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RESUMO 
 

Espectroscopia de reflectância vis-NIR e mid-IR aplicada ao estudo de solos 

 

       Para o planejamento agrícola e o monitoramento ambiental são necessárias informações 

sobre os solos. As análises de solos realizadas através de métodos convencionais em 

laboratório são normalmente caras e demoradas. Além disso, geram resíduos químicos que 

caso não sejam dispostos e/ou tratados adequadamente, podem contaminar o ambiente. Nas 

últimas décadas a espectroscopia de reflectância difusa na região do visível e infravermelho 

próximo (vis-NIR, 400-2500 nm) do espectroeletromagnético tem se mostrado uma 

alternativa viável para analisar atributos de solo de maneira rápida. Para tanto, a informação 

espectral é matematicamente extraída do espectro e métodos multivariados são usados afim de 

correlacioná-la com as propriedades do solo. Entretanto, ainda são poucos estudos de solos 

em que a espectroscopia de reflectância na região do infravermelho médio (mid-IR, 4000-400 

cm
-1

) foi usada. Objetivaram-se com este trabalho investigar a viabilidade da utilização de 

dados espectrais vis-NIR e mid-IR de solos e métodos quimiométricos para predizer as 

propriedades dos mesmos, a fim de reduzir o número de análises convencionais de terra. As 

relações existentes entre características espectrais e propriedades físico-químicas de solos 

tropicais foram avaliadas em três estudos distintos com solos (i) de uma biblioteca espectral 

(Capítulo 1), (ii) da região amazônica (Capítulo 2) e, (iii) contaminados com metais pesados e 

lodo de curtume (Capítulo 3). Foi possível identificar faixas espectrais nas regiões do vis-NIR 

e mid-IR relacionadas às feições de absorção características da água, óxidos de ferro e 

minerais de argila. No capítulo 1 os modelos de predição vis-NIR de argila e matéria orgânica 

do solo apresentaram elevada acurácia. Isto reflete a influência direta destas propriedades do 

solo na sua resposta espectral. A divisão da biblioteca espectral em subgrupos menores 

baseada nas características espectrais foi eficiente na quantificação de atributos de solos 

tropicais. Outra alternativa foi usar o método de regressão de árvores para o conjunto total de 

dados. No capítulo 2, os modelos de predição mid-IR foram mais precisos que os vis-NIR. Os 

modelos de carbono orgânico do solo e capacidade de troca catiônica obtidos pela regressão 

pelo método dos mínimos quadrados parciais permitiram a reprodução do padrão espacial 

destas propriedades na área estudada (r > 0.81); e puderam ser aplicados em uma área 

geográfica diferente, em amostras de solos desconhecidas. No capítulo 3, a adsorção de 

metais em constituintes dos solos provocou mudanças nas curvas espectrais dos mesmos, 

mostrando diferenças entre solos altamente contaminados por metais pesados e solos livres de 

contaminação. Os teores de Cr (semi-total) no solo pode ser predito através da espectroscopia 

de reflectância vis-NIR-mid-IR e regressão por mínimos quadrados parciais. Fe e Mn também 

foram preditos com acurácia usando dados vis-NIR. Em geral, os modelos de predição vis-

NIR de metais pesados foram mais precisos que o mid-IR. A vantagem da utilização do 

sensor vis-NIR está no preparo mais simples de amostras e na possibilidade de utilizá-lo 

diretamente no campo.  

 

Palavras-chave: Espectroscopia de solo; Contaminação de Solos; Carbono orgânico do solo; 

Terra preta de índio; Regressão PLS, Máquina de vetor suporte, Árvores de 

regressão; Biblioteca espectral. 
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ABSTRACT 

 
Reflectance spectroscopy vis-NIR and mid-IR applied for soil studies 

 

      Effective agricultural planning and environmental monitoring requires basic soil 

information. However, analyzing soil properties by conventional methods is often expensive 

and time consuming. In addition, these analyses result in chemical residues, which may be 

environmentally hazardous. In recent decades near-infrared diffuse reflectance spectroscopy 

(400-2500 nm) has been shown to be a viable alternative for rapidly analyzing soil properties. 

Information needs to be mathematically extracted from the spectra in order to correlate them 

with soil properties, and multivariate statistics are often used to calibrate soil prediction 

models.However, soils evaluated by the mid-IR region (4000 to 400 cm
-1

) warrants new 

studies. The primary aim of this study was to investigate the feasibility to use soil spectral 

data and chemometrics methods to predict soil properties, in order to reduce the number of 

conventional soil analyses. The understanding of the relationships between spectral 

characteristics and the physic-chemical properties of soils were evaluated in three different 

studies with soils of: (i) spectral library (Chapter 1), (ii) amazonian region (Chapter 2), (iii) 

soils contaminated with heavy metals and tannery sludge (Chapter 3).It was possible to 

identify regions of the vis-NIR and mid-IR spectra that showed absorption features due to 

water, iron oxides, and clay minerals. In Chapter 1 the predicted models for clay and soil 

organic matter showed high accuracy. It reflects the influence of the direct spectral responses 

of these properties in the NIR. The division of the large library into smaller subsets based on 

variation in the spectra characteristics was the best alternative to quantify soil attributes in 

tropical soils by Partial Least Square regressions. Another alternative would be to use Boosted 

regression trees for the whole library. In Chapter 2, the mid-IR predicted models 

outperformed the vis-NIR. Comparison of the interpolation results revealed that the 

predictions of the PLS regression (mid-IR and vis-NIR) adequately reproduced the spatial 

pattern of the properties evaluated, especially soil organic carbon and cation exchange 

capacity and, had the ability to predict the soil properties of unknown samples from a 

different geographical location. In Chapter 3, the metals adsorption to soil constituents caused 

expressive changes in soil spectral curves, showing spectral differentiation between highly 

contaminated soil and soils that are relatively contaminant-free. The results indicate that the 

Cr pseudo-total content can be predicted by spectroscopy reflectance with both sensors data. 

Fe and Mn also can be predicted accuratley by vis-NIR.  The vis-NIR models outperformed 

the mid-IR. Besides these results, the vis-NIR instrument has less complicated sample and can 

be used directly in the field using portable spectrorradiometers.  

 

Keywords: Soil spectroscopy; Soil contamination; Soil organic carbon; Terra preta de índio; 

PLS regression, Support vector machine learning, Boosted regression trees; 

Spectral library. 
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1 INTRODUCTION 

 
Once focused primarily on productivity, agriculture today has several different objectives. 

These include the diminution of production costs, minimizing the environmental impact of 

croplands and productive systems, and maximizing the final product quality. Among others, 

developing sustainable and highly productive agriculture requires information about soils, 

which are considered to be a finite, non-renewable resource in the short term (SOUZA 

JUNIOR; DEMATTÊ; ARAÚJO, 2011).  

Soils are a complex, heterogeneous system made up of organic compounds in 

various stages of decomposition, mineral particles of various sizes deriving from the 

weathering of rocks and sediments, and gaseous and liquid components. They play a crucial 

role in the sustainability of the terrestrial ecosystem, provide habitat for a large number of 

organisms, and are responsible for plant growth, decomposition, and microbial biomass 

recycling (ALLOWAY, 1995). For the microorganisms, animals, protozoa, fungi, and plant 

roots that inhabit soils, edaphic conditions can be highly variable at small scales, changing 

from aerobic to anaerobic, wet to dry, and nutrient-rich to nutrient-poor. 

Physical and chemical analyses of soil samples are one of the tools used to 

characterize soil quality, and consequently to provide proper amounts of soil fertilizers and 

prevent environmental pollution. Silva et al. (2001) have estimated that the number of 

conventional soil analyses carried out in Brazil reached 1 million samples in 2001. In 2011, 

the Soil Chemistry Analysis Laboratory of the Escola Superior de Agricultura Luiz de 

Queiroz (ESALQ) received approximately 21000 soil samples for classification and fertility 

analyses. This laboratory is just one of 118 members of the Proficiency-Tested Laboratories 

for Soil Analysis for agricultural applications, organized by the Instituto Agronômico de 

Campinas (IAC) in the state of São Paulo. The results of soil analyses are used to classify 

soils, indicate proper levels of fertilization and soil correctives, monitor environmental 

conditions, and other related activities.  

In the context of environmental monitoring, soil pollution is known to be a serious 

problem around the world, largely due to the use of soils in agriculture, and because it can 

lead to the pollution of surface waters via erosion and the pollution of both groundwater and 

surface water as metals migrate through moist soils due to gravity. There is growing interest 

in using soils as an alternative means of helping manage environmental pollution. For 

example, soils are increasingly used to dispose of potentially polluting wastes such as tannery 
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sludge. Using these residues in agriculture is one option for their disposal, since they have 

high levels of N. Soil analyses are a fundamental tool in such processes. 

Management strategies for soil fertilizers and correctives often take the form of 

precision agriculture (PA), which requires information on the spatial variation of soil 

attributes in the field. Advances in PA over the last 20 years, thanks to global satellite 

navigation systems, geographical information systems, and technologies of variables rates, 

have increased demand for agricultural soil mapping that aims to provide, for example, high-

resolution spatial information regarding soils and plants. PA that relies on knowledge about 

the spatial variation of chemical and physical soil attributes in the field thus requires high-

density sampling (SILVA et al., 2010) and a large number of conventional soil analyses 

(WEBSTER; OLIVER, 1992). While some researchers have studied how to reduce the 

number of physical and chemical soil analyses (e.g. WETTERLIND et al., 2008), PA remains 

a high-cost venture in Brazil, and the high-resolution sampling it requires is one of various 

obstacles to its implementation by farmers. 

Current analytical techniques allow one to determine very low quantities of elements 

in a variety of matrices, such as water, sediments, soils, and plant and animal tissues. These 

techniques have drawbacks, however, including the high price of soil analyses. Another 

problem is that common physical and chemical analyses of soils produce wastes, some of 

which are rich in metals, acids, and sodium. If these wastes are not treated and/or disposed of 

properly, they themselves can pollute soils and surface waters. For this and other reasons, 

there is increasing interest in developing alternative procedures to analyze soils.  

One promising approach is the application of proximal sensing, and in particular 

reflectance spectroscopy associated with spectral absorption features analysis. NIR 

spectroscopy, for example, is receiving significant attention from environmentalists for its 

capacity to monitor changes in the quality of waterways and lakes, and the effects of 

disposing of material in soils such as manure and sludge. Without entering into contact with 

the substance, reflectance spectroscopy uses sensors to study electromagnetic radiation as a 

function of the wavelength that is reflected, emitted, or scattered by a gas, liquid, or solid 

(CLARK, 1999). Proximal sensors can be used in the field or in the laboratory, where spectral 

data are acquired under controlled conditions, without atmospheric interference or variation in 

lighting. The advantage of proximal sensors, both in the field and in the laboratory, is their 

ability to collect soil information with a higher spatial resolution than conventional 

techniques. Compared to remote sensing techniques (e.g., satellite images), proximal sensors 

permit researchers to collect data about superficial and subsurface soils (VISCARRA 



 19 

ROSSEL et al., 2009). Examples of proximal sensors include those that measure the electrical 

conductivity (SUDDUTH et al., 2005) and mechanical resistance (ADAMCHUK et al., 2008) 

of soils, ground-penetrating radars that measure soil moisture (LUNT et al., 2005), acoustic 

sensors that measure compaction layers (GRIFT et al., 2005), electrochemical sensors that 

measure pH (ADAMCHUK et al., 2006), and diffuse reflectance spectroscopy in the vis-NIR-

MIR regions (350 - 25000 nm) of the electromagnetic spectrum that predicts soil composition 

and various other attributes (e.g. ARAÚJO, 2008; VISCARRA ROSSEL et al., 2006;. 

DEMATTÊ et al., 2004; ISLAM et al., 2003; UDELHOVEN et al., 2003; CHANG et al., 

2001). 

Diffuse reflectance spectra (vis-NIR-MIR) contain a mixture of chemical and 

physical information. The physical portion is associated with the influence of particle size and 

surface structure on diffuse reflectance (DAHM; DAHM, 2004), while the chemical portion is 

related to the absorption energy by molecular bands. Absorption in the NIR region of the 

electromagnetic spectrum occurs due to overtones and combinations of fundamental 

vibrations of the OH, CH, NH, CO, CN, and NO groups in the mid-region. Depending on the 

soil components, radiation will cause molecular bonds (stretching and distortions) to vibrate, 

thereby causing them to absorb at various levels, one quantum of specific energy. Since the 

quantum de energy is directly related to the frequency, the resulting absorption spectrum takes 

a characteristic form that can be used for analytical purposes (MILLER, 2004). As a result, 

energy levels are affected by the surrounding environment, such as the functional group, 

neighboring molecules, and hydrogen. This means that a particular molecule only absorbs 

light of certain wavelengths, which allows the identification of molecules or substances due to 

different absorption patterns (EPHIPHANIO et al., 1992). Water, for example, has a strong 

influence on NIR spectra around 1400 and 1900 nm. Organic molecules generally include 

many molecular bonds that absorb in the NIR region. Clay minerals also have fundamental 

spectral characteristics in the NIR and MIR regions (VISCARRA et al., 2009; CLARK et al., 

1990; HUNT, 1977).  

Spectral attributes of soils thus represent a cumulative property of the intrinsic 

spectral attributes of the heterogeneous combinations of mineral and organic material and soil 

humidity levels present in soils (STONER; BAUMGARDNER, 1981). Thus, absorption 

features analysis uses diagnostic absorption bands in the reflectance spectrum that are the 

result of specific dielectric properties of the material. These wavelength-dependent properties 

generate a unique spectral reflectance signature from which materials can be described and 

distinguished (CLARK 1995; BEN-DOR et al. 1999). 
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Some authors have argued that the shape of spectra can provide valuable 

information about the chemical, physical, and mineralogical attributes of soils (e.g. 

DEMATTÊ et al., 2004; BEN-DOR et al., 2008; STENBERG et al., 2010). This possibility of 

linking spectral variation to specific absorption phenomena makes reflectance spectroscopy 

an important tool for studying the composition of soils in the laboratory. According to 

Shepperd and Walsh (2007), sensor sensing is one of the most efficient, cost-effective, and 

easily implemented analytical techniques, because when combined with calibrated statistical 

models it permits estimates of physical, chemical, and biological attributes from a single 

spectral reading of soil (McBRATNEY; MINASNY; VISCARRA ROSSEL, 2006). 

In fact, vis-NIR reflectance spectroscopy of soils together with chemometric 

methods allow one to quantify various physical attributes (clay, sand, and silt), chemical 

attributes (CEC; pH; organic, inorganic, and total C; MO; Ca; N; K; Mg; As; Fe; Hg; Pb; S; 

Sb), and mineralogical attributes (kaolinite, gibbsite, montmorillonite, and iron oxides) of 

soils (KEMPER, SOMMER, 2002; VISCARRA ROSSEL et al., 2009; WETTERLIND et al., 

2008; STENBERG et al., 2010). However, very little is known about how the medium 

infrared (MIR: 2500 - 5000 nm), thermal (TIR: 8000 - 14000 nm), and far (FIR: 15000 - 

25000 nm) regions of the electromagnetic spectrum can contribute to the evaluation of 

Brazilian soils. In this thesis we named this range as mid-IR (2500-25000 nm). According to 

Viscarra Rossel et al. (2008), these wavelengths contain a large amount of information that 

has not yet been explored. 

Another advantage of this soil analysis technique regards the ability to store digital 

data of analyzed spectra in real time. This raises the possibility of developing databases 

known as spectra libraries, which serve as standard references for developing and applying 

SR techniques at various scales, from field to space-based sensors. These libraries also 

facilitate the evaluation of predictive models of soil attributes, and serve as standards for 

pedological studies and soil classification (RIZZO, 2011; BELLINASO, DEMATTÊ, 

ARAÚJO, 2010; VISCARRA ROSSEL et al., 2008). Since April/2008, a world soil 

spectroscopy group was established by Viscarra Rossel (http://groups.google.com/group/soil-

spectroscopy), who gathered soil spectra and corresponding attribute data from more than 80 

countries worldwide in order to generate a global soil spectral/attribute database providing 

soil-NIRS capability to all. This initiative was based on the idea that the NIRS approach in 

soil sciences was well established and feasible and that it should be more broadly 

collaborative. 
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This thesis examines some applications of vis-NIR (350-2500 nm) and mid-IR 

(4000-400 cm
-1

 or 2500-25000 nm) spectroscopy and spectral libraries, such as estimating 

soil attributes via a variety of statistical techniques, and discusses their advantages and 

disadvantages in relation to conventional soil analysis methods. Soil is a complex mixture of 

components with different spectral properties. Each spectral component possesses unique 

eletronic transitions (caused by its atoms) and vibrations and molecular stretching (caused by 

structural groups of the atoms), leading to different spectral signatures in some spectral bands. 

Since it is known that the reflectance spectrum of soils is a linear combination of the spectral 

signatures of its components, weighted by their abundances, it is hoped that information 

regarding soil components can be obtained from spectral curves. 

The primary aim of this study was to compare soil information obtained through 

conventional analytical methods with those obtained via vis-NIR and mid-IR reflectance 

spectroscopy of soils via statistical models, in order to reduce the number of conventional soil 

analyses required to monitor soils of areas polluted with heavy metals, to measure soil 

fertility, and to otherwise characterize soils. We also aim was to understand the relationships 

between spectral attributes and the chemical and physical attributes of the studied soils.  

The specific objectives were: 

 

Chapter I: Quantifying soil attributes via spectral library: a new approach 

(i) Explore the possibility of enhancing predictions of OM and clay content in a large 

Brazilian soil spectral library by dividing it into smaller sub-libraries based on their vis-NIR 

spectra. In the process, we also tested the effect of three different pre-treatments of the 

spectra; continuum removal, first derivative, and mean normalization before dividing the 

library; (ii) compare the predictive performance of the sub-models with global models using 

PLSR and two multivariate data-mining techniques: boosted regression trees (BT) and 

support vector machines (SVM). 

 

Chapter II: Characterization of potential Amazonian Dark Earth areas with proximal 

sensing techniques  

(i) Characterize the chemical and spectroscopic (visNIR and mid-IR) attributes of these soils 

and compare the results with those of other studies from the region; (ii) identify parameters of 

spectral variation (e.g., band depth, reflectance intensity) associated with soil attributes 

content; (iii) explore the possibility of predicting soil properties based on spectral 

characteristics and Partial Least Square (PLS) regression. We also tested whether PLS models 
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generated with soil data from one geographical area could be applied to soil data from another 

area. Successful results from this study would support the hypothesis that ADE mapping can 

be facilitated by spectroscopy techniques even when ADE occurs in small patches. This 

technique could improve and facilitate archaeological work, by helping identify locations 

where sampling and excavations should focus. The extent of these patches of high-fertility 

epipedons is of local and regional importance, and has been considered an indication of 

sustainable historical land use (SMITH, 1980; GLASER, 2000). 

 

Chapter III: Environmental monitoring of soils: evaluating heavy metal pollution with vis-

NIR and mid-IR spectral reflectance 

(i) evaluate over time Cr, Pb and Zn in three soils contaminated by salts commonly used in 

the industry; (ii) identify parameters of spectral variation (vis-NIR and mid-IR) associated to 

heavy metals in soils and explore their viability in the evaluation of contaminated soils; (iii) 

evaluate through sequential extraction procedures, soils contaminated with tannery sludge 

(solid),  after 90 days of application; (iv) investigate the feasibility to use soil spectral data  

and chemometrics methods to predict metals in soils. Although pure metals do not absorb in 

the vis-NIR and mid-IR regions of the spectroelectromagnetic they can be detected by their 

co-variation with spectrally active components in this range (STENBERG et al., 2010).  Thus, 

this approach starts from the premise that the spectrally assigned position of minerals varies 

with chemical composition and surface activity (BEN-DOR et al., 1999) 

 

Knowledge about the spectral attributes of soils is an important pre-requisite for a 

more efficient use of remote and proximal sensor products over a broad range of applications. 

There is still no universal formula for analyzing spectral data from all soil and sensor types. It 

is our hope that this study will contribute to the understanding of the effects of spectral 

interactions among some components of Brazilian soils, given that the nature of spectral 

analysis offers a possible solution to the problems posed by conventional soil analyses. 
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2 QUANTIFYING SOIL ATTRIBUTES VIA SPECTRAL LIBRARY: A NEW 

APPROACH 

 

Abstract 

 
      Effective agricultural planning requires basic soil information. In recent decades near-

infrared diffuse reflectance spectroscopy (NIRS) has been shown to be a viable alternative for 

rapidly analyzing soil properties. We studied 7171 samples of seven different soil types 

collected from several regions of Brazil and varying in OM (0.2 – 10.3 %) and clay content 

(0.2 – 99.0 %). The aim was to explore the possibility of enhancing the performance of NIRS 

data in predicting organic matter and clay content in this library by dividing it into smaller 

sub-libraries based on their vis-NIR spectra and to compare these results to two nonlinear 

calibration techniques (BT and SVM) applied to the whole library. The general predictive 

models for clay performed well (R
2
 > 0.79), reflecting the influence of the direct spectral 

responses of this property in the NIRS range. Predictions of OM were reasonably good, 

especially with clustering, and in view of the very low variation in this parameter. Results 

showed that the division of the large library into smaller subsets based on the variation in the 

mean-normalized spectra was the best alternative for using vis-NIR spectra to quantify soil 

attributes in tropical soils by Partial Least Square regressions. This divided the global data set 

into clusters that were more uniform in mineralogy, regardless of geographical origin, and 

improved predictive performance. Another alternative would be to use boosted regression 

trees for the whole library. It was also possible to identify regions of the vis-NIR spectrum 

that showed absorption features due to water, iron oxides and clay minerals that their 

variation might be responsible for the cluster divisions. 

 

Keywords: Diffuse reflectance spectroscopy; Soil organic matter; Clay; PLS regression; 

Support vector machine learning; Boosted regression trees 

 

2.1 Introduction 

 
The efficient use of soils in agriculture requires a good understanding of their 

chemical, physical, mineralogical and biological characteristics. Soil texture and organic 

matter (OM) are two important properties of soils. Clay content directly affects the porosity, 

plasticity and erodibility of soils (WISCHMEIER; SMITH, 1978) and has, together with OM, 

a strong influence on soil structure (BRONICK; LAL, 2005). Both soil properties also affect 

soil fertility by their capacity for binding plant nutrients (CEC) and water, and OM plays an 

important role in the mineralization of nitrogen to phytoavailable forms (HOPKINS, 1995). 

The accuracy of spatial maps of soil attributes is positively correlated with the 

density of soil observations. However, methods used to determine texture (GEE et al., 1986) 

and organic matter content (RAIJ et al., 2001) in conventional soil laboratories in Brazil and 

elsewhere are expensive and time-consuming. Moreover, such analyses can generate waste 

rich in Na and Cr, respectively, which may pose hazards to the environment. There is thus a 

need for more efficient methods to reduce the number of soil chemical analyses and generate 
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high-resolution soil property maps over large areas at reasonable costs. Visible and near-

infrared (vis-NIR) diffuse reflectance spectroscopy (400 - 2500 nm) has received increasing 

attention over the last two decades as a promising technique for soil analysis (e.g. 

UDELHOVEN et al., 2003; NANNI, DEMATTÊ, 2006; WETTERLIND et al., 2008; 

BELLINASO et al., 2010; DEMATTÊ et al., 2010). 

The absorption of vis-NIR light occurs due to overtones and combinations of 

fundamental molecular absorptions in the mid-infrared region and is associated with soil 

moisture, organic materials, and mineralogy. As clay particles consist mainly of clay 

minerals, vis–NIR spectra can be assumed to be of value for predicting clay content 

(STENBERG et al., 2010). OM can be related directly to the absorption of vis-NIR spectra 

through a number of functional groups such as the carboxyl, hydroxyl and amine groups 

(CLARK et al., 1990; MADEJOVA; KOMADEL, 2005). However, the degree to which vis-

NIR spectra data is capable of predicting OM content reported in the literature is highly 

variable (STENBERG et al., 2010). 

Dunn et al. (2002) have pointed out that for spectroscopic techniques to be 

commercially practical for analyzing soils over large areas, there must be a wide range of 

spectroscopic data from different soil types with varying organic and inorganic components. 

This was further corroborated by Viscarra Rossel and Behrens (2010). Thus, a large number 

of samples are required to cover the relevant variation and the cost for building predictive 

models has to be considered. According to Sankey et al. (2008), global to regional 

calibrations are more cost-effective, but for many applications they may not provide sufficient 

accuracy. Those authors studied soil samples collected at three temperate sites (Montana, 

USA) and obtained improved predictions for some sites using the global library spiked with 

local samples compared with using only local samples. However, Wetterlind and Stenberg 

(2010) found that for a range of soil properties at farms in Sweden local calibrations with only 

25 calibration samples outperformed both the national library (396 samples) and a subset of 

the national library consisting of the 50 samples most similar to each farm, and often resulted 

in equally good results compared with national and national subset models spiked with local 

samples, mainly through a decrease in bias and the root mean squared error of prediction. 

According to Undelhoven et al. (2003), OM (approximated as1.72 times soil organic 

carbon) predictions can be improved by stratifying samples according to geological 

conditions and deriving individual PLSR calibrations for each region. Using large data sets 

representative of Swedish agricultural soils Stenberg et al. (2002) and Stenberg (2010) did not 

find any accurate soil organic carbon (SOC) calibration model, but these results were 
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substantially improved when sandy soils were removed from the data set. Similar results were 

observed by Sørensen and Dalsgaard (2005), who studied soils from throughout Denmark. 

They found that NIR calibration models of total carbon presented higher prediction errors for 

samples with low clay content (below 26%). 

It is often suggested that libraries containing smaller soil variation at the field scale 

would result in better OM predictions than more general ones collected over larger 

geographic areas (e.g. KUANG; MOUAZEN, 2011). However, Stenberg et al. (2010), 

reviewing published predictions, found that variation in the texture or SOC variables 

themselves accounted for a majority of the variation in model accuracy for texture and SOC, 

respectively, and that the size of the geographic area had a small influence. Thus, attempts to 

improve the prediction accuracy of a large global/national spectral library may benefit from 

dividing the library into smaller sub-libraries with more similar soils, regardless of the 

geographical origin of the samples.  

Because clay minerals and SOC tend to have the largest influence on soil vis-NIR 

spectra (STENBERG et al., 2010), dividing a global library into smaller models based on the 

variation in the spectra is one potential strategy for improving vis-NIR calibrations. 

It is known that the soil vis-NIR spectra are largely non-specific, consisting of weak, 

broad, and overlapping absorption bands. For this reason, information needs to be 

mathematically extracted from the spectra in order to correlate them with soil properties, and 

multivariate statistics (MARTENS et al., 1989; MINASNY, 2008) are often used to calibrate 

soil prediction models. 

Partial least square regression (PLSR) is one of the most commonly used techniques 

to analyze this type of data. Vasques et al. (2008) compared different techniques, such as 

stepwise multiple linear regression, principal component regression, regression trees, 

committee trees, and PLSR to analyze spectral information related to organic carbon and 

concluded that PLSR performed better than the other methods. Interest in using non-linear 

data-mining techniques is increasing, since relationships between soil characteristics are 

rarely linear in nature. Viscarra Rossel and Behrens (2010) compared PLSR and different 

data-mining algorithms for modeling SOC, pH, and clay content. They found that the support 

vector machine (SVM) technique using all vis-NIR wavelengths produced better models than 

PLSR and multivariate adaptive regression splines (MARS).When dealing with a highly 

heterogeneous sample set in which measured parameters may vary considerably, the precision 

of linear regression techniques tends to decrease due to the non-linear nature of the 

relationship between spectral data and the dependent variable. Brown (2007) suggest the use 
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of boosted regression trees, and Kovačević et al. (2009) the use of support vector machines as 

a solution for handling the calibration of large heterogeneous sample populations.  

Although the soil electromagnetic spectrum has the potential to improve chemical 

analyses and soil mapping, vis-NIR spectroscopy has been rarely used to study soils of South 

America, in particular those in Brazil. There remains much to explore in this area. When it 

comes to spectroradiometry, we know far less about soils in the tropics than about soils in the 

temperate regions, and this is mainly due to lack of research (HARTEMINK, 2002). 

This study aims to (i) explore the possibility of enhancing predictions of OM and 

clay content in a large Brazilian soil spectral library by dividing it into smaller sub-libraries 

based on their vis-NIR spectra. In the process, we also tested the effect of three different pre-

treatments of the spectra; continuum removal, first derivative, and mean normalization before 

dividing the library; (ii) compare the predictive performance of the sub-models with global 

models using PLSR and two multivariate data-mining techniques: boosted regression trees 

(BT) and support vector machines (SVM). 

Given the non-linear and contingent relationships between VNIR reflectance and 

soil composition (CLARK, 1999), it was expected that BT and SVM would perform better 

than PLSR, since they can incorporate complex, non-linear relationships and interactions 

whereas PLSR is built upon linear, continuous relationships between predictors and the target 

variable of interest. 

 

2.2 Materials and Methods 

2.2.1 Spectral library 

 
For this study we used 7172 samples in the soil spectral library of the Remote 

Sensing Laboratory at the Soils Department, University of São. In total, chemical and spectral 

analyses were carried out for 5750 auger samples collected from boreholes and for 1422 

samples collected from 233 soil profiles, at depths of 0-20, 40-60, or 80-100 cm, representing 

four Brazilian states (Goiás, Minas Gerais, Mato Grosso do Sul, and São Paulo). The soils in 

this spectral library are diverse and represent several orders of the World Reference for Soil 

Resources (WRB, 2006), including Ferrasols, Nitisols, Acrisols, Planosols, Gleysols, 

Acrisols, Arenosol, and Cambisols.  

The samples were air-dried and ground to a particle size of <2 mm before being 

submitted to chemical and spectral analyses. Sand (2-0.05mm), silt (0.05-0.002 mm) and clay 

(<0.002 mm) contents were determined by the densimeter-sedimentation method, using 0.1 M 

calcium hexametaphosphate and 0.1 M sodium hydroxide as dispersing agents (GEE et al., 
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1986). Organic matter (OM) content was determined by a colorimetric method (RAIJ et al., 

2001). 

 

2.2.2 vis-NIR measurements 

 
The spectral reflectance of soils was measured in the vis-NIR (350-2500 nm) range, 

with a spectral resolution of 3 nm (from 350 to 1000 nm) and 10nm (from 1000 to 2500 nm), 

using a FieldSpec Pro FR spectroradiometer (Analytical Spectral Devices, Boulder, Colorado; 

Hatchell,1999).The spectrum acquisition software interpolated reflectance data to a sampling 

interval of 1 nm. Approximately 15 cm
3
 of each soil sample was placed in a Petri dish. A 

fiber-optic cable connected to the vis-NIR sensor was placed vertically at 8 cm from the 

sample, where we measured the reflected light in an area of approximately 15 cm
2
 in the 

centre of the sample. The light source was a 50W halogen bulb with the beam non-collimated 

to the target plan, positioned at 35 cm from the sample at a zenith angle of 30º. As a reference 

standard, a white plate covered with barium sulphate (BaSO4) was used. Each spectrum was 

averaged from 100 readings during 10 seconds. All spectral measurements were carried out in 

a dark room to avoid interference from stray light. Before further analyses, soil spectra were 

reduced by averaging 3 successive wavelengths. For further analyses we excluded the noisiest 

parts at the edges of the spectrum and only considered the spectral range from 366 nm to 2484 

nm. 

 

2.2.3 Model development 

 
Prior to any model development the global spectral library was randomly divided 

into a calibration set (CS) with 5169 samples and a validation set (VS) with 2003 samples, 

keeping the layers of the same soil profile together to ensure independence between CS and 

VS (Figure 1). For subsequent analyses we removed samples with OM content above 6%, 

since there were very few of these. In total, 8 and 5 samples were removed from the CS and 

VS, respectively. 
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Figure 1 - Descriptive statistics, histograms and outlier box-plots for clay and organic matter 

content in the calibration (a) and validation (b) data sets. The mean (solid line), the 

median (rhombus), the 25th and 75th percentiles (box) and outliers (dots) are 

indicated.  The red bracket indicates the standard deviation 

 

 

The general approach in model development was that two major lines of calibration 

procedures were performed and compared. One involved straight forward on the calibration 

set as a whole (global models), and one involved calibrations that were performed cluster by 

cluster after the calibration set had been divided into spectrally similar clusters (clustered 

models). The first derivative using a 2
nd

 order polynomial Savitzky-Golay smoothing over 11 

points was applied as spectral pre-processing for all calibrations. This led to improved results 

for both clay and OM as compared to a range of other pre-treatments tested in our preliminary 

evaluation. 

(b) 

(a) 
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Global models were calibrated on the full, undivided calibration set (CS; n=5161). 

Three different calibration techniques were tested: PLSR, SVM, and BT. The PLSR technique 

is widely used, showing a good capacity for estimating attributes based on the spectral 

behavior of the soil (VASQUES et al., 2008). It was performed in Unscrambler 

v.10.1software on the calibration set using the orthogonalized PLSR algorithm for one Y-

variable (PLS-1) and full cross-validation. The number of partial least-square (PLS) factors 

was chosen to minimize the root mean square error (RMSE) in the cross validation. 

SVM is a relatively new nonlinear technique, compared with PLS, that is employed 

in classification and multivariate calibration problems (THISSEN et al., 2003). In this 

technique, model complexity is limited by the learning algorithm itself, which prevents 

overfitting. In this study the Kernel radial basis function was used. Kernel transformation of 

the data avoids the use of complex functions and is computationally feasible (BALLABIO, 

2009).It was performed with Statistica 64 software (2011). 

BT is a multiple predictions based on re-sampling and weighing that belongs to the 

group of ensemble techniques (Friedman, 2001). BT has the ability to include a large number 

of weak relationships in a predictive model and it is insensitive to outliers in the calibration 

dataset. Moreover, BT has a relative immunity to overfitting (FREUND; SCHAPIRE, 1997, 

2000; FRIEDMAN et al., 2000; RIDGEWAY, 2008).A committee of 400 trees was used to 

calibrate the soil carbon and clay equations using the calibration set, with a maximum number 

of sample redraws of tree. An optimal number of three nodes for clay and organic matter were 

identified by minimizing the least-square error. BT analyses were performed with Statistica 

64 software (2011). 

For the clustered models three different transformations prior to clustering were 

evaluated. The raw reflectance data were transformed to 1) the 1
st
 derivative Savitzky-Golay 

(2
nd

 order with 11 smoothing points; The Unscrambler v 10.1), 2) mean normalized (dividing 

each spectrum by its mean; The Unscrambler v 10.1), and 3) continuum removal (CR) 

calculated by a convex hull (ENVI 4.5, 2008; CLARK; ROUSH, 1984). The main purpose of 

the transformations was to see if they would divide the data differently and to assess what 

influence this would have on predictive performance for OM and clay. The procedures for 

calibrating and validating clustered data sets are summarized in Figure 2 as follows. 
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Figure 2 - Overview of steps taken during the pre-processing and analyses. First the 

calibration and validation datasets were defined. 1) The spectra from the 

calibration set were clustered with cluster analysis by their spectral features 

using three different transformations prior to the division. Subsequently, PLS 

calibrations were used to produce predictive models for OM and clay in each 

cluster. 2) To be able to allocate unknown samples (the validation set) to one of 

the spectrally defined clusters, the spectral features defining the clusters were 

identified by discriminant analysis models (DAM). 3) The validation set was 

clustered by the DAM’s in step 2. For validation of the PLSR models in step 1, 

the validation samples clustered through step 2 and 3 were predicted and 

validation statistics compared 

 

The three differently transformed data sets were submitted to a k-means clustering 

algorithm described by Wold (1982), with the statistical software Statistica 64 (Stat Soft. 

Inc.). This analysis starts with k random clusters, and then moves objects between those 

clusters in order to minimize the intra-group variability and to maximize the distances 

between groups. The software iteratively moves objects in and out of clusters, minimizing the 

square of the within-cluster sum of distances to get the most significant ANOVA results 

between clusters. For CR and 1
st
 derivative transformations, four clusters were found to be 

optimal and for normalized data the optimum number of classes was five. PLSR models were 

calibrated to test prediction performance depending on the different transformations.  
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2.2.4 Validation 

All predictive models of OM and clay content, both the global ones by PLSR, BT 

and SVM and the clustered models, were validated using the predefined validation set (VS; n 

= 1998). 

For the clustered models, the validation sample first had to be assigned to one of the 

clusters. Thus, the success of this assignment step was included in the validation of 

calibrations. Discriminant analysis (Wold, 1982) models, one for each transformation, were 

developed to define the spectral features that separate the clusters. The Euclidian metric 

distance method in Statistica 64 (Stat Soft.Inc.) was used to separate the pre-defined classes. 

For computational reasons the analyses were performed on dimensionally compressed data. 

Thus, score vectors from the 10 first principle components of a PCA based on the calibration 

set were used.Scores for the validation samples were calculated by projecting the transformed 

spectral data on the PCA based on the calibration set. Each validation sample was then 

assigned to one of the clusters for each transformation by the corresponding discriminant 

analysis model (Figure 2). 

Finally, the coefficients of determination (R
2
), the root mean square error (RMSE), 

and the ratio of performance to deviation (RPD) were used to compare the results, calculated 

using the following equations: 

 

 

and 

 

 

 

where n is the number of samples and SD is the standard deviation of laboratory-

measured values for the property in question.  

 

2.3 Results and discussion 

2.3.1 Global calibrations: prediction accuracy obtained with PLS, BT and SVM 

techniques 

The validation results of the global predictions produced using the PLS, BT and 

SVM methods are summarized in Figure 3. Different regression methods provided different 

levels of predictive accuracy for OM and clay content. In general, we observed a tendency 

towards better results when using the boosted regression trees technique than SVM and PLSR 
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(Figure 3), but the differences were small. These results corroborate Brown et al. (2006), who 

compared BT and PLS techniques for analyzing soil properties with vis-NIR and found BT to 

be a superior modeling approach. Those authors used 4184 compositionally diverse, well-

characterized, and largely independent soil samples. In our study we also used a large number 

of samples (more than 7000) and a heterogeneous data set with soil properties measured in the 

topsoil and subsoil in different soil orders. According to Friedman and Meulman (2003), the 

BT technique tends to be resistant to the effects of outliers, handling missing values and 

correlated variables. It also allows the inclusion of a potentially large number of irrelevant 

predictors (JALABERT et al., 2010). 

However, Viscarra Rossel and Behrens (2010) and Vasques et al. (2008) observed 

that BT and regression trees models produced the worst results among many multivariate 

techniques, including PLSR and SVM, tested to analyze total carbon, organic carbon, and 

clay. Those studies used 1104 samples from four regions in Australia (50% of them surface 

soils) and 554 samples collected to a depth of 180 cm in north-central Florida, respectively. 

The contrasting results reported by these authors may be due to the very diverse origin of the 

data sets. 

SVM also provided slightly better RMSE and RPD statistics than PLSR (Figure 3). 

Sá et al. (2010) also used the SVM technique to quantify total carbon in Brazilian soils and 

obtained an error of 0.11 % total carbon. They used 250 samples (0.4 - 3.1 % of total carbon) 

and a spectral interval of 1100 to 2498 nm.  
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Figure 3 - Validation scatter plot of laboratory-measured data versus vis-NIR predictions 

obtained from (a) partial least square regression, (b) boosted tree regression and 

(c) support vector machine for organic matter (OM) and clay content 
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2.3.2 Clustered calibrations: PLS model performance  

2.3.2.1Clustering 

 
The spectral library data were divided into spectrally defined clusters with different 

numbers of samples according to the transformation employed (CR, 1
st
 derivative, and mean 

normalized) (Table 1). This division can be attributed to the variation of clay content in the 

dataset, given that soil mineralogy is one of the principal factors influencing soil reflectance 

(HARTMANN, APPEL, 2006) and that the type and concentration of soil minerals are 

strongly correlated with soil texture through the amount of clay minerals. In the discriminant 

analysis used to assign validation samples to the right clusters, the average and standard 

deviation values of OM and clay were similar in the validation and calibration sets for all the 

transformations (Table 1). Thus, the key requirement for empirical modeling, that validation 

samples are similar to the calibration samples (DARDENNE et al., 2000), was fulfilled.  
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Table 1 - Calibration and validation sample statistics of data sets of the groups divided by 

cluster k-means and discriminant analysis respectively. 

T Classes N Minimum Maximum Mean SD N Minimum Maximum Mean SD

N 1 1251 0.10 5.30 1.09 0.76 512 0.20 5.30 1.08 0.75

2 715 0.20 5.40 2.07 1.10 238 0.20 4.80 2.09 1.07

3 955 0.20 5.60 1.82 0.91 347 0.30 4.30 1.81 0.85

4 450 0.20 3.30 1.29 0.71 175 0.20 3.30 1.26 0.70

5 1790 0.30 5.40 1.43 0.82 726 0.20 6.40 1.32 0.75

D 1 2438 0.20 5.40 1.31 0.79 802 0.20 5.30 1.33 0.75

2 953 0.10 5.40 1.48 1.03 687 0.20 4.80 1.37 0.99

3 481 0.20 3.30 1.21 0.65 195 0.20 3.60 1.28 0.75

4 1289 0.20 5.60 1.84 0.93 314 0.30 4.20 1.88 0.86

CR 1 745 0.20 5.30 1.80 0.90 289 0.40 4.20 1.80 0.82

2 740 0.20 5.40 1.70 1.00 312 0.20 4.80 1.62 1.00

3 2086 0.10 5.20 1.26 0.81 794 0.20 4.80 1.21 0.77

4 1590 0.20 5.60 1.48 0.89 603 0.20 5.30 1.42 0.86

N 1 1251 6.00 92.00 29.20 18.27 512 8.00 89.00 29.77 18.89

2 715 6.90 96.00 64.77 23.32 238 8.00 94.00 64.29 24.75

3 955 0.20 99.00 62.44 17.75 347 4.00 92.00 63.49 16.23

4 450 12.00 92.00 53.04 17.27 175 12.00 86.00 49.55 15.79

5 1790 1.00 85.00 21.93 16.28 726 1.00 82.00 21.87 16.14

D 1 2438 4.00 92.00 27.93 22.27 802 6.00 89.00 28.00 21.46

2 953 6.80 96.00 45.18 27.87 687 1.00 94.00 39.45 27.51

3 481 8.00 92.00 48.80 18.06 195 10.60 84.00 46.24 17.22

4 1289 0.20 99.00 56.46 21.22 314 9.80 87.00 58.84 18.89

CR 1 745 0.20 91.00 59.50 18.97 289 14.00 89.00 59.39 17.44

2 740 8.00 94.00 54.13 20.38 312 4.00 93.00 50.20 21.38

3 2086 6.00 99.00 39.28 26.12 794 1.00 94.00 36.72 25.50

4 1590 4.00 96.00 25.86 21.05 603 6.00 92.00 25.05 20.84

k-means discriminant analysis

Calibration set Validation set

Clay, %

OM, %

k-means discriminant analysis

 
N, D and CR means normalization, first derivative and continuum removal transformations, 

respectively. 
 

2.3.2.2 Clustered predictions 

 
The validation statistics calculated based on the combined prediction results (CPR) 

of all validation samples in all clusters by the respective pre-transformations (CPR-N, CPR-D 

and CPR-CR, respectively) (Table 2) showed that transforming the data using continuum 
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removal and especially mean normalization prior to cluster analysis provided more accurate 

models than transforming the data by applying the 1
st
 derivative. 

 

Table 2 - Summary statistics of validation results of calibrations for clay (%) and OM (%) 

using an independent validation dataset 

Preprocessing Cluster Number 

of R
2

RMSEv RPD R
2

RMSEv RPD

samples

1 512 0.75 9.63 1.96 0.54 0.51 1.47

Normalized 2 238 0.83 10.43 2.37 0.76 0.53 2.02

3 347 0.40 11.13 1.46 0.53 0.47 1.81

4 175 0.68 9.15 1.73 0.40 0.55 1.29

5 726 0.77 7.80 2.07 0.58 0.27 2.85

CPR - N 0.87 9.28 2.74 0.60 0.42 2.07

1st derivative 1 802 0.61 13.34 1.66 0.40 0.56 1.35

2 687 0.79 12.65 2.18 0.62 0.53 1.78

3 195 0.57 11.62 1.19 0.30 0.61 1.24

4 314 0.52 12.75 1.45 0.27 0.76 1.14

CPR - D 0.76 12.84 1.98 0.30 0.59 1.47

CR 1 289 0.53 12.22 1.43 0.60 0.53 1.54

2 312 0.61 13.89 1.54 0.60 0.65 1.55

3 794 0.85 9.90 4.46 0.60 0.30 2.61

4 603 0.76 10.30 2.02 0.59 0.38 2.25

CPR - CR 0.81 10.98 2.31 0.56 0.41 2.12

PLS all 1988 0.79 11.16 2.27 0.52 0.60 1.45

BT all 1988 0.83 10.80 2.35 0.61 0.54 1.60

SVM all 1988 0.81 11.00 2.30 0.55 0.62 1.40

Clay OM

 

The number of samples was based on discriminant analyses. PLS, BT and SVM refer to non-

clustered models obtained by Partial Least Squares regression, Boosted Regression Trees, and 

Support Vector Machines, respectively; CPR - N,CPR - D, andCPR - CR refer to combined 

prediction results(CPR) with mean normalization (N), 1
st
 derivative (D),and continuum 

removal (CR) as pre-transformation treatments, respectively.  

 

Predictive accuracy differed among and within the clustering methods (Table 2). 

Comparing the validation results obtained from the global library and from combined cluster 

predictions, the data that was transformed by normalization before the clustering analysis 

resulted in improved validation results (Table 2).We observed a larger improvement in 

accuracy of models for OM than for clay with clustered models, with a reduction of the 

RMSE of 30 % and 17% for OM and clay, respectively. 
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When normalization was used as a pre-processing treatment, the global spectral 

library was divided into 5 clusters. The independent validation results for clusters 2 and 5 

presented the highest values of RPD and R
2
, followed by clusters 1, 4, and 3, respectively for 

clay and 3, 1, and 4 for OM. The combined prediction results with mean normalization (CPR-

N) are shown in Figure 4. In the CR approach we observed differences between the 

independent validation model results, especially for cluster 3, which presented RPD values of 

4.46 for clay and 2.61 for OM (Table 2). 
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Figure 4 - Validation scatter plot of laboratory measured data versus vis-NIR predictions 

obtained from partial least square regression (CPR- N) 
 

The results of the RMSE (Table 2) reveal higher values of model errors when the 1
st
 

derivative was applied before the cluster analysis, with mean values of RMSE of 12.84 for 

clay and 0.59 for OM. According to Brown et al. (2005), the 1
st 

derivative analysis can 

introduce instability and noise to soil reflectance data because of changing spectral 

contributions of soil minerals (ROUSH, 1984; KOKALY, CLARK, 1999). This may have 

reduced the accuracy of the discriminant analysis of our data.  
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Table 3 - Prediction results of cross-validation (RMSEcv) and independent validation 

(RMSEv) of clay (%) and OM (%) 

Models

RMSEcv RMSEv RMSEcv RMSEv

CPR - N 8.84 9.28 0.51 0.42

CPR - D 10.97 12.84 0.57 0.59

CPR - CR 10.16 10.98 0.51 0.41

PLS 11.32 11.16 0.62 0.60

BT 9.32 10.80 0.51 0.54

SVM 14.56 11.00 0.64 0.62

Clay OM

 

PLS, BT and SVM refer to non-clustered models obtained by Partial Least Squares regression, 

Boosted Regression Trees, and Support Vector Machines, respectively; CPR - N,CPR - D, 

andCPR - CR refer to combined prediction results (CPR) with mean normalization (N), 1
st
 

derivative (D), and continuum removal (CR) as pre-transformation treatments, respectively.  

 

The success of assigning the validation samples to the right cluster by discriminant 

analyses on normalized data can be seen in Figure 5, which shows the linear discriminate 

analyses projection of the 5 clusters. The relevance of using normalization transformation is 

in accordance with other authorswho found this pre-processing to improve soil 

propertycalibrations. For example, Kuśnierek (2011), in a study of Polish soils, observed that 

this transformation was the best of several for SOC modeling. 
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Figure 5 - Projection of linear discriminant analysis clusters, obtained with normalized 

transformation, on the corresponding K-means cluster. The letters a, b, c, d, and e 

refer to cluster numbers 1, 2, 3, 4, and 5, respectively 
 
 

In our study, the additional step of assigning validation samples to the right class in 

the prediction process did not add substantially to the overall prediction error. We observed 

(a) (b) 

(c) (d) 

(e) 
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that cross validation (which does not involve sample-to-cluster assignment) and independent 

validation (which does) results did not differ substantially more for the clustered models as 

compared to the global models (Table 3). If the assignment of validation samples to clusters 

added substantially to the prediction error, a larger difference for the clustered models would 

be expected.   

Based on Stenberg et al. (2010), we compared our results to the standard deviations 

and RMSE or R
2
 of most large-scale published data sets with all three values available 

(Figure 6). Since the relationship between SD and RMSE is so strong, it is more relevant to 

compare results with other studies in this context rather than simply comparing RMSE’s, R
2
 

values, or RPD’s. We observe that ourR
2
 values are slightly lower than expected from 

previously published data, but less so for BT and normalized clustering. RMSE’s were, on the 

other hand, more or less as expected, but while global PLS and SVM were found slightly 

above the regression line normalized clustering was found slightly below the line, which 

should indicate a successful result.  

Predictions of clay were equal, or slightly better, than what could be expected from 

the standard deviation of 25% clay in the global library, according to the strong correlation 

between standard deviations and RMSE’s found in a compilation of published data by 

Stenberg et al. (2010), corresponding to the one for OM in Figure 6.  
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Figure 6 - Correlations between the standard deviation and RMSE (a) and R
2
 (b). Published 

data on organic matter predictions with vis-NIR spectroscopy extracted from 

Malley et al., 2000; Chang et al., 2001; Chang & Laird, 2002; Dunn et al., 2002; 

Fystro, 2002; Martin et al., 2002; Moron &Cozzolino, 2002; Stenberg et al., 2002; 

Islam et al., 2003; Udelhoven et al., 2003; Chang et al., 2005; Sorensen 

&Dalsgaard, 2005; Todorova et al., 2009; Stenberg, 2010; ViscarraRossel& 

Behrens, 2010; Nocita et al., 2011; Vohland et al., 2011; Cambule et al., 2012; 

Goge et al., 2012; Tekin et al., 2012 (); PLS results data: global model (●); BT 

regression results: global model (▲); SVM results: global model (■) and PLS 

results data: normalized cluster models (▼). Adapted from Stenberg et al. (2010) 

 

2.3.2.3 Soil spectra 

 
Bands around 1100, 1600, 1700, 2000, and 2300 nm have been identified as being 

particularly important for SOC and total N calibration (MALLEY et al., 2000; MARTIN et 

al., 2002; DALAL, HENRY, 1999). Although we observed different spectral features in these 

ranges, by removing the continuum from the average reflectance spectra of the classes, they 

were not enhanced according to the OM content, as observed by Stenberg (2010).This is 

probably explained by the very low concentrations and narrow range of OM values in the 

library we worked with (Table 1) and by the fact that the dominant features in the spectra are 

often related to soil mineralogy (BEN-DOR, BANIN, 1995; STENBERG et al., 2010). 

The mean spectral curves of samples of classes that were transformed by mean 

normalization prior to the cluster analysis were analyzed in detail by their continuum removed 

spectra (Figure 7) since these classes presented the most stable clustering and the best 

regression model results (Table 3). We observed that soil mineralogy has the greatest 

(a) (b) 
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influence on spectra clustering and that spectral variation related to mineralogy makes more 

uniform data sets and consequently more robust soil prediction models. 

The 1400 and 1900 nm bands are associated with water vibrations connected to 

bonds of lattice layers as hydrated cations (structural), combined with water adsorbed on the 

particle surfaces. In all classes we observed absorptions duo to charge transfers near 400 - 780 

nm which are indicative of the presence of iron oxides (SHERMAN, WAITE, 1985). In turn, 

bands near 489 and 530 are attributed to absorptions edges of intense charge transfer 

absorptions that occur in the UV (SHERMAN, WAITE, 1985). The lower reflectance 

observed around 510-560 nm (Figure 7b) suggests that soils belonging to classes 1, 3, and 

5present higher hematite contents, followed by the soils of classes 2 and 4, respectively 

(DEMATTÊ, GARCIA, 1999). Scheinost et al. (1998) reported that the most intense 

absorption band for hematite occurred at 521 to 565 nm, clearly separated from the more 

yellowish Fe oxides (479 to 499 nm and 930 nm).In fact, the mean spectral reflectance of 

classes 2 and 4 showed a shift to the right at 930 nm which may indicate a greater presence of 

goethite than hematite (Figure 7a) in those classes. Although these classes and class number 3 

have similar average levels of clay (Table 1), their characteristic patterns of kaolinite are 

different. 

Regarding the clay minerals in the soil, it is known that kaolinite (1:1) and 2:1 

minerals show characteristic patterns between 1400 and 2200 nm due to the vibrations of 

molecules of OH of their structures (HUNT; SALISBURY, 1970). Their shapes are different, 

however, which is attributed to the existence of a shoulder (Figure 7c) in the formation of the 

absorption band related to a1.1 mineral, a fact that does not occur when there is predominance 

of a 2:1 mineral in the soil (DEMATTÊ et al., 1998). This shoulder is smoother for clusters 

numbers 3, 5, and 1 (Figure 7c). Hunt et al. (1973) argued that the intensity of the kaolinite 

trait at 2200 nm is associated with the dioctahedral layers of the mineral structure. Although 

the absorption near 2345 nm may represent illite or mixtures of smectite and illite (POST, 

NOBLE, 1993), we observed only a slight difference in reflectance between classes 2 and 4 

and others at this peak. 
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Figure 7 - The continuum-removed spectra average of classes obtained by k-means clustering 

analyses when the global data was submitted to mean normalization 
 

2.4 Conclusions 

The general predictive models for clay were good, which reflects the influence of 

the direct spectral responses of this property in the NIR range. OM predictions were 

reasonably good, especially with clustering and in view of the very low variation in OM 

levels in the data set.  

The division of the large library into smaller subsets based on variation in the mean-

normalized spectra was the best alternative for using vis-NIR spectra to quantify soil 

attributes in tropical soils by Partial Least Square regressions. It divided the global data set 

into more mineralogically uniform clusters, regardless of geographical origin, and improved 

predictive performance. The additional step of assigning the validation samples to the right 

class in the prediction process (clustered models) did not add substantially to the overall 

prediction error. Another alternative would be to use Boosted regression trees for the whole 

library. Comparing the results of this study and previously published ones indicates that the 

selection of the best performing pre-processing method is dataset-dependent. It was also 

possible to identify regions of the vis-NIR spectrum that showed absorption features due to 

(a) (b) 

(c) 
(d) 

shoulder 
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water, iron oxides, and clay minerals that their variation might be responsible for the cluster 

divisions. 

 

References 

 

BALLABIO, D.; TODESCHINI, R.  Multivariate classification for qualitative analysis in 

infrared spectroscopy for food quality: Analysis And Control. London: Elsevier,.2009. 

p. 83–104. 

 

BEN-DOR, E.; BANIN, A. Near-infrared analysis as a rapid method to simultaneously 

evaluate several soil properties, Soil Science Society of American Journal, Madison, v. 59, 

p. 364-372, 1995. 

 

BELLINASO H.; DEMATTÊ J.A.M.; ARAÚJO S.R.A. Soil spectral library and its use in 

soil classification. Revista Brasileira de Ciência do Solo, Viçosa, v. 34, p. 861-870, 2010. 

 

BRONICK, C.J., LAL, R. Soil structure and management: a review. Geoderma, Amsterdan, 

v 124, n.1/2, p.3-22, 2005 

 

BROWN, D.; SHEPHERD, K.D.; EALSH, M.G.; MAYS, M.D. REINSCH, G. Global soil 

characterization with VNIR diffuse reflectance spectroscopy. Geoderma, Amsterdan, v. 132, 

p. 273-290, 2006. 

 

BROWN, D.J.;BRICKLEMYER, R.S.;MILLER, P.R. Validation requirements for diffuse 

reflectance soil characterization models with a case study of vis–NIR soil C prediction in 

Montana. Geoderma, Amsterdan, v. 129, p.251–267, 2005. 

 

BROWN, D.J. Using a global vis–NIR soil-spectral library for local soil characterization and 

landscape modeling in a 2nd-order Uganda watershed. Geoderma, Amsterdan, v.140, 444–

453, 2007. 

 

CAMBULE, A.H.;ROSSITER, D.G.;STOORVOGEL, J.J. &SMALING, E.M.A. Building a 

near infrared spectral library for soil organic carbon estimation in the Limpopo National Park, 

Mozambique. Geoderma, Amsterdan, v 183, p.41-48, 2012. 

 

CHANG, C.W.; LAIRD, D.A. Near-infrared reflectance spectroscopic analysis of soil C and 

N. Soil Science, Philadelphia, v. 167, n. 2, p. 110-116, 2002. 

 

CHANG, C.W.; LAIRD, D.A.; MAUSBACH, M.J.; HURBURGH, C.R Near-infrared 

reflectance spectroscopy-principal components regression analyses of soil properties. Soil 

Science Society of American Journal, Madison, v. 65, p. 480-900, 2001. 

 

CHANG, G.W., LAIRD, D.A.; HURBURGH, G.R. Influence of soil moisture on near-

infrared reflectance spectroscopic measurement of soil properties. Soil Science, Baltimore, v 

170, 244-255, 2005 

 

CLARK, R.N. Spectroscopy of rocks and minerals and principles of spectroscopy. In: 

RENCZ, A.N. (Ed.). Remote Sensing for the Earth Sciences. Canada: John Wiley, 1999. 

chap. 1, p. 3-58. 



 49 

CLARK, R.N.; ROUSH, T.L. Reflectance spectroscopy: quantitative analysis techniques for 

remote sensing applications. Journal of Geophysical Research, Washington, v. 89, p. 6329–

6340, 1984. 

 

CLARK, R.N.; KING, T.V.V.; KLEJWA, M.; SWAYZE, G.; VERGO, N. High 

resolutionreflectance spectroscopy of minerals. Journal of Geophysical Research, 

Washington, v. 95, p. 12653-12680, 1990. 

 

DALAL, R.C.; HENRY, R. J. Simultaneous determination of moisture, organic carbon and 

total nitrogen by near infrared reflectance spectrophotometry. Soil Science Society of 

America Journal, Madison, v. 50, p.120-123, 1986. 

 

DARDENNE, P.; SINNAEVE, G.  ;BAETEN, V. Multivariate calibration and chemometrics 

for near infrared spectroscopy: which method?.Journal of Near Infrared Spectroscopy, 

New York, v 8, n.4, p. 229–237, 2000. 

 

DEMATTÊ, J.A.M.; GARCIA, G.J. Alteration of soil properties through a weathering 

sequence as evaluated by spectral reflectance. Soil Science of America Journal, Madison,    

v. 63, n. 2, p.327-342, Mar./Apr. 1999. 

 

DEMATTE, JAM. ;NANNI, M.R.; SILVA, A.P.; MELOFILHO, J.F., SANTOS, W.C.; 

CAMPOS, R.C. Soil density evaluated by spectral reflectance as an evidence of compaction 

effects. International Journal of Remote Sensing (Print), v.31, p. 403-422, 2010. 

 

DUNN, B.W.; BEECHER, H.G.; BATTEN, G.D.; CIAVARELLA, S. The potencial of near-

infrared reflectance spectroscopy for soil analysis – a case study from the Riverine Plain of 

south-eastern Australia. Australian Journal of Experimental Agriculture, Melbourne, v.42, 

p.607-614, 2002. 

 

ENVI. Environment for Visualizing Images.Guia do ENVI 3.5 emPortuguês. Disponívelem: 

<http://www.envi.com.br>. Acesso em: 2012. 

 

FREUND, Y.; SCHAPIRE, R. E. A decision-theoretic generalization of on-line learning and 

an application to boosting.J. Comput. System Sci. 55 119 139, 1997. 

 

FRIEDMAN, J.H.; MEULMAN, J.J. 2003. Multiple additive regression trees with application 

in epidemiology. Statistics in Medicine, New York, v.22,p.1365–1381, 2003. 

 

FYSTRO, G. The prediction of C and N content and their potential mineralisation in 

heterogeneous soil samples using Vis-NIR spectroscopy and comparative methods. Plant and 

Soil, Dordrecht, v. 246, p.139-149, 2002. 

 

FRIEDMAN, J.H. Greedy function approximation: a gradient boosting machine. The Annals 

of Statistics, Beachwood, v. 29, p. 1189-1232, 2001. 

 

GEE, G.W.;BAUDER, J.W. Particle size analysis. IN: KLUTE, A. (Ed.). Methods of 

SoilAnalysis: pt 1. Physical and Mineralogical Methods. Soil Science Society of 

America, Madison, WI, p. 383–411, 1996. 

 

http://lattes.cnpq.br/4763122697156089


 50 

GOGE, F.; JOFFRE, R.; JOLIVET, C.;ROSS, I.; RANJARD, L. Optimization criteria in 

sample selection step of local regression for quantitative analysis of large soil NIRS database. 

Chemometrics and Intelligent Laboratory Systems, Amsterdam, v.110, p.168-176, 2012. 

 

HARTMANN, H.P.; APPEL, T. Calibration of near infrared spectra for measuring 

decomposing cellulose and green manure in soils. Soil Biology & Biochemistry, 

Madison,v.38, p. 887–897, 2006. 

  

HARTEMINK, A.E.  Soil science in tropical and temperate regions – Some differences and 

similarities. Advances in Agronomy 77: 269-292, 2002. 

 

HARTEMINK, A.E.; MCBRATNEY, A. A soil science renaissance. Geoderma, Amsterdam, 

v. 148, p. 123-129, 2008. 

 

HUNT, G.R.; SALISBURY, J.W. Visible and near-infrared spectra of minerals and rocks: I 

silicate minerals. Modern Geology, London, v. 1, p. 283-300, 1970. 

 

ISLAM, K.; SINGH, B.; McBRATNEY, A. Simultaneuous estimation of several properties 

by ultra-violet, visible, and near-infrared reflectance spectroscopy. Australian Journal of 

Soil Research, Sidney, v. 41, p. 1101-1114, 2003. 

 

JALABERT, S.S.M. ;MARTIN,  M.P.; RENAUD, J.P.; BOULONNE, L.; JOLIVET, C.; 

MONTANARELLA, L.; ARROUAYS, D. Estimating forest soil bulk density using boosted 

regression modelling. Soil Use and Management, London, v. 26, p. 516-528, 2010. 

 

KOKALY, R.F.; CLARK, R.N. Spectroscopic determination of leaf biochemistry using band-

depth analysis of absorption features and stepwise multiple linear regression. Remote 

Sensing of Environment, New York,  v 67,p. 267–287, 1999. 

 

KUANG, B.; MOUAZEN, A.M. Calibration of a visible and near infrared spectroscopy for 

soil analysis at field scales across three European farms. European Journal of Soil Sciences, 

v. 62, 629–636, 2011. 

 

KUŚNIEREK, K. Pre-processing of soil visible and near infrared spectra taken in laboratory 

and field conditions to improve the within-field soil organic carbon multivariate 

calibration.The Second Global Workshop on Proximal Soil Sensing – Montreal 2011. 

 

MADEJOVA, J.; KOMADEL, P. Baseline studies of the clay minerals society source clays: 

infrared methods. Clays Clay Minerals,New York,  v. 49, 410–432, 2001. 

 

MALLEY, D.F.; MARTIN, P.D.; MCCLINTOCK, L.M.; YESMIN, L.; EILERS, R.G.; 

HALUSCHAK, P. . Feasibility of analysing archived Canadian prairie agricultural soils by 

near infrared reflectance spectroscopy. In: DAVIES, A.M.C.; GIANGIACOMO, R. (Ed) 

‘Near Infrared Spectroscopy: In: INTERNATIONAL CONFERENCE, 9., 2000.  

Proceedings…  Chichester, UK :NIR Publications,2000.  p 253 

 

MARTENS, H.; NAES, T. Multivariate Calibration. Chichester, UK:John Wiley, 1989.        

419p. 

 



 51 

MARTIN, P.D.; MALLEY, D.F.;MANNING, G.; FULLER, L. Determination of soil organic 

carbon and nitrogen at the field level using near-infrared spectroscopy. Canadian Journal of 

Soil Science, Montreal, ,v.82, p.413–422, 2002. 

 

MINASNY, B.; TRANTER, G.; MCBRATNEY, A.B.; BROUGH, D.M.; MURPHY, B.W. 

Regional transferability of mid-infrared diffuse reflectance spectroscopy prediction for soil 

chemical properties. Geoderma, Amsterdam,v.153, p. 155-162, 2009. 

 

MORON, A.; COZZOLINO, D. Application of near infrared reflectance spectroscopy for the 

analysis of organic C, total N and pH in soils of Uruguay. Journal of Near Infrared 

Spectroscopy, New York,  v. 10, 215-221, 2010. 

 

NANNI, M.R.; DEMATTÊ, J.A.M. Spectral reflectance methodology in comparison to soil 

analysis. Soil Science Society of American Journal, Madison, v. 70, p. 393-407, 2006. 

 

NOCITA, M.; KOOISTRA, L.; BACHMANN, M.; MUELLER, A.; POWELL, M.; WEEL, 

S. Predictions of soil surface and topsoil organic carbon content through the use of laboratory 

and field spectroscopy in the Albany Thicket Biome of Eastern Cape Province of South 

Africa.Geoderma, Amsterdam, v 167/168, p.295-302, 2011. 

 

POST, J. L.; NOBLE, P. N. The near-infrared combination band frequencies of 

dioctahedralsmectites, micas, and illites. Clays and Clay Minerals, New York, v. 41, p.639–

644, 1993. 

 

RIDGEWAY, G. 2007. \Generalized Boosted Models: A Guide to the gbm Package." R 

package vignette, URL http://CRAN.R-project.org/package=gbm. 

 

SÁ,S.O.;ALTHMANN,D.;FIGUEIREDO,K.L.;BERNOUX,M.;POPPI,R.J.;CERRI,

C.C. NIRS-LS-SVM to estimate carbon content of agricultural land in Brazilian Cerrado 

soils. IOPConf. : Series: Earth and Environmental Science, New York, 6, p. 242-237, 2009. 

 

SANKEY, J.B.; BROWN, D.J.; BERNARD, M.L.; LAWRENCE, R.L. Comparing local vs. 

global visible and near-infrared (VisNIR) diffuse reflectance spectroscopy (DRS) calibrations 

for the prediction of soil clay, organic C and inorganic C. Geoderma, Amsterdam, v. 148,     

p. 149-158, 2008. 

 

SHERMAN, D.M.; WAITE, T.D. Electronic spectra of Fe
+3

 oxides and oxide hydroxides in 

the near IR to near UV. American Mineralogist, Chantilly, v. 70, p. 1296-1269, 1985. 

 

SORENSEN, L.K.; DALSGAARD, S. Determination of clay and other soil properties by near 

infrared spectroscopy. Soil Science Society of American Journal, Madison, v. 69, p. 159-

167, 2005. 

 

StatSoft, Inc. (2011). STATISTICA (data analysis software system), version 

10.www.statsoft.com. 

 

STENBERG, B.; BORJESSON; T.; JONSSON, A. Near infrared reflectance spectroscopy - a 

rapid method for predictive field mapping of soil-N mineralisation? DIAS Report, Plant 

Production, London, p. 103-111, 2002. 

 



 52 

STENBERG, B. Effects of soil sample pretreatments and standardised rewetting as interacted 

with sand classes on Vis-NIR predictions of clay and soil organic carbon. Geoderma, 

Amsterdam, v 158, p.15-22, 2010. 

 

STENBERG, B.; VISCARRA ROSSEL, R.A.; MOUAZEN, A.M.; WETTERLIND, J. 

2010.Visible and near infrared spectroscopy in soil science. Advances in Agronomy, 

Amsterdam, v.107, n. 107, p. 163-215, 2010. 

 

THISSEN, U.; VAN BRAKEL, R.; DE WEIJER, A.P.; MELSSEN, W.J.; BUYDENS, L.M. 

C.  Chemometrics Inteligent Laboratory System, Amsterdan, , v. 69,p.  35−49, 2003. 

 

TEKIN, Y.; TUMSAVAS, Z.; MOUAZEN, A.M.  Effect of Moisture Content on Prediction 

of Organic Carbon and pH Using Visible and Near-Infrared Spectroscopy. Soil Science 

Society of America Journal, Madison, v. 76, p.188-198, 2012. 

 

TODOROVA, M.; ATANASSOVA, S.; ILIEVA, R. Determination of soil organic carbon 

using near-infrared spectroscopy. Agricultural Science and Technology, New York, v. 1,p. 

45-50, 2009. 

 

UDELHOVEN, T.; EMMERLING, C.; JARMER, T. Quantitative analysis of soil chemical 

properties with diffuse reflectance spectrometry and partial least-square regression: A 

feasibility study. Plant Soil, Dordrecht, v. 251, p.319–329, 2003. 

 

VASQUES, G.M.; GRUNWALD, S.; SICKMAN, J.O. Modeling of soil organic carbon 

fractions using visible-near-infrared spectroscopy. Soil Science Society of American 

Journal, Madison, v. 73, p. 176-184, 2009. 

 

VISCARRA ROSSEL, R.A.; BEHRENS, T. Using data mining to model and interpret soil 

diffuse reflectance spectra. Geoderma, Amsterdam, v. 158, p. 46-54, 2010. 

 

VOHLAND, M.; BESOLD, J.; HILL, J.; FRUEND, H.-C. Comparing different multivariate 

calibration methods for the determination of soil organic carbon pools with visible to near 

infrared spectroscopy. Geoderma, Amsterdam, v. 166, v.198-205, 2011. 

 

WETTERLIND, J.; STENBERG, B.; SÖDERSTRÖM, M. The use of near infrared (NIR) 

spectroscopy to improve soil mapping at the farm scale. Precision Agriculture, Berlin, v. 9, 

p. 57-69, 2008. 

 

WETTERLIND, J.; STENBERG, B.; SÖDERSTRÖ, M. The use of near infrared (NIR) 

spectroscopy to improve soil mapping at the farm scale. Geoderma, Amsterdam, v. 156,        

p. 152-160, 2010. 

 

WISCHMEIER, W.H.; SMITH, D.D.  Predicting rainfall erosion losses: a guide to 

conservation planning. Washington: Department of Agriculture, 1978. 58p.            

(Agriculture Handbook, 537),  

 

WOLD, S.; ANTTI, H.; LINDGREN, F.; O¨ HMAN, J. Orthogonal signal correction of near-

infrared spectra. ChemometricsInteligent Laboratory System, Amsterdan ,v. 44, p.175–

785, 1998. 

 



 53 

IUSS WORKING GROUP WRB. World reference base for soil resources 2006. 2nd ed. 

Rome:FAO, 2006.( World Soil Resources Report,  103) 

 

 



 54 



 55 

3 CHARACTERIZATION OF POTENTIAL AMAZONIAN DARK EARTH AREAS 

WITH PROXIMAL SENSING TECHNIQUES 

 

Abstract 

      In the Brazilian Amazon region there are soils known as Terra Preta de Índio or 

Amazonian Dark Earths (ADE), which are rich in carbon (C) and plant nutrients. A better 

understanding of ADE areas is important for choosing appropriate management strategies to 

maintain the fertility of ADE under current agricultural regimes. We investigated if rapid 

spectroscopy data collection could be used to assess the spatial distribution of properties of 

this kind of soil, in order to reduce costs, and explored the possibility of predicting soil 

properties based on their spectral (400-25000 nm) characteristics using Partial Least Square 

(PLS) regressions. We also tested whether the PLS models generated by soil data from one 

geographical area could be applied to soil data from another. The study was carried out in the 

Santarém-Belterra region of Pará state, Brazil, in two sites. In total, more than 300 soil 

samples were collected in these two locations, each of which had some soils that could be 

classified as ADE. As a reference, 225 of the samples were analyzed by traditional methods in 

the laboratory (e.g., pH, P, K, Ca, CEC, and soil organic carbon (SOC)). General properties 

typical of ADE (high SOC, Ca, and P) were found in portions of the study areas. 

Characterizing the spectral curves allowed us to distinguish between different layers and soils. 

Models of soil properties using the mid-IR (4000-400 cm
-1

) sensor data outperformed those 

using vis-NIR (400-2500 nm). Comparing the interpolation results revealed that the 

predictions of the PLS regression (mid-IR and vis-NIR) of CEC and SOC were able to 

adequately reproduce the spatial pattern of the properties evaluated (r > 0.81). The mid-IR 

method worked particularly well. In conclusion, proximal soil sensing can be useful for 

assessing the spatial distribution of ADE soils and quantifying some of the most important 

soil properties. The methodology we used has the potential to facilitate the study of areas 

where ADE may potentially occur. 

 

Keywords: Diffuse reflectance spectroscopy; Soil organic matter; PLS regression; Terra Preta 

de Índio. 

 

3.1 Introduction 

In general, the agricultural soils in the Brazilian Amazon region are strongly 

weathered and thus tend to be acidic and have low cation exchange capacity (CEC). 

According to Falcão et al. (2003) 75% of these soils are classified as Ferralsols and consist of 

old, deeply weathered kaolinitic clays with low pH and low amounts of nutrients. The low 

fertility level becomes a limiting factor for productivity and economy. 

However, in this same region soils higher in carbon (C) with elevated contents of 

plant nutrients are found. This group includes soils known as terra preta de índio or 

Amazonian dark earths (ADE), which are found in circumscribed distributions in a wide 

variety of environmental contexts.  

ADE occurs as fertile patches from less than a hectare (ha) up to, unusually, 300 

hundred ha (WOOD, 1999; MCCAAN, 1999; SOMBROEK, 2002, KERN, 2003). ADE are 

formed as a result of land use strategies of pre-Columbian complex societies from 2500 to 
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500 years B.P. and were abandoned on a large scale as part of the demographic and economic 

collapse of the region following European contact (SMITH, 1980; WOODS; DENEVAN, 

2010). Given the persistence of ADE through time, they provide important and complex 

archaeological datasets for understanding long-term human-environmental interactions and 

the historical ecology of the Amazon rain forest (GLASER et al., 2004; LEHMANN et al. 

2010). Suggested procedures for the formation of ADE include particular methods of clearing, 

usually referred to as “slash and char”, in which pyrolysis (a burning method with limited 

supply of oxygen) is the dominating type of burning, possibly combined with the addition of 

various kinds of organic waste (e.g. STEINER et al. 2004). The resulting soils contain much 

higher amounts of C, especially a form denominated as biochar (BURNS; RITZ, 2012), than 

other soils in the Amazon region and contribute thereby to carbon sequestration. 

To soil scientists the ADE topsoil comprises an anthropogenic A horizon, that may 

fit the requisites of a diagnostic horizon related to a soil taxonomy system, like a fimic A 

horizon (FAO, 2006), plagic or hortic horizon (WRB, 1988) or an anthropic A horizon 

(EMBRAPA, 2006). Thus, according to the preferred soil classification system, these soils are 

classified as Latossolos, Argissolos, Cambissolos and others (EMBRAPA, 2006); or may 

classify as Fimic Anthrosols (FAO, 2006) or as Plaggic or Hortic Anthrosols (WRB, 1988). In 

2002, at the First International TPA workshop in Manaus, a new archeo-pedological 

classification legend specific for ADE and soils influenced by human activities was proposed 

aimed to improve interdisciplinarity of soil scientists, anthropologists, biologists and 

geologists engaged with ADE environments (e.g. ANDRADE, 1986; WOODS; McCANN, 

1999). In this system a reference horizon comprises the upper part (A and AB horizons) of the 

soil profile and has the following properties: a thickness of 20 cm or more; presence of 

artifacts at any amount, and/or Mehlich-1 extractable P (OLSEN; SOMMERS, 1982) in the 

fine earth fraction of at least 65 mg kg
-1

; charcoal in the fine earth fraction; organic C content 

determined by the Walkley and Black method (EMBRAPA, 2009) of 10 g kg
-1

 or more in the 

fine earth (KAMPF et al., 2003). 

Although ADEs are not homogeneous when it comes to fertility and productive 

potential and varies with respect to their depth and extension as well as their physical and 

chemical characteristics (LEHMANN et al., 2003), some important properties related to the 

degree of fertility are common in most of them: high soil organic carbon (SOC), P, Ca and 

micronutrients contents, besides being remarkably resistant to leaching compared to the 

adjacent soils. 
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Better knowledge of ADE areas in the region evaluated in this study - the greater 

Santarém-Belterra region at the confluence of the Tapajós River with the Amazon 

headwaters- is important for many reasons (see e.g. LEHMANN; JOSEPH, 2009; 

VERHEIJEN et al., 2010; CORNELL UNIVERSITY, 2012). One of them refers to the fact 

that large areas in this region that were forested or under subsistence agriculture have now 

been cleared for conventional large-scale monocrop agriculture. The impact of this on fertility 

and structure stability of ADE is not clear. The characterization of soils in this region is 

important for choosing appropriate management strategies to keep the fertility of ADE in 

current agricultural regimes. 

In order to characterize these soils it is crucial to perform soil chemical analyses. 

These analyses are expensive and time-consuming. In recent years, proximal soil sensing 

techniques have, by many authors, been studied as a tool to improve the quantitative 

assessment of the management problems (e.g. SHEPHERD; WALSH, 2002; DUNN et al., 

2002).  Some authors found good correlation between soil spectral reflectance in the visible 

NIR region (350-2500 nm) and soil chemical and physical properties (e.g. REEVES III et al., 

2002; SHEPHERD;WALSH, 2002; DEMATTÊ et al., 2004; STENBERG et al., 2010). Some 

of them used successfully the NIR region for quantitative analysis of carbon (REEVES et al., 

1999; EHSANI et al., 1999; CHANG et al., 2001; FYSTRO, 2002; MCCARTY et al., 2002; 

SHEPHERD, WALSH, 2002; VISCARRA ROSSEL et al., 2006). However, there are still 

only few studies that used spectral ranges of the mid-infrared (mid-IR) (4000 to 400 cm
-1

 or 

2500 to 25000 nm) to evaluate soil properties (MCCARTY; REEVES, 2006; VISCARRA 

ROSSEL et al., 2006), even though mid-IR diffuse reflectance spectroscopy exhibits powerful 

signatures that can be used to derive many physical, chemical and biological properties.  

The reflectance spectroscopy is based on the detection of electromagnetic radiation 

reflected from the soil without having direct contact with the sensors. There is no sample 

destruction, no use of hazardous chemicals, minimal sample preparation is required and the 

measurements can be performed on-the-go in situ. Despite of there was no studies about the 

patterns of ADEs the reflectance spectroscopy can assist on ADE identification.  

Thus, aiming to facilitate the study of areas where ADE can be potentially found, we 

investigated if rapid spectroscopy data collection could be used to assess the spatial 

distribution of properties of this kind of soil, in order reduce costs. Specifically, this work´s 

aims were to: (i) characterize these soils chemically and spectroscopically (visNIR and mid-

IR) and compare them with other studies carried out in this region; (ii) identify parameters 

(e.g. depth of the band, and reflectance intensity) of spectral variation associated to soil 



 58 

attributes content; (iii) explore the possibility to predict soil properties based on their spectral 

characteristics. In doing the latter, we also tested whether the PLS models generated by soil 

data from one geographical area could be applied to soil data from another. Successful results 

from this study would support the hypothesis that mapping of ADE areas can be facilitated by 

the use of spectroscopy techniques even when it is occurring in small patches. This process 

could improve and facilitate archaeological work, supporting the identification of locations 

where to focus sampling and excavations. The extent of these patches of soils with high 

fertility surface horizons is of local and regional importance, and has been considered as an 

indication of former sustainable land use (SMITH, 1980; GLASER et al., 2000). 

 

3.2 Material and Methods 

3.2.1 Description of studied region 

 
This study was conducted in the north of Brazil, in the Belterra region, located 40 

km southwest from Santarém, in the state of Pará (Figure 1). The studied area belongs to the 

substate region of Baixo Amazonas, with a rainfall and an average annual temperature of 

1920 mm and 25-28 ºC, respectively, and with an average relative air humidity of 86%. 

Geologically, the study area is located at the Barreiras Formation (sediments) (BRASIL, 

1983), which is now named Alter do Chão Formation (FEARNSIDE; LEAL FILHO, 2001). 

The mineral matrix of soil in the area is mainly strongly weathered; often showing high 

contents of kaolinite and quartz, and therefore possesses few weatherable minerals which 

could potentially release nutrients (KERN, 1996). 
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Figure 1 - Map of the southern part of the Brazilian Amazon. The Santarém-Belterra study 

area is marked with a red box (adapted from SOARES et al., 2011) 

 

3.2.2 Studied areas  

3.2.2.1 Bom Futuro 2 

 
An area called Bom Futuro two (BF2) in the Belterra district was chosen for the 

main field study (Figure 2). The area of 27 ha is delimited by the coordinates UTM 

approximately 732000 to 732700 metres E and 96977800 to 9698400 metres N, fuse 21, 

datum WGS 1984. The soil study was conducted as part of a larger project which also 

included archaeological excavations. The location of BF2 was chosen because of its potential 

interest for the archaeologists.  

Soil sampling was made along a system of transects at BF2 (Figure 2). The soil 

samples (0-20 cm) were taken with an auger at every 40
th

 meter and the depth and color of the 

A-horizon was noted. At each sampling site, we obtained a composite sample of three cores 

obtained with a soil auger in a triangle with a side length of approximately 1 m. In total, 179 

samples were taken at BF2 transects.  

At excavation 1 (Exc. 1) (Figure 2) three soil profiles were studied in detail (eastern 

part of the studied area): Profile 1 was made where the soil was affected by seasonal 

waterlogging and was depleted in Fe; the Profile 2 was located in the upper more well drained 
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part with a reddish soil profile, whereas Profile 3 was in an intermediate position where there 

was a thin plinthic layer in the subsoil. At excavation 2 (Exc. 2 in Figure 2), three profiles 

were also described according to the Brazilian Soil Classification System (SiBCS) 

(EMBRAPA, 2006).  

 

 

Figure 2 - Overview of the soil sampling locations and position of the soil samples (red dots) 

of Bom Futuro 2 area. (Exc. 1 and Exc. 2 indicate approximate locations of the soil 

profiles) 

 

3.2.2.2 Bom Futuro 6 

 
Another area of approximately 3.5 ha called Bom Futuro six (BF6) located 

approximately 1.5 km southwest from BF2 was also studied. In this area, along the baseline 

systems of transects, soils were sampled at every 20
th

 m and scanned by sensors FieldSpec 

and Nicolet 6700 Fourier Transform Infrared (FT-IR) (Figure 3).  

 In this area 10 profiles covering different potentially anthropogenic soil types were 

also sampled at three horizont layers and analyzed chemically and by sensors (approximately 

an area of 0.8 ha currently under slash-and-burn cultivation with crops like banana, cassava 

and corn). These soils were well documented with photos and the Munsell color components 

Exc. 1 

Exc. 2 
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hue, value and chroma were obtained using a colorimeter MINOLTA. In total 69 samples 

were taken at BF6. 

 

 
Figure 3 - Overview of the soil sampling locations and position of the soil samples (red dots- 

with the extended transects in the adjacent forest area) and the soil profiles at Bom 

Futuro 6 area (dotted area = 0.8 ha) 

 

3.2.3 Laboratory analysis 

 
The soil samples were air-dried and sieved to pass through a 2 mm mesh sieve 

before they were submitted to chemical and spectral analyses. 

 

3.2.3.1 Chemical analyses 

The soil samples were analyzed for pH in a soil:water solution ratio of 1:2.5; OC 

(organic carbon) content was determined by wet oxidation with K-dichromate by a modified 

Walkley& Black method (EMBRAPA, 2009); total C by dry combustion using a LECO CN-

2000 instrument (LECO Corp., St. Joseph); extractable P by Mehlich 1; calcium (Ca
2+

), 

potassium (K
+
), magnesium (Mg

2+
), and aluminium (Al

3+
) by extraction with 1M KCl 

(EMBRAPA, 2009) and analysis with atomic absorption spectrophotometry (AAS); 

extractable acidity (H
+
 +Al

3+
) by extraction with 1N Ca (CH3COOH) pH 7. Contents of sand 
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(2-0.05mm), silt (0.05-0.002 mm) and clay (<0.002 mm) were determined by the densimeter - 

sedimentation method, using calcium hexametaphosphate 0.1M and sodium hydroxide 0.1 M 

as dispersing agents (GEE et al., 1986). Cation exchange capacity (CEC at pH7), sum of 

bases (SB) and base saturation (V) were calculated from the analyses of base cations and 

exchange acidity. 

 

3.2.3.2 Spectroscopy measurements 

 
The spectral reflectance of soils was measured in the vis-NIR (350-2500 nm) range, 

with a spectral resolution of 3 nm (from 350 to 1000 nm) and 10 nm (from 1000 to 2500 nm), 

using a FieldSpec Pro FR spectroradiometer (Analytical Spectral Devices, Boulder, Colorado; 

Hatchell,1999). The spectrum acquisition software interpolated reflectance data to a sampling 

interval of 1 nm. Approximately 15 cm
3
 of each soil sample was placed in a petri dish. A 

fiber-optic cable connected to the vis-NIR sensor was placed vertically at 8 cm from the 

sample, and the reflected light was measured in an area of approximately 15 cm
2
 in the centre 

of the sample. The light source was a 50W halogen bulb with the beam non-collimated to the 

target plan, positioned at 35 cm from the sample at a zenith angle of 30º. As a reference 

standard, a white plate covered with barium sulphate (BaSO4) was used (STEFFEN et al., 

1996). Each spectrum was averaged from 100 readings during 10 seconds.  

In the mid-IR range measurements were made with a Nicolet 6700 Fourier 

Transform Infrared (FT-IR) equipped with an accessory to acquire diffuse reflectance (Smart 

Diffuse Reflectance). Approximately 1 cm
3
 of each soil sample (100 mesh) was used, and 

placed in the proper recipient of the sensor. The internal light source is the HeNe laser with a 

calibration standard for each wavelength (2,500 to 25,000 nm). The spectra were obtained 

with a spectral resolution of 1.2 nm and with 64 scans per second. Before each measurement a 

reference background spectrum was obtained to calibrate the sensor.  

 

3.2.4 Data analyses 

 
The scheme of the spectroscopy procedures carried out in this study is showed in 

figure 4 and detailed in the steps below. After the selection of the samples to be analyzed 

chemically at BF2, the calibration and validation data sets of BF2 were chosen randomly. The 

PLS calibrations of soil properties were tested on the validation data set. These models were 

also applied to spectral data of BF6 samples (unknown samples from a different geographical 
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area). Some samples (N = 20) at BF6 were selected to be sent to the chemical laboratory to 

validate these predictions.  

 

BF 2  sensors data (N= 179)

vis-NIR

mid-IR

Selection (N = 150)
Laboratory: Soil

chemical analysis

Validation set

(N = 100)

Calibration set
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Pre-

dic-

tions
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(Chemical data)

fuzzy clustering 

Comparing results
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BF 6 sensors data (N= 70)
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predictions

(Chemical data)

BF6 Properties

based on models obtained in 
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Figure 4 - Schematic diagram of proposed process to obtain the estimates maps of soil 

properties using vis-NIR and mid-IR spectroscopy 

 

3.2.4.1 Selecting samples 

 
 We selected 150 soil samples from BF2 (N total = 179) to be analyzed chemically at 

soil laboratory. It was done based on the fuzzy clustering analysis (ADAMS, 1995) and the 

results are shown in figure 5. For this analysis we used the data from the two 

spectroradiometers (FieldSpec and Nicolet 6700 Fourier Transform Infrared) and the depth of 

layer A from field notes. The aim was to have the sensors values well represented with this 

selection. Thus the fuzzy clustering was applied to the first four principal components scores 

of these data. The fuzzy clustering provides the basis for analysis of systems characterized by 

a high degree of uncertainty, nonlinearly and complexity (JAGER, 1995; PEDRYCZ, 

GOMIDE, 1998). A major advantage of the fuzzy modeling method is the use of qualitative 

parameters to represent relationships being modeled, instead of using the quantitative 

variables of traditional methods (TORBERT et al., 2008). 
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Thus, the BF2 data set was randomly divided into a calibration set (CS) with 50 

samples and validation set (VS) with 100 samples. This division promoted independence 

between CS and VS (Table 1). 

 

 

 

Figure 5 - Fuzzy clustering results of Bom Futuro 2 study area. 150 samples selected; 4 fuzzy 

classes (red, yellow, dark green, green); samples removed based on highest 

confusion index (blue dots) 
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Table 1 - Descriptive statistics for soil attributes at Bom Futuro 2 area: global, calibration and 

validation data sets 
Descriptive EC OC pH pH P K Ca Mg Al CEC H+Al BS

statistics uS cm
-1

g kg
-1 

H2O KCl mg kg
-1

%

Mean 87 23.0 5.0 4.3 10.2 1.2 32.0 9.8 8.7 102.0 59.0 39.2

StDev 27 4.7 0.5 0.5 15.0 0.6 25.6 5.6 7.5 26.0 15.7 19.2

Minimum 35 10.4 4.0 3.6 2.0 0.5 2.0 1.0 2.0 48.2 26.0 4.0

Median 84 22.6 4.9 4.2 5.0 1.0 26.0 9.0 5.0 96.0 59.0 39.0

Maximum 203 38.3 6.1 5.5 117.0 3.1 128.0 36.0 29.0 197.3 102.0 87.0

Mean 91 23.4 5.0 4.3 10.9 1.2 33.8 10.3 8.5 104.0 58.7 40.6

StDev 29 4.7 0.5 0.5 16.6 0.6 26.9 5.9 7.4 24.00 16.1 19.8

Minimum 34 12.8 4.2 3.7 2.0 0.5 3.0 2.0 2.0 57.5 26.0 10.0

Median 86 22.6 4.9 4.2 5.0 1.0 29.0 10.0 5.0 98.5 60.0 41.0

Maximum 203 38.3 6.1 5.5 117.0 3.1 128.0 36.0 26.0 197.3 102.0 87.0

Mean 80 22.2 4.9 4.2 8.6 1.1 27.7 8.6 9.2 97.3 59.8 36.2

StDev 21 4.7 0.4 0.4 10.6 0.5 22.0 4.6 7.9 24.8 14.7 18.7

Minimum 43 10.4 4.0 3.6 2.0 0.6 2.0 1.0 2.0 48.2 32.0 10.0

Median 77 21.5 4.9 4.1 5.0 1.0 24.0 8.0 7.0 91.5 58.0 35.0

Maximum 203 35.4 5.9 5.1 110.0 2.8 116.0 32.0 29.0 182.5 91.0 87.0

Bom Futuro 2, calibration data set  (N = 50)

......................................mmolc kg 
-1

...................................

Bom Futuro 2 (N = 150)

Bom Futuro 2, validation data set  (N = 100)

 
  

In BF6 all samples collected (N = 69) were analyzed spectrally by vis-NIR and mid-

IR sensors. Part of the samples from transects (N = 20) were purposely selected (to cover the 

entire area), to be analyzed chemically in order to validate the BF6 soil properties predicted 

by models (based on BF2 models).   

 

 

3.2.4.2 Statistical analyses 

 
Summary statistics and correlation analysis were performed using Jump software 

version 8.0 (JMP 7.0.1). 

For qualitative analysis of the spectra data we calculated the band depth of particular 

absorption features at each depth of the ten BF6 profiles by subtracting the continuum 

removed reflectance (Envi, 2004) at a particular wavelength from 1 (one) (VISCARRA 

ROSSEL et al, 2009). A continuum removal technique has been used to isolate particular 

absorption features in diffuse reflectance spectra (VISCARRA ROSSEL et al., 2009). In soil 

science, it has been used mostly in hyperspectral remote sensing applications (e.g. GOMEZ et 

al., 2008). In addition, the soil color of these samples was determined using a colorimeter in 

the Munsell color system. For that, 50 g of each soil sample was placed in a Petri dish 
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overlain by a quartz plate. The colorimeter used was the Konica Minolta CR-300 (Konica 

Minolta Holdings Inc., Tokyo, Japan). We also made a descriptive analysis of the spectral 

curves of the BF2 profiles based on Bellinaso et al. (2010) and Rizzo (2011). 

The quantitative spectroscopy analyses were performed in Unscrambler10.1 (CAMO 

SOFTWARE AS, Oslo, Norway). Before spectroscopy multivariate analyses the soil vis-NIR 

spectra were reduced to 400-2450 nm to eliminate the noise at both edges of each spectrum. 

The mid-IR spectra were transformed from reflectance to absorbance.  

A principal components analysis (PCA) of spectral data using a leave-one-out cross-

validation was carried out in order to summarize the main spectral variation of data. The 

scores in each principal component summarize the relationships among the samples and the 

loadings summarize the relations among the spectral values in the wavelengths (variables), 

and these are a means to interpret the score patterns. PCA results in a reduction of data that 

aims to explain most of the variance in the data while reducing the number of variables to a 

few uncorrelated components (SHARMA, 1996; ANDERSON, 2003). Spectral outliers were 

not observed through the Mahalanobis distance. The loadings obtained with the PCA were 

used to identify the main spectral variation (absorption and reflection features) in the spectra. 

The calibration models of soil attributes (OC, P, CEC, EC, Ca, Mg, K, Al, H+Al and 

pH-H2O, pH-KCl and BS) of BF2 were validated using the predefined validation set (VS). 

The predicted model obtained from BF2 samples considered to have potential to be used, 

were also applied to the new unknown samples data set (BF6). The calibration technique used 

was partial least square regression (PLSR), using the orthogonalized PLSR algorithm for one 

Y-variable (PLS-1) and full cross-validation. The number of PLS factors was chosen to 

minimize the root mean square error (RMSE) in the cross validation. A calibration model that 

uses fewer factors is more likely to yield accurate predictions for newer samples (MADARI et 

al. 2006). If the samples are very diverse, calibration is likely to use more factors. The PLSR 

technique is widely used, showing good performance to estimate attributes based on the 

spectral behavior of the soil (e.g. VASQUES et al., 2008). 

We used the coefficients of determination (R
2
), the root mean square error (RMSE) 

and the ratio of performance to deviation (RPD) to compare the results, calculated using the 

following equations: 

 

 and  
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where n is the number of samples and SD is the standard deviation of laboratory-measured 

values for the property in question.  

 

3.3 Results and Discussion 

3.3.1 Bom Futuro 2 

3.3.1.1Chemical properties 

 
The occurrence of charcoal was observed in BF2 area, especially around at 

excavation 2. According to field notes, adjacent soils to excavation 2 sometimes had visible 

charcoal too, but only in the topsoil. The regular occurrence of charcoal in ADEs 

(SOMBROEK 1966; SOMBROEK et al. 1993) and their highly aromatic humic substances 

(ZECH et al. 1990) indicate that residues of incomplete combustion (black carbon), derived 

mainly from cooking fires, may contribute to the SOM of ADEs. It has been proposed that 

polyphenols and condensates (e.g. of lignin-degradation products) contribute to the major part 

of the aromatic compounds in SOM (STEVENSON, 1994). 

A correlation matrix of the analyzed soil properties of the BF2 samples is shown in 

Table 2. The correlation between CEC and SOC was high (r = 0.91) and may indicate that the 

soil organic fraction is an important contributor to the potential fertility of soils in this area. 

SOC occurs especially by the presence of charcoal in ADE. According to SOMBROEK, 

(1966) P is mainly present as inorganic phosphate in ADE and may not correlate with SOM. 

In soil samples of the BF2 area no correlation was found between P on one hand and EC, 

SOC and BS on the other. Some soils in the BF2 area exhibit ADE characteristics and Ca and 

SOC are closely related (r = 0.71), in contrast with P (r = 0.10 and 0.30).  

The spatial distribution of measured SOC, CEC and P contents in the BF2 area (N = 

150 samples) obtained by point kriging interpolation using the software Vesper (MINASNY 

et al. 2005) is shown on Figure 6. These maps visualize the positive correlation between CEC 

and SOC. We observed SOC content higher than 10 g kg
-1

 fine earth throughout the BF2 area 

(Figure 6) and high contents of phosphorus (> 65 mg kg
-1

) extracted by Mehlich-1 in some 

points, which are characteristics of dark earths according to Archeo-pedological classification 

system (KAMPF et al., 2003). The high C content in soils with anthropogenic A horizons 

were observed by Sombroek (1966), Ranzani et al. (1970), Smith (1980), Éden et al. (1984), 

Kern and Kämpf (1989), and Pabst (1991) in the Amazon region, and was attributed to 

organic matter stabilization by complex-formation with Ca
2+

, and enrichment in stable C 

structures (black C). In the BF2 area  the SOC content and soil fertility properties found at 
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excavation 2 are comparable to those reported by Madari et al. (2003) that studied 56 profiles 

of ADEs (mean SOC = 30 g kg
-1

). 
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Table 2 - Correlation matrix for relationships between soil properties evaluated at Bom Futuro 2 

EC SOC pHH20 pHKCl P K Ca Mg Al H+Al SB CEC BS m

EC 1

SOC 0.63 ** 1

pHH20 0.30 0.42 ** 1

pHKCl 0.38 * 0.43 ** 0.96 ** 1

P 0.05 0.10 0.39 0.40 * 1

K 0.19 0.16 0.55 ** 0.56 ** 0.50 ** 1

Ca 0.55 ** 0.71 ** 0.86 ** 0.89 ** 0.30 * 0.43 ** 1

Mg 0.63 ** 0.62 ** 0.72 ** 0.72 ** 0.17 0.30 ** 0.78 ** 1

Al -0.23 -0.31 * -0.85 ** -0.81 ** -0.33 * -0.33 ** -0.42 ** -0.70 ** 1

H+Al -0.09 0.13 -0.72 ** -0.74 ** -0.30 * -0.30 ** -0.47 ** -0.51 ** 0.68 ** 1

SB 0.58 ** 0.71 ** 0.86 ** 0.90 ** 0.30 * 0.30 ** 0.44 ** 0.99 ** 0.72 ** -0.51 ** 1

CEC 0.62 ** 0.91 ** 0.57 ** 0.60 ** 0.16 0.16 0.23 ** 0.85 ** -0.43 ** 0.01 0.85 ** 1

BS 0.41 ** 0.47 * 0.96 ** 0.97 ** 0.37 0.56 * 0.90 ** 0.77 ** -0.83 ** -0.74 ** 0.91 ** 0.60 ** 1

m -0.29 -0.40 * -0.86 ** -0.82 ** -0.33 * -0.44 ** -0.73 ** -0.70 ** 0.98 ** 0.61 ** -0.75 ** -0.50 ** -0.90 ** 1  

** (p< 0.01); * (p< 0.05) - Student’s t-test 
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Figure 6 - Kriging interpolation to derive spatial distribution of measured soil properties contents by chemical analyses (N = 150) at BF2 area 
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3.3.1.2 Profiles characterization 

 
The profile descriptions of excavations 1 and 2 are provided below. Some soil analytical 

characteristics considered important for analyzing profiles are shown in Table 4.  

We did not observe soils with an anthropogenic A horizon in the eastern part of the BF2 

area (excavation 1) (Table 5). Profile 1 was classified as Gleissolo (GX) Háplico Tb Distrófico 

típico (EMBRAPA, 2006). Hydromorphy in these soils is expressed as a strong gleization due to 

the effect of the fluctuating groundwater. We observed very clayey soil that was generally 

whitish in color (Tabatinga) due to Fe depletion under reducing conditions; abundant 

precipitates in the C horizon; and a mosaic of redox depletions and accumulations with only a 

slight difference in color from the whitish matrix soil.  Profile 2 (excavation 1), located in the 

upper, better-drained portion of the study area, had a reddish soil profile and was classified as 

Latossolo Amarelo (LA) Distrófico plíntico.  Profile 3 (excavation 1) was a Latossolo Amarelo 

(LA) Distrófico típico with a deep reddish-yellow soil profile and very gradual boundaries 

between horizons (Table 5). 

At the excavation 2 area, however (Figure 2), the three profiles studied were classified as 

Latossolo Amarelo (LA) Distrófico antrópico. These soils are well developed and significantly 

affected by weathering processes, with an accumulation of resistant clay minerals or iron and 

aluminum oxides or hydroxides (EMBRAPA, 2006).  The surface horizon, characterized as 

anthropogenic A, was more than 50 cm thick, with dark colors and a well-developed structure. 

We also observed pieces of charcoal and ashes in between aggregates, pieces of ceramics and 

earthworm channels, and channels in peds. Roots were most abundant in the topsoil but present 

throughout the profiles.  Soil texture analysis showed values of clay between 670 and 890 g kg
-1

 

and sand between 38 and 156 g kg
-1

. The silt/clay ratio was low (mean of 0.16), reinforcing the 

high degree of soil weathering.  
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Table 4 – Chemistry, texture, and colors of soil samples related to profiles studied in excavations 1 and 2 at the Bom Futuro 2 area 
ID Sand Silt Clay SOC P K Ca Mg Al H+Al SB CEC BS m pH H2O pH KCl Matix Value Chroma

g kg
-1

mg kg
-1

P1A 79 114 808 20 66 2.3 22 6 10 69 30.7 99.7 31 25 5.3 4.5 2.5Y 6 1

P1B 40 79 881 3 5 0.5 4 2 9 34 6.5 40.2 16 58 4.5 4 2.5Y 6 3

P1C_upper 62 160 778 0 7 0.6 3 2 8 28 5.8 34.1 17 57 4.5 4.1

P1C 87 31 882 1 7 0.6 2 2 8 27 5.1 32.5 16 60 4.6 4.2 10YR 8 3

P2A 140 133 727 20 38 6.7 38 12 <2 61 56.2 117.3 48 2 5.6 4.6 2.5Y 6 1

P2AB 67 131 802 7 4 0.4 6 3 11 42 8.9 50.6 18 56 4.6 4.1 10YR 6 5

P2B 71 55 874 1 7 0.3 <2 2 5 32 3.5 35.4 10 58 4.6 4.2 10YR 6 5

P2B1 64 62 874 2 5 0.3 5 2 10 36 7.6 43.9 17 57 4.8 4.1 10YR 6 5

P2C 139 31 829 1 13 0.7 3 3 5 30 6.2 36.3 17 46 4.5 4.3

P3A 168 78 754 17 67 2.1 28 6 6 73 36.1 108.8 33 14 5.2 4.2 2.5Y 6 1

P3BA 77 19 904 5 5 0.8 5 2 14 44 8.1 52.4 15 64 4.5 3.9 10YR 6 6

P3B1 67 26 907 2 5 0.7 3 1 13 39 5.3 44.3 12 71 4.3 3.9 10YR 7 8

P3C 73 75 852 1 5 0.6 3 1 11 42 5.1 46.7 11 68 4.4 4.1 5YR 6 6

P4Ah1 137 162 702 56 49 1.8 121 24 2 85 147.1 232.2 63 1 5.8 5.1 10YR 1 1

P4Ah2 45 193 762 23 8 0.9 52 12 2 46 64.7 110.7 58 2 6 5.2 10YR 5 2

P4Ah3 67 82 850 10 108 0.4 17 6 10 79 24 102.8 23 29 5 4.1 2.5Y 5 2

P4B 43 81 876 3 14 0.2 11 3 7 38 14.3 52.4 27 33 4.8 4.3 10YR 6 6

P5Ah1 128 162 710 37 22 2.7 40 14 5 125 56.8 181.7 31 8 5.1 4.4 10YR 6 3

P5Ah22 100 121 780 11 75 0.4 12 6 13 80 17.7 97.4 18 42 4.8 3.9 10YR 2 2

P5Ah23 40 140 820 11 141 0.4 8 5 14 85 13.5 98.5 14 51 4.9 3.9 10YR 7 2

P5Ah24 50 110 840 13 31 0.5 22 7 7 68 29.3 97.5 30 20 5.1 4.1

P5Ah31 38 140 850 12 12 0.6 41 10 2 51 52.1 103.5 50 3 5.8 4.9

P5BA 38 81 890 6 64 0.3 8 4 7 43 12.7 55.2 23 36 4.8 4.1 10YR 6 4

P6Ah1 156 165 679 57 348 1.7 144 11 2 52 156.6 209.0 75 0 6.4 5.9 10YR 2 1

P6Ah21 97 101 802 27 209 1 91 15 2 66 106.7 172.2 62 1 6 5.3 2.5Y 4 1

P6Ah22 99 150 751 27 354 0.6 85 13 3 103 98.3 201.0 49 3 5.7 4.8

P6BA 70 74 855 3 149 0.3 26 5 2 37 31.1 68.3 46 6 5.4 4.6 10YR 6 4

………………..g kg
-1

………………….

Excavation 1

……………………………………………...mmolc kg
-1

……………………………………………………………..………..%...........

Excavation 2
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Table 5 – Soil morphological attributes of profiles of excavations 1 at the Bom Futuro 2 area 

Horizon Color Texture Structure Moist consistency Sticky Plasticity wet Transition

(cm)

medium slightly abrupt 

A      0-17 2.5Y 6/1 clayey  subangular blocky plastic wavy

moderate medium slightly gradual 

B    17-80 2.5Y 6/3 clayey angular blocky plastic wavy 

weak very fine slightly 

C  80-185+ 10YR 8/3 clayey angular blocky plastic

medium slightly abrupt 

A      0-20 2.5Y 6/1 clayey  subangular blocky plastic wavy

moderate fine/medium (slightly)  slightly gradual 

AB   20-50 10YR 6/5 clayey  fine (sub)angular blocky hard plastic smooth 

weak/moderate very fine slightly slightly gradual (abrupt when 

B     50-122 10YR 6/5 clayey subangular blocky sticky plastic  plinthite) wavy

C    122-174+ 10YR 6/5 clayey moderate fine/medium slightly slightly 

subangular blocky sticky plastic

moderate very fine/medium slightly hard slightly abrupt 

A    0-25 2.5Y 6/1 clayey  subangular blocky plastic wavy

moderate fine/medium friable/ slightly slightly gradual 

BA   25-69 10YR 6/6 clayey  fine subangular blocky hard sticky plastic smooth 

weak fine very friable slightly diffuse

B1   69-145 10 YR 7/8 clayey subangular blocky sticky smooth 

C     145+ 5YR 6/6 clayey weak very fine/fine slightly 

subangular blocky sticky 
 friable

plastic

plastic

friable

firm

Latossolo Amarelo Distrófico Típico (excavation 1)

sticky

friable sticky

sticky

Gleissolo Háplico Tb Distrófico típico (excavation 1)

Latossolo Amarelo Distrófico plíntico (excavation 1)

friable sticky

friable sticky

sticky
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3.3.1.3 Qualitative and exploratory vis-NIR analysis of the BF2 profiles 

 
Graphs for selected profiles (1, 2, 3 and 4) were generated from the spectral data 

(Figures 7 and 8), such that each graph contained the spectral curves of the horizons of the 

respective profile.  Comparisons between the information from the spectral curves of the 

profile (intensity, shape, slope, presence of features and behavioral variation among curves 

from the same profile) were carried out based on Bellinaso et al. (2010) and Rizzo (2011).  

The spectral signature of the anthropogenic Latossolo Vermelho Amarelo Distrófico 

(P4 in Table 4) is shown in Figure 7a. Mean soil reflectance intensity was approximately 0.3, 

with the highest values seen for subsurface samples. This may reflect the high levels of 

organic matter in the Ao layer (96 g kg
-1

). Demattê, Ephiphanio, and Formaggio (2003) 

observed that the removal of OM increased the reflectance of soils. In this context it is worth 

noting that the reflectance intensities of the A horizons of the other soils (P1, P2, and P3) 

were higher than that of the anthropogenic Latossolo Vermelho Amarelo Distrófico (P 4). The 

sloping pattern from 400 to 1300 nm also differed between this soil and the others. Coleman 

and Mongomery (1987) argued that OM ‘masks’ the features of the curve, and we observed 

this between the different horizons of this profile (Figure 7a). Al-Abbas et al. (1972) have 

suggested that the effect of reduced soil reflectance with increased OM content may also be 

associated with clay content, since there must be a strong correlation between clay content 

and OM. In the subsurface horizons of the profiles classified as Latossolos (Figure 7a, 7c and 

7d) we observed absorption features between 750 and 950 nm that are characteristic of the 

presence of oxides (HUNT; SALIBURY, 1970; MADEIRA NETTO et al., 1995). The 

Gleissolo (Figure 7b) showed features typical of hydromorphic horizons, such as the 

convexity between 400 and 450 nm and the absence of a concavity of iron oxides in the 750-

950 nm region, in accord with the data of Epiphanio et al. (1992). In this soil we also 

observed a change in the slope of the curve near 800 nm (for the subsurface horizons), almost 

forming a peak (Figure 7b). Similar results have been reported by Bellinaso, Demattê, and 

Araújo (2010). 

In the mid-IR range the differences between the layers of the profiles were not very 

clear as for vis-NIR data. The mean soil reflectance intensity of Gleissolo (Figure 8b) was 

slightly higher than the Latossolos (Figure 8a, 8c and 8d). The lowest values of reflectance 

were observed for layer Ao of the Latossolo Amarelo Distrófico antrópico. For the others 

soils (Figure 8b, 8c, 8d), horizons B or BA and A presented lowest reflectance values than the 
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subsurface horizons. The degree and the direction of the spectra slope were similar for all 

profiles. 
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Figure 7 - Spectral vis-NIR signature of the horizons composing the profiles studied at Bom Futuro 2. (a) Latossolo Amarelo Distrófico 

antrópico, (b) Gleissolo Háplico Tb Distrófico típico, (c) Latossolo Amarelo Distrófico plíntico, (d) Latossolo Amarelo Distrófico 
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Figure 8 - Spectral mid-IR signature of the horizons composing the profiles studied at Bom Futuro 2. (a) Latossolo Amarelo Distrófico antrópico, 

(b) Gleissolo Háplico Tb Distrófico típico, (c) Latossolo Amarelo Distrófico plíntico, (d) Latossolo Amarelo Distrófico Típico.
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3.3.2 Bom Futuro six: pits and forest transect 

3.3.2.1 Chemical properties 

 
Samples of the BF6 field (profiles) presented higher levels of fertility than soils in 

general in the Belterra-Santarem region (as reported by e.g.: SOMBROEK, 1966; FALCÃO, 

2001; MOREIRA; MALAVOLTA, 2002). The soil chemical analyses results for layers A of 

the BF6 profiles (Table 6) demonstrated similar results as those found by other authors for 

anthropogenic soil sites in the Brazilian Amazon (e.g. ÉDEN et al., 1984; PABST, 1991; 

LIMA, 2001;). In the cited studies, the surrounding soils were acid with pH (H2O) values 

between 4.0 and 5.0, which is in comparison with the conditions at the BF6 field. In the BF6 

study area the average soil pH values at profiles were high (Table 6) and may reveal a direct 

effect of burning and the production of pyrogenic charcoal and ashes, neutralizing the effects 

of Al
3+ 

(2.3 to 3.2 mmolc kg
-1

, values considered low) which is precipitated as Al (OH)3  in pH 

values greater than 5.5 (HAVLIN et al., 2005). 
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Table 6 - Average values of soil chemical attributes of the 10 mini profiles in the BF6 area in 

three depths (layers A, B and C) 

ANOVA

Property A B C Prob > F

SOC (g kg
-1

) 42.1 a 18.9 b 9.3 c <0.001*

Total Carbon (%) 4.5 a 1.9 b 1.0 c <0.001*

EC (uS cm
-1

) 321.6 a 104.1 b 81.6 b <0.001*

pH (H20) 6.6 a 5.9 a 6.0 a <0.048*

pH (KCl) 6.1 a 5.3 b 5.1 b 0.0064*

P (mg kg
-1

) 94.0 a 44.5 ab 19.4 b 0.0110*

K (mmolc kg
-1

) 4.6 a 2.1 b 1.3 b 0.0015*

Ca (mmolc kg
-1

) 141.6 a 59.4 b 24.0 c <0.001*

Mg (mmolc kg
-1

) 22.3 a 11.7 b 7.3 c <0.001*

Al (mmolc kg
-1

) 2.3 a 3.2 a 2.7 a 0.7418

H + Al (mmolc kg
-1

) 31.6 a 34.9 a 28.6 a 0.2829

CEC (mmolc kg
-1

) 195.4 a 104.3 b 56.9 c <0.001*

BS (%) 83.6 a 68.4 ab 55.3 c 0.0045*

Layers

ANOVA

Property A B C Prob > F

Total carbon (g kg
-1

) 4.5 a 1.9 b 1.0 c <0.001*

SOC (g kg
-1

) 42.1 a 18.9 b 9.3 c <0.001*

EC (uS cm
-1

) 321.6 a 104.1 b 81.6 b <0.001*

pH (H20) 6.6 a 5.9 a 6.0 a <0.048*

pH (KCl) 6.1 a 5.3 b 5.1 b 0.0064*

P (mg kg
-1

) 94.0 a 44.5 ab 19.4 b 0.0110*

K (mmolc kg
-1

) 4.6 a 2.1 b 1.3 b 0.0015*

Ca (mmolc kg
-1

) 141.6 a 59.4 b 24.0 c <0.001*

Mg (mmolc kg
-1

) 22.3 a 11.7 b 7.3 c <0.001*

Al (mmolc kg
-1

) 2.3 a 3.2 a 2.7 a 0.7418

H + Al (mmolc kg
-1

) 31.6 a 34.9 a 28.6 a 0.2829

CEC (mmolc kg
-1

) 195.4 a 104.3 b 56.9 c <0.001*

BS (%) 83.6 a 68.4 ab 55.3 c 0.0045*

Layers

 
Means followed by same letters in rows (for the same attribute) do not differ by Tukey test at 

1 and 5% significance level. 

 

Parameters such as CEC and base saturation (BS) of the BF6 field are similar as 

those at BF2 and higher than in adjacent forest soils (0-20 cm) (average of 20 forest samples: 

CEC = 124.78 mmolc kg
-1

, BS = 63 %, pH-H2O = 5.5, Al
3+

 = 4.6 mmolc kg
-1

, P = 32 mg kg
-1

). 

It can be attributed to the large quantity of organic material in the BF6 field (SOC up to 55 g 

kg
-1

). According to Liang et al. (2006) the high density of charges present on carbon, 

especially in soils with high amounts of pyrogenic charcoal, is also responsible for the higher 

CEC values (CUNHA et al., 2009). Figure 10a shows the CEC of BF6 samples of layers A, B 

and C at profiles as influenced by organic contents in comparison to adjacent forest soils (BF6 

forest). We observed that CEC values of the majority of the BF6 field samples lie above the 
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CEC/SOC found in the forest soils (BF6 forest) (Figure 10a). The mineralogy of this area (3.5 

ha) seems to be the same. Some profiles have ADE characterizes and according to Lehmann 

et al. (2003) SOC in ADE usually is more effective in increasing CEC than it is in non-ADE 

soil. These authors also observed that it is not necessarily true for P. 

When it comes to plant available P, we observed a relationship with organic carbon, 

especially in soils with SOC concentrations higher than 25 mg kg
-1 

(Figure 10b). These results 

are contradictory to those observed in the eastern part of BF2 area (Figure 6), which 

represents a more mixed soil population than BF6.  
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Figure 10 - Cation exchange capacity (CEC) and phosphorus (P) of mini profiles samples 

(BF6 field) (dots), influenced by organic carbon contents in comparison to 

adjacent forest soils (BF6 forest) 

 

The profiles photos and its SOC contents are shown in figure 11. The  horizons  in  a  

given  profile  have  colors  that  are  similar  in  hue,  but  vary with  respect  to  chroma  and  

value. The darker soil colors of layers A, the high fertility characterizes and the presence of 

ceramic fragments of the mini pits soil samples (compared to soils in the adjacent forest 

transect) might indicate an area under human prolonged occupation. The color value and 

chroma of the profiles samples (N = 30) were negatively correlated to SOC contents (-0.83 

and -0.80, respectively), corroborating the results observed by Fontes and Carvalho Junior 

(2005) and Demattê et al. (2011). The negative correlation indicates that for increasing values 

of the value and chroma parameters, the SOC content decreases.  
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Figure 11 - Soil organic carbon (g kg
-1

) distribution in the different depths at BF6 mini pit 

numbers 1(a), 2 (b), 3 (c), 4 (d), 5 (e) and 6 (f) (continues) 
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Figure 11 - Soil organic carbon (g kg
-1

) distribution in the different depths at BF6 mini pit 

numbers 7 (g), 8 (h), 9 (i) and 10 (j) 

 

The soil chemical properties of BF6 mini profiles vary spatially within the area and 

with depths (Figure 12). In general, the values of SOC, pH-KCl, EC, BS and CEC decreased 

with depth. There was no statistically difference between the averages of Al
3+

concentrations 

of layers A, B and C in these soils, but these values are considered low (Table 6). 

Sombroek (1966), while studying ADE profiles in the region around Belterra 

encountered elevated levels of P in both the topsoil and the subsoil. Glaser (1999) found 

values of inorganic phosphorus of 912 mg kg
-1

P2O5 in samples of top soils (0-10 cm) of 

cultivated and fertilized fields in Belterra. In the current study we encountered values of 

available P in layers A higher than 65 mg kg
-1

, except at pits 4, 5 and 6 (Figure 12). Although 

ADE soils have been showing high amounts of P also in subsurface A horizons (PABST, 

(h) (g) 

(i) (j) 
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1985; LIMA, 2001) it was not observed in our study area (BF6), except for pits 1, 6 and 8 that 

also presented concentrations of extractable P higher than 65 mg kg
-1

(Figure 12). 
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Figure 12 - Soil properties at different depths in BF6 profiles 
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3.3.2.2 Qualitative and exploratory vis-NIR and mid-IR analysis of BF6 area 

 
The variations of soil chemical attributes with depth observed in the BF6 profiles 

samples (Table 6 and figure 12) caused corresponding changes in their soil spectral curves. 

Layers A, B and C from all profiles (BF6) presented different spectral behavior as shown by 

principal component analysis (Figure 13). The PC1 of vis-NIR spectra explained 84% of the 

data variation and PC2, 15%. For the mid-IR range these numbers were 68 and 24 %, 

respectively. It indicates that the main differences between PCs of data (mid-IR and vis-NIR) 

are related to their albedo (reflectance intensity). It can be influenced by texture, organic 

matter and mineralogy of samples (DALMOLIN, 2002; DALMOLIN et al., 2005). According 

to Smith (1999) there is more spectral information in the mid-IR range (4000 to 400 cm
-1

). 
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Figure 13 - Score plot results from PCA of spectra on soil from BF6 profiles; (a) visNIR and 

(b) mid-IR data. Layers A, B and C 

 

 

Table 6 shows these spectral variations when it comes to SOC and CEC. According 

to a literature review by Stenberg et al. (2010), bands around 1100, 1600, 1700 to 1800, 2000, 

and 2200 to 2400 nm have been identified as being particularly important for SOC 

calibrations.  In the mid-IR range, these peaks are 2900 cm
-1

, 2930 cm-
1
, 2850 cm

-1
, 1750 - 

1449 cm
-1

and 1157 cm
-1

 (KANG, XING, 2005; MADARI et al., 2006; REEVES, 2010; 

TERRA , 2012). Although the absorptions in the visible region (400-780 nm) are assigned to 

hematite and goethite (STENBERG et al., 2010), SOC can also have a broad absorption band 

in this region of the electromagnetic spectrum which are dominated by chromospheres and the 

(a) (b) 
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darkness of organic matter. These wavelength ranges were studied in detail by subtracting 

their continuum removal (CR) reflectance from 1 in the different layers. Thus we measured 

the band depth at these specific ranges and found correlation between them and SOC and 

CEC values (Table 7). By removing the continuum from the average reflectance spectra of the 

layers; they were enhanced with regard to the SOC content, as was also observed by Stenberg 

(2010). 

 

Table 7 - Correlation matrix for relationships between soil properties evaluated at Bom Futuro 

6 (profiles) and band depths at specific wavelengths 

SOC CEC 1100 1600 1700-1800 2000 2200-2400

SOC 1

CEC 0.95 ** 1

950-1100 -0.41 * -0.40 1

1600 -0.68 * -0.42 * 0.11 1

1700-1800 -0.76 ** -0.82 ** 0.45 * 0.62 ** 1

2000 -0.41 ** 0.62 ** 0.35 -0.31 -0.47 ** 1

2200-2400 -0.86 ** -0.87 ** 0.59 * 0.54 * 0.90 ** -0.31 1

SOC CEC 2930 2900 2850 1750-1449 1157

SOC 1

CEC 0.95 ** 1

2930 0.63 ** 0.54 ** 1

2900 0.50 ** 0.40 * 0.98 ** 1

2850 0.68 ** 0.57 ** 0.98 ** 0.94 ** 1

1750-1449 0.90 ** 0.93 ** 0.67 ** 0.53 * 0.71 ** 1

1157 -0.82 ** -0.83 ** -0.41 * -0.30 -0.45 * -0.71 ** 1

vis-NIR (nm)

mid-IR (cm
-1

)

SOC CEC 1100 1600 1700-1800 2000 2200-2400

SOC 1

CEC 0.94719 ** 1

1100 -0.41384 * -0.39749 1

1600 -0.41399 * -0.4231 * 0.10525 1

1700-1800 -0.76439 ** -0.82425 ** 0.44768 * 0.62361 ** 1

2000 0.5577 ** 0.61677 ** 0.34766 -0.30962 -0.470562078 ** 1

2200-2400 -0.85643 ** -0.867 ** 0.59384 * 0.54121 * 0.896160261 ** -0.3111 1

SOC CEC 2930 2900 2850 1750-1449 1157

SOC 1

CEC 0.94719 ** 1

2930 0.62901 ** 0.53889 ** 1

2900 0.50103 ** 0.39677 * 0.97908 ** 1

2850 0.67594 ** 0.56996 ** 0.97642 ** 0.93594 ** 1

1750-1449 0.89533 ** 0.92503 ** 0.67031 ** 0.53244 * 0.710295424 ** 1

1157 -0.81824 ** -0.82904 ** -0.41015 * -0.30373 -0.448865977 * -0.70742 ** 1

mid-IR

vis-NIR
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For vis-NIR data the negative (1100, 1600, 1700-1800, 2000 and 2200-2400) 

significantly correlations between SOC and depths were confirmed with the average values of 

CR reflectance of layers A, B and C at the BF6 mini pits area (Figure 14). Concerning the 

mid-IR data these correlations were positive at 2930, 2900, 2850 and 1750-1449 cm
-1

 and 

negative at 1157 cm
-1

. 
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Figure 14 - Continuum-removed (CR) reflectance spectra showing specific absorption 

features of mini pits samples (average of layers A, B and C) visNIR (a) and 

mid-IR (b)  

 

We observed that the characteristic organic matter absorptions bands in the mid-IR 

range contain considerably more visually apparent information than the corresponding NIR 

spectra (Figure 15). It results in a large number of broad peaks and often masked by overlaps 

from fundamentals, combinations and overtones of other soil components. Thus, most of 

these peaks (in the mid-IR range) could not readily be identified by simple visual evaluation 

of spectra. Some soil components, such as silica, absorb very little in the vis-NIR in contrast 

(b) 

(a) 
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to mid-IR (REEVES et al., 2005). However, the mid-IR range still has also been found to be 

efficient in recognizing various forms of carbon in the soil (JANIK et al., 2007; 

ZIMMERMANN et al., 2007; BORNEMANN et al., 2008).We observed differences of peak 

intensities at 1499 cm
−1

(Figure 15b) in accordance to Haberhauer et al., (1998) that found a 

peak intensity close to 1510 cm
−1

 significantly negatively correlated to the total C content and 

C:N ratio, whereas distinct peaks in the region of 1510 to 1230 cm
−1

 may serves as a proxy 

for the evaluation of the forest litter in soils. Characteristic absorptions peaks at 2930–2850 

cm
−1

 can be related to the aliphatic C-H vibration (HABERHAUER et al., 1998; LEIFELD, 

2006) and it was more pronounced on samples with high SOC content (Figure 16b). Carboxyl 

C, hydroxylic C-O-H or aromatic C-H, and C = C vibrations probably form the spectral peaks 

at wavenumbers less than 1500 cm
−1

 (SOLOMON et al., 2005; BORNEMANN et al., 2010). 

Generally the vis-NIR spectrum is flattened in higher SOC concentrations (Figure 

15a), specially from 400-970 nm, as reported by Madeira Neto (1993). High SOC 

concentration can mask iron features of the spectral curves, such as absorptions features of 

goethite at 480 and 930 nm (BEN-DOR; BANIN, 1995; STENBERG et al., 2010) (Figure 

15a) (“concavity alteration”). In the mid-IR range we also observed a reduction of the 

reflectance intensity of samples rich in SOC (Figure 15b). However the alteration occurs at 

the magnitude of reflectance, but it does not change the general spectrum's shape and format 

visually. 
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Figure 15 - Vis-NIR (a) and mid-infrared (b) spectrum of soil samples with lowest (6.96 g kg
-

1
) and highest (54.52 g kg

-1
) soil organic carbon content at Bom Futuro 6 area 

(the diagrams to the right are enlargements of the encircled areas) 

 

3.3.3 Modeling PLS regression models 

 
The parameters of the calibration and validation predicted soil property models of the 

BF2 area are shown in Tables 8 and 9. The models using the mid-IR sensor data outperformed 

those using vis-NIR. According to Viscarra Rossel et al. (2006), mid-IR multivariate 

calibrations are more robust, because the fundamental molecular vibrations of soil 

components occur in the mid-IR, while only their overtones and combinations are detected in 

the vis-NIR.  

The calibration models of SOC and CEC showed excellent correlations with R
2
> 

0.90 and RPD > 3.0 with both vis-NIR and mid-IR data. Good model performance was also 

indicated by low cross-validated RMSEs. This makes sense because SOC (and clay minerals) 

are the fundamental constituents of the soil and have well-recognized absorption features in 

(a) 

(b) 
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both the vis-NIR and mid-IR regions. Furthermore, there are well-defined organic molecule 

absorption features in the mid-IR range (STENBERG et al., 2010), for which models showed 

lower error (Table 8). 

All soil property models were tested with the validation data set (N = 100). The 

results for some attributes were somewhat poorer than expected, with R
2 

< 0.50 and relatively 

high RMSE (Table 9). The validation models for EC, P, Al, and pH (H2O and KCl) provided 

poor predictions with very low R
2
. In the case of K, other authors have also reported 

unreliable predictions (e.g. CHANG et al., 2001; MALLEY et al., 2002; SHEPHERD; 

WALSH, 2002; CHODAK et al., 2004). By contrast, results for SOC, CEC, Ca, H+Al and 

BS, especially with the mid-IR models, were considered useful for applying to other areas 

(CHANG et al., 2001). 
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Table 8 - Calibration results of partial least squares regressions (PLSR) cross-validation 

technique models on BF2 data set 

Property Sensor data R
2

RMSE RPD PLS factors Slope Offset

vis-NIR 0.90 1.52 3.02 8 0.86 2.42

SOC, g kg
-1

mid-IR 0.94 1.12 4.20 5 0.93 1.29

vis-NIR 0.80 10.60 2.34 3 0.79 17.56

CEC, mmolc dm
-3

mid-IR 0.88 8.45 2.93 5 0.88 11.31

vis-NIR 0.65 10.25 2.15 7 0.79 7.18

Ca, mmolc dm
-3

mid-IR 0.87 8.06 2.73 5 0.92 2.06

vis-NIR 0.65 1.93 2.38 14 0.75 0.47

Mg, mmolc dm
-3

mid-IR 0.70 2.30 2.00 3 0.72 2.38

vis-NIR NA 0.52 0.96 1 0.00 1.18

K, mmolc dm
-3

mid-IR NA 0.53 0.94 1 0.00 1.15

vis-NIR 0.32 6.64 1.19 8 0.54 3.21

Al, mmolc dm
-3

mid-IR 0.80 2.45 3.22 7 0.91 0.72

vis-NIR 0.11 19.89 1.03 1 0.11 70.90

EC, uS cm
-1

mid-IR 0.39 16.99 1.22 1 0.53 38.15

vis-NIR 0.05 6.37 0.01 1 0.14 6.12

P, mg kg
-1

mid-IR 0.23 5.63 1.88 1 0.33 5.04

vis-NIR 0.31 0.33 1.21 3 0.37 2.90

pH-H2O

mid-IR 0.85 0.15 2.67 6 0.87 0.60

vis-NIR 0.40 0.30 1.33 8 0.54 2.02

pH-KCl

mid-IR 0.85 0.15 2.67 7 0.89 0.43

vis-NIR 0.30 12.60 1.17 2 0.44 33.13

H +AL, mmolc dm
-3

mid-IR 0.70 5.16 2.85 6 0.86 15.32

vis-NIR 0.57 11.11 1.68 6 0.57 15.30

BS, %

mid-IR 0.93 4.90 3.82 7 0.96 1.30  
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Table 9 - Validation results of partial least squares regressions (PLSR) cross-validation 

technique models on independent validation data set (N = 100) of BF2 data set 

Property Sensor data R
2

RMSE RPD Correlation Slope Offset

vis-NIR 0.52 3.00 1.57 0.72 0.54 8.40

SOC, g kg
-1

mid-IR 0.50 2.90 1.62 0.74 0.54 7.29

vis-NIR 0.53 17.20 1.40 0.72 0.52 40.56

CEC, mmolc dm
-3

mid-IR 0.55 16.90 1.42 0.74 0.59 39.81

vis-NIR 0.53 18.30 1.47 0.74 0.52 11.42

Ca, mmolc dm
-3

mid-IR 0.64 15.25 1.76 0.80 0.68 7.60

vis-NIR 0.10 5.87 1.01 0.47 0.40 5.00

Mg, mmolc dm
-3

mid-IR 0.49 4.06 1.45 0.60 0.35 5.65

vis-NIR 0.10 0.59 1.02 0.09 0.07 2.14

K, mmolc dm
-3

mid-IR 0.10 0.59 1.02 0.13 0.10 2.09

vis-NIR 0.22 8.39 0.88 0.60 0.45 5.63

Al, mmolc dm
-3

mid-IR 0.46 5.62 1.32 0.72 0.69 2.16

vis-NIR NA 80.85 0.36 0.20 41.55 79.00

EC, uS cm
-1

mid-IR 0.24 27.50 1.05 0.55 0.38 46.70

vis-NIR NA 16.34 1.02 0.15 0.03 7.00

P, mg kg
-1

mid-IR 0.10 15.60 1.06 0.32 0.10 6.25

vis-NIR NA 1.10 0.45 0.12 0.12 7.50

pH-H2O

mid-IR 0.07 0.80 0.63 0.33 0.16 4.10

vis-NIR 0.10 0.91 0.55 0.32 0.12 4.05

pH-KCl

mid-IR 0.16 0.70 0.71 0.40 0.20 3.36

vis-NIR 0.21 15.58 1.03 0.47 0.27 47.06

H +AL, mmolc dm
-3

mid-IR 0.71 9.55 1.69 0.85 0.66 21.74

vis-NIR 0.34 16.32 1.21 0.60 0.36 22.00

BS, %

mid-IR 0.66 11.83 1.67 0.81 0.70 10.00  
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Putting reflectance spectroscopy to practical use for soil monitoring demands a more 

or less accurate reproduction of the real spatial concentration pattern of chemical properties. 

In order to test the prediction power beyond the point data, semivariograms were modeled and 

point kriging interpolation was carried out using the software Vesper (MINASNY et al., 

2005) for both observed and predicted concentrations of SOC, Ca, CEC, BS, and H+Al 

(properties that presented R
2
> 0.50 in the validation models) in the BF2 samples (N = 100 

samples). The interpolated data were imported to the software SMS Advanced from 

AgLeader Technology, and then classified using the natural breaks classification method 

(JENKS, 1967), that was designed to determine the best arrangement of values into different 

classes. The resulting maps are shown in Figures 16, 17, 18, 19, 20 and 21 and the 

corresponding parameters of the fitted variogram models are shown in Table 10 (from the 

Vesper software package).   

Based on these semivariograms we estimated nugget (C0), sill (C0 + C1), range (a) 

and the ratio nugget efect/sill (expressed as a percentage) parameters for the attributes under 

study. The selection of the fitted models was based on the visual inspection of the 

experimental semivariograms and on the low mean error. The semivariograms constructed for 

SOC, CEC, Ca, H+Al, and BS fit the spheric model, in agreement with various other studies 

which have shown that model to be better adapted to soil chemistry semivariograms studied 

from a spatial point of view (CAMBARDELLA et al., 1994; SALVIANO et al., 1998; 

OLIVEIRA et al., 1999). The semivariograms for SOC, CEC, Ca, H+Al, and BS (chemical 

and mid-IR data), based on the classification proposed by Cambardella et al. (1994) and due 

to the intrinsic characteristics of soils, showed a strong spatial dependence, since the values of 

nugget effect were lower than 25% of the sill values (Table 10). Salviano et al. (1998) also 

reported a strong spatial dependence for OM. Table 10 shows that the range obtained varied 

from 96 to 255 m, which correspond to the radii of the areas considered homogeneous for 

each variable under study. In this fashion, all neighboring sites located within a circle with 

those radii may be used to estimate values for any point between them (VIEIRA; 

LOMBARDI NETO, 1995). 
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Table 10 - Parameters of semivariograms, nugget C0, sill C1, range of spatial dependence (a), 

and root mean square error (RMSE) for the variables studied with the two sensors 
Property Data Model C0 C1 [C0/C0+C1]x 100 a RMSE AIC

chemical Spherical 5.7 18.4 23.7 251.8 1.8 144.0

SOC, g kg
-1

vis-NIR Spherical 7.3 15.4 32.2 240.0 1.8 136.5

mid-IR Spherical 5.3 16.7 24.0 184.6 1.5 132.1

chemical Spherical 105.0 615.3 14.6 175.0 82.5 372.8

CEC, mmolc dm
-3

vis-NIR Spherical 137.3 421.2 24.6 230.6 38.5 315.5

mid-IR Spherical 137.8 395.6 25.1 175.4 52.3 345.4

chemical Spherical 2.1 997.1 0.2 255.9 93.4 366.0

Ca, mmolc dm
-3

vis-NIR Spherical 95.7 341.0 21.9 229.5 32.7 306.0

mid-IR Spherical 148.9 442.0 25.2 223.3 48.3 328.6

chemical Spherical 0.0 258.0 0.0 96.0 19.2 285.4

H+Al, mmolc dm
-3

vis-NIR Spherical 34.3 34.9 49.5 190.0 5.5 210.0

mid-IR Spherical 0.0 165.0 0.0 106.0 11.6 245.5

chemical Spherical 104.4 359.1 22.5 201.4 28.9 298.8

BS, % vis-NIR Spherical 111.0 108.0 50.7 188.0 21.4 291.7

mid-IR Spherical 101.0 295.0 25.5 199.0 23.5 287.0  
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Figure 17- Kriged maps of SOC based on (a) observations in the validation dataset - chemical;  (b) estimated SOC using the vis-NIR calibration 

model; and (c) estimated SOC using the mid-IR calibration model (N= 100) 
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Figure 18 - Kriged maps of CEC based on (a) observations in the validation dataset;  (b) estimated CEC using the vis-NIR calibration model; and      

(c) estimated CEC using the mid-IR calibration model (N= 100) 

 

 

 

 

(a) (b) (c) 



97 
 

 

   
Figure 19 - Kriged maps of Ca based on (a) observations in the validation dataset;  (b) estimated Ca using the vis-NIR calibration model; and (c) 

estimated Ca using the mid-IR calibration model (N= 100) 
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Figure 20 - Kriged maps of H+Al based on (a) observations in the validation dataset;  (b) estimated H+Al using the vis-NIR calibration model; 

and (c) estimated H+Al using the mid-IR calibration model (N= 100) 
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Figure 21 - Kriged maps of BS based on (a) observations in the validation dataset;  (b) estimated BS using the vis-NIR calibration model; and (c) 

estimated BS using the mid-IR calibration model (N= 100).

(c) (b) (a) 
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A comparison of the interpolation results revealed that the predictions of the PLS 

regression (mid-IR and vis-NIR) adequately reproduced the spatial pattern for SOC, CEC and 

Ca. The pattern provided by the mid-IR estimates largely coincided with the pattern interpolated 

from the measured properties (r > 0.81) (Figures 17 to 21). In contrast to mid-IR, the predictions 

of the vis-NIR PLS regression models for Ca, H+Al, and BS were not capable of reproducing 

the spatial pattern precisely, although the correlation was statistically significant for the point 

samples (Table 9).  

Figure 22 shows the disparities for SOC, CEC and Ca concentrations. In order to 

highlight differences between the patterns, the spatially interpolated estimates (vis-NIR and 

mid-IR) were subtracted from the values derived from measurements. Negative values indicate 

that the estimated value of the attribute is lower than the actual value, while positive values 

indicate that it is higher. In total, the disparities for SOC were very low. However, we observed 

that in the western portion of the BF area (close to excavation 2), where soils were classified as 

anthropogenic, differences exceeded 4 mg kg
-1

 (Figure 22). We also noted a trend for both 

sensors to underpredict samples (SOC, Ca and CEC) with high levels of OM. Despite the fact 

that the dominant features in the spectra are often related to soil mineralogy (BEN-DOR, 

BANIN, 1995; DALMOLIN, 2002; DEMATTÊ; EPIPHANIO; FORMAGGIO, 2003; 

STENBERG et al., 2010), the organic matter also played an important role in determining their 

spectral signatures and may have masked the others absorptions features, when in very high 

concentrations (SOC > 24 g kg
-1

). 

Disparities for the CEC data were greater than those for SOC, and were mostly 

concentrated in regions of high SOC levels (Figure 22). In general, the optical properties of a 

soil are influenced by its organic matter content (JARMER et al., 2008). In fact, according to 

Baumgardner et al. (1995), this is especially true for SOC contents exceeding 20 g kg
-1

, whereas 

SOC becomes less effective in masking the influence of other soil constituents such as iron or 

manganese on the spectral signature when it drops below 20 g kg
-1

. In soils with very low 

organic carbon content, secondary iron oxides are the most important pigmenting agents 

(TORRENT et al., 1983). 
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Figure 22 - Differences of spatial distribution (interpolated by Kriging) of measured and 

estimated soil properties contents by (a) vis-NIR and (b) mid-IR data (continues) 
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Figure 22 - Differences of spatial distribution (interpolated by Kriging) of measured and 

estimated soil properties contents by (a) vis-NIR and (b) mid-IR data 

 

In order to test the predictive power of the calibration models for SOC, CEC, Ca, 

H+Al, and BS, data from the other geographical area were used. The BF2 calibration models for 

these soil properties were used to generate predictions about samples from the BF6 area. The 

validation results of the BF6 predictive models constructed based on spectroscopy models of 

BF2 of selected variables are shown in Figure 23.  Chemical analyses of the soil samples from 

the BF6 profiles (N=30) and the BF6 forest transect (N=22) were used to test the models.  

Results of the SOC, CEC, and Ca predictions showed that both mid-IR and vis-NIR 

models had the ability to predict unknown samples from different areas. Models with mid-IR 

data performed better than those with vis-NIR data. 
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Figure 23- Scatterplot of the partial least square regression model (validation) for predicting the 

soil attributes of BF6 samples 
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3.4 Conclusions  

General soil properties typical of ADE (high SOC, Ca, and P) were found in portions of 

the study areas. Characterizing the spectral curves (profiles at BF2) allowed us to distinguish 

between different layers and soils. Variation in soil chemical attributes with depth observed in 

the BF6 profile samples also caused corresponding changes in their soil spectral curves. Spectral 

depths were enhanced with regard to SOC content. In the mid-IR region a reduction of the 

reflectance intensity of SOC-rich samples did not change the general spectrum's shape and 

format visually, unlike in the vis-NIR region.  

Models based on the mid-IR sensor data outperformed those based on the vis-NIR data. 

Comparison of the interpolation results revealed that the predictions of the PLS regression (mid-

IR and vis-NIR) adequately reproduced the spatial pattern of the properties evaluated, especially 

SOC and CEC. However, we observed a trend in both sensors towards underpredicting samples 

with high OC content. 

Mid-IR calibrations were more robust and handled sample diversity better than vis-NIR 

calibrations. Results of SOC, CEC, and Ca predictions showed that both mid-IR and vis-NIR 

models had the ability to predict the soil properties of unknown samples from a different 

geographical location. To conclude, the proximal soil sensing techniques and the methodology 

we used can be useful for assessing the spatial distribution of ADE soils and for quantifying key 

soil properties.  
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4 SOIL ENVIRONMENTAL MONITORING: INVESTIGATING HEAVY METALS BY 

VIS-NIR AND MID-IR SPECTRAL REFLECTANCE  

 

Abstract 

Soil contamination is an ever-growing concern and demands efficient methods for 

diagnosis of areas under suspected contamination. Spectroscopy reflectance vis-NIR has shown 

to be a reliable and environmentally friendly method for rapid detection and monitoring of soil 

contaminants. Although pure metals do not absorb in the vis-NIR region, they can be detected 

because of co-variation with spectrally active components (Stenberg et al., 2010). Despite the 

use of vis-NIR range in the study of soils, it is still necessary to test the effectiveness of other 

wavelengths (mid-IR 4000 to 400 cm
-1

) less studied in the characterization and quantification of 

heavy metals in soil. We aim with this study to (i) evaluate over time Cr, Pb and Zn in three 

soils contaminated by salts commonly used in the industry; (ii) identify parameters of spectral 

variation associated to heavy metals in soils (iii) evaluate through sequential extraction 

procedures, soils contaminated with tannery sludge (solid), after 90 days of application; (iv) 

investigate the feasibility to use soil spectral data and chemometrics methods to predict metals 

in soils. Results indicate that the metals adsorption to soil constituents caused expressive 

changes in soil spectral curves, showing spectral differentiation between highly contaminated 

soil and soils that are relatively contaminant-free. However, the reflectance spectroscopy cannot 

be used to predict Cr, Zn and Pb extracted by DTPA (pH 7.0) accurately. On the other hand, Cr 

pseudo-total content can be predicted by spectroscopy reflectance with both sensors data. Fe and 

Mn also can be predicted accuratley by vis-NIR.  The vis-NIR models outperformed the mid-IR. 

The organic matter played a more important role in determining the soil spectral signatures than 

the mineralogical characteristics of soils, especially in soil with high organic carbon contents. 

 

Keywords: Soil contamination; Proximal sensing; PLS regressions; Tannery sludge; mid-IR; 

vis-NIR; Heavy metals. 

 

 
4.1 Introduction 

Environmental monitoring of heavy metals in soils has become increasingly important, 

especially in regions under industrial activities and intensive agriculture, due to the potential 

risks of metals diffuse into several steps of the food chain (PEREIRA et al., 2011). Fertilizers 

and atmospheric deposition are considered to be the greatest heavy metals pollution sources 

(KABATA-PENDIAS; MUKHERJEE, 2007). Moreover, these elements have been dispersed in 

the environment, often through improper disposal of mining, industrial and even agricultural 

wastes. Arsenic (As), bismuth (Bi), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead 

(Pb), antimony (Sb), cadmium (Cd) and zinc (Zn) are considered environmental contaminants 

(TILLER, 1989, GUILHERME, 1999).  Cd, Cu, Zn and Pb have been the subject of many 

studies due to high toxicity and bioaccumulation potential (CHANG et al., 1984).  

The bioavailability of the heavy metals depends on their concentration in the soil 

solution, which in turn depends on their release from soil colloids. Metals release or adsorption 

to soil colloids is mainly affected by soil solution pH, soil cation exchange capacity (CEC), 

organic matter (OM) content, clay content, redox potential and presence of other elements in the 
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soil system (ALLEONI et al., 2005; KABATA-PENDIAS; MUKHERJEE, 2007; SPOSITO, 

2008). 

In this research we studied Cr in soils in more detail. The concern of the concentration 

rates of Cr in the environment has increased in the last decades because the hexavalent 

chromium [Cr(VI)] form, which is considered to be relatively toxic to humans and carcinogenic 

(PAUSTENBACH et al., 2002, UNIDO, 2005), besides its presence in phosphate fertilizers, 

limestones, nitrogen fertilizers and sludges (KABATA-PENDIAS; PENDIAS, 2001). Tannery 

sludge is one of the most important anthropogenic sources of Cr used in agriculture. Due to its 

high nutrient content and its potential for correcting soil acidity, the use of tannery sludge in 

agricultural areas can be an alternative for its disposal and recycling (MARTINES, 2009; 

NAIDU et al.,1998). However, several chemicals are used during the tanning processing of 

hides and skins, such as sodium bisulphate, sodium chlorite, NaCl, H2SO4 and formic acid, 

which more than 70% are not absorbed and are released as waste (UNIDO, 2005). Cr stemming 

from these sludges showed to be relatively nonbioavailable to plants, although high application 

rates can enrich the soil with metals, exceeding the toxic range in soils (IMAMUL HUQ, 1998). 

According to Chaney (1980) and Sikora et al. (1980) most heavy metals in various kinds of 

sludges present low availability to plants, due to the fixation of metals mainly in forms of 

oxides. The metals associated with iron and aluminum oxides found in the clay fraction for 

example, occur typically by specific adsorption with the formation of covalent bonds of metals 

with OH
-
 or O2 groups on the surface of these minerals (SHEPPARD, 1992). But the effect of 

the sludges can be different, and Cr can be mobilized in other soil conditions (variation of soil 

pH and redox potential) as, for example, complexes with organic molecules.  

In this context, the levels of metals during the disposal of sludge on farmland should be 

evaluated. According to federal normative in Brazil, CONAMA 375, the maximum 

concentration allowed of Cr in the sludge is 1000 mg kg
-1

 (BRASIL, 2006) and the 

accumulative value in soils is 154 kg ha
-1

. However inappropriate disposals of wastes with high 

levels of Cr may occur. Many authors studied the use of this residue focusing on the N and crop 

productions (MARTINES, 2009; FERREIRA et al. 2003; ALCÂNTARA etal., 2007; 

OLIVEIRA et al., 2008; KRAY et al., 2008). However, few researches exist involving the study 

of tannery sludge and heavy metals in soils (e.g. GONDEK, FILIPEK-MAZUR, 2003; 

TUDUNWADA et al., 2007; LÓPEZ-LUNA et al., 2012). 

The development of modern analytical techniques has facilitated fast and reliable 

analysis of heavy metals in the soil, allowing determining very low amounts of these elements in 

various matrices. In general, heavy metals analysis is conducted by atomic adsorption 

spectroscopy (AAS) or inductively coupled plasma emission spectroscopy (ICP) on extracts 

http://www.ncbi.nlm.nih.gov/pubmed?term=L%C3%B3pez-Luna%20J%5BAuthor%5D&cauthor=true&cauthor_uid=22320693
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obtained by high-temperature acidic digestion of the soil sample. However, analyzing soil 

attributes and residues by conventional methods is often expensive and time consuming. In 

addition, these analyses result in chemical residues, which may be environmentally hazardous. 

In recent years, proximal soil sensing techniques, particularly soil spectroscopy; have 

been studied by many authors thus improving the quantitative assessment of the management 

problems (SHEPHERD; WALSH, 2002; DUNN et al., 2002). Reflectance spectroscopy is based 

on the detection of electromagnetic radiation reflected from the soil without having a direct 

contact by sensors. Near infrared reflectance spectroscopy (NIRS) has been reported to provide 

inexpensive, fast and accurate determination of many soil properties (DEMATTÊ et al., 2004, 

COHEN et al., 2005; BROWN et al., 2006; JARMER et al., 2008; STENBERG et al., 2010). 

NIRS it is a non-destructive technique that requires minimal sample preparation and the 

measurements can be performed on the go in situ, besides no hazardous chemicals are used. 

Some authors obtained good correlation between soil spectral reflectance and heavy 

metals concentration (e.g KOOISTRA et al., 2001; KEMPER, SOMMER, 2002; SIEBIELEC et 

al., 2004; CHOE et al., 2008; BRAY et al., 2009).Wu et al. (2005) used the vis-NIR to predict 

Hg in soils in China and observed that this element was correlated with absorption overtones of 

goethite and clay minerals. However, despite the relevance of the potential of this technique to 

evaluate soil attributes, little information is found in the literature about detailed studies of 

potentially toxic elements in tropical soils evaluated by the mid-IR region (4000 to 400 cm
-1

).It 

warrants new studies, given that more spectral information  is found in the mid-IR region 

(SMITH, 1999).  Although many papers have been published on the quantification of metals in 

soils, their relation to spectroscopy characteristics are insufficiently known. 

In this context, as soil contamination is an ever-growing concern, a reliable and 

environmentally friendly method is need for rapid detection and monitoring of soil contaminants 

at any stage for the diagnosis of areas under suspected contamination. We aim with this study to 

(i) evaluate over time Cr, Pb and Zn in three soils contaminated by salts commonly used in the 

industry; (ii) identify parameters of spectral variation (vis-NIR and mid-IR) associated to heavy 

metals in soils and explore their viability in the evaluation of contaminated soils; (iii) evaluate 

through sequential extraction procedures, soils contaminated with tannery sludge (solid),  after 

90 days of application; (iv) investigate the feasibility to use soil spectral data  and chemometrics 

methods to predict metals in soils.  

Although pure metals do not absorb in the vis-NIR and mid-IR regions of the 

spectroelectromagnetic they can be detected by their co-variation with spectrally active 

components in this range (STENBERG et al., 2010).  Thus, this approach starts from the 

premise that the spectrally assigned position of minerals varies with chemical composition and 
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surface activity (BEN-DOR et al., 1999).The metals can be coupled with organic matter, 

associated with hydroxides, carbonates or oxides that can be detected in the vis-NIR region or 

adsorbed to the clay minerals. The mid-IR spectroscopy also detects both absorbance by organic 

bonds and mineral components (COLTHUP et al., 1990). The surface of minerals has functional 

groups capable of forming complexes with organic and inorganic ions (ZACH; WESTALL, 

1999). The chemical groups comprising soil organic matter, such as -CH2 and -CH3 (alkyl), C-

OH (carbohydrate), -COO- and -COOH (carboxyl), -NH and -CNO (amide), -C=O (carbonyyl), 

and aromatic -C=C- and -CH (VAN DER MEER, BEUTELSPACHER, 1976; JANIK, 

SKJEMSTAD, 1995; PARTIFF et al., 1997) are nearly all infrared active. Thus, based on the 

theory and adsorption mechanisms of metals in soils, the spectral signatures of minerals that 

bind heavy metals can be used for the indirect detection and to quantify metal contents using 

spectrometer data and multivariate analysis. Despite the occurrence of otherwise similar 

minerals in different samples, variations in spectral features (e.g., shifts in peak wavelength, 

depths bands) may occur according to the nature and quantity of highly enriched cations in the 

mineral. It is expected to find the higher concentrations of heavy metals especially bound to 

organic matter or in the residual and more stable fraction, less bioavailable (KABATA-

PENDIAS, PEDIAS, 2001). 

 

4.2 Material and Methods 

4.2.1 Soil characterization 

The sites chosen for soil sampling varied widely in texture and chemical 

characteristics, previously defined based on maps and historical data of the areas. Three soils 

classified as Ferralsols, Cambisols and Arenosols (FAO, 2006) were selected and collected from 

0-20 cm, air-dried for 48 hours at 45°C and sieved to < 2mm for chemical and particle-size 

distribution analyses(detailed below), (Table 1). The contents of heavy metals present in these 

soils are within or below those found in not contaminated areas (ZULIANI, 2006; KABATA-

PENDIAS; PENDIAS, 2001) (Table 2). Mineralogical analyses were carried out using X-ray 

diffraction (DIXON; SCHULZE, 2002), showing the presence of kaolinite (Ca), gibbsite (Gb), 

goethite (Gt) and hematite (Hm) in all groups of soils evaluated, as well as traces of vermiculite 

(V), illite (IL) and quartz (Qz) in the Cambisol (Figure 1). The soil analyses are detailed in the 

steps below. 
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Table 1 - Characteristics of the studied soils 
Soil Type pH Al H+AL Ca Mg K SB CEC(pH7) V P OM Clay Silt Sand

% mg dm
-3

g dm
-3

C 5.6 0.8 25.0 28.0 12.0 6.2 46.2 71.2 64.9 4.4 29.3 221 91 688

F 4.0 13.2 80.0 11.0 6.0 1.3 18.3 98.3 18.6 3.9 28.1 631 102 267

A 4.0 8.2 47.0 5.0 3.0 0.6 8.6 55.6 15.5 4.1 15.4 63 28 909

................................................mmolc dm
-3

................................................. ...................g kg
-1

.......................

 
C, F and A refer to Cambisol, Ferralsol and Arenosol. 
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Table 2 -Pseudo-total and available contents of metals found in the soils prior to the experiment 

installation, extracted by DTPA (pH 7) and acidic digestion assisted by microwave, 

respectively  

Soil Type Cd Zn Cu Cr Ni Pb 

C <0.02* 0.94 0.54 <10.00* 0.12 0.66

F <0.02* 0.30 1.38 <10.00* 0.11 2.29

A <0.02* 2.00 0.58 <10.00* 0.11 0.60

C <1.50* 27.67 8.46 31.57 8.19 <15.00*

F <1.50* 23.88 25.47 67.44 9.77 26.84

A <1.50* 11.91 4.92 < 10.00* <5.00* <15.00*

DTPA - diethylenetriaminepentaacetic acid

.............................................mg kg
-1

.................................................

Acid digestion (HNO3) by microwaves

.............................................mg kg
-1

.................................................

 
* below the quantification limit of the atomic adsorption spectroscopy (AAS). C, F and A refer 

to Cambisol, Ferralsol and Arenosol. 
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Figure 1 - Dyphratograms (XRD patterns) of the clay fraction de-ironed (1) and ironed (2) of samples of Cambisol (a), Ferralsol (b) and Arenosol (c)

(a1) (b1) (c1) 

(a2) (b2) (c2) 
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4.2.2 Incubation experiment 

Two incubation experiments were performed to study heavy metals in soils using 

proximal sensing techniques. The aim of Experiment I was to analyze how the available forms 

of metals (Cr, Pb, and Zn) changed over time in three soils to which different metal 

concentrations had been added, and to identify during the incubation any associated parameters 

of spectral variation in the vis-NIR and mid-IR bands (Table 3). 

In Experiment II soils were treated with tannery sludge derived from cattle hide 

processing and analyzed after 90 days of incubation. This period was determined based on the 

natural degradation of organic matter in areas where this sludge has been commonly applied 

(MARTINES, 2009).  

 

4.2.2.1 Experiment I 

The experiment was carried out in a randomized complete design with three 

replications and twelve treatments for each soil type. The treatments consisted of three 

concentrations of Cr, Pb, and Zn (Table 3), in addition to a control treatment to which no heavy 

metals were added. The concentrations of each element were based on the threshold levels 

reported by Cetesb (2005), and included rates above and below the alert threshold. 

Each experimental unit consisted of a 5-dm
3
 pot filled with soil from the 0–20 cm layer 

of Cambisols, Ferralsols, and Arenosols. Heavy metals were applied in an aqueous solution 

based on analytical reagents and miliQ water (Table 3). Throughout the experiment, soil 

moisture was maintained at 70% of field capacity. On the second, third, and 60th days of 

incubation we carried out chemical analyses and sensor scans (vis-NIR and mid-IR) of soil 

samples to test for parameters of spectral variation that were associated with Cr, Pb, and Zn in 

soils.  

 

Table 3 – Treatments, rates and salts used in the incubation experiment I  

Metals Reagents D1 D2 D3

Cr CrCl3.6H2O 40 75 150

Pb (CH3COO)2Pb.3H2O 17 72 180

Zn ZnSO4.7H2O 60 300 450

...........mg kg
-1

............

 
75, 72 and 300 mg kg

-1
 correspond to prevention values (PV) for Cr, Pb and Zn respectively 

(Cetesb, 2005).  PV is the concentration of a substance, above which may occur harmful 

changes to soil quality and groundwater. This value indicates the soil quality of supporting their 

primary function, protecting the ecological receptors and groundwater quality. 
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4.2.2.2 Experiment II 

The three soil orders were incubated in 0.5-dm
3
 pots and treated with tannery sludge 

(Table 4) at concentrations of 150, 2000, 4000, and 6000 mg kg
-1

 Cr. The tannery sludge was 

processed and air-dried before application. After 90 days of incubation, chemical analyses and 

spectroscopic scans (vis-NIR and mid-IR) were performed on the soils to assess the effects of 

Cr, Zn, and Pb concentrations on soil pH, nitrogen, phosphorus, potassium, magnesium, 

calcium, and H+Al, and sequential extraction procedures were carried out to quantify Cr, Pb, 

Zn, Fe, and Mn contents. 

At this stage, Cr was also added to soils in the form of CrCl3.6H2O. The same soil 

chemistry analyses were carried out for these soils as for those treated with tannery sludge. The 

aim was to determine if the spectral signature of the soils differs when Cr is added in the form of 

a residue product and when it is added as the reagent CrCl3.6H2O. Soil moisture in both 

incubated samples was maintained close to 70% of maximum retention capacity. Sequential 

extraction methods allow one to selectively measure the distribution of metals in soils and 

sediments. While they have been criticized due to the possibility that metals might be 

readsorbed and redistributed during extraction, they make it possible to compare the proportions 

of metals bound to chemically similar fractions (CANDELARIA et al., 1997). These analyses 

allowed us to determine the proportions of Cr and other metals that were associated with each 

component of the solid phase of soils, and thus predict their phytoavailability; to detail the soil 

spectral curves evaluation.  

 

Table 4 – Physical-chemical characterization of the tannery sludge used in the incubation 

experiment II 

pH
 
CaCl2 11.81 H + Al (mmolc dm

-3
) 9

Organic carbon (g kg
-1

) 72.03 Chromium (mg kg
-1

) 41694

Total Nitrogen Kjeldahl (g kg
-1

) 8.19 Copper (mg kg
-1

) < 4

Alumminum (mg kg
-1

) 3 Nickel (mg kg
-1

) 78.95

Calcium (mmolc dm
-3

) 950 Lead (mg kg
-1

) < 15

Magnesium (mmolc dm
-3

) 38 Cadmium (mg kg
-1

) <1.50

Potassium (mmolc dm
-3

) 7 Zinc (mg kg
-1

) 93.72

Sodium (mmolc dm
-3

) 21.53 EC (dS/m) 14.8

pH
(1)

11.81 CEC (mmolc dm
-1

) 1004

Organic carbon (g kg
-1

) 72.03 BS (%) 99.1

Nitrogen Kjeldahl (g kg
-1

) 8.19 Chromium (mg kg
-1

) 41694

Alumminum (mg kg
-1

) 0 Copper (mg kg
-1

) <10

Calcium (mmolc dm
-1

) 950 Zinc (mg kg
-1

) 93.72

Magnesium (mmolc dm
-1

) 38 Nickel (mg kg
-1

) 78.95

Potassium (mmolc dm
-1

) 7 Lead (mg kg
-1

) <63

H+Al (mmolc dm
-1

) 9 Cadmium (mg kg
-1

) <5.5

 
 

4.2.3 Laboratory analysis 

4.2.3.1 Analytical methods  

The soil was analyzed according to methods described by Raij et al. (2009) and 

Embrapa (2001), for chemical and physical characteristics: pH values were determined in CaCl2 

0.01 mol L
-1

 (in a ratio of 1:2.5 w/w); organic carbon (OC) content by wet oxidation (modified 
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from Walkley and Black, 1964); phosphorus (P), calcium (Ca
2+

), magnesium (Mg
2+

) and 

potassium (K
+
) by ion exchangeable resin (RAIJ et al., 2001); aluminum (Al

3+
) by KCl 1 mol L

-

1
; H + Al by SMP buffer (RAIJ et al., 2001). We also analyzed “pseudo-total” contents of Cd, 

Cr, Cu, Ni, Pb and Zn extracted from the soil matrix by microwave assisted acid digestion(SW 

846 – method 3051) and their available contents extracted by DTPA pH 7.3 (ABREU et al., 

2005). The DTPA extractor is recommended as official extractant of metals from soils in the 

São Paulo state, duo to the positive and high correlations between soil and plant metal 

concentrations in several field studies (ABREU et al., 2007).The determination of the metals 

were made by atomic absorption spectroscopy (AAS).  

The sequential extraction performed on the samples in Experiment II included some 

portions of the method adapted by Silveira et al. (2006) for tropical soils. The procedure 

consisted of several sequential steps. In the first step, the exchangeable fraction was determined. 

The next steps determined reducible fractions, fractions bound to carbonate, organic fractions, 

oxidizable fractions, and residual minerals. The fractions were: (i) exchangeable (F1); (ii) bound 

to carbonates (F2); (iii) bound to organic matter (F3); (iv) bound to Fe, Al, and Mn oxides (F4); 

and (v) residual (F5). The exchangeable fraction (F1) was obtained after extraction with 15 mL 

0.1 mol L
-1

 CaCl2. After F1, the fraction bound to carbonates (F2) was obtained using 30 mL 1 

mol L
-1

 NaOAC with the pH adjusted to 5.0. The fraction bound to organic matter was obtained 

using 5 mL 5% NaOCl, with the pH adjusted to 8.5. The fraction bound to oxides (F4) was 

obtained with 0.2 mol L
-1

 ammonium oxalate + 0.2 mol L
-1

 oxalic acid + 0.1 mol L
-1

 ascorbic 

acid, with the pH adjusted to 3 (SCHWERTMANN, 1964). The residual fraction (F5) was 

obtained after near-total microwave-assisted digestion with HNO
3+ 

and HCl at a 3:1 ratio, 

following the 3051a or “reverse aqua regia” method (ESTADOS UNIDOS, 1996). Between 

each successive extraction, samples were washed with 5 mL of 0.1 mol L
-1

 NaCl to remove any 

of the previous solution remaining in the tube, and thus reduce sample dispersion and limit 

metal readsorption (AHNSTROM; PARKER, 1999). All suspensions were centrifuged at 2500 

rpm. Extracts of the F1, F2, and F3 fractions were acidified to 1% with HNO3, and a drop of 

toluene was added to the F4 extracts in order to prevent the growth of microorganisms. Metal 

contents were determined by atomic absorption spectrometry. Percent recovery was obtained by 

summing the metal contents in the fractions, dividing that sum by the semi-total metal content, 

and multiplying the result by 100. 

In the tannery sludge, the metals were analyzed by the 3051a method (USEPA, SW-

846) and determined by AAS; Na and K were analyzed by Mehlich-1 and determined by flame 

photometer. For total N, we used the Kjeldahl method. pH was measured in water extract at 1:10 

ratio (waste: water) (ANDRADE; ABREU, 2006).  



123 
 

Contents of sand, silt and clay were determined by the hydrometer method, using 

calcium hexametaphosphate 0.1M and sodium hydroxide 0.1 M as dispersing agents.  

The X-ray diffraction was used for the analysis and identification of minerals in the 

clay fraction (DIXON; SCHULZE, 2002). The organic matter was removed (H2O at 30 %), each 

sample of the clay fraction was divided into two sub-samples; one was treated with dithionite-

citrate-bicarbonate (DCB) for the removal of iron oxides, and the other with NaOH 5 mol L
-

1
(hot) for the removal of silicates and gibbsite aiming to obtain the concentration of these 

oxides. Oriented blades were prepared for all sub-samples. The sub-samples of the treatment 

with DCB were saturated by magnesium (Mg) and potassium (K), and those resulting from the 

treatment with K were irradiated at room temperature and after heated (3 hours) at 300º and 500º 

C. Those resulting from the treatment with Mg were solvated with glycerol and irradiated at 

room temperature. The dyphratograms (XRD patterns) were obtained with a graphite 

monochromator of Shimadzu - 6000
®
, at 40 kV of tension and 20 mA current, radiation of Cu-

Kα of pace 0.02º 2θ at a speed of 1 pace s
-1

 and interval of 3 to 70º 2θ. 

 

4.2.3.2 Spectral measurement 

The spectral reflectance of the soils was measured in the laboratory using the 

FieldSpec Pro FR spectroradiometer (Analytical Spectral Devices, Boulder, Colorado; 

HATCHELL, 1999), for vis-NIR (350-2500 nm) range, with a spectral resolution of 3 nm (from 

350 to 1000 nm) and 10 nm  (from 1000 to 2500 nm); and using the Nicolet 6700 Fourier 

Transform Infrared (FT-IR) equipped with an accessory to acquire diffuse reflectance (Smart 

Diffuse Reflectance) that covers the 2500-25000 nm range (4000-400 cm
-1

). 

For the vis-NIR scans, the spectra acquisition software interpolated reflectance data to 

a sampling interval of 1 nm. Approximately 15 cm
3
 of each sample soil was placed in a Petri 

dish. A fibre optic connected to the vis-NIR sensor was placed vertically at 8 cm distant from 

the sample, where we measured the reflected light in an area of approximately 15 cm
2
 in the 

centre of the sample. The light source was a 50W halogen bulb with the beam non-collimated to 

the target plan, positioned at 35 cm from the sample at a zenith angle of 30º. As a reference 

standard, a white plate covered with barium sulphate (BaSO4) was used (STEFFEN et al., 1996). 

Each spectrum was given by the average of 100 scan sensor readings in 10 seconds. All spectral 

measurements were carried out in a dark room to avoid interference by stray light.  

For measurements at the MIR range it was used approximately 1 cm
3
 of each sample 

(100 mesh), placed in the proper recipient of the sensor. The internal light source is the HeNe 

laser with a calibration standard for each wavelength (2500 to 25000 nm). The spectra were 

obtained with spectral resolution of 1.2 nm and with 64 scans per second. Before each 
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measurement the reference spectrum of a background spectrum were obtained to calibrate the 

sensor.  

 

4.2.4 Statistical analysis 

Summary statistics and correlation analysis were performed using Jump software 

version 8.0 (SAS, 2008). Data of chemical analyses were subjected to ANOVA, by the F test (at 

a 99% and 95% confidence level) and the differences between means were determined using the 

Tukey test (p < 0.01). The correlations between the metals contents and other soil properties 

were done by Pearson coefficient.  

The spectroscopy analyses were performed in the Unscrumbler v.10.1 (CAMO 

SOFTWARE AS, Oslo, Norway). Before spectroscopy multivariate analyses, the soil vis-NIR 

spectra were first reduced to 400-2450 nm to eliminate the noise at both edges of each spectrum. 

The vis-NIR spectra obtained were also continuum-removed (CR) to enhance the spectral 

absorption features (VISCARRA ROSSEL et al., 2009). For the mid-IR soil spectra we 

considered all ranges to further analysis. The spectra reflectance of mid-IR data were also 

transformed to absorbance for soil attributes calibrations. For that it was used the partial least 

square regression (PLSR), using the orthogonalized PLSR algorithm for one Y-variable (PLS-1) 

and full cross-validation. The number of PLS factors was chosen to minimize the root mean 

square error (RMSE) in the cross validation. 

The Principal Component Analyses were applied to the spectral curves of soils, aiming 

to reduce the dimensionality of the data, to group similar spectra and to evaluate outliers 

(WORKMAN, 1992). 

 

4.3 Results and discussion  

4.3.1 Exploratory analysis of the spectral data 

An exploratory analysis of the spectral data of the three soils is presented in Figures 2 

and 3. In this type of analysis it is important to keep in mind the variation in reflectance intensity 

(albedo) of the spectra throughout the wavelength, but especially between 600-2500 nm and 

2900-2500 cm
-1

, 2000-1600 cm
-1

, 1200-750 cm
-1

, as well as changes in the amplitude and the 

shape of the absorption features related to the attributes of each soil, as demonstrated by Bowers 

and Hanks (1965); Stoner and Baumgardner (1981); Galvão, Vitorello and Paradella (1995); 

Formaggio et al. (1996); Ben-Dor, Irons and Epema (1999); Demattê (2002); Demattê et al. 

(2004a); Dalmolin et al. (2005); Ben-Dor, Heller and Chudnovsky (2008); Bellinaso, Demattê 

and Romeiro (2010) and Terra (2012). In the mid-IR region we observed a shift between 2000 
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and 1200 cm

-1
 for Ferralsols. This range is characteristic of the presence of quartz and in 

Ferralsols samples the absorptions features are more smoothed. 

Kaolinite shows characteristic features near 2200 nm, 1400 nm and 3600 cm
-1

. 

Characteristic absorption features near 1400 nm were attributed to harmonic vibrations of O-H 

(stretching) near 2778 nm (3600 cm
-1

), while those near 2200 nm are due to combinations 

involving OH
-
 stretching and the bonding curves between Al-OH (HLAVAY et al., 1977). Hunt 

et al. (1973) have argued that the intensity of the kaolinite feature at 2200 nm is associated with 

the dioctahedral layers of the mineral structure. The 1400 and 1900 nm bands are associated 

with water vibrations connected to bonds of lattice layers as hydrated cations (structural), 

combined with water adsorbed to the particle surfaces. We observed a feature near 2340-2445 

nm in the Cambisols (Figure 2) that can be attributed to illite (POST; NOBLE, 1993), and 

confirmed in the dyphratograms (XRD patterns) (Figure 1).  

In the mid-IR region the main absorption peaks observed were: 3695-3622, 3529-3394, 

2924-2843, 2333-1362, 1157, 1111-1018, 791-752, 702, and 436 cm
-1

. Absorption bands in 

mid-IR are generally caused by fundamental molecular vibrations (Tables 5 and 6). In the soil 

spectra, peaks at 3692–3620 cm
−1

 and 1640 cm
−1

 may be related to clay mineral attributes that 

seem to be related to Al-OH stretching of the clay minerals, as reported by Janik et al. (2007) 

and van Groenigen et al. (2003). The peaks near 2200 and 1900 cm
-1

 were attributed to the 

presence of quartz, and were stronger in the Arenosols and Cambisols. Quartz peaks in soil 

samples may be suppressed or overlapped by peaks of other soil components, such as clay 

minerals or organic matter (STUMP et al., 2011). A hematite feature was observed in the 

Cambisols and Ferralsols, but was absent from the Arenosols (Figure 3c). These features have 

been corroborated by various other authors (e.g. NGYEN, JANIK, RAUPACH, 1991; 

CHRISTENSEN et al., 2000; MADEJOVA, KOMADEL, 2005; NAYAK, SINGH, 2007; 

TERRA, 2011). 
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Figure 2 - Mean spectral signature of the set of soil samples used in the experiment: (a) vis-NIR 

reflectance values (± SD), (b) vis-NIR reflectance values with continuous removal 

spectra (± SD), (c) vis-NIR reflectance values of each soil. Details on numbered 

features are given in Table 5 
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Figure 3 - Mean spectral signature of the set of soil samples used in the experiment: (a) mid-IR 

reflectance values (± SD) and (b) mid-IR reflectance values of each soil. Details on 

numbered features are given in Table 6 
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Table 5 -Absorptions features observed between 350 and 2500 nm (extracted from Terra, 2011) 
Spectral Spectral Band Functional Soil Microscopic Interaction Type of 

features region cm
-1

group constituent interaction propagation

number

1 visivel 425 goethite eletronic

2 visivel 480 ion Fe
3+

goethite atomic level transition

3 visivel 513 hematite

4 visivel 650 ion Fe
3+

goethite atomic level transition

hematite

5 NIR 903 ion Fe
3+

goethite (940 nm) atomic level eletronic

hematite (850 nm) transition

6 NIR 1000 ion Fe
3+

goethite atomic level elet. transition

(H-O-H)+(O-H) water in soil 2v 2 + v 3 combination tone and overtone

kaolinite not 2v 1a  or 2v1 overtone

7 swir 1414 vermiculite 2:1 HE molecular  fundamental 2v 1 overtone

2(O-H) smectite vibration 2v 1 overtone

mica (ilite) 2v 1 overtone

water in soil not

8 swir 1917 (H-O-H)+(O-H) or molecular  fundamental v 2 + v 3 combination tone

structural vibration

kaolinite not

9 swir 2205 (O-H)+(Al-OH) vermiculite 2:1 HE molecular  fundamental v 1b +  δ combination tone

smectite vibration

mica (ilite)

10 swir 2260 (O-H)+(Al-OH) gibbsita not v 1b +  δ combination tone

11 swir 2316 C-H organic compost (methil)  fundamental 3v 4 overtone

12 swir 2355 (O-H)+(Al-OH) mica (ilite) molecular vibration v 1b +  δ combination tone

13 swir 2382 C-O organic compost (carbohydrate) 4v 5 overtone

14 swir 2448 (O-H)+(Al-OH) mica (ilite) v 1b +  δ combination tone
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Table 6 - Absorptions features observed between 4000 a 400 cm

-1
 (continued on the next page) 

Spectral Spectral Band Functional Soil Microscopic Type of 

features region cm
-1

group constituent interaction propagation

number

kaolinite

1 MIR 3695 O-H smectite molecular level stretching

mica (ilite)

kaolinite

2 MIR 3653 O-H smectite molecular level stretching

mica (ilite)

kaolinite

3 MIR 3622 O-H smectite molecular level stretching

mica (ilite)

vermiculite 2:1 HE

4 MIR 3529 O-Al-OH kaolinite molecular level stretching

gibbsite

vermiculite 2:1 HE

5 MIR 3448 O-Al-OH kaolinite molecular level stretching

gibbsite

vermiculite 2:1 HE molecular level stretching

6 MIR 3394 (H-O-H)+(O-H) kaolinite

7 MIR 2924 C-H  organic compost (aliphatic) molecular level stretching

8 MIR 2843

9 MIR 2341 CO2

10 MIR 2233

11 MIR 2133

12 MIR 1975

13 MIR 1867 Si-O molecular level stretching

14 MIR 1790

15 MIR 1678

kaolinite

16 MIR 1628 O-H smectitie molecular level distortion

mica (ilite)

vermiculite 2:1 HE

Si-O quartz stretching

17 1527

18 MIR 1497 Si-O quartz molecular level stretching

19 1362

C-O organic compounds (polysaccharide) stretching

C-OH  organic compost (aliphatic)

20 TIR 1157 smectite molecular level

O-Al-OH mica (ilite) distortion

vermiculite 2:1 HE
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Table 6 - Absorptions features observed between 4000 a 400 cm
-1

 (conclusion) 
Spectral Spectral Band Functional Soil Microscopic Type of 

features region cm
-1

group constituent interaction propagation

number

kaolinite stretching

smectite

21 TIR 1111 Si-O-Si mica (ilite) molecular level

vermiculite 2:1 HE

O-Al-OH gibbsita distortion

kaolinite

smectite

22 TIR 1018 Si-O-Si mica (ilite) molecular level stretching

vermiculite 2:1 HE

kaolinite

smectite

23 TIR 926 Al-O-H mica (ilite) molecular level distortion

vermiculite 2:1 HE

Fe-O hematite

Si-O quatrz stretching

kaolinite

24 TIR 814 Al-OH vermiculite 2:1 HE molecular level distortion

gibbsite

kaolinite

25 TIR 791 Si-O mica (ilite) molecular level stretching

vermiculite 2:1 HE

kaolinite

26 TIR 752 Si-O mica (ilite) molecular level stretching

vermiculite 2:1 HE

kaolinite

smectite

27 MIR 702 Si-O mica (ilite) molecular level stretching

vermiculite 2:1 HE

kaolinite

Si-O-Si smectite

28 MIR 517 mica (ilite) molecular level distortion

vermiculite 2:1 HE

Si-O quartz

29 MIR 436 Si-O quartz molecular level distortion
 

 

4.3.2 Experiment I  

4.3.2.1 Chemical data  

Pseudo-total Cr, Pb, and Zn were significantly intercorrelated (Table 7), as a result of 

the shared soil components involved in the sorption of trace elements, except for Pb and Zn.  We 

did not find a significant correlation between metal availability on one hand and clay and 

organic matter content on the other, except for Cr (N = 27) (Table 7). However, for total 

contents these correlations were observed. The dependence of clay content can be attributed to 

the greater sorption capacity of soils richer in clay as showed by Siebielec et al. (2004). In 

general, metals with coordination number equal to six bind more strongly to secondary minerals 

than elements with a coordination number above six, such as Pb (VIANA, 2011). This occurs 

during the soil weathering and formation process, when metals are imprisoned in the octahedral 
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positions of secondary minerals. They are more retaining with smaller coordination number. In 

our study Pb content, for example, was correlated with organic matter, suggesting that OM is a 

factor in Pb retention. However, according to Pandit et al. (2010), when this correlation is weak 

OM cannot be used to determine Pb contents because only a small amount is needed to retain Pb 

(PANDIT et al. 2010). 

 

Table 7 - Pearson correlation matrix for relationships between clay, organic matter and available 

and pseudo-total metals contents (N = 27) 

Cr Pb Zn Clay OM

Cr 1.000

Pb 0.236 * 1.000

Zn 0.267 * 0.563 * 1.000

Clay -0.513 * 0.126 0.079 1.000

OM -0.214 -0.102 0.160 0.677 * 1.000

Cr 
(1)

1.000

Pb 
(1)

0.928 ** 1.000

Zn 
(1)

0.623 ** 0.287 1.000

Clay
(1)

0.994 ** 0.963 ** 0.535 ** 1.000

OM
(1)

0.739 ** 0.435 ** 0.987 ** 0.662 ** 1.000  
(1)

pseudo-total content; (**) Significant at the 0.01 probability level; (*)Significant at the 0.05 

probability level 

 

The distribution of the available metals obtained by DTPA of Experiment I is 

illustrated in Figure 4. Since there are no reference levels in the literature for metals extracted by 

DTPA at a pH of 7.3, we used thresholds for Cr, Pb, and Zn concentrations based on the work of 

Abreu et al. (2005) and Raij et al. (1996). The thresholds used for Cr and Pb were 0.21 mg kg
-1

 

and 1.15 mg kg
-1

, respectively, which correspond to the maximum content of those elements 

found at a variety of depths in Brazilian soils. The threshold for Zn was >130 mg kg
-1

, which is 

the level at which toxicity occurs. Figure 4 shows the mean concentrations of easily available 

Cr, Pb, and Zn, which indicate that these soils were severely polluted. 
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Cr (mg kg
-1

) 

Mean                                             13.68 

Std Dev                                           9.00 
Std Err Mean                                   1.08 

N                                                        81 

  

 

Pb (mg kg
-1

)   

Mean 73.54 

Std Dev 49.93 
Std Err Mean 5.55 

N 81 

 
 

 

Zn (mg kg
-1

)   
Mean 157.85 

Std Dev 84.46 

Std Err Mean 9.38 

N 81 

 
 

Figura 4 – Descriptive statistics, histograms and outlier box-plots for available metals of soils 

contamined in Experiment I, extracted by DTPA (pH 7.3). The mean (solid line), the 

median (rhomb), the 25th and 75th percentiles (box), the 10th and 90th percentiles 

(whiskers) and outliers (dots) are indicated.  The red bracket indicates the standard 

deviation. The blue line indicates the prevention values for metals extracted by 

concentrated nitric acid (pseudo-total) (CETESB, 2005) 

  

Table 8 shows the available contents of heavy metals at different times during the 

incubation. We observed a decrease in the content of almost all metals over time, which 

suggests that metals were adsorbed to oxides, clay minerals, and/or soil organic matter. 

Available Pb content, for example, declined by more than 50% between the first and second 

measurements (Cambissol), for all three experimental concentrations (from 32.84 to 8.47; 84.57 

to 25.8; 152.78 to 59.97 mg kg
-1

). In fact, Pb bond strongly to organic matter and tend to be 

adsorbed faster than the other trace elements (ALLEONI et al., 2005). This adsorption regulates 

the concentration of ions and complexes in the soil solution, and plays an important role in its 

availability to the environment.  
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Table 8 - Results of chemical analyses (DTPA) from samples of soils after 2, 30 and 60 days of 

incubation (Experiment 1). Mean of 3 repetitions  

Doses Metal Incubation 

time

D1 Cr 1 26.03 a 9.76 a 3.45 a

2 11.43 b 7.09 b 3.52 a

3 5.49 c 4.81 c 3.05 a

D1 Pb 1 32.84 a 29.8 a 42.5 a

2 9.91 b 23.72 b 21.79 b

3 8.47 b 23.35 b 32.28 b

D1 Zn 1 88.67 a 130.52 a 141.74 a

2 87.18 a 96.16 b 139.1 a

3 75.7 a 45.84 c 85.09 b

D2 Cr 1 19.86 a 21.46 a 11.2 a

2 16.08 b 11.89 b 11.34 a

3 12.19 c 13.35 b 9.06 b

D2 Pb 1 84.57 a 83.78 a 93.58 a

2 33.16 b 65.67 b 57.44 c

3 25.8 c 56.7 c 75.59 b

D2 Zn 1 194.32 a 95.09 a 90.07 c

2 139.59 b 94.85 a 144.22 b

3 131.01 b 144.32 a 201.46 a

D3 Cr 1 34.91 a 34.22 a 6.93 ab

2 33.07 a 27.28 b 7.4 a

3 8.85 b 20.8 c 5.73 b

D3 Pb 1 152.78 a 146.8 a 164.24 a

2 67.05 b 137.75 a 155.73 a

3 59.97 b 149.5 a 128.89 a

D3 Zn 1 317.97 a 280 a 171.58 b

2 359.07 a 184.71 b 182.33 b

3 116.44 b 179.83 b 358.23 a

....mg kg
-1

.... ....mg kg
-1

.... ....mg kg
-1

....

Cambisols Arenosols Ferrasols

Mean Mean Mean

 
Médias seguidas por letras iguais nas colunas (para um mesmo elemento e dentro de uma mesa 

dose) não diferem entre si pelo teste de Tukey ao nível de 5% de significância. D1, D2 e D3 

referem-se às doses definidas no experimento I.  

 

4.3.2.2 Spectra data 

PCA results of vis-NIR and mid-IR data are shown for all samples via PC-1 vs PC-2 

score plot which describes the spectral variances of soil samples (Figure 5). PCA is used to 

identify spectrally unique or dissimilar observations that might be difficult to model 

(SHEPHERD; WALSH, 2002; ISLAM, 2003). The first two components capture 100% and 98 

% of the total variance of the data for vis-NIR and mid-IR data, respectively (Figure 5). It can be 

attributing to the variation on the reflectance intensity and absorptions features of the spectra 

(ARAÚJO, 2008; TERRA, 2012). Score vectors provide the principal component (PC) 
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composition related to the soil sample, while the loading vectors provide this sample 

composition related to the variables (SENA et al., 2002). The eigenvectors graphs (loadings) 

indicate the positive and negative contributions of reflectance values for each Principal 

Component score (Figure 5). The PC-1 and PC-2 loadings of mid-IR showed the wavelengths at 

2400 cm
-1

 and from 1400 to 450 cm
-1

 have greater importance on PC´s, agreeing with Siebielec 

et al. (2004), since in this region there are absorptions features characteristics of organic 

compounds and clay minerals (Tables 5 and 6). The peak around 450-500 cm
-1

 for example can 

be assigning to quartz, mica and vermiculite 2:1 HE (TERRA, 2012). The PC-1 and PC-2 

loadings of vis-NIR indicated the bands around 900-1200 nm, 1900 nm and 2200 nm to be 

important on PC´s.  

Principal components analysis was also performed for the vis-NIR and mid-IR spectra 

of each soil separately, to test for grouping or separation of the different measurement periods 

and/or metals and/or metal concentrations. Although no clear grouping of spectral attributes was 

observed with regard to the specific metal in the samples, there was separation between samples 

of each soil according to period evaluated (different concentrations of metals).The Arenosols 

showed clearer separation, as illustrated in Figure 6. The first two PC´s of the Arenosols showed 

a clear pattern of grouping in the mid-IR data (Figure 6b). In these soils, PC1 accounted for 

approximately 72% of variation in reflectance intensities of the spectral curves (TERRA, 2012) 

caused by the various treatments and cycles. The corresponding number for the vis-NIR data 

was 98%. Considering that PC1 mostly represents albedo (GALVÃO et al., 1995; SALDANHA 

et al., 2004) and is related to soil texture (DEMATTÊ, 2002), sandy soils whose mineralogy 

mostly consists of quartz and feldspar and which have high levels of SiO2 show spectra with 

high reflectance intensities. That PC-2 accounted for 20% of mid-IR variation for Arenosols 

indicates that besides the intensity, changes also occurred in specific regions of the spectrum, 

with similar spectra grouped better than for the other two soils.  

It is important to highlight that the metals adsorption to soil constituents caused 

expressive changes in soil spectral curves, considering that they were applied to soils through 

aqueous solution only once, before the incubation experiment; and that the levels of available 

metals in soils declined over the sampled periods. The mid-IR range can have more information 

than vis-NIR, since all chemical bonds within the molecule are active in this region, whereas in 

the vis-NIR region only some of the bonds are active (e.g. OH-, NH-) (SCHWARTZ et al., 

2011). 
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Figure 5 - PCA results of spectra of soil samples PC-1-PC-2 score plot and loadings of the first 

four PC´s of mid-IR (a) and vis-NIR (b) 

 

 

 

 

 

 

 

 

(b) (a) 

PC1 

PC2 

PC2 

PC1 



 136 

-0.4

-0.1

0.2

0.5

-4 0 4

Period 1 Period 2 Period 3

PC1 (98 %)

P
C

 2
 (
0

.3
 %

)

 
-25

-15

-5

5

15

-50 0 50

Period 1 Period 2 Period 3

PC1 (72 %)

P
C

 2
 (
2

0
 %

)

 
Figure 6 - Principal components analysis of spectral data in the Arenosol. Vis-NIR (a) and mid-

IR (b) data. 

 

The effects of metals added in soils on the modification of qualitative spectral 

information are shown in Figures 7, 8 and 9 for Arenosols (a quartz-rich), Ferralsols (a clay-

rich) and Cambisols (quartz and an organic carbon-rich) samples, respectively. The spectra of 

the soil samples were mainly affected by the spectral characteristics of their main components. 

In general, metals are all negatively correlated with reflectance (WU et al., 2007). Our data 

showed spectral differentiation between highly contaminated soil and soils that are relatively 

contaminant-free, even in smaller concentrations, reflecting findings by Bray et al. (2009) and 

Kemper and Sommer (2002). For example, the Cr concentrations of 107 and 142 mg kg
-1

 

showed no significant differences in the spectra up to 1300 nm (Table 9b). However, above 

1300 nm we observed differences in the reflectance intensity of the three concentrations of Cr 

(107, 142 and 217 mg kg
-1

). For Cambisols these differences were observed with concentrations 

higher than 106 mg kg
-1

 (Table 8). On the other hand, the Cr concentrations varying from 50 to 

160 mg kg
-1

 (Table 7) in Arenosols were not high enough to separate visually the spectra 

characteristics. In the mid-IR range, we observed differences in albedo according to Cr 

concentration especially up to 2000 cm
-1

. 

The vis-NIR spectra were visually featureless, showing only a reduction of the 

reflectance intensity with higher levels of metals and characteristics peaks of hydroxyl groups 

and water (1400 and 1900 nm) and kaolinite (2200 nm) for the same soil, in accordance with 

Kemper and Sommer (2002).  

The mid-IR spectra showed a larger number of features (Figures 7, 8, and 9). In this 

sensor data we observed that the alterations occur at the magnitude of reflectance and also 

change the general spectrum's shape and format, as observed at 2800-2400 cm
-1

 (Figure 7) and 

at 2000 cm
-1

 (Figure 8). These regions are characteristics of organic compounds and quartz 
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(Table 6). In general, the mid-IR reflectance intensity was reduced with higher levels of heavy 

metals from 3600 to 2040 cm
-1

.  Mid-IR reflectance intensity between 3600 and 2040 cm
-1

 was 

lower in soils with higher levels of heavy metals. At the band between 3621 and 2071 cm
-1

 

occurs interaction of fundamental vibration and propagation (Table 5). Reflectance differences 

in this region can possibly be attributed, among other factors, to the interaction of metals with 

minerals and organic compounds (2900-2700 cm
-1

). 

For Arenosols (Figure 7), the mean levels of available Cr (and adsorbed Cr, in 

parentheses) in this period were <10.0 (<10.0), 4.81 (45.19), 13.35 (71.65), and 20.80 (139.2) 

mg kg
-1

 for the control and for experimental doses 1, 2, and 3, respectively. The corresponding 

values for Pb were 0.60 (<15.0), 23.35 (8.65), 56.7 (30.3), and 149.5 (45.5). The corresponding 

values for Zn were 2.0 (11.91), 45.84 (26.07), 144.32 (167.6), and 179.83 (282.08). For 

Cambisols (Figure 8), the mean levels of available Cr (and adsorbed Cr, in parentheses) in this 

period were <10.0 (21.6), 5.49 (66.1), 12.19 (94.3), and 8.85 (172.7) mg kg
-1

 for the control and 

experimental doses 1, 2, and 3, respectively. The corresponding values for Pb were 0.66 (~14.3), 

8.47 (23.53), 25.8 (61.2), and 59.9 (135). The corresponding values for Zn were 0.94 (27.67), 

75.7 (11.97), 131 (197), and 116 (361). For Ferralsols (Figure 9), the mean levels of available Cr 

(and adsorbed Cr, in parentheses) in this period were <10.0 (57.44), 3.05 (104), 9.06 (133), and 

5.73 (211) mg kg
-1

 for the control and experimental doses 1, 2, and 3, respectively. The 

corresponding values for Pb were 2.29 (~24.55), 32.28 (11.56), 75.6 (23.25), and 128.89 (77.9). 

The corresponding values for Zn were 0.30 (23.5), 85 (0.5), 201 (122), and 358 (115). 
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Figure 7 - Mid-Infrared (a) and vis near-infrared spectra reflectance of samples of Arenosols 

(mean of 3 repetitions). Pseudo- total metal contents in mg kg
-1
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Figure 8 - Mid-Infrared (a) and vis near-infrared spectra reflectance of samples of Cambisols 

(mean of 3 repetitions).Pseudo- total metal contents in mg kg
-1
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Figure 9 - Mid-Infrared (a) and vis near-infrared spectra reflectance of samples of Ferralsols 

(mean of 3 repetitions).Pseudo- total metal contents in mg kg
-1

 

 

Predictions results of available metals using PLS regressions were not significant 

(Table 9) with low precision for both datasets (vis-NIR and mid-IR). These predictions could 

likely be improved if the models were calibrated with a highly variable set of soil samples. Our 

results stand in contrast to those of Malley and Willians (1997), who obtained accuracy results 

of Zn and Pb in sediments even in low concentrations, using the range 1100 to 2500 nm. 

(b) (a) 
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Kemper and Sommer also reported a correlation between predicted and measured Pb 

concentrations with an R
2
 value of 0.95, but insignificant for Zn (0.24) analyzing soils. These 

authors used total metal content for their predictions, however, while we tried to quantify 

available content in comparison to DTPA extraction results. 

 

Table 9 - Summary statistics of cross-validation and validation results of partial least square 

regression (PLSR) for metals 

Metal Sensor data Rc
2

RMSEc RPDc PLS factors Rv
2

RMSEv RPDv

vis-NIR 0.23 8.04 1.12 4.00 0.20 9.14 1.02

Cr mg kg
-1

mid-IR 0.20 7.23 1.25 3.00 0.25 8.56 1.09

vis-NIR 0.23 44.56 1.16 5.00 0.23 53.09 0.88

Pb mg kg
-1

mid-IR 0.36 41.37 1.25 5.00 0.38 52.50 0.89

vis-NIR 0.58 62.20 1.48 7.00 0.20 69.06 0.85

Zn mg kg
-1

mid-IR 0.49 59.65 1.54 5.00 0.22 70.23 0.84  
 

 

4.3.3 Experiment II 

4.3.3.1 Effects of Cr application on soils 

The H+Al contents in the samples of the three soils that were treated with tannery 

sludge (especially in those that received >2000 mg kg
-1

 Cr) were lower than in those treated 

with chromium chloride (Tables 10, 11, and 12). In oxidizing conditions in soils, chromium 

chloride is oxidated to form Cr
6+

, releasing H
+
 and increasing soil acidity. This explains the low 

pH values observed in the samples treated with the salt. While a decline in pH was observed 

with higher concentrations of CrCl3.6H2O, an increase in pH was observed with increasing 

amounts of tannery sludge. The soil solution is one of the factors that affect the release or 

adsorption of metals by soil colloids (ALLEONI et al., 2005). One of the sources of charge in 

soils is the edge charge of clay minerals. The quantity of positive or negative charge on these 

edges depends on the soil solution pH. Thus, at low pH the edge has a positive charge because 

of the excess H
+
 associated with the exposed Si-OH and Al-OH groups, but at higher pH levels 

some H
+
 are neutralized and negative charges increase (HAVLIN et al., 2005). Levels of Al

3+
 

were higher in samples that were not treated with tannery sludge. This was due to the low pH, 

since at pH >5.5 Al
3+

 precipitates in the form of Al (OH)3.  

Ca, Mg, and Na contents were higher in soils treated with tannery sludge (Tables 10, 

11, and 12), which contained high concentrations of these elements (Table 4). The high CEC 

values in samples treated with sludge were attributed to the sludge’s high levels of organic 

matter and exchangeable cations, and high pH. While samples treated with chromium salt 
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showed high CEC values, the colloid charges were occupied by H+Al instead of exchangeable 

cations.  

In the case of Na, the concentrations recorded in the Ferralsols treated with the highest 

doses of sludge corresponded to 31% of CEC, while in the control this value was <1% (Table 

10). The corresponding values for Cambisols were 32.4 and 0.6%, and for Arenosols 26 and 4%. 

According to Havlin et al. (2005), under field conditions when a high percentage of the CEC is 

occupied by Na
+
, soil aggregates disperse, reducing natural aggregation and soil structure. In 

tropical soils that are rich in Fe and Al oxides, 40% Na
+
 saturation is required before significant 

dispersion occurs. Martines (2009) observed a decline in the productivity of a grain crop when 

1200 kg ha
-1

 N was added to the soil as tannery sludge (33.7 Mg ha
-1

 of sludge, dry basis). In 

that study, productivity was limited by high concentrations of salts, especially sodium, in 

periods of dry weather. 

Soil nitrogen content varied minimally with added tannery sludge. Treatment with 

sludge helped increase the V% (Tables 10, 11, 12). 

 

Table 10 - Mean attributes of Ferralsols under different treatments 

Rates Treatment pH P Na Ca Mg K CEC H + Al V N

mg dm
-3

% g kg
-1

CrCl3.6H2O 4.1 2.4 0.5 13.6 5.8 1.2 106.9 85.7 20.0 1.6

Sludge 3.9 3.0 0.4 11.0 6.0 1.2 113.6 95.0 16.4 1.6

CrCl3.6H2O 4.0 2.0 0.6 11.3 6.0 1.2 109.1 90.0 17.6 1.5

Sludge 4.5 2.0 6.4 24.0 20.0 1.3 127.7 76.0 41.0 1.8

CrCl3.6H2O 3.0 2.0 0.6 12.0 6.0 1.3 280.2 260.3 7.0 1.6

Sludge 6.2 2.6 76.2 168.0 98.0 1.3 364.0 20.0 94.0 1.8

CrCl3.6H2O 2.6 2.0 0.6 13.3 6.0 1.2 550.2 529.0 3.9 1.6

Sludge 6.9 2.0 138.1 207.6 147.7 1.0 509.8 15.3 97.0 2.2

CrCl3.6H2O 2.5 2.0 0.6 12.7 7.0 1.3 675.3 653.0 3.2 1.6

Sludge 7.1 2.0 195.6 277.3 147.0 1.0 633.0 12.0 98.0 2.2

D4

........................mmolc dm
-3

...........................

T

D1

D2

D3
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Table 11 - Mean attributes of Cambisols under different treatments 

Rates Treatment pH P Na Ca Mg K CEC H + Al V N

mg dm
-3

% g kg
-1

CrCl3.6H2O 5.3 4.4 0.5 25.3 11.0 6.2 67.3 24.3 64.0 1.8

Sludge 5.3 4.4 0.4 27.3 12.3 6.0 68.7 22.7 67.0 1.8

CrCl3.6H2O 5.2 3.3 0.5 25.0 11.0 5.2 63.4 21.7 65.8 1.8

Sludge 5.8 4.3 6.3 38.7 21.0 6.6 99.6 20.0 80.0 1.9

CrCl3.6H2O 2.8 2.0 0.6 32.0 12.0 6.5 142.7 91.7 35.9 1.7

Sludge 7.1 3.3 93.6 138.3 74.3 4.6 321.2 10.3 96.8 2.0

CrCl3.6H2O 2.2 2.0 0.7 34.0 13.7 6.3 496.3 441.7 11.0 1.7

Sludge 7.5 2.0 144.8 167.0 84.3 3.9 408.7 8.7 97.9 2.3

CrCl3.6H2O 2.1 2.0 0.7 35.3 14.0 6.6 986.0 929.3 5.7 1.8

Sludge 7.5 2.0 149.8 200.0 101.0 3.9 463.4 8.7 98.1 2.4

D4

........................mmolc dm
-3

...........................

T

D1

D2

D3

 
 

Table 12 - Mean attributes of Arenosols under different treatments 

Rates Treatment pH P Na Ca Mg K CEC H + Al V N

mg dm
-3

% g kg
-1

CrCl3.6H2O 4.2 3.0 2.6 5.0 2.7 0.6 57.8 47.0 18.7 1.0

Sludge 4.2 2.7 2.5 4.3 2.3 0.6 58.3 48.7 16.6 1.0

CrCl3.6H2O 3.9 2.0 2.3 3.7 3.0 0.6 65.6 56.0 14.7 1.0

Sludge 5.1 3.3 6.4 15.3 14.0 0.5 66.2 29.7 55.2 0.9

CrCl3.6H2O 2.3 2.0 2.2 5.7 3.7 0.6 372.1 360.0 3.3 0.9

Sludge 6.8 4.0 66.2 132.7 84.0 0.6 294.8 11.3 96.2 1.1

CrCl3.6H2O 2.1 2.0 4.5 6.0 5.0 0.6 694.1 678.0 2.3 0.9

Sludge 7.0 2.0 106.3 275.0 151.7 0.6 544.3 10.7 98.0 1.1

CrCl3.6H2O 2.0 2.0 4.9 5.7 3.0 0.5 908.0 894.0 1.6 0.9

Sludge 7.4 2.3 162.0 319.7 129.7 0.7 621.7 9.7 98.4 1.4

D3

D4

........................mmolc dm
-3

...........................

T

D1

D2
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4.3.3.2 Chemical sequential extraction for Metals 

4.3.3.2.1Cromium 

 

All Ferralsol, Cambisol, and Arenosol samples, except for the control treatments, had 

higher pseudo-total Cr concentrations than the intervention reference values (150 mg kg
-1

) 

(CETESB, 2005). Most Cr in the Ferralsol control was in the residual fraction (42%), followed 

by the fraction bound to organic matter (34%) (Table 13 and Figure 10). In these samples, the 

fractions that were least important for Cr were the exchangeable fraction (3%) and the 

carbonate-bound fraction (3%). As higher doses of CrCl3.6H2O were added to soils and soil pH 

declined, Cr content in the exchangeable fraction increased (from 3 to 12%). An opposite effect 

was observed in the samples treated with tannery sludge, which increased pH to 7.1 (Table 10 

and Figure 10). At higher pH, the negative charges of the colloid surfaces were no longer 

occupied by the H
+
 ion and could be occupied by other cations, including cationic metals 

(SPOSITO, 1989). CEC is related to a soil’s capacity for adsorbing metals; the higher the CEC, 

the more adsorption sites are available on the soil colloids. It is important to emphasize that the 

exchangeable fraction is a more direct measure of the probability of eventual negative impacts 

on the environment (CAMARGO et al., 2000). The distribution of Cr (III) species as a function 

of pH has been studied by Ferro et al. (1994), who showed that at pH 4.5 60% of Cr occurred as 

CrOH
2+ 

and 40% as Cr
3+

. At pH close to 7.0, the predominant form in soils was Cr(OH)
2+

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



145 
 
Table 13 - Fractional distribution of Cr content from the sequential extraction of the treated 

Ferralsol 

Levels Treatment Exchangeable Carbonates Organic Matter Oxides Residual Pseudo-total

CrCl3.6H2O 2.1±0.1 2.3±0.4 23.5±2.4 11.4±0.3 28.8±2.3 68.2±0.7

Sludge 2.2±0.3 2.3±0.3 23.5±2.4 11.6±0.3 29.5±2.7 69.1±1.0

CrCl3.6H2O 6.7±0.1 37.5±2.0 54.3±4.3 33.7±3.5 75.1±30.1 207.3±21.3

Sludge 2.0±0.1 7.0±1.6 68.7±5.2 36.2±4.3 110.7±5.9 224.8±1.6

CrCl3.6H2O 96.3±4.6 340.0±15.4 649.8±38.4 337.0±13.1 359.6±22.1 1993.0±31.5

Sludge 1.9±0.1 124.5±18.1 846.0±8.5 441.5±14.6 1244.0±387.4 2658.0±369.0

CrCl3.6H2O 297.2±2.3 830.9±10.2 959.0±35.2 589.5±45.5 1403.8±24.4 4079.3±17.8

Sludge 2.0±0.1 347.1±32.3 1779.8±197.3 871.8±7.9 1102.4±178.9 4103.2±5.5

CrCl3.6H2O 712.3±35.9 1347.9±37.3 1408.2±77.0 856.8±14.7 1741.5±69.2 6067.6±30.9

Sludge 1.8±0.1 484.7±56.7 2547.0±87.2 1311.6±65.6 1745.5±45.1 6090.9±38.8

Cr fractions mg kg
-1
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Figure 10 - Percent Cr distributed in the fractions from the sequential extraction of each 

treatment: L0 (control), L1 (150 mg kg
-1

 Cr), L2 (150 mg kg
-1

 Cr), L3 (2000 mg kg
-

1
 Cr), L3 (4000 mg kg

-1
 Cr), L4 (6000 mg kg

-1
 Cr), added as a salt (a) and sludge 

(b) to Latossols 

 

Most Cr in the control samples of Cambisols (52%) occurred in the organic fraction, 

followed by the oxide-bound fraction (21%) (Table 14 and Figure 11). As in the Ferralsols, the 

exchangeable fraction was the least important for Cr (4%). Adding tannery sludge caused an 

increase in soil pH, which led to a decline in Cr content in the exchangeable fraction and a small 

(a) (b) 
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increase in the organic matter- and oxide-bound fractions, especially at the highest doses (Table 

11 and Figure 11).  

 

Table 14 - Fractional distribution of Cr content from the sequential extraction of the treated 

Cambisol 

Levels Treatment Exchangeable Carbonates Organic Matter Oxides Residual Pseudo-total

CrCl3.6H2O 1.2±0.9 3.5±0.5 16.8±0.1 6.6±0.4 4.0±1.3 32.0±1.3

Sludge 1.5±0.3 3.0±0.2 17.4±1.2 6.8±0.2 4.0±1.0 32.7±1.7

CrCl3.6H2O 7.4±0.3 15.9±0.9 90.0±3.0 43.3±0.5 33.8±2.7 190.4±4.0

Sludge 6.0±0.4 19.8±0.3 116.8±1.4 53.0±0.5 30.5±0.4 226.2±2.0

CrCl3.6H2O 125.9±3.5 253.2±39.3 772.8±96.4 58.2±1.0 847.4±70.7 2057.0±67.1

Sludge 8.5±0.4 173.9±14.7 1278.2±44.4 812.0±2.8 33.1±24.5 2306.0±53.0

CrCl3.6H2O 380.5±35.6 524.1±63.3 1319.0±77.0 113.7±11.6 1752.6±154.9 4091.0±9.9

Sludge 5.8±0.8 457.5±28.2 3042.7±42.7 1912.0±10.9 60.9±1.3 5479.0±20.4

CrCl3.6H2O 1526.0±40.4 1087.0±109.5 2193.8±50.4 215.0±3.2 1831.6±78.4 6854.0±28.8

Sludge 3.0±0.8 391.8±21.2 3836.8±144.5 2307.5±2.8 189.4±172.4 6728.6±41.4

Cr fractions mg kg
-1

T

D1

D2

D3

D4
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Figure 11- Percent Cr distributed in the fractions from the sequential extraction of each 

treatment: L0 (control), L1 (150 mg kg
-1

 Cr), L2 (150 mg kg
-1

 Cr), L3 (2000 mg kg
-1

 

Cr), L3 (4000 mg kg
-1

 Cr), L4 (6000 mg kg
-1

 Cr), added as a salt (a) and sludge (b) to 

Cambisols 
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Most Cr in the Arenosols (up to 54%) occurred in the residual fraction, as was the case 

in the Ferralsols (52%). The next most important fraction under acidic conditions was the 

exchangeable (up to 24%; Table 15 and Figure 12). In less acidic conditions, most Cr (up to 

54%) was observed in the organic matter-bound fraction (Figure 12b).  

 

Table 15 - Fractional distribution of Cr content from the sequential extraction of the treated 

Arenosol 

Levels Treatment Exchangeable Carbonates Organic Matter Oxides Residual Pseudo-total

CrCl3.6H2O 1.7±0.2 1.7±0.1 2.3±0.05 1.6±0.1 5.5±1.1 12.8±1.3

Sludge 1.7±0.2 1.5±0.2 2.3±0.07 1.6±0.30 5.6±0.5 12.8±0.5

CrCl3.6H2O 21.4±0.6 20.3±0.1 23.9±1.5 11.3±0.7 85.1±0.9 162.0±1.8

Sludge 4.2±0.1 11.5±1.0 52.5±1.7 19.5±0.5 76.9±2.4 164.7±2.9

CrCl3.6H2O 526.8±16.3 269.4±45.0 310.4±11.7 197.6±5.8 1580.0±37.7 2883.8±25.6

Sludge 10.2±0.7 246.0±37.6 740.9±39.5 264.4±12.1 988.0±54.9 2249.0±56.0

CrCl3.6H2O 1062.2±42.0 410.3±9.0 465.6±21.3 340.7±19.9 2131.4±66.0 4410.8±75.1

Sludge 7.2±0.4 498.2±4.3 2529.6±50.5 668.5±21.1 1361.0±26.0 5064.6±34.6

CrCl3.6H2O 1426.1±65.4 669.4±22.9 654.0±38.7 460.4±28.9 2986.0±247.6 6195.4±165.2

Sludge 3.0±0.5 657.4±12.3 3363.8±318.0 817.2±20.7 1280.5±299.1 6121.9±48.5

Cr fractions mg kg
-1

T

D1

D2

D3

D4
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Figure 12- Percent Cr distributed in the fractions from the sequential extraction of each 

treatment: L0 (control), L1 (150 mg kg
-1

 Cr), L2 (150 mg kg
-1

 Cr), L3 (2000 mg kg
-1

 

Cr), L3 (4000 mg kg
-1

 Cr), L4 (6000 mg kg
-1

 Cr), added as a salt (a) and sludge (b) 

to Arenosol 
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4.3.3.2.2 Iron 

Results from the sequential extraction of the Ferralsols, Cambisols, and Arenosols 

showed that Fe occurred primarily in the residual (F5) and oxide (F4) fractions (Figures 13, 14, 

and 15). Other forms of Fe were almost negligible. These results were similar to those reported 

by Wu et al. (2007), who found most Fe in the crystalline Fe oxide, residual, and amorphous Fe 

oxide fractions. Solubility of Fe oxides is extremely low at the most commonly occurring soil 

pH values, and is typically influenced by factors such as particle size, degree of crystallization, 

and the substitution of Fe for Al (SCHWERTMANN, 1991). Sastre et al. (2001) have also 

argued that wastes with a high concentration of iron oxides pose lower risks for environmental 

pollution than heavy metals, due to the capacity of such wastes for retaining metals. 
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Figure 13 - Percent Fe distributed in the fractions from the sequential extraction of each 

treatment: L0 (control), L1 (150 mg kg
-1

 Cr), L2 (150 mg kg
-1

 Cr), L3 (2000 mg kg
-1

 

Cr), L3 (4000 mg kg
-1

 Cr), L4 (6000 mg kg
-1

 Cr), added as a salt (a) and sludge (b) 

to Ferralsol 

 

 

 

 

 

 

(a) (b) 
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Figure 14 - Percent Fe distributed in the fractions from the sequential extraction of each 

treatment: L0 (control), L1 (150 mg kg
-1

 Cr), L2 (150 mg kg
-1

 Cr), L3 (2000 mg kg
-1

 

Cr), L3 (4000 mg kg
-1

 Cr), L4 (6000 mg kg
-1

 Cr), added as a salt (a) and sludge (b) 

to Cambisol 
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Figure 15 - Percent Fe distributed in the fractions from the sequential extraction of each 

treatment: L0 (control), L1 (150 mg kg
-1

 Cr), L2 (150 mg kg
-1

 Cr), L3 (2000 mg kg
-1

 

Cr), L3 (4000 mg kg
-1

 Cr), L4 (6000 mg kg
-1

 Cr), added as a salt (a) and sludge (b) 

to Arenosol 

 

4.3.3.2.3 Manganese 

The distribution of Mn among different fractions in Ferralsols treated with different 

rates of CrCl3.6H2O was nearly identical, with the highest proportions in the residual fraction 

(up to 75%) and the lowest in the carbonate and organic matter fractions (1%) (Figure 16a). In 

the soils treated with sludge we observed a reduction in the proportion of Mn in the extractable 

fraction (F1) from 15% (level 4 - CrCl3.6H2O) to 1% (level 4 - tannery sludge), and an increase 

in the proportion of Mn in the organic fraction (from 1 to 8% in level 4) (Figure 16b), with 
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increasing soil pH. Similar results have been reported by Nachtigall et al. (2009) for Mn and Zn. 

At pH >6, high amounts of Mn are adsorbed to organic matter, concentrations of exchangeable 

forms are low, and those of organic and oxide forms are high (BIBAK, 1994; SHUMAN, 1986). 

As pH declines, so does the number of OH sites on the surface of the organic matter and the 

oxides that can retain Mn. 

In Cambisols, when mean soil pH was <2.8 (in the CrCl3.6H2O treatments) (Table 11), 

the highest proportion of Mn occurred in the exchangeable fraction (up to 68%), followed by F4 

(oxides) and F5 (residual) (Figure 17a). When soil pH was high, the exchangeable contents 

declined and the fraction bound to organic matter increased (Figure 17b and Table 11). A 

similar pattern was observed in the Arenosol samples (Figure 18). Shuman (1985) has noted that 

in clayey soils, most Mn tends to be adsorbed to oxides, while in less clayey soils it is 

complexed by organic matter (SIMS, 1986; ZHANG et al., 1997). At more neutral pH levels, 

Mn can precipitate in hydroxylated forms (Mn(OH)n). 
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Figure16 - Percent Mn distributed in the fractions from the sequential extraction of each 

treatment: L0 (control), L1 (150 mg kg
-1

 Cr), L2 (150 mg kg
-1

 Cr), L3 (2000 mg kg
-

1
 Cr), L3 (4000 mg kg

-1
 Cr), L4 (6000 mg kg

-1
 Cr), added as a salt (a) and sludge 

(b) to Ferralsol 

 

 

(a) (b) 



151 
 

0%

20%

40%

60%

80%

100%

L 0 L  1 L  2 L  3 L  4

F1 F2 F3 F4 F5

100

80

60

40

20

0

A
v

er
a
g
e 

D
is

tr
ib

u
ti

o
n
 o

f 
 M

n
, %

 

0%

20%

40%

60%

80%

100%

L 0 L  1 L  2 L  3 L  4

F1 F2 F3 F4 F5

100

80

60

40

20

0

A
v

er
a
g
e 

D
is

tr
ib

u
ti

o
n
 o

f 
 M

n
, %

 
Figure 17 - Percent Mn distributed in the fractions from the sequential extraction of each 

treatment: L0 (control), L1 (150 mg kg
-1

 Cr), L2 (150 mg kg
-1

 Cr), L3 (2000 mg kg
-

1
 Cr), L3 (4000 mg kg

-1
 Cr), L4 (6000 mg kg

-1
 Cr), added as a salt (a) and sludge (b) 

to Cambisol 
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Figure 18 - Percent Mn distributed in the fractions from the sequential extraction of each 

treatment: L0 (control), L1 (150 mg kg
-1

 Cr), L2 (150 mg kg
-1

 Cr), L3 (2000 mg kg
-

1
 Cr), L3 (4000 mg kg

-1
 Cr), L4 (6000 mg kg

-1
 Cr), added as a salt (a) and sludge 

(b) to Arenosol 

 

4.3.3.2.4 Zinc 

Zn in the organic fraction decreased with decreasing soil pH (Figures 19, 20 and 21), 

which is explained by the fact that lower pH increases exchangeable forms of Zn and decreases 

Zn content in the organic fraction (NASCIMENTO et al., 2002; SHUMAN, 1986; SIMS, 1986). 

Lower soil pH also leads to the solubilization of Zn hydroxides, increasing the exchangeable 

contents of the element (Figures 19, 20, and 21 and Tables 10, 11, and 12). Sims (1986) reported 

that the exchangeable forms of Mn and Zn predominated at pH of <5.2, while at higher pH 

(a) (b) 

(a) (b) 



 152 

levels after liming forms bound to organic matter and oxides predominated. In our study, we 

observed increased levels of Zn bound to the organic fraction in soils treated with tannery 

sludge, which increased their pH. In weakly acidic conditions of that kind, Zn can be co-

precipitated together with Fe and Al oxides (ROSS, 1994), form weakly soluble complexes with 

organic matter (ADRIANO, 1986), or be strongly retained by processes of specific adsorption 

(KALBASI; RACZ; LOEWENRUDGERS, 1978; CUNHA; CAMARGO; KINJO, 1994). At pH 

values closer to neutral, Zn can be adsorbed to Fe and Al oxides and/or be precipitated in 

hydroxylated forms (Zn(OH)n) (SIMS; PATRICK, 1978). 
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Figura 19 - Percent Zn distributed in the fractions from the sequential extraction of each 

treatment: L0 (control), L1 (150 mg kg
-1

 Cr), L2 (150 mg kg
-1

 Cr), L3 (2000 mg kg
-

1
 Cr), L3 (4000 mg kg

-1
 Cr), L4 (6000 mg kg

-1
 Cr), added as a salt (a) and sludge 

(b) to Ferralsol. 

 

 

 

 

(a) (b) 
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Figura 20 - Percent Zn distributed in the fractions from the sequential extraction of each 

treatment: L0 (control), L1 (150 mg kg
-1

 Cr), L2 (150 mg kg
-1

 Cr), L3 (2000 mg kg
-

1
 Cr), L3 (4000 mg kg

-1
 Cr), L4 (6000 mg kg

-1
 Cr), added as a salt (a) and sludge 

(b) to Cambisol 
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Figura 21 - Percent Zn distributed in the fractions from the sequential extraction of each 

treatment: L0 (control), L1 (150 mg kg
-1

 Cr), L2 (150 mg kg
-1

 Cr), L3 (2000 mg kg
-

1
 Cr), L3 (4000 mg kg

-1
 Cr), L4 (6000 mg kg

-1
 Cr), added as a salt (a) and sludge (b) 

to Arenosol 

 

4.3.3.2.5 Lead 

In all Ferralsol samples total Pb contents exceeded Cetesb’s soil quality reference 

value (VRQ; 17 mg kg
-1

) but were below the prevention value (72 mg kg
-1

). In the other soils 

these values were below the VRQ. In contrast to Nogueirol (2009), who studied waste-polluted 

soils and found that most Pb was associated with the residual fraction, in our study the residual 

was the least important fraction for the metal (Figures 22, 23, and 24). Pb mostly occurred in the 

(a) 

(a) 

(b) 

(b) 
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organic fraction (up to 63% of total Pb content) in the sludge-treated samples (Figures 22b and 

23b). In the Arenosol samples, exchangeable Pb content (F1) declined with increasing soil pH 

(Table 13 and Figure 24b). 

Soil samples treated with CrCl3.6H2O showed higher levels of exchangeable Pb, which 

accounted for 29% of all Pb at the highest salt dose (Figura 22a) in the Ferralsols and for 44% in 

the Cambisols (Figure 23a). These results can be attributed to variation in pH. Borges and 

Coutinho (2004) studied the effect of pH and the application of biossolids on the distribution of 

metals in a Latossolo Vermelho cultivated with maize, and found that higher pH decreased 

metal concentrations in the exchangeable fraction and increased them in the organic fraction, 

indicating that at higher soil pH Pb is more strongly retained by OM. In fact, higher levels of pH 

decreased metal availability via precipitation reactions and by increasing adsorption to variable-

charged colloids (SHUMAN, 1998). Pb is considered to be one of the least mobile metals in 

soils, since it can be complexed by organic matter, adsorbed to silicated oxides and minerals, or 

precipitated as carbonate, hydroxide, or phosphate in high-pH conditions (McBRIDE, 1994). No 

variation between treatments was observed for the Arenosols. 
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Figura 22 - Percent Pb distributed in the fractions from the sequential extraction of each 

treatment: L0 (control), L1 (150 mg kg
-1

 Cr), L2 (150 mg kg
-1

 Cr), L3 (2000 mg kg
-

1
 Cr), L3 (4000 mg kg

-1
 Cr), L4 (6000 mg kg

-1
 Cr), added as a salt (a) and sludge (b) 

to Ferralsol 

 

 

(a) (b) 
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Figura 23 - Percent Pb distributed in the fractions from the sequential extraction of each 

treatment: L0 (control), L1 (150 mg kg
-1

 Cr), L2 (150 mg kg
-1

 Cr), L3 (2000 mg kg
-

1
 Cr), L3 (4000 mg kg

-1
 Cr), L4 (6000 mg kg

-1
 Cr), added as a salt (a) and sludge (b) 

to Cambisol 
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Figura 24 - Percent Pb distributed in the fractions from the sequential extraction of each 

treatment: L0 (control), L1 (150 mg kg
-1

 Cr), L2 (150 mg kg
-1

 Cr), L3 (2000 mg kg
-1

 

Cr), L3 (4000 mg kg
-1

 Cr), L4 (6000 mg kg
-1

 Cr), added as a salt (a) and sludge (b) 

to Arenosol 

 

4.3.3.2 Spectral response of Cr in soils  

Figures 25 to 30 show the spectral variation in the vis-NIR e mid-IR ranges as a 

function of pseudo-total Cr concentrations. For all soils, absorptions bands from 400-2450 nm 

were observed in the vis-NIR range (original reflectance curve). Similar to metals of Experiment 

1, a reduction of the reflectance intensity with high levels of Cr was observed (Figures 25, 27 

and 29). The spectra differences between two levels of Cr (from 207 to 4079 mg kg
-1

) in 

Ferralsol (Figure 25a) and Arenosols (from 13 and 162 mg kg
-1

) (Figure 29a) were very small. 

(b) (a) 

(a) (b) 
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We tried to enhance these weak absorptions features with the CR of spectra (Figure 25b, 27b 

and 29b). It can be seen that the most of the strong spectral absorption peaks for all soils studied 

were found at approximately 480-530, 800-900, 1400, 1900 and 2200 nm. The peaks at 1400, 

1900, and 2200 nm are known to arise mainly from the OH of water molecules, whereas lattice 

OH in minerals and iron has a spectral assignment near 500 and 900 nm (BEN-DOR et al., 

1999). We used the absorption depth of these bands to correlate to pseudo-total heavy metals 

concentrations (Table 16). In the mid-IR range many strong absorption peaks were observed. 

We selected the peaks at around 3690 - 3600 cm
-1

, 2930-2840 cm
-1

, 1640 cm
-1

 and 1157 cm
-1 

to 

make this correlation. Characteristics absorptions peaks at 2930–2850 cm
−1

 can be related to the 

aliphatic C-H vibration (HABERHAUER et al., 1998; LEIFELD, 2006). Carboxyl C, 

hydroxylic C-O-H or aromatic C-H, and C = C vibrations probably form the spectral peaks at 

wavenumbers less than 1500 cm
−1

 (RUMPEL et al., 2001; SOLOMON et al., 2005; 

BORNEMANN et al., 2010). The ranges 3690-3600 cm
-1

 and 1640 cm
-1

 are related with clay 

minerals (Table 6).  

Similar peaks were observed for samples treated with tannery sludge. In the mid-IR 

range the variation of the intensity of reflectance between the different rates were similar to 

those obtained for CrCl3.6H2O contaminations (Figures 26, 28, 30). However, in the vis-NIR 

range the albedo for Ferralsol were higher in samples treated with tannery sludge than with 

CrCl3.6H2O (Figures 25a and 26a). Generally the vis-NIR spectrum was flattened in higher 

organic matter concentrations, as observed in samples treated with sludge (Figures 26a, 28a and 

30a), in accordance with Madeira Neto (1993). We also observed more clearly the separation 

between the soil spectral curves according to Cr concentrations of samples with this treatment 

(Figures 26a and 28a).These differences were confirmed by the scores of the principal 

component analysis of these data (Figure 32).  

Correlation analysis between the depths (1-CR) and Cr concentrations are confirmed 

with the graphs of the mean spectra (Figures 25 to 30). Cr concentration is negatively correlated 

with soil reflectance and the depths at around 500, 800-920 and 2200 suggests Cr sorption by 

clay size minerals assemblages as the mechanism by which to predict spectrally featureless Cr in 

soils. 
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Table 6 - Correlation matrix for relationships between heavy metals (pseudo-total contents/ mg kg

-1
) contents evaluated at Experiment II and band 

depths (vis-NIR) and absorbance (mid-IR) at specific wavelengths 

480-520 830-920 1400 1900-2000 2200 Cr Pb Zn Fe Mn

480-520 1.00

830-920 0.95 ** 1.00

1400.00 -0.21 -0.13 1.00

1900-2000 -0.53 ** -0.48 ** 0.58 ** 1.00

2200.00 -0.07 -0.02 0.93 ** 0.35 1.00

Cr -0.48 * -0.50 * 0.46 * 0.51 ** -0.52 * 1.00

Pb -0.74 ** -0.83 ** 0.09 0.38 -0.09 -0.02 1.00

Zn 0.08 -0.20 0.85 ** 0.47 * -0.83 ** 0.14 0.31 1.00

Fe -0.74 ** -0.85 ** 0.02 0.36 -0.02 0.75 ** 0.52 * 0.35 1.00

Mn -0.19 -0.09 0.95 ** 0.47 * -0.94 ** 0.40 * -0.09 0.88 ** -0.03 1.00

3690-3600 2930-2840 1640 1157 Cr Pb Zn Fe Mn

3690-3600 1.00

2930-2840 0.74 1.00

1640 0.21 0.63 ** 1.00

1157 0.98 0.75 ** 0.25 1.00

Cr 0.45 * 0.62 ** 0.75 ** -0.26 1.00

Pb 0.27 0.44 * 0.43 * -0.86 ** -0.02 1.00
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Figure 25 - Reflectance spectra of Ferralsols artificially contaminated with CrCl3.6H2O with different contamination levels of Cr concentrations (a); 

vis-NIR continnum removed spectra (b); spectral parameters vis-NIR (c); mid-IR reflectance (d); mid-IR absorbance (e); spectral 

parameter mid-IR (f)  
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Figure 26- Reflectance spectra of Ferralsols artificially contaminated with tannery sludge with different contamination levels of Cr concentrations (a); 

continnum removed spectra (b); spectral parameters vis-NIR (c); mid-IR reflectance (d); mid-IR absorbance (e); spectral parameter mid-

IR (f).  
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Figure 27 - Reflectance spectra of Cambisols artificially contaminated with CrCl3.6H2O with different contamination levels of Cr concentrations (a); 

continnum removed spectra (b); spectral parameters vis-NIR (c); mid-IR reflectance (d); mid-IR absorbance (e); spectral parameter mid-

IR (f). Variations in spectral absorption features showed an association with heavy metals 
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Figure 28 - Reflectance spectra of Cambisols artificially contaminated with tannery sludge with different contamination levels of Cr concentrations 

(a); continnum removed spectra (b); spectral parameters to be evaluated (c); mid-IR reflectance (d); mid-IR absorbance (e); spectral 

parameter mid-IR (f). Variations in spectral absorption features showed an association with heavy metals 

(d) (e) (f) 

(c) (b) (a) 
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Figure 29 - Reflectance spectra of Arenosols artificially contaminated with CrCl3.6H2O with different contamination levels of Cr concentrations (a); 

continnum removed spectra (b); spectral parameters to be evaluated (c); mid-IR reflectance (d); mid-IR absorbance (e); spectral 

parameter mid-IR (f).Variations in spectral absorption features showed an association with heavy metals 
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Figure 30 - Reflectance spectra of Arenosols artificially contaminated with tannery sludge with different contamination levels of Cr concentrations 

(a); vis-NIR continnum removed spectra (b); spectral parameters vis-NIR(c); mid-IR reflectance (d); mid-IR absorbance (e); spectral 

parameter mid-IR (f). Variations in spectral absorption features showed an association with heavy metals 
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(f) (e) (d) 
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4.3.3.3 Principal component analysis 

As in Experiment 1, principal components analysis of the spectral data effectively 

distinguished between soils, confirming that the chemical and mineralogical profiles of the 

Ferralsols, Cambisols, and Arenosols resulted in different spectral signatures (Figure 31) after 

pollution, in agreement with Bellinaso et al. (2010). The PC-1 and PC-2 loadings of mid-IR 

showed that wavelengths at 3700-3500, 2400, 2000 and 1200 contributed more to the PC’s, 

which agrees with Siebielec et al. (2004) and Janik et al. (2009). PC-1 accounted for 86% of 

the spectral variation in the full data set and was characterized by peaks corresponding to 

kaolinite (3695-3620 cm
-1

) and quartz (negative peaks below 2100 cm
-1

). The PC-1 and PC-2 

loadings of vis-NIR indicated that bands around 700-900 nm and 1900 nm made a significant 

contribution to the PC’s. The CR results emphasized the importance of these bands on the 

PC’s (Figure 31). Absorptions in the visible region were associated with iron-containing 

minerals (JANIK et al., 2009).  

Most soils polluted with tannery sludge showed different spectral signatures in the 

vis-NIR region when compared to those treated with CrCl3.6H2O, as shown by a scatterplot of 

PCA results (Figure 32a). However, this was not the case for the mid-IR data (Figure 32b). 

According to Reeves et al. (2005), much of the information in the mid-IR soil spectra is 

derived from a combination of organic and inorganic materials, while information in the vis-

NIR spectra is largely based on CH, OH, and NH groups found in organics (REEVES et al., 

2005). The results of our study show that while the mineralogical characteristics of soils has a 

strong influence on soil reflectance (DALMOLIN, 2002; DEMATTÊ; EPIPHANIO; 

FORMAGGIO, 2003), the organic matter play a more important role in determining their 

spectral signatures and can mask the clay minerals absorptions for example, especially in 

SOC high concentrations. Here, it should be clarified that it does not mean that mineralogical 

characteristics does not have any effect on the relationship between soil spectra and heavy 

metals. 
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Figure 31- PCA results of spectra of soil samples PC-1-PC-2 score plot and loadings of the 

first two PC´s of continnum-removal of vis-NIR data (a), vis-NIR reflectance (b) 

and mid-IR reflectance (c) 
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Figure 32 - PCA results of spectra of soil samples PC-1-PC-2 score plot and loadings of the 

first two PC´s of vis-NIR data (a) and mid-IR reflectance (b) 

 

4.3.3.4 Vis-NIR and mid-IR spectroscopy calibrations  

Prior to any model development the role data (sludge and CrCl3.6H2O treatments) 

set was randomly divided into a calibration set (CS) with 63 samples and a validation set (VS) 

with 27 samples, including all soil types and metals levels to ensure independence between 

CS and VS. Table 17 presents a descriptive analysis of the two data sets. We observed high 

values of standard deviation, especially for pseudo-total metals contents of Cr and Fe. These 

elements are present in very high concentrations. 

Calibrations produced for Cr, Fe, Mn, Zn and Pb for each fraction (sequential 

extraction) using vis-NIR and mid-IR spectroscopy were shown on figures 33, 34, 35, 36 and 

37. We observed that the calibration performance with vis-NIR data performed slightly better 

than those with mid-IR, except for Cr. This fact disagrees with some researches comparing 

mid-IR and NIRS on the same samples that have demonstrated that mid-IR generally 

outperforms NIR in the analysis of soils (e.g. SIEBIELEC et al., 2004) but in these studies 

almost efforts have concentrated on C and N fractions. However, there are others reports in 

literature which state that NIR performs better than MIR (e.g. VAN GROENIGEN et al., 

2003).  
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Table 17 - Descriptive statistics for soil attributes contents in the calibration and validation 

data sets 

Properties Min Max Mean SD Min Max Mean SD

pH 2.1 7.4 4.7 1.8 2.0 7.7 4.7 1.9

P, mg kg
-1

2.0 12.0 3.5 2.9 2.0 12.0 3.4 2.9

Ca, mmolc dm
-3

4.0 306.0 72.0 90.0 3.0 333.0 76.1 99.0

Mg, mmolc dm
-3

2.0 158.0 42.3 53.4 2.0 158.0 39.1 50.2

K, mmolc dm
-3

0.5 18.3 3.4 4.4 0.5 6.7 2.5 2.2

Na, mmolc dm
-3

0.5 195.5 36.7 58.2 0.4 200.0 40.3 62.9

H+Al, mmolc dm
-3

8.0 996.0 193.0 317.0 8.0 896.0 182.0 257.0

CEC, mmolc dm
-3

56.2 1055.0 347.0 311.0 56.7 910.0 340.0 251.0

BS, % 2.0 98.0 49.5 39.2 1.5 98.5 46.7 38.9

Cr, mg kg
-1

11.5 6884.0 2600.0 2567.0 11.5 6774.0 2735.0 2475.0

Fe, mg kg
-1

4965.0 81500.0 28540.0 32376.0 4836.5 82600.0 32693.0 33619.0

Mn, mg kg
-1

22.6 675.5 295.0 250.1 20.6 689.9 309.5 244.0

Pb, mg kg
-1

15.0 34.0 19.7 7.3 15.0 34.1 19.7 6.4

Zn, mg kg
-1

10.3 33.4 22.9 8.7 10.5 33.7 23.8 8.6

Calibration data set Validation data set

 
* Cr, Fe, Mn, Pb and Zn refer to pseudo-total contents 

 

In our study the fractionation scheme is diverse for all the metals. The most 

significant differences in accuracy of prediction between mid-IR and vis-NIR for Cr were in 

fractions 2 (F2) and 4 (F4) in which RMSEs decrease 5.44 and 3.57 times, respectively. For 

Fe, Pb, Mn and Zn, the vis-NIR data showed models with higher accuracy. In this case, the 

differences in accuracy of predictions between vis-NIR and mid-IR higher than 2 times were 

observed for Fe (F5), Mn (F3) and Pb (F2) (Figures 34, 35 and 36). 

For pseudo-total contents of metals, an extremely wide range of concentration was 

present (Table 17) but the RMSE values of all calibrations were lower than the chemical 
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standard deviation (figures 33 - 37), especially for Fe. For meaningful interpretation of 

spectral prediction error it is important to observe the within-laboratory uncertainty (COHEN 

et al., 2007). Judging the suitability of spectral methods based on spectral accuracy alone 

ignores the laboratory error.  

Calibrations for Cr, especially in fraction 2 (vis-NIR) had a tendency to underpredict 

higher contents (more than 1000 mg kg
-1

) (Figure 33c) and overpredict lower contents (less 

than 250 mg kg
-1

). The tendency for under and over prediction was also observed for Fe, Mn, 

Zn and Pb (Figures 34, 35, 36 and 37). In general, only Pb contents of residual fraction (F5) 

and Mn of exchangeable fraction were still not predicted satisfactorily using the mid-IR data 

(Figure 37f and 36b), because there was a low R
2
 between measured (chemically determined) 

and predicted contents. The predicted models of exchangeable fractions (F1) for Pb, Zn and 

Cr extracted with 15 mL 0.1 mol L
-1

 CaCl2 performed better than the available contents 

extracted with DTPA in Experiment I. 
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Figure 33 - Cross-validation scatter plot of laboratory-measured data versus vis-NIR and mid-

IR predictions obtained from partial least square regression of pseudo-total 

content of Cr (a), Cr (F1) (b), Cr (F2) (c); Cr (F3) (d); Cr (F4) (e) and Cr (F5) (f). 

v and m refer to vis-NIR and mid-IR data 
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Figure 34 - Cross-validation scatter plot of laboratory-measured data versus vis-NIR and mid-

IR predictions obtained from partial least square regression of pseudo-total 

content of Fe (a), Fe (F1) (b), Fe (F2) (c); Fe (F3) (d); Fe (F4) (e) and Fe (F5) (f). 

v and m refer to vis-NIR and mid-IR data 

(a) (b) 

(c) (d) 

(f) 
(e) 

Measured Fe, mg kg
-1

 

P
re

d
ic

te
d

 F
e,

 m
g

 k
g

-1
 

0

2000

4000

6000

8000

0 2000 4000 6000 8000

vis-NIR mid-IR  



171 
 

0

200

400

600

800

0 200 400 600 800

Rv
2 = 0.94

RMSEv= 57.9
Rm

2 = 0.93

RMSEm= 62.00

 

0

100

200

300

400

500

0 100 200 300 400 500

Rv
2 = 0.83

RMSEv= 39.10
Rm

2 = 0.37

RMSEm= 75.4

 

0

10

20

30

40

0 10 20 30 40

Rv
2 = 0.90

RMSEv= 2.65
Rm

2 = 0.73

RMSEm= 4.50

 

0

100

200

300

400

500

0 100 200 300 400 500

Rv
2 = 0.93

RMSEv= 32.46
Rm

2 = 0.71

RMSEm= 67.9

 

0

50

100

150

200

250

0 50 100 150 200 250

Rv
2 = 0.94

RMSEv= 17.73
Rm

2 = 0.89

RMSEm= 23.13

 

0

100

200

300

0 100 200 300

Rv
2 = 0.78

RMSEv= 42.00
Rm

2 = 0.74

RMSEm= 45.50

 
 

Figure 35 - Cross-validation scatter plot of laboratory-measured data versus vis-NIR and mid-

IR predictions obtained from partial least square regression of pseudo-total 

content of Mn (a), Mn (F1) (b), Mn (F2) (c); Mn (F3) (d); Mn (F4) (e) and Mn 

(F5) (f). v and m refer to vis-NIR and mid-IR data 
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Figure 36 - Cross-validation scatter plot of laboratory-measured data versus vis-NIR and mid-

IR predictions obtained from partial least square regression of pseudo-total 

content of Zn (a), Zn (F1) (b), Zn (F2) (c); Zn (F3) (d); Zn (F4) (e) and Zn (F5) 

(f). v and m refer to vis-NIR and mid-IR data 
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Figure 37 - Cross-validation scatter plot of laboratory-measured data versus vis-NIR and mid-

IR predictions obtained from partial least square regression of pseudo-total 

content of Pb (a), Pb (F1) (b), Pb (F2) (c); Pb (F3) (d); Pb (F4) (e) and Pb (F5) (f). 

v and m refer to vis-NIR and mid-IR data 
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Table 18 - Summary statistics of validation results of calibrations for Cr, Zn, Pb, Fe, Mn using 

an independent validation dataset (continues) 

Metal Fraction Sensor data Rv
2

RMSEv Correlation Slope PLS factors RPD

F1 vis-NIR 0.65 304.00 0.83 0.53 11 1.72

mid-IR 0.59 329.00 0.86 0.53 12 1.59

F2 vis-NIR 0.61 244.00 0.80 0.75 9 1.63

mid-IR 0.72 199.00 0.85 0.81 8 2.00

F3 vis-NIR 0.77 473.00 0.88 0.84 6 2.11

Cr mg kg
-1

mid-IR 0.83 401.00 0.92 0.92 6 2.48

F4 vis-NIR 0.76 220.00 0.88 0.84 4 2.10

mid-IR 0.80 200.00 0.90 0.91 4 2.31

F5 vis-NIR 0.85 289.00 0.93 1.00 9 2.65

mid-IR 0.52 528.00 0.75 0.74 7 1.45

pseudo-total vis-NIR 0.86 921.00 0.93 0.94 10 2.69

mid-IR 0.86 915.00 0.93 0.87 6 2.70

F1 vis-NIR 0.91 1.70 0.97 1.10 10 3.53

mid-IR 0.90 1.96 0.95 0.81 4 3.06

F2 vis-NIR 0.91 0.63 0.96 0.85 8 3.46

mid-IR 0.58 1.41 0.80 0.70 4 1.55

F3 vis-NIR 0.89 1.20 0.95 1.02 8 3.00

Zn mg kg
-1

mid-IR 0.90 1.06 0.95 0.89 5 3.40

F4 vis-NIR 0.62 1.35 0.79 0.59 2 1.46

mid-IR 0.66 1.12 0.81 0.68 3 1.76

F5 vis-NIR 0.21 4.69 0.67 0.73 5 1.19

mid-IR 0.10 5.10 0.54 0.48 6 1.09

pseudo-total vis-NIR 0.47 7.61 0.70 0.50 4 1.13

mid-IR 0.40 6.90 0.77 0.60 3 1.25

F1 vis-NIR 0.53 1.52 0.74 0.68 4 1.26

mid-IR 0.50 1.20 0.86 0.60 3 1.60

F2 vis-NIR 0.20 1.47 0.43 0.61 10 1.09

mid-IR 0.35 1.47 0.69 0.84 10 1.09

F3 vis-NIR 0.86 2.40 0.93 0.91 7 2.67

Pb mg kg
-1

mid-IR 0.63 3.90 0.79 0.67 12 1.64

F4 vis-NIR 0.20 2.96 0.14 0.13 10 0.71

mid-IR 0.61 1.29 0.83 0.81 4 1.64

F5 vis-NIR 0.55 1.40 0.75 0.65 10 1.00

mid-IR 0.35 1.87 0.50 0.35 4 0.84

pseudo-total vis-NIR 0.20 7.64 0.53 0.42 7 0.84

mid-IR 0.20 8.10 0.39 0.25 6 0.79  
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Table 18 (continuation) - Summary statistics of validation results of calibrations for Cr, Zn, 

Pb, Fe, Mn using an independent validation dataset 

Metal Fraction Sensor data Rv
2

RMSEv Correlation Slope PLS factors RPD

F1 vis-NIR 0.51 75.30 0.8 0.38 10 1.45

mid-IR 0.30 79.80 0.80 0.33 3 1.32

F2 vis-NIR 0.26 95.30 0.76 1.01 11 1.16

mid-IR 0.36 87.30 0.82 1.08 3 1.27

F3 vis-NIR 0.74 12.83 0.86 0.75 10 1.75

Fe mg kg
-1

mid-IR 0.70 12.36 0.83 0.73 5 1.78

F4 vis-NIR 0.55 3890.00 0.47 0.50 7 1.02

mid-IR 0.50 3910.00 0.40 0.33 5 1.01

F5 vis-NIR 0.4 17500.00 0.81 0.91 6 1.63

mid-IR 0.30 21500.00 0.64 0.64 4 1.33

pseudo-total vis-NIR 0.98 3521.00 0.99 1.00 6 9.55

mid-IR 0.33 3700.00 0.66 0.65 4 9.09

F1 vis-NIR 0.87 46.54 0.95 1.11 9 2.91

mid-IR 0.37 75.50 0.87 0.55 3 1.79

F2 vis-NIR 0.73 3.43 0.87 0.86 9 2.31

mid-IR 0.77 3.70 0.92 0.99 6 2.13

F3 vis-NIR 0.91 30.52 0.96 0.98 12 3.41

Mn mg kg
-1

mid-IR 0.50 74.80 0.74 0.69 3 1.39

F4 vis-NIR 0.94 17.16 0.97 0.94 10 4.23

mid-IR 0.85 28.34 0.93 0.90 4 2.56

F5 vis-NIR 0.20 80.84 0.44 0.38 4 1.01

mid-IR 0.10 79.80 0.48 0.41 5 1.03

pseudo-total vis-NIR 0.82 106.00 0.91 0.82 4 2.30

mid-IR 0.55 90.00 0.97 0.90 3 2.71  
 

 

It was possible to predict the pseudo-total contents of one metal (Cr) out of five with 

high precision with both sensors data (Table 18). Coefficients of determination for pseudo-

total Mn and Fe are also above 0.8 (vis-NIR).  

Also, RPDs > 2 are indicative of very good models (KOOISTRA et al., 2001). Thus, 

the validation results for Cr (F3, F4 and F5), Zn (F1, F2 and F3), Pb (F3), Mn (F1, F3 and F4) 

gave R
2
’s > 0.80 and RPDs between 2 and 4.23, which are considered good performances. 

The validation results for Cr (F1 and F2), Zn (F4), Pb (F3), Fe (F3) and Mn (F2) presented 

R
2
’s between 0.6 and 0.8 and RPDs >1.7, which are also satisfactory. The others fractions of 

metals did not provide a significant prediction. These results showed that active soil 

components such as Fe oxides (related to F4) and organic matter (F3) allowed estimation of 

heavy metals with reflectance spectroscopy in accordance with Malley and Williams (1997), 

Kooistra et al. (2001) and Kemper and Sommer, (2002). 

https://www.crops.org/publications/sssaj/articles/71/3/918#ref-30
https://www.crops.org/publications/sssaj/articles/71/3/918#ref-25
https://www.crops.org/publications/sssaj/articles/71/3/918#ref-24
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4.4 Conclusions 

The available content of almost all metals studied, extracted by DTPA (pH 7), 

decreased over time, suggesting that metals were adsorbed to oxides, clay minerals, and/or 

soil organic matter. This adsorption regulates the concentration of ions and complexes in the 

soil solution, and plays an important role in its availability to the environment. The 

reflectance spectroscopy as a non destructive analytical method cannot be used to predict Cr, 

Zn and Pb extracted by DTPA (pH 7.0) accurately. However, it is important to highlight that 

the metals adsorption to soil constituents caused expressive changes in soil spectral curves, 

showing spectral differentiation between highly contaminated soil and soils that are relatively 

contaminant-free. However, the concentrations of metals below the agricultural intervention 

threshold (reported by Cetesb) do not show differences in the spectral curves. The metals 

were all negatively correlated with reflectance. The mid-IR spectra showed a larger number of 

features in comparison to vis-NIR. Such an approach although not useful for the exact 

quantification purposes, can be used to determine whether there is significant variability 

within a soil field. 

The distribution of Cr, Fe, Mn, Zn and Pb species in the soils varied according to pH 

and CEC and the fractionation scheme is diverse for all the metals and soils studied. 

Generally, adding tannery sludge caused an increase in soil pH, which led to a decline in 

metals contents in the exchangeable fractions. It can be attributed to precipitation reactions 

and by increasing adsorption to variable-charged colloids. The soils treated with tannery 

sludge showed more different spectral signatures in the vis-NIR region than those treated with 

CrCl3.6H2O. However, this was not the case for the mid-IR data. We observed that the 

organic matter played a more important role in determining the soil spectral signatures than 

the mineralogical characteristics of soils, in high SOC concentrations.   

For pseudo-total contents of metals, an extremely wide range of concentration was 

present and the RMSE values of all models were lower than the chemical standard deviation. 

It showed that although sequential extraction methods allow one to selectively measure the 

distribution of metals in soils, this method is not very precise. The results indicate that the Cr 

pseudo-total content can be predicted by spectroscopy reflectance with both sensors data. Fe 

and Mn also can be predicted accuratley by vis-NIR.  The vis-NIR models outperformed the 

mid-IR. Besides these results, the vis-NIR instrument has less complicated sample and can be 

used directly in the field using portable spectrorradiometers. Thus it should be preferred over 

mid-IR.  
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