). The map showed that 0, 24 and 

75% of the area have low (equal or less than 135x10-6), moderate (between 135x10-6 and 270x10-6) and high 

(equal or higher than 270x10-6) AKt occurrence, respectively. The Gbs and Kt amounts increased in the 0.8-1m 

layer in relation to the 0-0.2m layer. For 0-0-2m depth, 90, 10 and 0% of area have AGbs and 23, 72, 5% of area 

have Akt into the mentioned ranges (maps non shown). 
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Figure 3: Maps of hematite amplitude (AHem) for 0-0.2m (A) and 0.8-1m (B), goethite amplitude (AGt) for 0-

0.2m (C) and 0.8-1m (D), gibbsite amplitude (AGbs) for 0.8-1m (E) and kaolinite amplitude (AKt) for 0.8-1m 

(F) depths. *10-6 scale; 1low occurrence; 2moderate occurrence; 3high occurrence.   
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Figure 4:  Uncertainty maps of hematite for 0-0.2m (A) and 0.8-1m (B), goethite for 0-0.2m (C) and 0.8-1m (D), 

gibbsite for 0.8-1m (E) and kaolinite for 0.8-1m (F) depths. CV= coefficient of variation. 1CV<=12%; 
212%<CV<24%; 3CV=> 24%. 
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 In general, the areas with high amounts of minerals showed the lowest coefficient of variations (CV) in 

the 50 bootstrap predictions (Fig. 3 and Fig. 4). The uncertainty maps for AHem showed 52, 47 and 1% of area 

in 0-0.2m depth with CV equal or less than 12%, between 12 and 24% and equal or higher than 24%, 

respectively (Fig. 4ab). For 0-8-1m depth, 68, 32 and 0% of area were into the mentioned ranges. The CV for 

AGt predictions were less than AHem, the layer 0-0.2m showed 85, 15 and 0% of area and the layer 0-8-1m 

showed 100, 0 and 0% of area with CV values into the mentioned ranges (Fig. 4cd).  The AGbs and AKt maps 

showed 56, 38 and 4% and 99, 1, 0% of area into the mentioned ranges, respectively (Fig. 4ef).  

 

3.3.4 Indexes 

 The Hem/(Hem+Gt) ratio showed predominance for Gt in Brazilian territory with similar patterns in 0-

0.2m and 0.8-1m layers (Fig. 5ab). However, there were some exemptions, such as the higher values for some 

locations in the west of São Paulo state and lower values in the Amazon basin for 0.8-1m than 0-0.2m depths. 

The Kt/(Kt+Gt) ratio showed predominance of Kt in relation to Gbs in the territory, with Gbs occurrence 

concentrated in the south and southwest regions (Fig. 6c). The ternary plot followed the patterns of each 

individual mineral map (Fig. 4) and showed the predominance of Kt in Brazilian soils (Fig.4 and Fig. 6d). The 

occurrence of iron oxides is mainly located in some places in the south, southwest and midwest, while Gbs 

predominates mainly in the south and southwest regions (Fig. 6d).      
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Figure 5: Hem/(Hem+Gt) ratio for 0-0.2m (A) and 0.8-1m (B) layers, Kt/(Kt+Gt) ratio (C) and ternary plot (D) 

for 0.8-1m layer. Hem= hematite; Gt = goethite; Kt=kaolinite; Gbs = gibbsite. 

 

3.3.5 Study cases   

 The areas with higher iron oxides (Hem and Gt) amounts are related to basalt rocks and more weathered 

soil classes, such as red (hue equal to 2.5YR or more redish) Ferralsols (FR) and Nitisols (NT), covering part of 

Rio Grande do Sul (RS) (north), Paraná (PR) (west) and Mato Grosso do Sul (MS) (south) States (Fig. 6a). In the 

west of PR, it is possible to see the high amounts of Hem and Gt for FR and NT then Acrisols (AC), Lixisols 

(LX) and Alisols (AL).  The west of Pará (PA) presented moderated Hem amount and high Hem/(Hem+Gt) ratio 

(equal or greater than 0.47) for red-yellow (hue equal to 5YR) AC, LX and FE and low Hem and 

Hem/(Hem+Gt) for yellow (hue equal to 7.5YR or more yellowish) AC, LC, FR and Gleysol (GL) (Fig. 6b). The 

south of Goiás (GO), presented moderate Hem amounts in red and clayey (clay content equal or more than 350 g 

kg-1) FR, high in red, clayey and ferric (Fe2O3 equal or more of 18 g kg-1) FR and low content in Arenosols (AR) 

and other soil classes. The Gbs amount in GO was also high in red and clayey FR, however restricted to flat and 

elevated areas (Fig A2cb). 
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 The areas of FR in the west of SP showed a low increase of Hem and Kt from 0-0.2m to 0.8-1m, while 

the areas of AC, LX and AL presented a high increase (Fig. 7a). In the zoom at farm level also it is possible to 

visualize the increase of Hem and Kt deep in an area of AL.  The areas of yellow FR in the south-west of 

Amazonas (AM) State had an significant increase in AGt amount from 0-0.2m to 0.8-1m, while for red and ferric 

FR the Hem amount is similar in the topsoil and 1m of depth (Fig. 7b). 

 In the study case in Piracicaba region, the more weathered and clayey soil classes, such as Ferralsols, 

showed high values of Hem and moderate values of Gbs, while the less weathered and sandy (clay content less 

than 350 g kg-1) soil classes showed low values for both minerals (Fig. 8a). An area (farm) showed high Hem 

and moderated Gbs amounts for red and ferric FR and NT derived from basalt rocks, while the other soils classes 

from sandstone and siltstone, such as GL, Plinthosols (PT) Cambisols (CM) and Leptosols (LP), red AC and red-

yellow AC, showed low values for both minerals (Fig. 8b). Another area (farm), showed high Hem amount for 

red and ferric FR derived from basalt and low Hem amount for red AC, red-yellow AC, CM, LP and GL from 

sandstones and other rocks (Fig. 8c). 
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Figure 6: Study cases for hematite (AHem) and goethite (AGt) amplitudes, covering Rio Grande do Sul (RS), 

Santa Catarina (SC), Paraná (PR), São Paulo (SP) and Mato Grosso do Sul (MS) States, with zoom in the west of 

PR (A), for AHem and AHem/(AHem+AGt) ratio covering the northeast of Pará State (PA) (B) and for AHem 

and Gbs amplitude (AGbs) covering the south of Goiás State (GO) (C). FR = Ferralsol; NT= Nitisol; 

AC=Acrisol; LX=Lixisol; AL=Alisol. The geologic (adapted), the first and the second soil maps were from 

Gómez et al. (2019), Instituto Brasileiro de Geografia e Estatística  (2021) and RADAMBRASIL (1983), 

respectively. Red soils have hue equal to 2.5YR or more reddish and red-yellow soils have hue equal to 5YR. 

Ferric soils had Fe2O3 equal or more of 18 g kg-1 and clayey soil had clay equal or more of 350 g kg-1. *10-6 

scale.  
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Figure 7: Case of studies in 0-0.2m and 0.8-1m layers for hematite (AHem) and kaolinite (AKt) amplitudes 

covering the west São Paulo (SP) State, with zoom at farm level (A), for goethite amplitude (AGt) in the south-

west of Amazonas (AM) and hematite amplitude (AHem) in the south of Goiás States (B). FR = Ferralsol; 

AC=Acrisol; LX=Lixisol; AL=Alisol. Red soils have hue equal to 2.5YR or more reddish, red-yellow soils have 

hue equal to 5YR and yellow soils have hue equal to 7.5YR or more yellowish. Ferric soils had Fe2O3 equal or 
more of 18 g kg-1. *10-6 scale.   
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Figure 8: Case of studies in 0.8-1m layer for hematite (AHem) and gibbsite (AGt) amplitudes in regional 
(Piracicaba-São Paulo region) (A) and farm (B) (C) levels.  The 1:100.000 (adapted), 1:10.000 and 1:5.000 soil 

maps were from Olivera and Prado (1989), Souza et al., (2020) and Demattê et al. (2004), respectively. Red soils 

have hue equal to 2.5YR or more reddish, red-yellow soils have hue equal to 5YR and yellow soils had hue 

equal to 7.5YR or more yellowish. Ferric soils had Fe2O3 equal or more of 18 g kg-1. *10-6 scale. SySIc = Soil 

synthetic image with full coverage.  

 

3.4. Discussion  

3.4.1 Descriptive statistics of relative abundance of minerals  

The reported values for AM (Table 2, Fig. 3) was in accordance with the literature (Mendes et al., 2021; 

Poppiel et al., 2020a). These studies in Brazilian soils also found increased values for Gt, Hem, Kt and Gbs with 

the depth increase (Mendes et al., 2021; Poppiel et al., 2020a). In fact, mineral amounts tend to increase, by the 

clay, silicon, iron and aluminum content increases in depth (horizon B) by pedogenetic processes, such as 

eluviation and illuviation (Blume and Schwertmann, 1969; Buol et al., 2011; Carroll, 1953; Macías and Camps-

Arbestain, 2020). The soil observations from BSSL represents the variability of Brazilian soils, however the 

most samples were from agricultural land with manly FR, AC and LX soil classes (Demattê et al., 2019). These 

soils cover more than 60% of the Brazilian territory and are characterized as highly weathered soils, with intense 



62 

base lixiviation and predominance of Kt and iron and aluminum oxides (Macías and Camps-Arbestain, 2020; 

Schaefer et al., 2008).  

The Hem and Gbs showed high variations being the occurrence related with specific conditions of 

relief, climate, geology and soil (Table 2, Fig. 1, Fig. 3abcd, Fig. A1 and Fig. A2) (Schaefer et al., 2008). The Kt 

and Gt showed less variability due the more occurrence in Brazilian soils and stability in the environment (Table 

2 and Fig. 3de) (Fink et al., 2016; Schaefer et al., 2008). The more variability found in the 0-0.2m layer can be 

explained by the soil types of Brazil (Table 2) (Fig. A1b). Brazil is composed of soils with homogeneity along 

the profiles, such as FR and PT and also with textural gradients promoted by the translocation of fine particles, 

such as AC, LX, AL and NT (Fig A1b) (Santos et al., 2018). The soil classes with homogeneous profiles have 

similar amounts of minerals in surface and subsurface, while the soil classes with textural gradients have 

accumulation of minerals in B textural horizon (Lelong et al., 1976; Santos et al., 2018). 

 

3.4.2 Mineral modelling and accuracy of maps 

3.4.2.1 Predictive models 

 The more accurate results for the superficial layer than deep layers is explained by the use of SySI as 

covariate for DSM (Table 2), which presented higher correlation than TA, with the AM (Table A1). It occurs 

because the SySI is a direct measurement of topsoil reflectance, revealed by temporal satellite images and data 

mining procedures (Demattê et al., 2018). The SySI can be used to predict soil attributes in soil subsurface 

layers, with a degree of accuracy decrease (Mendes et al., 2019). Mendes et al. (2021), highlighted the use of 

SySI as a predictor for AM mapping at soil depths until 1m.   

 The more accurate results obtained for AHem modelling were in accordance with the literature (Table 

2). Other authors also found more accurate results for AHem than other minerals, using several statistical 

methods for spatial modelling and punctual content estimation (Canton et al., 2021; De Souza Bahia et al., 2015; 

Mendes et al., 2021; Poppiel et al., 2020a; Sellitto et al., 2009; Silva et al., 2020). On the other hand, the AGt 

modelling showed the worst results. In the literature the results for AGt are more variable than AHem, being 

almost always lower (Canton et al., 2021; Mendes et al., 2021; Poppiel et al., 2020a; Sellitto et al., 2009; Silva et 

al., 2020). The electronic transitions of Hem in the 535-580 nm and of Gt in 415-455nm range are well separated 

from each other, permitting the distinction of iron forms and detection of low contents in soil samples 

(Scheinost, 1998). The absorption feature of Hem and Gt affects also the reflectance of soils obtained by Landsat 

satellites mainly in the visible bands (Madeira-Neto et al., 1997), that were used as covariates in this study. The 

AHem and AGt showed highest and moderate correlations in the Vis range, respectively (Table 1A). The Hem 

has a deeper and well-defined absorption feature than Gt (Demattê and Garcia, 1999; Kosmas et al., 1984). The 

substitution of iron by aluminum in the Gt structure can reach until 40% in Brazilian FR and can be a cause of 

the low accuracy for Gt, by the less stability in the absorption feature (Kosmas et al., 1984; Poppiel et al., 2020a; 

Schaefer et al., 2008; Scheinost, 1998).  

The second better result for mineral modelling was obtained for AGbs followed by AKt (Table 2). The 

AGbs and AKt determination by spectroscopy has been less explored than iron oxides, with works showing 

variables results from several statistical methods, normally with more accuracy for AGbs than AKt (Fernandes et 

al., 2020; Madeira-Neto et al., 1995; Mendes et al., 2021; Poppiel et al., 2020b; Viscarra Rossel, 2011); Low 

correlations with SySI were verified for AKt and AGbs than AHem and AGt (Table A1). The groups OH and 
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metal-OH show vibrational activity in the 2,200 to 2,300 region, being this region related beyond AKt and 

AGbs, to halloysite and 2:1 minerals, such as montmorillonites, muscovite and illite (Clark et al., 1990; 

Dufréchou et al., 2015). Because of it, this region cannot be used to detect the Al-OH groups in all cases (Clark 

et al., 1990). The halloysite and montmorillonite (near 2,200nm) have similar absorption features than AKt 

(Clark et al., 1990; Goetz et al., 2009) and it can explain the low accuracy for AKt modelling.   

There are few studies using environmental covariates and DSM procedures to soil mineral mapping at 

fine resolution, such as the described above, that can be directly compared with statistics parameters reported in 

table 2. Poppiel et al., (2020) mapped an 851,000 km2 area with spatial resolution of 30m and found R2 of 0.71, 

0.72, 0.72 for AHem, 0.45, 0.45, 0.24 for AGt, 0.47, 0.55, 0,59 for AKt and 0.55, 0.64, 0.65 for AGbs, for 0-0.2, 

0.2-0.6 and 0.6-1m layers, using TA, a synthetic vegetation image, SySI, and climate covariates.  Poppiel et al., 

(2020) also used the RF algorithm, however the models were validated by 10-fold cross validation, which tends 

to overestimate the accuracy parameters when compared to other split methods (Volkan Bilgili et al., 2010), such 

as bootstrapping. Viscarra-Rossel et al., (2011) used the Cubist algorithm and Landsat bands, TA, climate, 

geological and gamma ray data to predict AKt, with resolution of 90m for Australian territory (7,7 million of 

km2) and reached R2 ranging from 0.50 to 0.53 for 0-0.2m layer and from 0.45 to 0.48 for 0.6-0.8m layers. In a 

regional study area (2,274 km2) located in Brazil, Mendes et al., (2021) obtained mineral maps with 30m of 

resolution using the SySI and RF algorithm. The authors reported R2 of 0.54, 0.17, 0.62 for AHem, 0.16, 0.10, 

0.24 for AGt, 0.32, 0.00, 0,38 for AKt and 0.17, 0.09, 0.62 for AGbs, for 0-0.2, 0.4-0.6 and 0.8-1m layers. 

 

3.4.4.2 Spatial uncertainty and quality of maps 

Generally, the AM maps obtained were coherent with legacy maps, such as soil and geology, in 

national, regional and farm level (Fig. 3, Fig.6, Fig. 7, Fig. 8 and Fig. A1). However, some errors and low quality 

of maps in some locations, such as north of Brazil (Amazon rainforest) (Fig. 3 and 4) can be observed. These 

errors may be associated with to manly factors: 1) low density of soil observations and 2) the use of the predicted 

bands of SySIc (locations without any bare soil pixel from 1984 to 2020, as was explained in the topic 3.2.3.2). 

The coefficient of variation (CV) for AHem and AGbs prediction was high for areas with low predicted mean 

values (Fig. 4abe and Fig. 3abe). It can be an indicator of overestimation of predicted values in these areas as 

reported by Safanelli et al. (2021a) for clay content mapping.  The less accurate models (AGt and AKt) showed 

low CV values and it was not possible to see variation along the mapped territory (in the scale visualized), 

except for AGt in 0-0.2m layer (Fig. 4cde). The uncertainty found is in accordance with other papers that used 

DSM and environmental covariates to predict soil attributes (Poggio et al., 2021; Poppiel et al., 2021; Safanelli et 

al., 2021a)  

The large territory mapped had low density of soil observation (Table 2) (ranging from about 8.29 x 10-

4 to 1.09 x 10-3 points per km2) and the soil observations were concentrated in the southwest and middle-west 

region, with few sampled points in the south, northwest and north regions (Fig 1.). It occurred because of the use 

of legacy data from BSSL, which had the samples located mainly in agricultural areas (Demattê et al., 2019). 

Similar situations were related by Liu et al., (2012), that mapped the soil particle size distribution for China 

territory and Poppiel et al. (2020) in mineralogy mapping described above.   

As mentioned, the SySI is a directed measurement of topsoil reflectance, while the SySIc has the 

original SySI plus the predicted bands in the location without soil exposure, that have uncertainties included. The 
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“gaps” of SySI were predicted using a Landsat mosaic of vegetation (with low spatial resolution) and TA with 

relatively low accuracy (Table A2). The longitudinal lines perceived in the SySIc (Fig. A1b) is related to the 

clouds, that interfere in the Landsat imagens that compose the vegetation mosaic used as covariate and causes 

the exclusion of some entire images. These lines can be perceived also in the AM maps (Fig. 3).  Some areas 

with only predicted reflectance values, showed more doubtful AM values in predicted maps, such as in the 

mountainous regions along the coast of the Atlantic Ocean and Amazon rainforest (Fig. 3, Fig. 5, Fig 7b). In a 

study case at farm level, it is possible to see an area with probably error due the use of predicted reflectance (Fig. 

8c). 

 

3.4.3 Spatial and depth variation of minerals 

3.4.3.1 Iron oxides  

The geologic played a fundamental role on iron oxide minerals amounts distribution that can be 

perceived by visual analysis in the AM maps for Brazil territory (Fig. 3abcd; Fig. A1a) and also in studies of 

cases at a detailed level (Fig. 7a; Fig. 8bc). The volcanic mafic rocks, such as basalt, are rich in iron and 

magnesium and originate soil with great amounts of iron oxide minerals (Schaefer et al. 2008; Goulart et al, 

1998; Long et al., 2011). In fact, among the soil forming factors, the parent material had the greater influence in 

mineralogy (Kiely, 1991). In the study case for RS, SC, PR, SP and MS it is possible perceive the great influence 

of geology in the middle-east (in MS State) and geology plus climate in the south of Brazil (RS and PR States) in 

iron oxides amounts, mainly Hem (Fig 1. Fig. 6a) (Schaefer et al., 2008). The Hem occurrence is related mainly 

with more weathered and red soils (Viscarra Rossel et al., 2010), such as FR and NT classes (Fig. 3ab, Fig A1b, 

Fig. 6) and also with soils characterized as clayey or/and ferric soils (Fig. 6c, Fig.7b and Fig. 8).         

The climate and terrain also influenced the iron oxide minerals distribution (Fig. 1, Fig. 3abcd and Fig. 

A2 bc). The Hem high amounts occurred specifically in some locations under tropical and subtropical zones, 

with less amounts in dry environments. Indeed, occurrences of iron oxides are characteristic of warmer and 

humid climates (Long et al., 2011; Macías and Camps-Arbestain, 2020; Schaefer et al., 2008). The Hem 

occurrence is limited by drained conditions, provided by the terrain, being absent in flat areas with poor 

drainage, such as the Pantanal located in the west of MS and the Amazon basin (north of Brazil), while, the Gt 

ocurres also under limited drainage conditions (Fig. 4abcd, Fig. 6b, Fig. 7b, Fig. A2cd). The Gt can occur on 

imperfect drainage conditions, by reduction of iron oxide minerals by anaerobic microorganisms (Breemen and 

Buurman, 2002; Macedo and Bryant, 1989; Macías and Camps-Arbestain, 2020). The Gt is more stable than 

Hem, being present in most variable environments and more predominant than Hem (Macedo and Bryant, 1989; 

Resende et al., 1986; Schaefer et al., 2008).  

As mentioned, soils with homogeneous profiles means similar distribution at depth, as the case of 

AHem and AGt distribution in FR originated from basalt rocks (Fig. 3abcd, Fig.7a Fig. A1a). For example, it can 

be perceived in the west of SP and south of GO (Fig. 7). Conversely, soil types with textural gradients had iron 

oxides increases at deep layers along the territory. The AHem increase was punctual, that can be associated with 

the occurrence of red AC, LX and AL and can be perceived in the west of SP, for example (Fig. 7a)  

The more generalized occurrence verified for Gt than Hem in the 0.8-1m layer, can be related for the 

intermediary weathered soil types, such as red-yellow and yellow AC, LC and AL, that normally have more 

abundance of Gt in the subsurface (Fig. A1b) as related by Aquino et al. (2016). It is possible to visualize a more 
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pronounced increase for Gt in the Amazon region (north of Brazil), which has predominance of soils with matiz 

5YR or more yellowish (Fig. 4cd Fig. A1). However, areas with yellow FR also showed Gt amount increased 

with depth, while it did not occurred for Hem in red RF (Fig. 7b). A probability explanation for this phenomenon 

is the masking of iron oxides by soil organic matter in the 0-0.2m layer (Croft et al., 2012; Heller Pearlshtien and 

Ben-Dor, 2020). This effect is more pronounced for Gt than Hem, due to the pigmentation power of Hem, 

directly affecting the spectral response in the visible region. Additionally the Gt has higher affinity for organic 

matter, compared to Hem (Guzman et al., 1994).  

The variation of Hem/(Hem+Gt) ratio verified in Fig. 5ab represents the proportional amounts of Hem 

and Gt being directly related with soil color. The Hem is responsible for the red color of soils even in small 

amounts, while the Gt had yellow pigmentation (Kosmas, 1984; Sheinost et al., 1998). A mixture of 1 part of 

Hem for 4 part of Gt is sufficient to confer a hue of 5YR. (Kosmas, 1984). In this way, the Hem is almost absent 

in yellow soils, while small amounts of Hem are sufficient to mask the Gt and give red color for soils 

(Schertaman, 1993; Schaefer et al. 2008; Kosmas, 1984). In southern Brazil the Hem/Gt+Hem is driven mainly 

by climatic conditions, while in the central region the parent material, climatic conditions and drainage control 

(Schaefer et al. 2008).  

It is possible to see high values of Hem/(Gt+Hem) ratio in locations with varied parent material and 

climate conditions, except in dry zones (northeast) and subtropical zones with temperate summer (south) (Fig. 1, 

Fig. A1a and Fig. 5ab). The terrain had great influence, with higher values of Hem/(Gt+Hem) ratio for locations 

with middle elevation and slope (Fig. 5ab and Fig. A2cd). The areas with flat relief promote the Gt occurrence 

by the poor drainage, while areas with high slope are unstable and because of it, without conditions for intense 

weathering and high amounts of Hem occurrence (Breemen and Buurman, 2002; Macías and Camps-Arbestain, 

2020). In the PA state, it is possible to see high Hem/(Hem+Gt) values related to red-yellow AC, LX and FR and 

low values related to yellow FR, AC, LC and GL (Fig. 6b).  Generally, there was no variations of 

Hem/(Gt+Hem) ratio with depth, being the Amazon basin (north of Brazil) an example of exception due the 

increase of Gt amount related to the occurrence of soils with hue 5YR or more yellow in the subsurface layer or 

the masking of Gt in the surface layer as mentioned above.  Finally, the ternary plot showed the occurrence of 

iron oxides mainly associated with the parent material, with predominance in soils from volcanic mafic rocks 

(Fig. 5d and Fig. A2a). 

 

3.4.3.2 Gibbsite 

The occurrence of Gbs in Brazilian territory was related to the position with high altitude (>500m) and 

felsic plutonic and metamorphic rocks, such as granite and gneisses (Fig. 3e Fig. 6c and Fig. A1a). In fact, 

although Gbs can occur in mostly varied parent material, Buol et al. (2011) related the propensity of this kind of 

rocks to originate soil with high amounts of Gbs. An example of high occurrence of Gbs in flat and elevated 

locations was the south of GO (Fig 6c). Poppiel et al., (2020) also verified this behavior for Gbs using a 

combined proximal and remote sensing approach in the middle-west of Brazil. Studies of cases at regional and 

farm level showed more occurrence of high amounts of Gbs in the most weathered soil classes (Fig. 8ab). In fact, 

several studies related the Gbs occurrence with the altitude and more weathered soils in Brazil (Gomes et al., 

2004; Poppiel et al., 2020a; Reatto et al., 2008; Schaefer et al., 2008).   
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Moderate amounts of Gbs were verified in soils derived from volcanic mafic rocks, associated with iron 

oxides (Fig. 3abcde, Fig. A1a). The Gbs occurrence were associated with several kinds of soils, such as highly 

weathered FR, intermediary, such as AC and LX and less weathered such as CX (Fig. 3e, Fig. 6e and Fig. A1). 

This point partially contrasts the literature that attributes more amounts of Gbs to highly weathered soils from 

mafic rocks, due the small amounts of silicon that increases the Gbs formation (Schaefer et al., 2008). In fact, the 

high Gbs amounts in less weathered soils, mainly in the mountainous regions along the coast of the Atlantic 

Ocean can be wrong. On the other hand, the Gbs occurrence is not related exclusively to high weathered soil 

classes formed under humid tropical climates (Macías Vazquez, 1981). Two processes that occur under free 

drainage conditions, low silica activity and few bases contents can explain the occurrence of Gbs in soil, the neo 

formation in the initial phases of Al-silicates weathering and the intense weathering process with dissolution of 

Kt (Macías Vazquez, 1981; Schaefer et al., 2008; Tardy et al., 1973) In the same way, the Gbs abundance is 

extremely variable in Brazilian soils, even in FR (Schaefer et al., 2008).  

According to the literature, the Gbs can increase with depth, keep stable or decrease (Buol et al., 2011; 

Macedo and Bryant, 1989), being verified the least increases when compared with the other minerals (Fig. 4e) 

(map for 0-0.2m layer not shown). The Kt/(Kt+Gbs) ratio and the ternary plot showed the predominance of Gbs 

in regions with higher altitude, mainly associated with felsic rocks (Fig. 2a, Fig. 6cd and Fig. A1c).    

 

3.4.3.3 Kaolinite 

The Kt mineral showed considerable amounts in all soils types from several parent material and 

presented a generalized increase with depth, reaching significant amounts in almost all territory (Fig. 3f) (map 

for 0-0.2m layer not shown). In fact, the literature does mention a generalized occurrence of Kt in Brazilian soils, 

being present mainly in FR, NT, AC, LX and PT (Schwertmann and Kämpf, 1985). The development of  Kt 

minerals can occur in several conditions, mainly in humid and warmer climates, with free drainage conditions, 

low pH and non-excessive Si leaching  (Schaefer et al., 2008). The regions with moderate values have 

sedimentary parent material or dry climate conditions, such as some regions in the northeast of Brazil (Fig. 1, 

Fig. 2a and Fig. 4f). In the west of SP, it is possible to visualize the increase of Kt abundance from topsoil to 0.8-

1m depth due the illuviation and eluviation in AC, LX and AL and the low variation with depth in FR (Fig. 7a). 

The Kt/(Kt+Gbs) ratio and the ternary plot showed the predominance of Kt in the national territory under several 

conditions (Fig 1, Fig 2, Fig 6cd and Fig. A1cd). 

 

3.5. Conclusion 

The abundances of major soil mineralogical components: goethite (Gt), hematite (Hem), kaolinite (Kt) 

and gibbsite (Gbs) were successfully identified and quantified by Vis-NIR-SWIR reflectance in samples from 

Brazilian Soil Spectral Library (BSSL).    

These soil minerals presented a significant correlation with spectral data of a synthetic soil image 

(SySI) with bare soil pixels obtained from temporal Landsat images and clay content. The Hem presented the 

more accurate results in spatial prediction with R2 ranging from 0.48 to 0.56, followed by Gbs (0.42 to 0.44), Kt 

(0.20 to 0.31) and Gt (0.16 to 0.26).   

The spatial distribution of minerals was predicted for the entire Brazilian territory. For it, a novel 

framework was implemented to obtain a continues bare soil reflectance image.   
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The mineral maps obtained were in accordance with geology and soil legacy maps and also with the 

climate and terrain conditions at the national, regional and farm level.  

The proposed approach revealed the distribution of mineral abundances in the Brazilian territory and 

consists of an efficient method to obtain mineralogy information for large areas. 
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Appendix 

Table A1:  Spearman correlation between the Amplitude of minerals (AM), terrain attributes (TA), Synthetic 

soil image (SySI) bands and Landsat mosaic of 1984. 

Where: AHem = hematite amplitude; AGt = goethite amplitude; AKt = kaolinite amplitude; AGbs = gibssite 

amplitude. The bold values were the correlation >0.10 and <-0.10. 

 

 

Table A2: Accuracy parameters for Synthetic soil image with full coverage (SySIc) modelling. 

Where: R2 = coefficient of determination; RMSE = root mean square error; RPIQ = ratio of the 
performance to interquartile distance. 
 
 

 
 
 
 

Covariate 
 Amplitude of minerals  SySI bands 

 AHem AGt AKt AGbs  blue green red  NIR SWIR1 SWIR2 

Elevation  -0.19 0.07 0.02 0.43  -0.23 -0.20 -0.10 -0.10 -0.07 -0.09 

Slope  -0.12 -0.02 0.01 0.05  -0.18 -0.14 -0.20 -0.07 -0.08 -0.15 

Aspect  -0.02 -0.01 -0.02 -0.06  -0.03 0.00 -0.08 0.00 0.00 -0.03 

Hillshade  0.12 0.00 0.02 0.00  0.19 0.20 0.18 0.14 0.16 0.19 

Northness  -0.03 -0.06 -0.04 0.00  0.03 0.05 0.02 0.07 0.07 0.05 

Eastness  0.02 0.02 0.01 0.07  0.03 0.01 0.09 0.01 0.00 0.03 

Horizontal curvature  -0.07 -0.05 -0.07 -0.09  -0.04 -0.05 -0.03 -0.03 -0.02 -0.02 

Vertical curvature  -0.01 -0.02 0.01 -0.02  -0.06 -0.06 -0.02 -0.02 -0.01 0.00 

Mean curvature  -0.05 -0.05 -0.04 -0.07  -0.06 -0.06 -0.02 -0.02 -0.01 0.00 

Minimal curvature  0.07 0.01 0.02 0.00  0.02 0.00 0.07 0.01 0.04 0.09 

Maximal curvature  -0.14 -0.08 -0.08 -0.12  -0.06 -0.06 -0.02 -0.02 -0.01 0.00 

Gaussian curvature  0.00 -0.01 0.00 -0.03  0.00 0.00 0.01 0.00 0.00 0.01 

Shape index  0.04 0.00 0.01 -0.01  -0.08 -0.07 -0.02 -0.02 -0.01 0.00 

SySI blue  -0.63 -0.40 -0.36 -0.38        

SySI green  -0.60 -0.40 -0.36 -0.40        

SySI red  -0.47 -0.37 -0.33 -0.42        

SySI NIR  -0.48 -0.39 -0.36 -0.44        

SySI SWIR1  -0.51 -0.43 -0.36 -0.42        

SySI SWIR2  -0.49 -0.42 -0.36 -0.43        

Mosaic blue       0.33 0.29 0.28 0.18 0.18 0.20 

Mosaic green       0.26 0.24 0.26 0.16 0.14 0.17 

Mosaic red       0.18 0.16 0.21 0.11 0.11 0.12 

Mosaic NIR       0.05 0.11 0.18 0.23 0.19 0.22 

Mosaic SWIR1       0.26 0.24 0.30 0.29 0.34 0.32 

Mosaic SWIR2       0.20 0.17 0.24 0.20 0.24 0.25 

SySI 

band 

 Calibration set  Validation set 

 R2 RMSE  RPIQ  R2 RMSE RPIQ 

blue  0.35 174.2 1.54  0.28 181.6 1.48 

green  0.36 202.6 1.55  0.29 211.3 1.49 

red  0.32 229.1 1.52  0.25 239.2 1.49 

NIR  0.32 333.6 1.62  0.25 348.7 1.56 

SWIR1  0.46 511.0 1.72  0.36 557.3 1.58 

SWIR2  0.38 429.3 1.49  0.32 450.1 1.42 
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Figure A1:  Geologic (adapted from Gómez et al. 2019) (A) and soil (Instituto Brasileiro de Geografia e 

Estátistica 2021) (B) maps for of Brazilian territory. 

 

 
Figure A2: Soil synthetic image (SySI) (A), soil synthetic image with full coverage (SySIc), elevation (B) and 

slope (C). The SySI and SySIc are presented in true color (3,2,1) RGB composition.                                                                                                                                        
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4. FINAL REMARKS 

The mineralogy always was neglected in analyses for soil characterization. In the present thesis we 

successfully explored to potential of proximal and remote sensing to reach it. In the first chapter, it was showed 

the close relation between the pXRF information and soil mineralogy and the potential of this technique to reach 

several soil attributes beyond the elemental composition. In the second chapter, it was developed a proximal and 

remote sensing integrated framework to map the mineralogy in the whole Brazilian territory. The Vis-NIR-

SWIR spectra was used to calculate the abundances of soil minerals and the remote sensed data to spatialize it 

via digital soil mapping (DSM).  

Briefly, the main conclusions were:   

1) The soil particle size distribution, water and iron forms implied in changes imp XRF information 

by different elemental composition of samples and matrix effects caused by it, which is related to soil 

mineralogy and weathering processes and pave the way for determination of several soil attributes. 

2) The pXRF demonstrated to be a very useful tool for mineralogical and chemical studies, delivering 

satisfactory results for Kt, Gb, Fe2O3, Al2O3, SiO2, TiO2 and MnO contents estimation by LR. Besides that, the 

qualitative and Person’s correlation analyses showed relationships between the pXRF data and both soil particle 

size distribution and soil fertility attributes. 

3) The understanding of the fundamentals of interactions between pXRF energy with the sample matrix 

is the starting point for characterizing the soil mineralogy through this technique. 

4) The relative abundance of soil minerals presented significant correlation with spectral data of a 

synthetic soil image (SySI) with bare soil pixels obtained from temporal Landsat images.  

5) The spatial distribution of minerals was accessed for the entire Brazilian territory. The hematite 

(Hem) presented the more accurate results in spatial prediction with R2 ranging from 0.48 to 0.56, followed by 

gibbsite (Gbs) (0.42 to 0.44), Kt (0.20 to 0.31) and goethite (Gt) (0.16 to 0.26). The mineral maps obtained were 

in accordance with geology and soil legacy maps and also with the climate and terrain conditions at national, 

regional and farm level.  

6) The use of Vis-NIR-SWIR data combined with DSM was able to reveal the distribution of mineral 

amounts in the Brazilian territory and consists of an efficient method to obtain mineralogy information for large 

areas.   

 

 


